

Solvent degradation

Grégoire Léonard

Table of Content

- 1. Introduction and objectives
- 2. Degradation Test Rig
- 3. Results of performed experiments
- 4. Analytical methods
- 5. Conclusion

1. Introduction and objectives

1. Introduction and objectives

PhD thesis in the field of chemical engineering, subject is divided into two main parts:

 Simulation and optimal conception of the post-combustion CO₂ capture process

2. Experimental study of solvent degradation

Establishing a link between those two parts is the main objective of this PhD thesis

1. Introduction and objectives: Litterature review

Reference	Description	Volume	Gas feed mode	T (°C)	P (bar)	Solvent	Analysis	Run time
Supap et al., 2001	Kinetic law for MEA-degradation in function of solvent concentration, O2, Temperature and stirring	230ml		120-150	2,41-3,45 bar O2	MEA (2-11mol/L)	GCMS	2 - 12 days
Lawal and Idem, 2005; Lawal et al. 2005&2006	Influence of O2, CO2, MDEA-MEA-ratio, Temperature, amine concentration + Product formation mechanisms, Ecotoxicity	450ml		55-120	2,5 bar O2/CO2	MEA-MDEA blends (7-9mol/L)	GCMS (+HPLC from 2006)	6 - 22 days
Bello and Idem, 2005	Pathways of degradation reaction, influence of O2, CO2, Temperature, MEA concentration,	230ml	Discontinuous with gas	55-120	2,5-3,5 bar O2/CO2	MEA (5-7 mol/L)	GCMS	6 - 30 days
Supap et al. 2006	Analysis techniques: comparizon and methods	450ml	feed to compensate for pressure losses	55-120	2,5-4,5 bar O2/CO2	MEA (5 mol/L)	GCMS, HPLC, CE	18-24 days
Bello and Idem, 2006	Influence of the corrosion inhibitor NaVO3 on Degradation kinetics	230ml	pressure rosses	55-120	3,5-4,5 bar O2/CO2	MEA (5-7 mol/L)	HPLC	6-30 days
Uyanga and Idem, 2007	Influence of the corrosion inhibitor NaVO3 and of SO2 on kinetics. Kinetics model	450ml		55-140	2,5 bar O ₂ /N ₂ /CO ₂ /SO ₂	MEA (3-7 mol/l)	HPLC	5-10 days
Supap et al., 2009	Kinetics data for O2 and SO2-induced Degradation	450ml		55-120	2,5 bar O ₂ /N ₂ /CO ₂ /SO ₂	MEA (3-7 mol/l)	HPLC	6-13 days
Chi and Rochelle, 2000	Influence of CO2-loading and inhib (Fe, Bicine, EDTA) on NH3 production rate	500ml	5L/min Air/N2/Air+2%CO2	55	1	MEA (13-42 wt-%)	FTIR	up to 8 hours
Goff and Rochelle 2004; Goff, 2005; Goff and Rochelle 2006	Importance of O2-mass transfer and agitation rate, influence of Fe-Cu and of the presence of degradation products on degradation rate, Test of several oxydative degradation inhibitors for Fe-Cu catalysed degradation	550 g	Up to 8L/min Air/Air + CO2	55	1	MEA (6-85 wt-%)	FTIR	8- 17 hours
Sexton, 2008; Sexton and Rochelle, 2009	Test of different gas flow rate, influence of degradation catalysts (Fe, Cr-Ni, Cu, V) and inhibitors, test of MEA-PZ blends, amine screening	350-400ml	Low flow (100ml/min 2%CO2/98%O2) and high flow (7,5 L/min Air/N2/2%CO2)	55	1	MEA (42 wt-%)	FTIR, IC (AC&CC), HPLC	12-15 days
Davis and Rochelle, 2009; Davis 2009	Dependance of Degradation rate on Temperature, Pressure and amine concentration. Thermal degradation of different amines, Kinetics model.	10ml	Batch +CO2	100-150	1-8	MEA (15-40wt-%)	IC (cationic), HPLC, MS	Few days to several months
Bacot et al., 2007	Degradation and corrosion screening for 20 amines	Not reported	Batch	140	5 bar O2/CO2/N2	Different amines	GC, GCMS, HPLC, IC	14 days
Notz et al., 2007	Degradation rate of primary, secondary amines, and activator (PZ).	350g	10 nml/min 40%N2, 30%O2, 30%CO2	90	1	Different amines	GC, RMN	14 days
Notz 2009	Solvent degradation induced by contact with gas, Castor 1&2, MEA	350g	10 - 20nml/min N2/O2/CO2	40-120	1-4	MEA	GC-FID	14 days
Notz 2009	Thermal degradation	7 ml	Batch	140-180	N2 atmosphere	MEA (30wt-%)	GC-FID	7 days
Knudsen et al., 2007	Results from test campaigns on Esbjerg pilot	~20m³/h	Plant conditions	up to 125°C	max 2 bar	MEA (30wt-%) +Castor1&2	Not reported	Several months
Captech, 2007	Degradation studies for the Captech program. Few details available.	100ml	350 ml/min N2/CO2/Air	150	1,2	Different amines	GC	Several months
Lepaumier, 2008; Lepaumier et al., 2008	Degradation Mecanisms and products for differents amines	100ml	Batch O2/CO2/N2/Air	140	20	Different amines	GCMS, RMN	2weeks

1. Introduction and objectives

It has been decided to design and build a degradation test rig at the University of Liège in order to:

- obtain **our own experimental data on MEA** degradation that will be used for Process Modeling
- allow us to work at **extrem temperature and pressure** conditions to accelerate degradation reactions
- get the possibility of testing the degradation of newly developed solvents, as well as the influence of additives

Elements:

- 1. Reactor
- 2. Gas supply
- 3. Water balance
- 4. Gas flow
- 5. DTR control panel

1. Reactor FTIR Analysis Liquid Sampling Condenser Controller Degradation reactor PC GN2 GC02 Allm 24VDC Input and Output Modules 220V

1. Reactor

- Parr reactor
- 600 ml
- Max temperature : 500℃
- Max pressure: 200 bar
- T316 Stainless Steel
- Heating mantle controls the temperature
- Agitation rate is set by the operator

lowered, and a 4848 Controller shown with optional Expansion Modules.

Hollow shaft for a better gas-liquid contact

2. Gas supply

2. Gas supply

- N₂ CO₂ O₂
- Compressed Air
- Bottle Rack
- Pressure regulator
- Risk indications

2. Gas supply

- Pressure transducers
- Security valves
- Filters
- Mass flow controllers
- Check valves
- Valve for air pruge

3. Water balance

3. Water Balance: Saturator

- Tank filled with destillated water
- Saturation of the inlet gas with water
- Water temperature controlled from 25℃ to 70℃
- Gas pressure up to 25bar

3. Water balance: Condenser

- Reactor outlet gas flows into the intern tube; cooling water flows into the mantle (extern tube)
- Temperature controlled from 20℃ to 70℃
- Condensat sampling possible

4. Gas flow

- To the reactor via the saturator
- Then to the FTIR analyser or to the atmosphere
- Possibility of diluting the gas sample with N₂

4. Gas flow

- Biphasic Coriolis flow meter
- Back pressure regulation
- Heating rope to prevent the gas flow from condensing in the tubing

4. Gas flow

- Gas release to the atmosphere
- Ventilated local to prevent any incident
- Relief valves and FTIR exhaust are redirected to the atmosphere as well

5. Control panel

5. Control Panel

Labview

- Data acquisition (Pressures, Temperatures, Mass flows)
- Control of the installation (Mass flow, heating elements, compressed air for security valves)

5. Control Panel

Labview control panel

- Data acquisition
- Regulation

5. Control Panel

Reactor controller

- Temperature control
- Agitation rate control
- Pressure display
- High temperature and pressure security

5. DTR Control Panel

- Data acquisition
- Regulation

2. Degradation Test Rig: Risk analysis

Risk analysis

- Deparis method: « Dépistage Participatif des Risques »
- Electrical risks, explosions, gas and liquid leakages, chemicals contamination, fire, earthquake have all been envisaged.
- Risk analysis reviewed by the prevention expert at Laborelec as well as at the University of Liège.
- Emergency procedure has been detailed and software alarms have been implemented

2. Degradation Test Rig: Risk analysis

Some performed improvements

22nd August 2011

Results of the first experiments performed

Operating conditions												
Name	Experiment Start	Experiment end	Length [Days]	Parameter tested	T [°C]	P _{tot} [bar]				Gas flow [mln/min]	Solvent [wt% MEA]	Problems
Test 1	19/02/2011	5/03/2011	14	Base case	120	4	0,2	3	0,8	80	30,00	Pressure variations, sampling frequency higher than in following experiments
Test 2	24/03/2011	5/04/2011	12	Exp. Length/strong cond.	140	20	1	15	4	200	30,00	Gas exhaust stopped due to cristal formation at the condenser, pressure reached up to 25 bar in the end
Test 3	11/04/2011	25/04/2011	14	Temperature	120	20	1	15	4	200	30,01	-
Test 4	10/05/2011	19/05/2011	9	Pressure (N2)	140	20	0,2	3	16,8	500	30,05	Foaming, temperature sensor defectuous => heating stopped automatically
Test 5	27/05/2011	10/06/2011	14	Repetability	120	4	0,2	3	0,8	80	30,01	Cristal formation at the condenser bottom, pressure rose to 20 bar for a few hours, Mass losses (200g)
Test 6	1/07/2011	15/07/2011	14	Repetability	120	4	0,2	3	0,8	80	30,01	Mass losses (150g)
Test 7	20/07/2011	3/08/2011	14	Batch	120	20	0,2	3	0,8	0	29,99	Corrosion of the temperature sensor, green layer on the vessel's walls

Degradation profile over 14 days

Degradation experiments

22nd August 2011

First conclusions:

- Two weeks degradation gives better results
- High temperature enhances the degradation
- High oxygen-content enhances the degradation
- Last experiments still have to be analysed
- HPLC method is sufficient for following the MEA concentration, but seems very imprecise for screening degradation compounds

4. Analytical methods

4. Analytical methods

- Liquid sample
 - => High Pressure Liquid Chromatography
 - => Gas Chromatography-Flamme Ionization Detector

- Gas Sample:
 - => Fourier Transformed Infra Red Spectrometer

4. Analytical methods: HPLC

HPLC:

 Influences of eluent, salt concentration, pH, temperature, flow rate

have been studied quite unsuccessfully. For more details see progress report, June 2011.

A new column is beeing tested.

4. Analytical methods: HPLC

Degraded MEA, Eluent 75:25 ACN:Buffer (NH4Ac 24mM pH 3.8); Mass flow 1.2ml/min; T=30℃, UV @ 215nm

4. Analytical methods: GC-FID

 GC-FID: First results seem very promising, repetability has been demonstrated

4. Analytical methods: GC-FID

Standard solution (MEA, AEAE, HEA, EDA) 1:100

4. Analytical methods: GC-FID

Degraded MEA (dil 1:100 in water)

4. Analytical methods: FTIR

Gas phase analysis: gas calibration: CO₂

22nd August 2011

4. Analytical methods: FTIR

NH3 calibration (910-1196cm⁻¹, 3219-3396cm⁻¹)

4. Analytical methods: FTIR

• MEA calibration (980-1119cm⁻¹, 2624-3150cm⁻¹)

22nd August 2011

4. Analytical methods: ion analysis

Corrosion is followed thanks to this analysis

	Fe	Cr	Ni	Si	CI	<u> </u>
Planning 1 T0	0,44	< 0.10	< 0.10	_a _	< 2.00	38,94
Planning 1 Tf	7,57	1,55	4,24	_a _	< 2.00	416,08
Planning 2 Tf	22,40	8,60	9,75	13,01	513,16	1826,18
Planning 3 Tf	6,80	3,10	2,66	10,66	522,32	869,35
Planning 4 Tf	1,90	1,30	1,01	15,57	291,36	307,13
Washing water 1 ^b	4,82	0,02	0,51	3,06	0,74	0,05
Washing water 2 ^b	0,01	< 0.01	0,20	2,03	0,08	0,04

^a Silicon has not been measured for the two first samples

b Washing water from the washing realized after experiment "Planning 4"

5. Conclusion

5. Conclusion

- Degradation test rig has been constructed
- Experiments are running
- Development of analytical methods in process

LABORELEC GDF SVCZ Université de Liège

5. Conclusion

Making the link between simulation and degradation

- => Objective:
- having a reliable simulation model
- taking solvent degradation into account
- that can be used for predicting the most appropriated operating conditions for post-combustion capture

Multi-objectives process optimization:

- Energy savings (costs)
- Solvent savings (lower solvent make-up)
- Lower environmental impact due to solvent degradation

Thank you for your attention!

Questions are welcome!