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1. Introduction

The study of the regularity of a signal by means of its wavelet coefficients is now a widely used tool. 
Mathematically, it involves the use of sequence spaces which are supposed to constitute an appropriate 
setting to handle the information. In order to study the regularity of a signal via the distribution of its wavelet 
coefficients, Sν spaces have been introduced and it has been shown that they contain more information than 
the classical Besov spaces (see [13]). Nevertheless, the use of these Sν spaces presents some weaknesses and 
then, new spaces of the same type have recently been introduced using wavelet leaders instead of wavelet 
coefficients (see [8]). These spaces are denoted by Lν .

Before giving more details about the introduction and the definition of Lν spaces, let us be more precise 
about the notion of regularity. Let x0 ∈ R and α ≥ 0. A locally bounded function f : R → R belongs to the 
Hölder space Cα(x0) if there exist a constant C > 0 and a polynomial P of degree strictly less than α such 
that

|f(x) − P (x)| ≤ C|x− x0|α

for all x in a neighbourhood of x0. The Hölder exponent of f at x0 is defined by
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hf (x0) := sup{α ≥ 0 : f ∈ Cα(x0)}

and the multifractal spectrum of f is the function df defined by

df (h) := dimH{x ∈ R : hf (x) = h}, h ∈ [0,+∞]

(where dimH denotes the Hausdorff dimension). This function gives a geometrical idea about the distribution 
of the singularities of f . For a general signal (i.e. a function obtained from real-life data), it is clearly 
impossible to estimate df numerically since it involves the successive determination of several intricate limits. 
Therefore one tries instead to estimate this spectrum from quantities which are numerically computable. 
Such a method is called a multifractal formalism.

The Frisch–Parisi conjecture, classically used, gives such an estimation based on a wavelet decomposition 
and the use of Besov spaces (see [23,12]). Nevertheless, it appeared that this use of Besov spaces is not 
sufficient to handle all the information concerning the pointwise regularity contained in the distribution of 
the wavelet coefficients (see [13]). In particular, it can only lead to recover increasing and concave hull of 
spectra.

In order to get a suitable context to obtain multifractal results in the non-concave case, Sν spaces have 
then been introduced (see [13]). These spaces contain the maximal information that can be derived from 
the repartition at every scale of the wavelet coefficients of a function. They have been studied in several 
papers: topological (and specific functional analysis) results were obtained, as well as answers for multifractal 
formalisms (see [5,6,4,1,3,2]). An implementation of this formalism has been proposed and tested on several 
theoretical examples in [18]. However, the Sν spaces can only detect increasing part of spectra.

Meanwhile, it appeared that more accurate information concerning the pointwise regularity can be ob-
tained when relying on wavelet leaders, which can be seen as local suprema of wavelet coefficients. Indeed, 
wavelet leaders give an easier characterization of the pointwise regularity than wavelet coefficients (see for 
example [16] and references therein). In particular, they allow to obtain information about the inter-scale 
organization of the wavelet coefficients, without making any a priori probabilistic assumptions on their 
repartition. In this context, Oscillation spaces have been introduced as a generalization of Besov spaces 
using wavelet leaders (see [15]) and multifractal results have been obtained (see [14,16]). In particular, 
Oscillation spaces gives a method which allows to recover increasing and decreasing parts of spectra. Never-
theless, this method is still limited to concave spectra. So, a natural idea was to extend the study of the Sν

spaces (defined directly using the wavelet coefficients) to the context of wavelet leaders. Those spaces, called 
Lν spaces and introduced in [8], lead to better approximations for non-concave spectra with a decreasing 
part. Several positive results have been obtained in [8]. Moreover, in [18], the different formalisms (based on 
Oscillation spaces, Sν spaces and Lν spaces) have been compared. It appeared that the method based on the 
Lν spaces is more efficient from the theoretical point of view and that in practice, it gives complementary 
results to those obtained using the formalism based on Oscillation spaces.

In this paper, in order to understand better the structure of the Lν spaces, we endow them with a 
topology. As done in the case of the Sν spaces (see [3,4,6]), one of our purposes is to get applications in 
multifractal analysis and in particular, to obtain the generic validity of the multifractal formalism based on 
Lν spaces. This would give a theoretical justification to this method. Indeed, as for the other multifractal 
formalisms, the method based on the Lν spaces never holds in complete generality, but it yields an upper 
bound for the multifractal spectrum of all functions in the space Lν (see [8]). This is the best that can be 
expected: usually, there are no non-trivial minorations for the multifractal spectrum of all functions in the 
space. Nevertheless, one can hope that for most of the functions in the space, that is to say for a generic 
subset of the space (in the sense of Baire categories), the inequality becomes an equality.

Let us give some classical notations used in the paper. The set of strictly positive natural numbers is N
and we denote N0 := {0} ∪ N. We use the notation λ to refer to the dyadic interval
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λ = λ(j, k) :=
{
x ∈ R : 2jx− k ∈ [0, 1[

}
=

[
k

2j ,
k + 1

2j

[
, j ∈ N0, k ∈

{
0, . . . , 2j − 1

}
,

and for all j ∈ N0, Λj denotes the set of all dyadic intervals (of [0, 1[) of length 2−j . We write #A for the 
cardinal of the set A.

Let us also recall some useful notions and notations which lead to define Sν and Lν spaces as introduced 
in [13,14,8]. Since we are interested in local properties of functions, we can suppose from now on that the 
functions we consider are 1-periodic. We take a mother wavelet ψ in the Schwartz class (as done in [19]) 
and we write

ψj,k(·) :=
∑
l∈Z

ψ(2j(· − l) − k), j ∈ N0, k ∈
{
0, . . . , 2j − 1

}
.

The 1-periodic functions 2j/2ψj,k, j ∈ N0, k ∈ {0, . . . , 2j − 1}, together with the constant function 1 form 
an orthonormal basis of the space of the 1-periodic functions of L2([0, 1]) (see [9,20,22] for more details). 
The wavelet coefficients of such a function f are defined by

cj,k := 2j
1∫

0

f(x)ψj,k(x) dx, j ∈ N0, k ∈
{
0, . . . , 2j − 1

}
(where we have used an L∞-normalization to simplify notations and formulas). We will also use the notations 
ψλ and cλ instead of ψj,k and cj,k respectively.

The wavelet leaders of a signal f ∈ L2([0, 1]) are defined by

dj,k = dλ := sup
λ′⊂λ

|cλ′ |, λ ∈ Λj , j ∈ N0.

With this definition, it may happen that dλ = +∞. To ensure that this is not the case, it is of course 
sufficient to assume that the signal f belongs to L∞([0, 1]) as presented in [14]. Let us remark that in the 
context of pointwise Hölder regularity, the wavelets leaders are usually defined as follows:

d∗λ := sup
λ′⊂3λ

|cλ′ |, λ ∈ Λj , j ∈ N0,

where 3λ denotes the cube of the same center as λ but three times larger. This “3λ” is motivated by the fact 
that the pointwise regularity is characterized in terms of these “selected coefficients”. As shown in [8], this 
choice is no longer justified in our case since both definitions of wavelet leaders give the same spaces Lν .

For all C > 0, α ∈ R and j ∈ N0, we write

Ẽj(C,α)(f) := {k ∈ {0, . . . , 2j − 1} : dj,k ≥ C2−αj} = {λ ∈ Λj : dλ ≥ C2−αj}.

Following [8], the (increasing) wavelet leaders profile of f ∈ L∞([0, 1]) is the function ν̃f defined by

ν̃f (α) := lim
ε→0+

(
lim sup
j→+∞

(
log(#Ẽj(1, α + ε)(f))

log(2j)

))
, α ≥ 0.

Then there is α0 ≥ 0 such that ν̃f (α) = −∞ for every α < α0 and we extend this function by setting ν̃f(α) =
−∞ for α < 0 (similarly to the classical wavelet profile of f in [13]). This definition formalizes the idea that 
at large scales j, there are about 2ν̃f (α)j wavelet leaders larger than 2−αj (with the convention 2−∞ := 0). By 
construction, the function ν̃f is non-decreasing, right-continuous and with values in {−∞} ∪ [0, 1]. Moreover, 
ν̃f is independent of the chosen wavelet basis (see [8]).
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In the context of functions, an admissible profile is a function ν defined on R, non-decreasing, right-
continuous, with values in {−∞} ∪ [0, 1] and for which

0 ≤ αmin := inf{α ∈ R : ν(α) ≥ 0}.

In particular, any wavelet leaders profile is admissible. Given an admissible profile ν, the space Lν is defined 
as the set of functions f such that

ν̃f (α) ≤ ν(α) ∀α ∈ R.

Since the wavelet leaders profile is independent of the chosen wavelet basis, the same holds for the space Lν . 
Therefore, as in the case of Sν spaces (see [5]), we can consider Lν as a sequence space (and no more as a 
function space), independently of the context they come from. That is the point of view that we adopt here.

The paper is organized as follows. In Section 2, we recall basic definitions and results about Sν spaces. 
In Section 3, we reintroduce Lν spaces as sequence spaces and endow those spaces with a natural topology. 
Some properties of this topological vector space are also studied. In Section 4, we present the generic form 
of the wavelet leaders profile of a sequence in Lν . In Section 5, we look at the existing inclusions between 
spaces of type Sν and spaces of type Lν . Finally, as done for Sν spaces and Besov spaces, we compare Lν

spaces and Oscillation spaces in Section 6.
Let us end by mentioning that in [8], a more general definition of Lν spaces is considered: a decreasing 

wavelet leaders profile is also defined. Nevertheless, if the admissible profile has a decreasing part, the 
corresponding Lν space is not a vector space. This is the reason why, in this paper, we work only with 
increasing admissible profiles.

2. Some definitions and known results about Sν spaces

Let us recall some definitions and some basic topological results obtained for Sν spaces (see [5] for details 
and [4,1,3,2] for more results).

2.1. Definitions

Let us denote Λ :=
⋃

j∈N0
{j} ×{0, . . . , 2j − 1} and define Ω := CΛ. In the context of sequence spaces, an 

admissible profile is a non-decreasing right-continuous function of a real variable, with values in {−∞} ∪[0, 1]
such that

αmin := inf {α ∈ R : ν(α) ≥ 0} ∈ R.

Let us mention that one can take αmin < 0 because we work with sequences in Ω; let us remark that in the 
context of locally bounded functions, we always have αmin ≥ 0.

Following [5], the wavelet profile of a sequence �c ∈ Ω is the function ν�c defined by

ν�c(α) := lim
ε→0+

(
lim sup
j→+∞

(
log(#Ej(1, α + ε)(�c ))

log(2j)

))
, α ∈ R,

where

Ej(C,α)(�c ) :=
{
k ∈ {0, . . . , 2j − 1} : |cj,k| ≥ C2−αj

}



F. Bastin et al. / J. Math. Anal. Appl. 431 (2015) 317–341 321
for j ∈ N0, C > 0 and α ∈ R. Given an admissible profile ν, a sequence �c belongs to Sν if

ν�c(α) ≤ ν(α) ∀α ∈ R.

Equivalently, �c belongs to Sν if and only if for every α ∈ R, ε > 0 and C > 0, there exists J ∈ N0 such that

#Ej(C,α)(�c ) ≤ 2(ν(α)+ε)j ∀j ≥ J.

When ν(α) = −∞, we use the convention 2−∞j := 0 for all j ∈ N0. Heuristically, a sequence �c belongs to 
Sν if at each large scale j, the number of k such that |cj,k| ≥ 2−αj is of order smaller than 2ν(α)j . This 
space is a vector space (see Section 2 in [5]).

2.2. Basic results

In this subsection, we summarize the topological properties of Sν established in [5].
There exists a unique metrizable topology that is stronger than the topology of the pointwise convergence 

(by definition, a sequence (�c (m))m∈N converges pointwise to �c if for all j ∈ N0 and all k ∈ {0, . . . , 2j − 1}, 
c
(m)
j,k → cj,k in C if m → +∞) and that makes Sν a complete topological vector space. This topology is 

separable, the compact sets have been characterized, and the link with Besov spaces has been obtained. 
Since the aim of the present paper is to prove similar results using wavelet leaders, let us recall more precise 
results here below.

Let us first recall the definition of the Besov sequence spaces. They are discrete counterpart of Besov 
spaces of functions (see [22]). More precisely, for s ∈ R and p > 0, the Besov space bsp,∞ is the set of 
sequences �c ∈ Ω such that

‖�c ‖bsp,∞ := sup
j∈N0

2(s− 1
p )j

⎛⎝2j−1∑
k=0

|cj,k|p
⎞⎠

1
p

< +∞.

The definition is extended to the case p = ∞ by setting bs∞,∞ = Cs with

‖�c ‖Cs := sup
j∈N0

sup
k∈{0,...,2j−1}

2sj |cj,k|.

This corresponds to the Hölder space of order s. If we define the concave conjugate η of the admissible 
profile ν by

η(p) := inf
α≥αmin

(αp− ν(α) + 1) , p > 0,

we get the following embedding of Sν spaces into Besov spaces (see Proposition 8.7 in [5]).

Proposition 2.1. If (pn)n∈N is a dense sequence of ]0, +∞[ and if (εm)m∈N is a sequence of strictly positive 
numbers converging to 0, then

Sν ⊂
⋂
ε>0

⋂
p>0

b
η(p)
p −ε

p,∞ =
⋂
n∈N

⋂
m∈N

b
η(pn)
pn

−εm
pn,∞

and this inclusion becomes an equality if and only if ν is concave.
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This result justifies the introduction of the Sν spaces: the spaces 
⋂

ε>0
⋂

p>0 b
η(p)/p−ε
p,∞ do not contain 

more information about the multifractal spectra of their elements than their concave hull since for most of 
the functions in this intersection, the spectrum of singularities is given by a Fenchel–Legendre transform 
of η (see [12]). If ν is not concave, the space Sν gives an additional information and leads to estimation of 
spectra which are not concave. We refer the reader to [3,4,7,18] for more information about this method.

In order to define a complete metrizable topology on Sν, auxiliary spaces were introduced. For any α ∈ R

and any β ∈ {−∞} ∪ [0, +∞[, the space A(α, β) is defined by

A(α, β) :=
{
�c ∈ Ω : ∃C,C ′ ≥ 0 such that #Ej(C,α)(�c ) ≤ C ′2βj ∀j ∈ N0

}
.

This space is endowed with the distance

δα,β(�c,�c ′) := inf
{
C + C ′ : C,C ′ ≥ 0 and #Ej(C,α)(�c− �c ′) ≤ C ′2βj ∀j ∈ N0

}
, �c,�c ′ ∈ A(α, β).

Remark that if β = −∞, then (A(α, −∞), δα,−∞) is the topological normed space Cα. If β ≥ 1, then 
A(α, β) = Ω. Moreover, in case β > 1, the topology defined by the distance δα,β is equivalent to the 
topology of pointwise convergence.

Proposition 2.2. For any sequence (αn)n∈N dense in R and any sequence (εm)m∈N of strictly positive numbers 
decreasing to 0, we have

Sν =
⋂
m∈N

⋂
n∈N

A(αn, ν(αn) + εm).

The topology of Sν is defined as the projective limit topology, i.e. the coarsest topology that makes each 
inclusion Sν ⊂ A(αn, ν(αn) + εm) continuous. This topology is equivalent to the topology given by the 
distance

δ =
+∞∑
m=1

+∞∑
n=1

2−(m+n) δm,n

1 + δm,n
,

where δm,n denotes the distance δαn,ν(αn)+εm (see Section 5 in [5]).

3. Lν spaces

3.1. Definitions and first properties

Let us first introduce the definition of the Lν spaces in the context of sequence spaces. If �c ∈ Ω, we define

dλ := sup
λ′⊂λ

|cλ′ |, λ ∈ Λj , j ∈ N0.

With this definition, it may happen that dλ = +∞. However, in what follows, we will see that the definition 
of Lν spaces leads to wavelet leaders which are always finite.

Following [8], we consider the definitions below which provide a generalization of the wavelet profile and 
the Sν spaces with wavelet leaders.

Definition 3.1. The wavelet leaders profile of �c ∈ Ω is the function ν̃�c defined by

ν̃�c(α) := lim
ε→0+

(
lim sup
j→+∞

(
log(#Ẽj(1, α + ε)(�c ))

log(2j)

))
, α ∈ R,
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where

Ẽj(C,α)(�c ) :=
{
k ∈ {0, . . . , 2j − 1} : dj,k ≥ C2−αj

}
for j ∈ N0, C > 0 and α ∈ R.

Definition 3.2. Given an admissible profile ν, the space Lν is the set of sequences �c ∈ Ω such that

ν̃�c(α) ≤ ν(α) ∀α ∈ R.

Remark 3.3. As already mentioned in the end of the introduction, we do not consider here the case where ν
has a decreasing part (in comparison with the definition of an admissible profile given in [8]). We so ensure 
that Lν is a vector space.

Just as in the case of Sν spaces, we get the following description of Lν (the proof is a simple adaptation 
of the proof of Lemma 2.3 in [5]).

Proposition 3.4. Let ν be an admissible profile. The space Lν is a vector space and a sequence �c ∈ Ω belongs 
to Lν if and only if for every α ∈ R, ε > 0 and C > 0, there exists J ∈ N0 such that

#Ẽj(C,α)(�c ) ≤ 2(ν(α)+ε)j ∀j ≥ J.

Let us remark that if a sequence belongs to Lν , it is in C0 and therefore, its wavelet leaders are finite. 
Indeed, if α < αmin, there is C > 0 such that

dj,k ≤ C2−αj ∀j ∈ N0, k ∈ {0, . . . , 2j − 1}.

In particular, d0,0 = supj∈N0,k∈{0,...,2j−1} |cj,k| ≤ C.

Remark 3.5. In [8], the spaces Lν are studied as spaces of locally bounded functions. The assumption 
αmin ≥ 0 is therefore always satisfied. Let us remark that in the context of sequences, we can also restrict 
ourselves to this case. Indeed, let us assume that αmin < 0 and define ν† as follows:

ν†(α) :=
{
ν(α) if α ≥ 0,
−∞ if α < 0.

Then, since Lν ⊂ C0, we get

Lν = Lν†
.

Therefore, from now on, we will always assume that ν is an admissible profile with αmin ≥ 0. Let us 
already note that in Section 4 we will show that any admissible profile is the wavelet leaders profile of a 
sequence in C0. This justifies the definition of an admissible profile.

3.2. Auxiliary spaces

As for the case of the Sν spaces, a useful description can also be obtained by the introduction of auxiliary 
spaces. These new spaces will be used to define a topology on Lν .



324 F. Bastin et al. / J. Math. Anal. Appl. 431 (2015) 317–341
Definition 3.6. Let α ∈ R and β ∈ {−∞} ∪ [0, +∞[. A sequence �c ∈ Ω belongs to the auxiliary space Ã(α, β)
if there exist C, C ′ ≥ 0 such that

#Ẽj(C,α)(�c ) ≤ C ′2βj ∀j ∈ N0.

Let us remark that the auxiliary spaces are vector spaces. Moreover, we have the following result.

Proposition 3.7. For any dense sequence (αn)n∈N in R and any sequence (εm)m∈N of strictly positive numbers 
which converges to 0, we have

Lν =
⋂
ε>0

⋂
α∈R

Ã(α, ν(α) + ε) =
⋂
m∈N

⋂
n∈N

Ã(αn, ν(αn) + εm).

Proof. This proof is a simple adaptation of the proof of Theorem 5.4 in [5] using spaces Ã(α, β) instead 
of A(α, β).

Let us give some first remarks and properties related to these auxiliary spaces.

Remark 3.8.

1. If β = −∞, then Ã(α, β) is the set of the sequences �c ∈ Ω satisfying

sup
j∈N0

sup
k∈{0,...,2j−1}

2jαdj,k < +∞.

Let us remark that it is the Hölder space Cα if α > 0 and the Hölder space C0 if α ≤ 0. Indeed, if α > 0, 
this follows from the fact that if there is R > 0 such that supj,k 2αj |cj,k| ≤ R then |cj′,k′ | ≤ 2−αj′R ≤
2−αjR for every j′ ≥ j, k′ ∈ {0, . . . , 2j′ − 1}. Hence dj,k ≤ R2−αj for every j ∈ N0. If α ≤ 0, it suffices 
to remark that 20d0,0 = supj∈N0,k∈{0,...,2j−1} |cj,k|.

2. If β ≥ 1, then Ã(α, β) = Ω.

Let us now define a distance on these auxiliary spaces.

Definition 3.9. Let α ∈ R and β ∈ {−∞} ∪ [0, +∞[. For �c, �c ′ ∈ Ã(α, β), we write

δ̃α,β(�c,�c ′) := inf
{
C + C ′ : C,C ′ ≥ 0 and #Ẽj(C,α)(�c− �c ′) ≤ C ′2βj ∀j ∈ N0

}
.

Lemma 3.10. Let α ∈ R and β ∈ {−∞} ∪ [0, +∞[. The space Ã(α, β) is a vector space and δ̃α,β is a distance 
on Ã(α, β) which is invariant by translation and which satisfies

δ̃α,β(θ�c,�0 ) ≤ sup{1, |θ|} δ̃α,β(�c,�0 )

for all �c ∈ Ã(α, β) and θ ∈ C.

Proof. By definition, it is clear that δ̃α,β is translation invariant. For the other properties, it suffices to 
adapt the proof of Lemma 3.3 in [5] to the case of wavelet leaders.

Remark 3.11. It is direct to check that the distance defined by

δ̃∗α,β(�c,�c ′) := inf
{
C ≥ 0 : #Ẽj(C,α)(�c− �c ′) ≤ C2βj ∀j ∈ N0

}
leads to the same topology.
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If β = −∞, then (Ã(α, β), ̃δα,β) is the topological normed space (Cα, ‖.‖Cα) if α > 0 and (C0, ‖.‖C0) if 
α ≤ 0. Moreover, if β ≥ 1, we have δ̃α,β ≤ 1. In the following proposition, we also get more information 
about the topology in the case β > 1.

For auxiliary spaces of Sν , it is known that the topology defined by δα,β is stronger than the pointwise 
topology; these topologies are equivalent when β > 1. In the Lν case, the topology defined by δ̃α,β is also 
stronger than the pointwise topology; moreover, it is stronger than the uniform topology, i.e. the topology 
defined by the norm of C0. The equivalence with uniform topology happens when β > 1.

Proposition 3.12. Let α ∈ R and β ∈ {−∞} ∪ [0, +∞[.

1. The addition is continuous on (Ã(α, β), ̃δα,β).
2. The space (Ã(α, β), ̃δα,β) has a stronger topology than the uniform topology. Moreover, every Cauchy 

sequence in (Ã(α, β), ̃δα,β) is also a uniform Cauchy sequence.
3. If β > 1, the topology defined by the distance δ̃α,β is equivalent to uniform topology.
4. (a) If B is a bounded set of (Ã(α, β), ̃δα,β), then there exists r > 0 such that

B ⊂
{
�c ∈ Ω : #{k ∈ {0, . . . , 2j − 1} : dj,k ≥ r 2−αj} ≤ r 2βj ∀j ∈ N0

}
⊂

{
�c ∈ Ω : #{k ∈ {0, . . . , 2j − 1} : dj,k > r 2−αj} ≤ r 2βj ∀j ∈ N0

}
.

(b) Let r, r′ ≥ 0, α′ ≥ α and β′ ≤ β. The set

B :=
{
�c ∈ Ω : #{k ∈ {0, . . . , 2j − 1} : dj,k > r 2−α′j} ≤ r′ 2β

′j ∀j ∈ N0

}
is a bounded set of (Ã(α, β), ̃δα,β). Moreover, B is closed for the uniform convergence.

5. The space (Ã(α, β), ̃δα,β) is a complete metric space.

Proof. 1. The first point is obvious using the triangular inequality with the distance δ̃α,β.
2. Let (�c (m))m∈N be a sequence of elements of Ã(α, β) which converges to �c in (Ã(α, β), ̃δα,β). If β = −∞, 

it suffices to observe that we have

sup
(j,k)∈Λ

|c(m)
j,k − cj,k| = sup

λ′⊂λ(0,0)
|c(m)

λ′ − cλ′ | ≤ sup
(j,k)∈Λ

2αj sup
λ′⊂λ(j,k)

|c(m)
λ′ − cλ′ |

for every m ∈ N. Let us consider now the case β ≥ 0. Let ε > 0 and η := min{1
2 , ε}. There exists M ∈ N

such that

#
{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|c(m)

λ′ − cλ′ | ≥ η2−αj

}
≤ η2βj

for all j ∈ N0 and m ≥ M . Consequently, taking j = 0, we obtain for all m ≥ M ,

sup
(j0,k0)∈Λ

|c(m)
j0,k0

− cj0,k0 | = sup
λ′⊂λ(0,0)

|c(m)
λ′ − cλ′ | < η ≤ ε.

The proof is similar for Cauchy sequences.
3. With the previous point, it only remains to show that the uniform topology is stronger than the 

topology defined by the distance δ̃α,β (in the case β > 1). Let (�c (m))m∈N be a sequence of Ã(α, β) = Ω
which converges uniformly to �c and let ε > 0. There exists J ∈ N0 such that 2j ≤ ε2βj for every j ≥ J

because β > 1 and then we have
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#
{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|c(m)

λ′ − cλ′ | ≥ ε2−αj

}
≤ 2j ≤ ε2βj

for every j > J and m ∈ N. Let us now fix j ∈ {0, . . . , J}. Using the uniform convergence, there exists 
M ∈ N (which only depends on ε) such that

sup
λ′⊂λ(j,k)

|c(m)
λ′ − cλ′ | < ε2−αj

for every k ∈ {0, . . . , 2j − 1} and m ≥ M . So, for every m ≥ M , we have

#
{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|c(m)

λ′ − cλ′ | ≥ ε2−αj

}
= 0 ≤ ε2βj .

Thus (�c (m))m∈N converges to �c in (Ã(α, β), ̃δα,β).
4. The proof is similar to the one in the Sν case (see Proposition 3.5 in [5]). Let us only show that B is 

closed for the uniform convergence. Let (�c (m))m∈N be a sequence of B which converges uniformly to �c and 
let ε > 0. Then there exists M ∈ N such that

sup
λ′⊂λ(0,0)

|c(m)
λ′ − cλ′ | < ε

for all m ≥ M . Let us fix j ∈ N0 and k ∈ {0, . . . , 2j − 1}. We have

dj,k > r2−α′j ⇒ d
(M)
j,k > r2−α′j .

Otherwise, d(M)
j,k ≤ r2−α′j and then, by taking ε smaller if needed, we have

r2−α′j < dj,k − ε ≤ sup
λ′⊂λ(j,k)

|c(M)
λ′ − cλ′ | + d

(M)
j,k − ε ≤ r2−α′j ,

which is absurd. So �c ∈ B because

#{k ∈ {0, . . . , 2j − 1} : dj,k > r2−α′j} ≤ #{k ∈ {0, . . . , 2j − 1} : d(M)
j,k > r2−α′j} ≤ r′2β

′j ∀j ∈ N0.

5. Since (Ã(α, β), ̃δα,β) is a metric space, it only remains to show that if (�c (m))m∈N is a Cauchy sequence 
in (Ã(α, β), ̃δα,β), it converges in (Ã(α, β), ̃δα,β). From the point 2 of this proposition, (�c (m))m∈N is also a 
uniform Cauchy sequence and then it converges uniformly to �c. By hypothesis, if η > 0, there exists M ∈ N

such that

#
{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|c(p)λ′ − c

(q)
λ′ | > η2−αj

}
≤ η2βj ∀j ∈ N0, ∀p, q ≥ M.

It follows from the point 4 of this proposition that we have

#
{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|c(p)λ′ − cλ′ | > η2−αj

}
≤ η2βj ∀j ∈ N0, ∀p ≥ M.
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Remark 3.13. If β ∈ [0, 1] and α > 0, the scalar multiplication (θ, �c ) ∈ C × Ã(α, β) → θ�c ∈ Ã(α, β) is not 
continuous and consequently, the space (Ã(α, β), ̃δα,β) is not a topological vector space. Indeed, let �c be the 
sequence of Ã(α, β) defined by

cj,k :=
{
j2−αj if k ∈ {0, . . . , �2βj� − 1},
0 if k ∈ {�2βj�, . . . , 2j − 1}

for j ∈ N0. For large j, we have �2β(j+1)�/2 ≤ �2βj� and then dj,k = cj,k for such j and k ∈ {0, . . . , 2j − 1}. 
Following the proof of Proposition 3.5 in [5], the sequence (�c/m)m∈N does not converge to �0 in (Ã(α, β), ̃δα,β). 
This counterexample also shows that the topology defined by δ̃α,β and the uniform topology are not equiv-
alent for such β and α.

Let us end with some relations between auxiliary spaces. The second part is useful to obtain the continuity 
of the scalar multiplication in Lν .

Lemma 3.14.

1. If α ≥ α′ and β ≤ β′, then

Ã(α, β) ⊂ Ã(α′, β′) and δ̃α′,β′ ≤ δ̃α,β .

2. Let α′ > α and β′ < β. If the sequence (θm)m∈N converges to θ in C and if the sequence (�c (m))m∈N of 
C0 converges to �c in (Ã(α, β), ̃δα,β) with �c ∈ Ã(α′, β′), then the sequence (θm�c (m))m∈N converges to θ�c
in (Ã(α, β), ̃δα,β).

Proof. The first item is obvious. The second one is similar to the Sν case. Since the sequence (θm)m∈N

converges to θ in C, there exists D > 0 such that |θm − θ| ≤ D for all m ∈ N. We have

θm�c
(m) − θ�c = (θm − θ)(�c (m) − �c ) − θ(�c (m) − �c ) + (θm − θ)�c

and then

δ̃α,β(θm�c (m), θ�c ) ≤ sup{1, D} δ̃α,β(�c (m),�c ) + sup{1, |θ|} δ̃α,β(�c (m),�c ) + δ̃α,β((θm − θ)�c,�0 )

thanks to Lemma 3.10. The two first terms converge to 0 by using hypotheses and the first point of this 
lemma. Let us consider now the convergence of the third term. Since �c ∈ Ã(α′, β′), there exist C, C ′ ≥ 0
such that

#
{
k ∈ {0, . . . , 2j − 1} : dj,k ≥ C2−α′j

}
≤ C ′2β

′j

for all j ∈ N0. Let η > 0. Then there exists J ∈ N0 such that DC2−j(α′−α) ≤ η and C ′2−j(β−β′) ≤ η for all 
j ≥ J . Consequently, we have, for all j ≥ J and m ∈ N,

#
{
k ∈ {0, . . . , 2j − 1} : |θm − θ| dj,k ≥ η2−αj

}
≤ η2βj

because |θm − θ| ≤ D for all m ∈ N. Since the sequence (θm)m∈N converges to θ and �c ∈ C0, there exists 
M ∈ N such that

|θm − θ|dj,k < η2−αj
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for all m ≥ M , j ∈ {0, . . . , J − 1} and k ∈ {0, . . . , 2j − 1}. Hence δ̃α,β((θm − θ)�c, �0 ) ≤ 2η for all m ≥ M and 
we get the conclusion.

Remark 3.15.

1. The assumption that the sequences belong to C0 will not be restrictive because we know that Lν ⊂ C0.
2. If β = β′ = −∞, this lemma remains true.

3.3. Topology on Lν spaces

By Proposition 3.7, we know that Lν is a countable intersection of auxiliary spaces. As in the case of Sν

spaces, this description allows to obtain a structure of complete metric space on Lν . Indeed, the idea is to 
use the following classical result of functional analysis (see for example [17]) to define a topology on Lν .

Proposition 3.16. Let Em (m ∈ N) be spaces endowed with the topologies defined by the distances dm and 
set E :=

⋂
m∈N

Em. On E, let us consider the topology τ defined as follows: for every e ∈ E, a basis of 
neighbourhoods of e is given by the family of sets

⋂
(m)

{f ∈ E : dm(e, f) ≤ rm}

where rm > 0 for every m ∈ N and (m) means that it is an intersection on a finite number of values of m. 
Then, this topology satisfies the following properties.

1. For every m ∈ N, the identity i : (E, τ) → (Em, dm) is continuous and τ is the weakest topology on E

which verifies this property.
2. The topology τ is equivalent to the topology defined on E by the distance d given by

d(e, f) :=
+∞∑
m=1

2−m dm(e, f)
1 + dm(e, f) , e, f ∈ E.

3. A sequence is a Cauchy sequence in (E, τ) if and only if it is a Cauchy sequence in (Em, dm) for every 
m ∈ N.

4. A sequence converges to e in (E, τ) if and only if it converges to e in (Em, dm) for every m ∈ N.

Using some properties of the auxiliary spaces (Ã(α, β), ̃δα,β) and Proposition 3.16, we can define a distance 
on the spaces Lν and obtain some additional information on these spaces.

Definition 3.17. Let α := (αn)n∈N be a dense sequence in R and ε := (εm)m∈N be a sequence of ]0, +∞[
which converges to 0. For m, n ∈ N, we write

δ̃m,n := δ̃αn,ν(αn)+εm and Ã(m,n) := Ã(αn, ν(αn) + εm).

Then, for m ∈ N, we denote

δ̃m :=
+∞∑

2−n δ̃m,n

1 + δ̃
n=1 m,n
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and

δ̃α,ε :=
+∞∑
m=1

2−mδ̃m

(
=

+∞∑
m=1

+∞∑
n=1

2−(m+n) δ̃m,n

1 + δ̃m,n

)
.

A straightforward adaptation of the proof of Proposition 5.5 in [5] gives the following result.

Proposition 3.18. For every sequences α and ε chosen as above, δ̃α,ε is a distance on Lν . All these distances 
define the same topology.

In view of this result, we write this distance δ̃ (on Lν) independently of these sequences α and ε. In fact, 
this result can be seen as a direct consequence of closed graph theorem since the metric defines a complete 
topological vector space, as we will see in Propositions 3.19 and 3.20.

Again, the next proposition is obtained by a direct modification of the proof of Theorem 5.7. in [5].

Proposition 3.19.

1. The topology defined by δ̃ on Lν is the weakest topology such that, for every m, n ∈ N, the identity 
i : Lν → Ã(m, n) is continuous.

2. A sequence in Lν is a Cauchy sequence in (Lν , ̃δ) if and only if, for every m, n ∈ N, it is a Cauchy 
sequence in (Ã(m, n), ̃δm,n).

3. A sequence in Lν converges in (Lν , ̃δ) if and only if, for every m, n ∈ N, it converges in (Ã(m, n), ̃δm,n).
4. The space (Lν , ̃δ) is a vector topological complete metric space and then a Baire space.

Proposition 3.20. If δ̃1 and δ̃2 define complete topologies on Lν which are stronger than the pointwise topology, 
then these topologies are equivalent.

Proof. It is a direct consequence of the closed graph theorem and the previous Proposition 3.19.

Remark 3.21. The inclusion Lν ⊂ C0 is continuous by combining Proposition 3.19 (item 3) and Proposi-
tion 3.12 (item 2).

In [8], it is proved that the definition of the Lν spaces is independent of the chosen basis wavelet basis. 
Therefore, these spaces can be seen independently as function spaces or as sequence spaces. Let us now 
show that the topology defined on Lν is a “good topology”, in the sense that it is also independent of the 
chosen wavelet basis. This allows to consider the space (Lν , ̃δ) as a topological function space.

Let us recall that operators which map an orthonormal wavelet basis in the Schwartz class into another 
orthonormal wavelet basis in the Schwartz class are quasidiagonal (see [22] for more details). Therefore, in 
order to check that a condition defined on wavelet coefficients is independent of the chosen wavelet basis 
(in the Schwartz class), one usually check the stronger property that it is invariant under the action of 
quasidiagonal operators.

Proposition 3.22. Let A be a quasidiagonal operator. If αmin > 0, the application

A : (Lν , δ̃) → (Lν , δ̃) : �c → A�c

is continuous.
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Proof. The result of [8] ensures that A maps Lν into Lν . As the operator A is a linear operator between 
complete metrizable topological vector spaces whose topologies are stronger than the pointwise topology, 
the continuity is obtained using the closed graph theorem.

3.4. Compact subsets of Lν

Let us continue with the characterization of compact subsets of (Lν , ̃δ). This characterization will only 
hold if αmin > 0. It is in particular useful to prove the convergence of sequences in Lν. For m, n ∈ N, let 
C(m, n) and C ′(m, n) be positive constants and let us define

K̃m,n :=
{
�c ∈ Ω : #{k ∈ {0, . . . , 2j − 1} : dj,k > C(m,n) 2−αnj} ≤ C ′(m,n) 2(ν(αn)+εm)j ∀j ∈ N0

}
(by taking the usual sequences of Proposition 3.7 and Definition 3.17). We write

K̃ :=
⋂
m∈N

⋂
n∈N

K̃m,n.

Here are some useful observations to obtain the characterization of compact subsets of (Lν, ̃δ).

Lemma 3.23.

1. From all sequences of K̃, we can extract a subsequence which converges pointwise.
2. Let α > 0 and B be a bounded set of (Cα, ‖.‖Cα). If (�c (l))l∈N is a sequence of B which converges 

pointwise to �c, then it converges uniformly to �c.
3. Let α0 ∈ R, β0 ≥ 0 and B be a bounded set of (Ã(α0, β0), ̃δα0,β0). If (�c (l))l∈N is a sequence of B which 

converges uniformly to �c, then it converges to �c in (Ã(α, β), ̃δα,β) for all α and β such that α < α0 and 
β > β0.

4. Let α0 ≥ 0 and B a bounded set of (Cα0 , ‖.‖Cα0 ). If (�c (l))l∈N is a sequence of B which converges 
uniformly to �c, then it converges to �c in (Cα, ‖.‖Cα) for all α < α0.

Proof. 1. Let (�c (l))l∈N be a sequence of K̃. There exists n ∈ N0 such that αn < αmin and then we have

|c(l)j,k| ≤ 2−αnC(m,n) ∀l ∈ N, j ∈ N0, k ∈ {0, . . . , 2j − 1}.

This means that the sequence (�c (l))l∈N is pointwise bounded in C and we can thus extract a pointwise 
convergent subsequence.

2. By hypothesis, there exists R > 0 such that |c(l)j,k − cj,k| ≤ R2−αj for every j ∈ N0, k ∈ {0, . . . , 2j − 1}
and every l ∈ N. Let η > 0. On one hand, since α > 0, there exists J ∈ N0 such that R2−αj < η for every 
j > J and then

|c(l)j,k − cj,k| < η ∀l ∈ N, j > J, k ∈ {0, . . . , 2j − 1}.

On the other hand, thanks to the pointwise convergence, there exists L ∈ N (which only depends on η) such 
that

sup sup
j

|c(l)j,k − cj,k| < η ∀l ≥ L.

j∈{0,...,J} k∈{0,...,2 −1}
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Thus

sup
j∈N0

sup
k∈{0,...,2j−1}

|c(l)j,k − cj,k| < η ∀l ≥ L.

3. Since the sequence (�c (l) − �c )l∈N is bounded in (Ã(α0, β0), ̃δα0,β0), there exist R, R′ ≥ 0 such that

#
{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|c(l)λ′ − cλ′ | > R2−α0j

}
≤ R′2β0j ∀j ∈ N0, l ∈ N,

using Lemma 3.12 (item 4). Let η > 0. Since α < α0 and β > β0, there exists J ∈ N0 such that R2−α0j <

η2−αj and R′2β0j < η2βj for every j > J and then

#
{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|c(l)λ′ − cλ′ | ≥ η2−αj

}
≤ η2βj ∀l ∈ N, j > J.

Moreover, thanks to the uniform convergence, there exists L ∈ N (which only depends on η) such that

sup
λ′⊂λ(j,k)

|c(l)λ′ − cλ′ | < η2−αj ∀j ∈ {0, . . . , J}, k ∈ {0, . . . , 2j − 1}, l ≥ L

and then

#
{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|c(l)λ′ − cλ′ | ≥ η2−αj

}
= 0 ≤ η2βj ∀j ∈ {0, . . . , J}, l ≥ L.

Thus, we have δ̃α,β(�c (l), �c ) ≤ 2η for every l ≥ L.
4. The proof of this item is similar to the two previous ones.

Proposition 3.24. Let us assume that αmin > 0. A set is a compact subset of (Lν , ̃δ) if and only if it is closed 
in (Lν , ̃δ) and included in some K̃.

Proof. Since any compact set of a metric space is closed and bounded, the condition is obviously necessary.
Let us show that K̃ is compact. Let (�c (l))l∈N be a sequence of K̃. By Lemma 3.23 (item 1), we can extract 

a subsequence which converges pointwise. Let us note again (�c (l))l∈N the subsequence and �c its pointwise 
limit. Let us show that (�c (l))l∈N converges to �c in (Lν , ̃δ).

As αmin > 0, there exists n0 ∈ N such that 0 < αn0 < αmin. By construction, �c (l) ∈ K̃m,n0 for all l ∈ N

and m ∈ N and we know that K̃m,n0 is bounded in (Cαn0 , ‖ · ‖Cαn0 ). Using Lemma 3.23 (item 2), we get 
that (�c (l))l∈N converges uniformly to �c.

Let α ∈ R and ε > 0. If ν(α) ∈ R, the right-continuity of ν gives n, m ∈ N such that

εm ≤ ε, αn > α and ν(αn) + εm < ν(α) + ε.

Lemma 3.23 (item 3) implies that (�c (l))l∈N converges to �c in (Ã(α, ν(α) + ε), ̃δα,ν(α)+ε). If ν(α) = −∞, 
there exists n ∈ N such that αn > α and ν(αn) = −∞. By Lemma 3.23 (item 4), (�c (l))l∈N converges to �c in 
(Ã(α, ν(α) + ε), ̃δα,ν(α)+ε). Proposition 3.19 gives the conclusion.

In fact, we also have obtained within this last proof the following result.

Corollary 3.25. Every sequence of K̃ which converges pointwise converges also in (Lν , ̃δ) to an element of K̃.



332 F. Bastin et al. / J. Math. Anal. Appl. 431 (2015) 317–341
Remark 3.26. The characterization is not longer valid in the case αmin = 0. Indeed, let ν be the admissible 
profile defined by

ν(α) :=
{−∞ if α < 0,

1 if α ≥ 0.

It is direct to see that Lν = C0. If we assume that we have this characterization, then the unit ball of C0

would be compact and therefore the space would be finite dimensional. This leads to a contradiction.

3.5. Separability

As for the characterization of the compact subsets of Lν , we have to consider separately two cases: 
αmin > 0 and αmin = 0. Let us start with a first difference described in the following lemma.

Lemma 3.27. If �c ∈ Ω, let (�cN )N∈N0 be the sequence of Ω defined by

cNj,k :=
{
cj,k if j ≤ N and k ∈ {0, . . . , 2j − 1},
0 if j > N and k ∈ {0, . . . , 2j − 1}

for every N ∈ N0.

1. If αmin > 0, (�cN )N∈N0 converges to �c in (Lν , ̃δ) for all �c ∈ Lν .
2. If αmin = 0, there exists �c ∈ Lν such that (�cN )N∈N0 does not converge to �c in (Lν , ̃δ).

Proof. 1. Since the characterization of compacts of Lν (when αmin > 0) is similar to the one in the Sν case, 
the proof of this first point only needs clear simple adaptations of Lemma 6.3 in [5] with wavelet leaders.

2. We suppose now that αmin = 0 and we consider the sequence �c where at each scale j ∈ N0, the element 
cj,0 is set equal to 1 and the others to 0. For every j ∈ N0 and k ∈ {0, . . . , 2j −1}, we have dj,k = cj,k. Using 
the assumption αmin = 0, it is trivial to check that �c belongs to Lν . Moreover, we know that the space 
(Lν , ̃δ) has a stronger topology than the topology of the uniform convergence. We get then the conclusion 
because

sup
j∈N0

sup
k∈{0,...,2j−1}

|cj,k − cNj,k| = 1

for every N ∈ N0.

Let us begin by studying the separability of Lν when αmin > 0.

Lemma 3.28. Let B be a pointwise bounded set of sequences and let us assume that there exists N ∈ N0 such 
that

∀�c ∈ B, ∀j > N, ∀k ∈ {0, . . . , 2j − 1}, cj,k = 0.

If αmin > 0, then B is included in a compact subset of Lν.

Proof. Since B is a pointwise bounded set, there exists a constant C > 0 such that

sup sup
j

|cj,k| ≤ C ∀�c ∈ B.

j∈{0,...,N} k∈{0,...,2 −1}
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If �c ∈ B, then cj,k = 0 and therefore dj,k = 0 for every j > N , k ∈ {0, . . . , 2j − 1}. So, for every 
j ∈ {0, . . . , N}, k ∈ {0, . . . , 2j − 1} and n ∈ N, we have

2αnjdj,k ≤ 2αnj sup
j′∈{0,...,N}

sup
k′∈{0,...,2j′−1}

|cj′,k′ | ≤ C2αnj

and we get that for any constant C ′(m, n) ≥ 0,

B ⊂
⋂
m∈N

⋂
n∈N

{
�a ∈ Ω : #

{
k ∈ {0, . . . , 2j − 1} : sup

λ′⊂λ(j,k)
|aλ′ | > C(m,n)2−αnj

}
≤ C ′(m,n)2(ν(αn)+εm)j ∀j ∈ N0

}
with C(m, n) = C sup

j<N
sup

k∈{0,...,2j−1}
2αnj .

Proposition 3.29. If αmin > 0, the metric space (Lν , ̃δ) is separable.

Proof. If Q denotes the set of the complex numbers with rational real and imaginary parts, the set

U :=
{
�c ∈ Ω : cj,k ∈ Q and ∃N ∈ N0 such that cj,k = 0 ∀j > N, k ∈ {0, . . . , 2j − 1}

}
is dense in (Lν , ̃δ), using the density of Q in C, Lemma 3.27, Lemma 3.28 and Corollary 3.25.

Let us consider now the case where the admissible profile ν is such that αmin = 0. The previous result is 
no longer valid. Indeed, with the admissible profile considered in Remark 3.26, the space Lν is C0 which is 
not separable. More generally, we have the following property.

Proposition 3.30. If αmin = 0, the metric space (Lν , ̃δ) is not separable.

Proof. This result uses classical consideration concerning sup-norms. Indeed, let us consider the uncountable 
set A of sequences �c of Ω such that for each scale j ∈ N0, cj,0 ∈ {0, 1} and the other coefficients are equal 
to 0. Using the assumption on αmin, we easily prove that A is a subset of Lν . Moreover, ‖�c−�c ′‖C0 = 1 for 
all distinct elements �c and �c ′ of A.

Let D be a dense subset of (Lν , ̃δ). For every �c ∈ A, there exists a sequence (�c (m))m∈N of elements of D
which converges in (Lν , ̃δ) to �c ∈ Lν . From Proposition 3.19, the convergence also holds in C0. Consequently, 
there exists M ∈ N such that

‖�c− �c (m)‖C0 <
1
2 ∀m ≥ M.

In particular, there exists �a ∈ D such that

‖�c− �a ‖C0 <
1
2 .

Since the C0 norm between two distinct elements of A is equal to 1, D must contain at least as many 
elements as A and cannot be countable.
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4. Generic property in Lν spaces

In this section, we study the form of the wavelet leaders profile of most of the sequences in Lν. Let us 
recall that any wavelet leaders profile ν̃�c of �c takes values in {−∞} ∪ [0, 1] and that there exists αmin ≥ 0
such that ν̃�c(α) = −∞ for every α < αmin. Moreover, ν̃�c is an increasing and right-continuous function. 
An admissible profile is then a function ν which satisfies these properties. In the next result, we show that 
these properties characterize entirely the wavelet leaders profile.

Proposition 4.1. Any admissible profile is the wavelet leaders profile of a sequence of C0.

Proof. Let ν be an admissible profile and let us consider a sequence (αn)n∈N whose elements form a dense 
subset of [αmin, +∞[. Using the right-continuity of ν and of the wavelet leaders profile, it suffices to construct 
a sequence �c ∈ C0 such that ν̃�c(αn) = ν(αn) for every n ∈ N and such that ν̃�c(α) = −∞ if α < αmin. For 
every n ∈ N, let us first construct a sequence �c (n) such that ν̃�c (n)(αn) = ν(αn).

If n ∈ N is such that ν(αn) = 1, we consider the sequence �c (n) defined by

c
(n)
j,k := 2−αn(j+n), ∀j ∈ N0, k ∈ {0, . . . , 2j − 1}.

Then, ν̃�c (n)(αn) = 1. Assume now that n ∈ N is such that ν(αn) < 1. If ν(αn) = 0, we set Jn = 0. If 
ν(αn) ∈ ]0, 1[, let Jn be the smallest integer such that

2ν(αn)Jn ≥ 2
21−ν(αn) − 1

. (1)

Then, for every j ≥ Jn, we have 2ν(αn)j ≤ 2(2ν(αn)(j−1) − 1), hence

�2ν(αn)j� ≤ 2�2ν(αn)(j−1)�. (2)

Let us define �c (n) as follows: if j < Jn, we set c(n)
j,k := 0 and if j ≥ Jn, we set

c
(n)
j,k :=

{
2−αn(j+n) for �2ν(αn)j� values of k,
0 otherwise,

where the positions of the k ∈ {0, . . . , 2j − 1} such that c(n)
j,k = 2−αn(j+n) are chosen first to fill entirely 

dyadic cubes of scale j − 1 whose coefficients equal 2−αn(j−1+n) (this is ensured by (2)). It follows that 
if j ≥ Jn, the wavelet leaders are the wavelet coefficients. In particular, one has ν̃�c (n)(αn) = ν(αn).

Now, we consider the sequence �c defined using the sequences �c (n), n ∈ N, as follows: we set c0,0 := 0 and 
for every j ∈ N, k ∈ {0, . . . , 2j − 1}, we set

cj,k :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c
(1)
j−1,k−2j−1 if k ∈ {2j−1, . . . , 2j − 1},

c
(2)
j−2,k−2j−2 if k ∈ {2j−2, . . . , 2j−1 − 1},

...
c
(j−1)
1,k−2 if k ∈ {2, 3},

c
(j)
0,0 if k = 1,

0 if k = 0.

Clearly, we have |cj,k| ≤ 2−αminj for every j ∈ N0, k ∈ {0, . . . , 2j − 1}, and therefore �c ∈ Cαmin ⊂ C0. In 
particular, if α < αmin, then ν̃�c(α) = −∞.
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Let us now show that for every n ∈ N, we have ν̃�c(αn) = ν(αn). By construction, it is clear that 
ν̃�c(αn) ≥ ν̃�c (n)(αn) = ν(αn). In particular, if ν(αn) = 1, then ν̃�c(αn) = 1. Let us assume that ν(αn) < 1
and let us prove that ν̃�c(αn) ≤ ν(αn). Using the right-continuity of ν, we fix ε > 0 such that ν(αn + ε) < 1. 
At a given scale j ≥ n, we have to take into consideration the sequences �c (1), . . . , �c (j) and the restricted 
wavelet leaders corresponding to k = 0. More precisely,

#
{
λ ∈ Λj : dλ ≥ 2−(αn+ε)j} ≤

j∑
m=1

#
{
λ ∈ Λj−m : d(m)

λ ≥ 2−(αn+ε)j} + 1,

where we have added the case k = 0. By construction, we know that if αm > αn + ε, we have

#{λ ∈ Λj−m : d(m)
λ ≥ 2−(αn+ε)j} = 0.

Assume then that αm ≤ αn + ε. If j −m ≥ Jm, we have d(m)
j−m,k = c

(m)
j−m,k and it follows that

#
{
λ ∈ Λj−m : d(m)

λ ≥ 2−(αn+ε)j} ≤ 2ν(αm)(j−m) ≤ 2ν(αn+ε)j .

If j −m ≤ Jm, we have

#
{
λ ∈ Λj−m : d(m)

λ ≥ 2−(αn+ε)j} ≤ �2ν(αm)Jm�

≤ 2�2ν(αm)(Jm−1)�

≤ 4
21−ν(αm) − 1

≤ 4
21−ν(αn+ε) − 1

using (1) and (2). If j is large enough, we have

4
21−ν(αn+ε) − 1

≤ 2ν(αn+ε)j

and it follows that

#{λ ∈ Λj : dλ ≥ 2−(αn+ε)j} ≤ j2ν(αn+ε)j + 1.

Therefore,

ν̃�c(αn) ≤ lim
ε→0+

ν(αn + ε) = ν(αn)

using the right-continuity of ν. The conclusion follows.

The next result shows that for most of the sequences in Lν , the wavelet leaders profile is equal to the 
profile ν. Let us recall that a subset A of a Baire space X is called residual (or comeager) if A contains 
a countable intersection of dense open sets of X, or equivalently if X \ A is of first category (see [17] for 
example).

Theorem 4.2. Let ν be an admissible profile such that αmin > 0. The set of sequences �c ∈ Lν such that 
ν̃�c = ν is residual in (Lν , ̃δ).
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Proof. Using Proposition 4.1, we can consider �z ∈ Lν such that ν̃�z = ν. Then, using the definition of ν̃�z, 
for every m, n ∈ N, there exists an infinite set Jm,n such that

#
{
λ ∈ Λj : sup

λ′⊂λ
|zλ′ | ≥ 2−(αn+2εm)j

}
≥ 2(ν(αn)−εm)j , ∀j ∈ Jm,n.

From Proposition 3.29, we know that Lν is separable, and more precisely, that the set U = {�y (l) : l ∈ N}
formed by the rational finite sequences is dense in Lν . Moreover, by construction, for every l ∈ N, there 
exists jl ∈ N0 such that y(l)

λ = 0 for every λ ∈ Λj with j ≥ jl. For every m, n, l ∈ N, we fix jm,n,l ∈ Jm,n

such that

jm,n,l ≥ jl and εmjm,n,l > 1.

For every m, n, L ∈ N, let us consider the set Um,n,L defined by

Um,n,L :=
⋃
l≥L

B̃m,n,l,

where B̃m,n,l is the open ball in the auxiliary space Ã(αn, ν(αn) + εm) formed by the sequences �c ∈ Lν such 
that

inf
{
C > 0 : #{λ ∈ Λj : sup

λ′⊂λ
|cλ′ − y

(l)
λ′ | ≥ C2−αnj} ≤ C2(ν(αn)+εm)j , ∀j ∈ N0

}
< 2−3εmjm,n,l .

Remark that, for every m, n, L ∈ N, the set Um,n,L is dense in Lν since it contains the sequences �y (l), l ≥ L. 
Finally, the set

W :=
⋂

m,n,L∈N

Um,n,L

is a countable intersection of dense open sets of Lν .
Let us show that if �c ∈ W , then ν̃�c = ν. Since W ⊂ Lν , we already know that ν̃�c ≤ ν. For every 

m, n, L ∈ N, there is l ≥ L such that �c ∈ B̃m,n,l, so

#
{
λ ∈ Λj : sup

λ′⊂λ
|cλ′ − y

(l)
λ′ | ≥ 2−3εmjm,n,l2−αnj

}
≤ 2−3εmjm,n,l2(ν(αn)+εm)j

for every j ∈ N0. Then, for j = jm,n,l, we obtain

#
{
λ ∈ Λj : sup

λ′⊂λ
|cλ′ | ≥ 2−(αn+3εm)j

}
≥ #

{
λ ∈ Λj : sup

λ′⊂λ
|ylλ′ | − sup

λ′⊂λ
|cλ′ − y

(l)
λ′ | ≥ 2−(αn+3εm)j

}
≥ #

{
λ ∈ Λj : sup

λ′⊂λ
|y(l)

λ′ | ≥ 2 · 2−(αn+3εm)j and sup
λ′⊂λ

|cλ′ − y
(l)
λ′ | < 2−(αn+3εm)j

}
≥ #

{
λ ∈ Λj : sup

λ′⊂λ
|y(l)

λ′ | ≥ 2 · 2−(αn+3εm)j
}
− #

{
λ ∈ Λj : sup

λ′⊂λ
|cλ′ − y

(l)
λ′ | ≥ 2−(αn+3εm)j

}
≥ #

{
λ ∈ Λj : sup |zλ′ | ≥ 2−(αn+2εm)j

}
− #

{
λ ∈ Λj : sup |cλ′ − y

(l)
λ′ | ≥ 2−(αn+3εm)j

}

λ′⊂λ λ′⊂λ
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≥ 2(ν(αn)−εm)j − 2(ν(αn)−2εm)j

≥ 2(ν(αn)−2εm)j

using the choice of jm,n,l. It follows that, for every m, n ∈ N,

lim sup
j→+∞

log #
{
λ ∈ Λj : supλ′⊂λ |cλ′ | ≥ 2−(αn+3εm)j}

log 2j ≥ ν(αn) − 2εm.

Taking the limit as m → +∞, we get ν̃�c(αn) ≥ ν(αn) for every n ∈ N. The conclusion follows from the 
right-continuity of the functions ν̃�c and ν.

5. Comparison with Sν spaces

From the definition of the wavelet leaders, it is direct to see that ν�c ≤ ν̃�c for any sequence �c ∈ Ω since 
|cj,k| ≤ dj,k for every (j, k) ∈ Λ. Therefore, given an admissible profile ν, we have

Lν ⊂ Sν .

We can also compare easily the topologies of Sν and Lν . The proof is straightforward.

Proposition 5.1.

1. If α ∈ R and β ∈ {−∞} ∪ [0, +∞[, then we have

δα,β ≤ δ̃α,β and Ã(α, β) ⊂ A(α, β).

2. If a sequence converges in (Ã(α, β), ̃δα,β), it converges in (A(α, β), δα,β) to the same limit. If a sequence 
is a Cauchy sequence in (Ã(α, β), ̃δα,β), it is a Cauchy sequence in (A(α, β), δα,β).

3. The space (Ã(α, β), ̃δα,β) has a stronger topology than the topology induced by the distance δα,β.
4. The space (Lν , ̃δ) has a stronger topology than the topology induced by the distance δ.

The aim of this section is to study in which cases the space Lν gives more information than the space Sν . 
More precisely, we will get a condition to have the strict inclusion of Lν into Sν . Let us start with a case 
where the inclusion is always strict.

Proposition 5.2. If ν is an admissible profile such that αmin = 0, then Lν is strictly included in Sν .

Proof. Since Lν is always included in C0, it suffices to find an element of Sν which does not belong to C0. 
Such an element is given by the sequence �c ∈ Ω defined by cj,0 := j and cj,k := 0 for k �= 0, at every scale 
j ∈ N0.

Let us now assume that αmin > 0. Let us start by recalling the following result concerning the estimation 
of the spectrum of singularities of a given function (see [10]).

Proposition 5.3. Let f be a locally bounded function and let us denote by �c its coefficients in a given periodized 
wavelet basis of L2([0, 1]). If there is r > 0 such that �c ∈ Cr, then for every α ≥ 0, we have

df (α) ≤ ν̃�c(α) ≤ min
{
α sup

0<α′≤α

ν�c(α′)
α′ , 1

}
.
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Let us also remark that ν̃�c(α) = −∞ if and only if ν�c(α) = −∞.
Let ν be an admissible profile and let us set hmax := infh≥αmin

h
ν(h) . We define the function νI as follows:

νI(α) :=

⎧⎪⎨⎪⎩
−∞ if α < αmin,

α sup0<α′≤α

ν(α′)
α′ if αmin ≤ α ≤ hmax,

1 if α > hmax.

Of course, we have ν ≤ νI . Since ν is right-continuous, we also get that νI is right-continuous. Therefore, 
νI is an admissible profile. Moreover, in [4], it is proved that there is �c ∈ Sν such that ν�c = ν on R and

df (α) =
{
νI(α) if α ≤ hmax,

−∞ otherwise,

where f is the function whose coefficients in a given periodized wavelet basis of L2([0, 1]) are given by �c. 
Then, Proposition 5.3 directly implies what follows.

Proposition 5.4. If ν is an admissible profile such that αmin > 0, there exists �c ∈ Sν such that ν�c = ν and 
ν̃�c = νI on R.

In fact, the consideration of νI instead of ν transforms the admissible profile into another admissible 
profile with an additional property, called the increasing-visibility (see [21]).

Definition 5.5. Take 0 ≤ a < b ≤ +∞. A function g : [a, b] → [0, +∞[ is with increasing-visibility on [a, b] if 
g is continuous at a and if the function

x → g(x)
x

is increasing on ]a, b].

In other words, a function g is with increasing-visibility if for all x ∈ ]a, b], the segment [(0, 0), (x, g(x))]
lies above the graph of g on ]a, x]. This property is exactly the necessary and sufficient condition on the 
admissible profile ν to have the equality of the spaces Lν and Sν .

Theorem 5.6. Let ν be an admissible profile such that αmin > 0. Then Lν = Sν if and only if ν is with 
increasing-visibility on [αmin, hmax], i.e. if and only if ν = νI on R.

Proof. Let us first assume that Lν = Sν . From Proposition 5.4, we know that there is �c ∈ Sν such that 
ν�c = ν and ν̃�c = νI . Since �c ∈ Sν = Lν , we directly get that ν̃�c ≤ ν, hence ν = νI .

Conversely, assume that ν = νI on [αmin, hmax]. If �c ∈ Sν , then ν̃�c ≤ νI = ν from Proposition 5.3 and it 
follows that �c ∈ Lν .

Proposition 5.7. If Lν is strictly included in Sν , then the set Lν is not closed in the space Sν.

Proof. First let us remark that the sequences with only a finite number of non-zero coefficients belong to Lν . 
Take now an element �c of Sν which is not in Lν . The “truncated” sequence (�cN )N∈N defined by

cNj,k :=
{
cj,k if j ≤ N and k ∈ {0, . . . , 2j − 1},
0 if j > N and k ∈ {0, . . . , 2j − 1}



F. Bastin et al. / J. Math. Anal. Appl. 431 (2015) 317–341 339
for all N ∈ N, converges to �c for the topology of Sν (see Lemma 6.3 in [5]) and each of its elements belongs 
to Lν . Hence the conclusion.

Let us finish this section by looking for which admissible profile ν′ we have Sν ⊂ Lν′ .

Proposition 5.8. Let ν be an admissible profile such that αmin > 0. Then Sν ⊂ Lν′ if and only if ν′ ≥ νI on 
R and in this case, the inclusion map is continuous.

Proof. First, assume that Sν ⊂ Lν′ . Using Proposition 5.4, let �c ∈ Sν be such that ν�c = ν and ν̃�c = νI . 
Then �c ∈ Lν′ and it follows that νI = ν̃�c ≤ ν′. Reciprocally, it suffices to show that Sν ⊂ LνI . If �c ∈ Sν , we 
know from Proposition 5.3 that ν̃�c ≤ νI . This means that �c ∈ LνI .

Both Sν and Lν′ are complete metrizable topological vector spaces whose topologies are stronger than 
the pointwise convergence. The closed graph theorem gives the continuity.

Remark 5.9. If αmin = 0, the space Sν is not included in Lν′ for any admissible profile ν′ since it is not 
included in C0.

6. Comparison with Oscillation spaces

In this last section, we investigate the relations existing between the Lν spaces and the Oscillation spaces. 
Let us recall the definition of the Oscillation spaces of sequences Os

p (see [14]). There are the discrete 
counterparts of the Oscillation spaces of functions. These spaces are a particular case of Oscillation spaces 
Os,s′

p considered in [15,11].

Definition 6.1. For s ∈ R and p > 0, a sequence �c ∈ Ω belongs to Os
p if

‖�c ‖Os
p

:= sup
j∈N0

2(s− 1
p )j

⎛⎝2j−1∑
k=0

dpj,k

⎞⎠
1
p

< +∞.

Let us remark that Os
p ⊂ C0 so that if �c ∈ Os

p, then its wavelet leaders dj,k are finite. It is clear from the 
definition that Os

p ⊂ bsp,∞ for every s ∈ R and p > 0. Moreover, ‖ · ‖Os
p

is a (1 ∧ p)-norm and so, (Os
p, ‖ · ‖Os

p
)

is a complete topological vector space.
Let us note that a sequence �c belongs to Lν (resp. Os

p) if and only if the sequence defined by the wavelet 
leaders of �c belongs to Sν (resp. bsp,∞). Proposition 2.1 implies then directly the following embedding result.

Proposition 6.2. Let η be the concave conjugate of ν. For any dense sequence (pn)n∈N in R and for any 
sequence (εm)m∈N of strictly positive numbers which decreases to 0, we have

Lν ⊂
⋂
p>0

⋂
ε>0

O
η(p)
p −ε

p =
⋂
n∈N

⋂
m∈N

O
η(pn)
pn

−εm
pn .

Moreover, the inclusion becomes an equality if ν is concave.

Theorem 6.3. Let us assume that ν is concave and let η be the concave conjugate of ν. If (pn)n∈N is a dense 
sequence of ]0, +∞[ and if (εm)m∈N is a sequence of strictly positive numbers converging to 0, then

Lν =
⋂ ⋂

O
η(p)
p −ε

p =
⋂ ⋂

O
η(pn)
pn

−εm
pn ,
p>0 ε>0 n∈Nm∈N
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and the topology τ̃ on Lν defined as the weakest one such that each identity map i : (Lν , ̃τ) → O
η(pn)
pn

−εm
pn is 

continuous, is equivalent to (Lν , ̃δ).

Proof. The algebraic result is a consequence of Proposition 6.2. For every n, m ∈ N, the topology of 
O

η(pn)
pn

−εm
pn is metrizable, complete and stronger than the topology of pointwise convergence. From Propo-

sition 3.16, τ̃ is metrizable, complete and stronger than the topology of pointwise convergence. The closed 
graph theorem leads to conclusion.

Let us now show that, as in the case of Sν , the concavity of ν is also a necessary condition to the equality 
between Lν and the intersection of Oscillation spaces. Let ν be the concave hull of ν on [αmin, +∞[, i.e. the 
smallest concave function F on this interval which satisfies F ≥ ν on this interval. This function is defined, 
continuous, non-decreasing on [αmin, +∞[ and with values in [0, 1]. Moreover, from Proposition 8.10 of [5], 
we know that

η(p) = inf
α≥αmin

(
1 + pα− ν(α)

)
, p > 0,

where η is the concave conjugate of ν. For α < αmin, we set ν(α) := −∞.

Proposition 6.4. If ν is the concave hull of ν, we have

Lν =
⋂
p>0

⋂
ε>0

O
η(p)
p −ε

p .

Proof. This result follows from Proposition 6.2.

Proposition 6.5. If ν is not concave, then Lν is strictly included in Lν .

Proof. Using Proposition 4.1, let us consider �c ∈ Lν such that ν̃�c = ν. By assumption, there is α ≥ αmin
such that ν(α) < ν(α) = ν̃�c(α) and it follows that the sequence �c does not belong to Lν .
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