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“Nothing tends so much to the advancement of

knowledge as the application of a new instrument”

Sir Humphry Davy (1778-1829)
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Preface

On June 30, 2011, I abandoned the Maisbich: a small stream in Central Luxembourg where

I performed most of my fieldwork. In the six years I worked there, I got to know the stream

intimately. I have seen the course of the stream change during large storm events; I have seen

the stream completely dry in summer; I have been there when the catchment was covered with

snow; I hated the hundreds of flies buzzing around my head in the blazing heat and I cursed the

stinging nettles and blackberry bushes that left scratches on my face. But the scratches and flies

will be soon forgotten, leaving only sweet memories about the Maisbich: the stream I always

talked about as “My Stream”.

Although I started my fieldwork in the Maisbich in 2005, my first acquaintance with science

was two years earlier. During spring 2003, I spent a couple of days in Luxembourg for my BSc

thesis. Until that moment, I thought of scientists as people in white coats dripping fluids in

tubes, worrying about the sixth digit behind the dot. But during these few days in Luxembourg,

I noticed that, at least in hydrology, this was different. I witnessed the installation of a weir in

a small stream, where a large plastic sheet was buried to in order to let most of the water pass

over the weir. The supervisor explained that with an uncertainty of 10% it would offer excellent

measurements. That made me realize that science was not about the sixth digit behind the dot,

but that it was about understanding processes and quantifying them as good as possible.

Still it took until my MSc thesis before my scientific mindset was really triggered. Trying to do

hydrograph separation based on natural tracers, I realized that the assumption of conservative

tracer concentrations was always violated in this stream. Given this fact, Jeff McDonnell sug-

gested to use temperature as a tracer instead. Temperature is also not conservative, but it was

much easier to collect than the samples that had to be taken for other tracers. Shortly after I

start working on temperature as tracer, John Selker crossed my path with a fibre optic cable that

could measure temperature. This - for hydrology - new measurement technique, could measure

temperature not only at high temporal resolution, but also at high spatial resolution. Soon the

decision was made: we would try this new technique during a full week in the Maisbich as part

of my MSc thesis. This tryout appeared to be very successful with three scientific publications

as a result. This was my introduction to the hydrological scientific community.

But hydrology is more than just measuring something. The data should be analyzed and in-

terpreted while modelling is often needed to distinguish between different processes that make
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up the measured quantity. What is often said about creativity also counts for science: 10% is

inspiration and 90% is perspiration. In my case, the new measurement technique could be seen

as the inspiration, and the extensive fieldwork, the analysis and interpretation of the data com-

bined with energy balance modelling as the perspiration. This is exactly what I did during my

PhD: I measured stream water temperature, analyzed the large quantity of data, interpreted

it and built a temperature model to cut down the signal into different processes that influence

in-stream temperature. The effort of four years of work resulted in this dissertation.



Summary

Headwater catchments are important contributors to streamflow. They are small, but all com-

bined they influence river flow significantly. To be able to make proper runoff predictions under

different climate conditions and changing land use, it is important to have detailed understanding

of the discharge processes in the headwater catchments.

In this thesis we explore the possibilities of fibre optic Distributed Temperature Sensing (DTS)

to obtain more insight in temporal and spatial discharge dynamics during stormflow. DTS is a

technique capable of measuring temperature with high spatial and temporal resolution. It was

developed in the 1980’s by the oil industry but only recently (in 2006) it has been introduced

into the field of hydrology. The technique relies on short laser pulses that are sent through a

fibre optic cable. Throughout the fibre optic cable small parts of the pulses are reflected by

disturbances in the glass fibre, of which the exact position is obtained by measuring the travel

time of the reflected light. The frequency shifts of the reflected light are then used to calculate

the temperature of the fibre optic cable at the point of reflection. The DTS system used in this

thesis has a spatial resolution of 2 m and a temporal resolution of 3 min. With these settings a

precision of ∼0.1◦C is obtained.

All experiments described in this thesis were done in the Maisbich: a 565 m long, first order

stream in Central Luxembourg. The lithology of the Maisbich consists of schist which is covered

with a layer of loose rock clasts with variable clay content of a few meters thick and a thin layer

of fine sediments. Summer baseflow in the Maisbich can be <1 l s−1, while the annual maximum

discharge is in the order of 50-100 l s−1. The stream reach has six distinct sources and two areas

of significant infiltration losses.

In order to be able to quantify the hydrological fluxes within the Maisbich headwater using

temperature as a tracer, we had to calculate the temperature of the stream water independently.

Therefore, we coupled an energy balance model with a routing and advection-dispersion model.

Through this coupling we could treat temperature as a high resolution conservative tracer.

The difference between observed and simulated temperature should then be caused by different

exchange fluxes, which subsequently can be quantified. For an adequate temperature model

many processes need to be included and described. Therefore a large part of this thesis consists

of the quest for a perfect temperature model. During this quest a couple of new insights were

gained.
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x Summary

First of all, heat exchange with in-stream rock clasts appeared to be important. The many

abundant rock clasts present on top of the streambed store heat, resulting in retarded heat

transport. We showed that during winter flow the heat was retarded for more than 30 min

after being transported over 565 m. By using a pin-meter we were able to observe the amount

of rock clasts present in the cross-sectional area of the stream. Due to the fast heat exchange

between water and rock clasts, we could simplify the model by assuming that the temperature

of in-stream rock clasts is always the same as the water temperature.

During the quest for the perfect model, we also developed a new method to quantify surface

water-groundwater interactions (or hyporheic exchange). Stream water infiltrates into the sub-

surface (hyporheic zone) where it remains for a while before it returns to the stream. This

process influences in-stream temperature, making it possible to quantify this flux. Because of

the high resolution temperature observations, we were able to show the large spatial variability

in hyporheic exchange. Compared to many other in-stream tracer studies that use conventional

stream tracers, we could quantify hyporheic exchange at a high resolution with more flexibility

in experimental design.

After the inclusion of heat exchange with in-stream rock clasts and hyporheic exchange, observed

daily temperature fluctuations could be adequately simulated during steady state discharge

conditions. In the last step we extended the model to unravel spatial and temporal dynamics in

discharge during a short but intensive summer rainstorm. Using the model as a learning tool, we

showed that for such an event, gains of water remained constant over the event, stream losses

increased with increasing discharge, and hyporheic exchange appeared to increase with discharge

for part of the stream. From the modelling results, we also concluded that a side channel becomes

active several hours after the start of the rainfall event.

Although we were able to quantify discharge dynamics at high temporal and spatial resolution,

which was the main objective and trigger for this research, we were only able to do this for low

flow conditions during summer. During higher flows, larger rainstorms or less favourable mete-

orological conditions, observed temperature differences appeared to be too small to distinguish

between different fluxes.

A higher accuracy in temperature observation would decrease this problem. At this moment,

DTS systems with a spatial resolution of 25 cm are already available while advanced calibration

techniques improve the accuracy significantly. These developments make it possible to quantify

sources even when there are small temperature differences in the stream. Another way forward is

to artificially heat up or cool down the stream water although this would require large amounts

of energy which may have their practical limitations as well.

This study has shown that high resolution temperature observations can be instrumental in

understanding detailed processes in hydrological systems. With the advance of this and other

high resolution tracer techniques more new breakthroughs in understanding hillslope processes
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may be expected in the near future.
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Samenvatting

De bovenlopen van rivieren leveren een belangrijk aandeel in de totale rivierafvoer. De gebieden

zijn klein, maar samen bëınvloeden ze de afvoer aanzienlijk. Om goede afvoervoorspellingen

te maken onder een veranderend klimaat of landgebruik, is het belangrijk om de verschillende

afvoerprocessen in de brongebieden tot in detail te begrijpen.

In dit proefschrift verkennen we de mogelijkheden van fibre optic Distributed Temperature Sens-

ing (DTS) om meer inzicht te krijgen in temporele en ruimtelijke afvoer dynamiek tijdens

piekafvoeren. DTS is een techniek waarmee temperatuur met een hoge temporele en ruimtelijke

resolutie gemeten kan worden. De techniek is ontwikkeld in de tachtiger jaren van de vorige eeuw

voor de olie-industrie, maar slechts sinds kort (2006) is het in het vakgebied van de hydrologie

gëıntroduceerd. Het principe van DTS bestaat uit korte laserpulsen die door een glasvezelkabel

gezonden worden. Overal in de kabel wordt een minieme hoeveelheid licht weerkaatst door kleine

oneffenheden in de glasvezel. De exacte positie waar een lichtdeeltje weerkaatst kan berekend

worden door de reistijd van het gereflecteerde licht te meten. Als gevolg van de weerkaatsing tre-

den er kleine veranderingen op in de golflengte van het gereflecteerde licht en deze veranderingen

kunnen gebruikt worden om de temperatuur te bepalen op de plek van de weerkaatsing.

Alle metingen die in deze thesis zijn beschreven zijn gedaan in de Maisbich: een klein eerste orde

beekje in het hart van Luxemburg. De bodem bestaat uit leisteen, bedekt met een enkele meters

dikke laag los gesteente vermengd met wat klei waar nog een dunne laag fijn sediment bovenop

ligt. De typische zomerafvoer in de Maisbich kan minder zijn dan 1 l s−1, terwijl de jaarlijkse

maximum afvoer rond de 50 á 100 l s−1 ligt. In de beek bevinden zich zes geconcentreerde

bronnen die bijdragen aan de afvoer, en twee locaties waar een significant gedeelte van het

water weer in de bodem infiltreert.

Om de verschillende hydrologische fluxen in de Maisbich te kunnen kwantificeren met behulp

van temperatuur als tracer, moesten we de temperatuur van het water berekenen. Hiervoor

hebben we een energiebalans model gekoppeld aan een advectie-dispersie model. Door deze

koppeling is temperatuur een conservatieve tracer geworden: de verschillen tussen gemeten en

berekende temperatuur worden dan veroorzaakt door verschillende water fluxen, die vervolgens

dus gekwantificeerd kunnen worden. Maar voor een adequaat temperatuur model moeten vele

processen meegenomen worden die dan ook nog gekwantificeerd moeten worden. Daarom bestaat
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dit proefschrift voor een groot deel uit het optuigen van een zo perfect mogelijk temperatuur

model. Tijdens dit proces dienden zich een aantal nieuwe inzichten aan.

Allereerst hebben we aangetoond dat warmte-uitwisseling met de in de beek aanwezige stenen

belangrijk was. Deze stenen lagen bovenop de bodem van de beek en doordat ze ook warmte

opslaan, was het warmtetransport in de beek, vergeleken met dat van water, vertraagd. We laten

zien dat gedurende winterafvoeren, een puls van koud water meer dan 30 min langer over 565 m

doet dan het water zelf. Met behulp van een zelf gefabriceerd 2D pinbord konden we voor ieder

waterstand de hoeveelheid stenen bovenop de bodem bepalen en door de snelle uitwisseling van

warmte tussen water en stenen konden we het model vereenvoudigen door aan te nemen dat de

temperatuur van de stenen altijd hetzelfde is als dat van het omringende water.

Tijdens de zoektocht naar het perfecte temperatuur model hebben we ook een nieuwe methode

ontwikkeld om oppervlaktewater-grondwater interactie te kwantificeren. Oppervlaktewater infil-

treert in de bodem, wat het na een bepaalde tijd weer verlaat om terug te stromen naar de beek.

Dit teruggekeerde water bëınvloedt de temperatuur van het oppervlaktewater, wat het mogelijk

maakt om deze flux te kwantificeren. Omdat we hoge resolutie temperatuur metingen had-

den, konden we ook de grote ruimtelijk spreiding in deze uitwisseling aantonen. Vergeleken met

veel andere studies waar conventionele tracers gebruikt worden, konden we de oppervlaktewater-

grondwater interactie met een hogere ruimtelijke resolutie kwantificeren, terwijl de experimentele

opzet flexibeler is.

Nadat we de warmte-uitwisseling met stenen en de oppervlaktewater-grondwater interacties

gëıntegreerd hadden in het model, konden we de gemeten dagelijkse temperatuur fluctuaties met

hoge nauwkeurigheid reproduceren gedurende constante afvoer condities. Als laatste hebben het

model uitgebreid om temporele en ruimtelijke variaties in afvoer te kunnen bepalen tijdens een

kleine maar intensieve zomerse regenbui. Door stapsgewijs het model aan te passen, toonden

we aan dat voor deze bui de bronnen een constante hoeveelheid water gaven, de infiltratie

verliezen groter werden naarmate de afvoer hoger werd en dat voor ongeveer de helft van de

beek de oppervlaktewater-grondwater interactie groter lijkt te worden met hogere afvoeren. Uit

de modelleer resultaten konden we ook concluderen dat een kleine nevengeul actief werd enkele

uren na de regenbui.

Ofschoon we de fluctuaties in afvoer met hoge resolutie konden kwantificeren - wat het hoofddoel

en aanzet was voor dit proefschrift - lukte dit alleen tijdens lage zomerse afvoeren. Tijdens hogere

afvoeren, grotere regenbuien of minder warme dagen, bleken de fluctuaties in water temperatuur

te klein om verschillende water fluxen te kunnen onderscheiden.

Hogere nauwkeurigheid in de temperatuur metingen zouden dit probleem kleiner maken. Op dit

moment zijn er al DTS systemen beschikbaar met een ruimtelijke resolutie van 25 cm terwijl

nieuwe geavanceerdere kalibreer technieken de nauwkeurigheid significant groter kunnen maken.

Deze nieuwe ontwikkelingen zorgen ervoor dat zelfs bij kleine temperatuur verschillen, bronnen
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al gekwantificeerd kunnen worden. Een ander manier om meer inzicht te krijgen tijdens hogere

afvoeren is om kunstmatig het water op te warmen of af te koelen. Daarvoor is echter veel energie

nodig, waardoor deze optie ook zijn praktische limitaties heeft.

Al met al heeft deze studie aangetoond dat hoge resolutie temperatuur observaties instrumenteel

kunnen zijn in het tot in detail begrijpen van hydrologische systemen. Met de opmars van deze,

en andere hoge resolutie tracer technieken, is het slechts een kwestie van tijd dat er nieuwe

inzichten komen waardoor we hydrologische processen nóg beter begrijpen.
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List of Symbols

A Cross sectional area of the stream (m2)

Ao Surface area of the stream as seen from the above (m2)

Bc Brunt coefficient (-)

Br Bowen ratio (-)

C Salt concentration (kg m−3)

Cf Hydraulic friction of streambed (-)

CL Ratio between observed and clear sky solar radiation (-)

Cshadow Shadow fraction (-)

D Longitudinal dispersion coefficient (m2 s−1)

Ddiff Fraction of solar radiation that is diffuse (-)

Df Fraction of solar radiation which reaches the stream bed (-)

E Open water evaporation (m s−1)

H Relative humidity (-)

Ksoil Thermal conductivity (W m−1 ◦C−1)

L Distance between tracer input and observation point (m)

NDaI Damkohler number (-)

P Wetted perimeter of stream (m)

Pa Adiabatic atmospheric pressure (kPa)

Q Discharge (m3 s−1)

R Hydraulic radius (m)

T Temperature (◦C)

Uwind Wind speed (m s−1)

V Volume of stream (m3)

W Width of stream (m)

a1 Empirical constant (0.094 kPa−1/2)

c Heat capacity (J kg−1 ◦C−1)

dhz Thickness of hyporheic zone (m)

ea Actual vapour pressure (kPa)

es Saturation vapour pressure (kPa)

g Gravity (m s−2)

q Discharge per unit stream length (m3 m−1 s−1)

qhyp Hyporheic flux per unit stream length (m3 m−1 s−1)

r relative error (%)

ra Aerodynamic resistance (s m−1)

rc Ratio between total and conducting cross-sectional area (-)

s Slope of saturated vapour pressure (kPa ◦C−1)

t Time (s)

u Stream velocity (m s−1)
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x Distance (x)

z Depth (m)

Φatm Net energy exchange between water and atmosphere (W m−2)

Φbed Net radiation reaching the streambed (W m−2)

Φcond Riverbed conduction (W m−2)

Φdiffuse Diffuse solar radiation (W m−2)

Φdirect Direct solar radiation (W m−2)

Φlatent Latent heat flux (W m−2)

ΦLW Net long wave radiation (W m−2)

ΦLWa Atmospheric longwave radiation (W m−2)

ΦLWb Back radiation from the water surface (W m−2)

ΦLWc Land cover longwave radiation (W m−2)

Φobs Observed solar radiation (W m−2)

Φsens Sensible heat flux (W m−2)

Φsolar Net incoming solar radiation (W m−2)

α Exchange coefficient between stream and transient storage (s−1)

β Albedo (-)

εatm Emissivity of the atmosphere (-)

εveg Emissivity of the vegetation (-)

γ Psychometric constant (kPa ◦C−1)

η Fraction of rock clasts in the stream (-)

λ Latent heat of vaporization (J kg−1)

θvts View to sky coefficient (-)

ρ Density (kg m−3)

σSB Stefan Boltzman constant (W m−2 ◦C−4)

ζ Altitude above mean sea level (m)

List of Subscripts

BF Base flow

L Lateral

R Rain

S Transient storage

air Air

b Bulk of water and in-stream rock clasts

d Downstream of lateral inflow

down Downstream V-notch weir

hz Hyporheic zone
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new New external water

r In-stream rock clasts

soil Soil

tot Total

u Upstream of lateral inflow

up Upstream V-notch weir

w Water
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Chapter 1

Introduction

1.1 Background

1.1.1 The importance of headwater catchments for discharge generation

Headwater catchments are small but important contributors to streamflow. Headwaters are the

origin of streams and rivers and function as a first filter between natural and unnatural inputs

from the landscape into forms that downstream ecosystems are adapted to utilize [Bishop et al.,

2008]. It dampens floodwaves and buffers polutants and nutrients. Biodiversity in headwaters

is large, since they offer refuge and a water network suitable for migration. The headwaters are

the veins in the landscape. They are small, but all combined they are one of the most important

contributors to river flow. For example, more than 90% of the stream length in Sweden has

catchment areas under 15 km2 [Bishop et al., 2008].

A very common behaviour in discharge generation processes, that has been observed in many

headwaters, are threshold processes [Zehe and Sivapalan, 2009]. This means that, before a catch-

ment responds to rainfall, first a certain threshold has to be exceeded. Beside the quantification

of the threshold itself, also the mechanism responsible for this threshold was and is the focus of

many discharge generation studies.

An important threshold in (semi-)arid or urban areas is the infiltration capacity: if the rainfall

intensity is higher than the infiltration capacity, so-called ‘Horton overland flow’ occurs [e.g.

Kirkby and Chorley, 1967], which means that excess water that cannot infiltrate flows directly

over the surface, leading to very fast runoff responses. On the other hand, in temperate climates

or forested catchments – where this study has been done – the infiltration capacity is often much

higher and other thresholds come into play. In such areas, overland flow only occurs when the

groundwater level reaches the surface [Dunne and Black, 1970].

In most of these headwaters, ‘subsurface stormflow’ is the main process responsible for the

fast and high runoff response. Subsurface stormflow also occurs after a certain threshold has

exceeded, but it happens out of sight, making it difficult to identify the mechanism responsible

for the threshold behaviour. In the European temperate climate, this mechanism is dominant,
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2 Chapter 1. Introduction

but the different mechanisms can occur in combination, depending on the landscape features

and saturation levels [Savenije, 2010].

Nevertheless, because of its importance to stormflow, many researchers try to find specific mech-

anisms causing threshold behaviour and many different mechanisms have been proposed in lit-

erature such as:

• Groundwater ridging [Ragan, 1968] or capillary fringe effect [Gillham, 1984]. This mech-

anism explains the threshold by the fact that in areas with a shallow groundwater table

(often located close to the stream), the unsaturated soil is very close to saturation re-

sulting in a rapid increase in groundwater level after only a small amount rainfall.

• Pipeflow or macropore flow [e.g. McDonnell, 1990]. In this mechanism, the discharge

generating process switches from matrix flow during low moisture states, to macropore

flow during wet conditions, which is more efficient in discharging water.

• Transmissivity feedback [e.g. Bishop, 1991], which may happen in soils where hydraulic

conductivity increases towards the surface. When the groundwater level rises during

a rainstorm, the saturated zone reaches better conductive layers, leading to a faster

response.

• The fill and spill hypothesis [Tromp-van Meerveld and McDonnell, 2006b], during which

uphill hollows in the bedrock should be filled first, before it spills water into a downstream

direction. When all (micro)hollows are connected to the stream the discharge generation

is highest.

All these mechanisms explain the observed threshold behaviour at different sites and scales.

However, processes occurring on small scales cannot be simply summed up to describe processes

on larger scales (e.g. overland flow that occurs in an uphill area, can infiltrate before it reaches

the stream). On the other hand, observations of lumped processes cannot be broken down to

describe small scale processes. What is needed to overcome these scale issues, are continuous

descriptions of small scale processes on the km scale [Beven, 2006; Zehe and Sivapalan, 2009;

Savenije, 2010].

Measurements are needed to understand the discharge generating processes. The first things

to measure are discharge and precipitation, which are relatively easy to measure. But before

the rain turns into runoff most water flows through the subsurface which functions as a filter

and dampens the runoff peaks. Therefore it necessary to know what happens in the subsurface.

However, measurements done in the subsurface are often point measurements from boreholes.

Due to the heterogeneity of the soil, these point measurements do not give a lot of information

about nearby points. To be able to still get an idea what is going on in the subsurface, indirect

measurements should be done.
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1.1.2 The use of tracers in catchment hydrology

One way to indirectly measure subsurface processes is the use of (natural) tracers. Tracers are

solute concentrations or other state variables of the water that differ in time or space. Natural

tracers refer to tracers that are already present in the water. The most common used natural

tracers in hydrology are isotopes (e.g. deuterium, tritium or oxygen-18), dissolved silica and

anions or cations (such as Cl−, Na+, K+, Ca+ and Mg+), while a less common used tracer is

temperature, which we use in this thesis.

In the first place, tracers are water quality parameters, but they can be linked to water quantity

by means of an ‘end-member mixing analysis’ [Sklash and Farvolden, 1979]. With this widely used

method a hydrograph is, based on their tracer concentrations, separated into parts originating

from different sources, where ‘end-member’ refers to the representative concentration of a source.

The hydrograph is separated by solving, for each time step, a set of mass balance equations:

Qstream = QS1 +QS2 + . . .+QSn

QstreamC1stream = QS1C1S1 +QS2C1S2 + . . .+QSnC1Sn

QstreamCnstream = QS1CnS1 +QS2CnS2 + . . .+QSnCnSn

where Q is discharge, Cn is tracer concentration of tracer n and the subscripts stream, S1, S2 and

Sn stands for stream, source 1, source 2 and source n. For each additional source an extra tracer

and an extra equation is needed. When Qstream and all source concentration are known this set

of equations can be solved.

The different fractions to which a hydrograph is separated can be in space (or source based),

such as groundwater, rapid subsurface flow or rainfall, or it can be separated into event (‘new’)

and pre-event (‘old’) water, which is a time based separation. The latter is performed using

isotope concentrations, while source based separations can be done with chemical tracers or a

combination of chemical tracers and isotopes. Uhlenbrook and Hoeg [2003] made an even more

pronounced distinction, using chemical tracers for a source based separation, after which isotopes

were used to separate the different sources into event and pre-event water.

Many hydrograph separation studies showed that during a rainfall event the majority of the

stream water consists of groundwater or pre-event water that is mobilized by the current rain

water, while only a small portion consist of the fresh fallen rain water. This is also known as

the ‘old-water paradox’ [Kirchner, 2003; McDonnell, 2003] which is subject to many studies in

combination with threshold processes.

Hydrograph separation is a useful technique but there are some features a good tracer should

have, making not all tracers suitable. First of all a tracer should be conservative (i.e. the con-

centration of each source of water should be constant over time and it should not react with its

surroundings). Secondly, the concentrations of the different water sources should be sufficient

different from each other, and third, they should be easy to measure and preferably not too
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4 Chapter 1. Introduction

expensive. Due to practical issues, such as measurement errors, non-conservative behaviour of

the tracer or the lack of enough suitable tracers, errors in hydrograph separation can become

high [Genereux, 1998; Rice and Hornberger, 1998; Uhlenbrook and Hoeg, 2003]. Therefore a

hydrograph can only be accurately separated in two or three components, which means that

different sources have to be lumped.

So far, hydrograph separation studies were not able to solve the scale issues mentioned in Section

(1.1.1). This is mainly caused by a too low spatial resolution of the measurements. In this thesis

we aim to solve this problem by using temperature as a tracer, measured at high spatial and

temporal resolution.

1.1.3 Temperature as a tracer

Temperature can also be used as a tracer, since it appears to contain information on soil moisture

states [Steele-Dunne et al., 2010] and for a wide variety of hydrological processes (e.g. evapora-

tion, groundwater flow, infiltration and stream flow). The big advantage of temperature is that,

compared to many other tracer, it is relatively easy to measure, but it has the disadvantage that

it is not conservative, since heat can be easily exchanged with its surroundings.

However, in the subsurface, the heat exchanges are relatively easy to determine, making temper-

ature a suitable tracer in (shallow) groundwater systems. Therefore it is often used to quantify

upwelling or downwelling fluxes in riverbeds or to identify flow patterns in aquifers [see Con-

stantz, 2008, for an extensive review of heat as a groundwater tracer]. As a stream tracer,

temperature has also been applied [e.g. Kobayashi, 1985; Shanley and Peters, 1988; Kobayashi

et al., 1999]. But their results should be interpreted in a qualitative way only, since they did not

determine the energy balance, which takes heating or cooling of the stream into account. Also

transport processes such as advection and dispersion were lacking in their studies. So basically,

they treated temperature just as any other tracer.

To really take advantage of the fact that temperature is easy to measure, one should measure

it at higher spatial scales than classical tracer studies. In this thesis we do that with fibre

optic Distributed Temperature Sensing (DTS). This technique was developed in the 1980’s for

industrial applications, but only recently Selker et al. [2006b] introduced this technique into the

field of hydrology. It consists of a fibre optic cable, through which short pulses of laser light are

send. While most of the light leaves the cable at the far end, everywhere in the cable a small

fraction of light is reflected. Because the velocity of light is known, it is possible to determine

at which distance in the cable a certain photon was reflected. The temperature at the point of

reflection is then hidden in the frequency shifts of the reflected light (see Chapter 2 for a detailed

description of this technique). Depending on the measurement device, the spatial resolution can

be 1 m and the temporal resolution can be as short as 10 s. This offers the opportunity to

measure high resolution temperature profiles along a stream.
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But, as said before, the disadvantage of temperature as a tracer is that it is not conservative.

However, when all energy fluxes are determined, temperature becomes a conservative tracer. Such

an energy balance model should then be coupled with a transport model and eventually with a

river routing model to account for all flow processes as well. If all energy fluxes are adequately

determined, the difference between observed temperature and simulated temperature is then

due to different water fluxes, such as incoming (ground)water or surface water-groundwater

interactions, which can then be determined. Also losses of stream water can be determined,

since it influences temperature as well, but only indirect (i.e. a small amount of water heats up

or cools down faster than a large amount of water).

For a good temperature model many parameters are needed, which are often spatially dis-

tributed. This makes it difficult to get a good model. Therefore a large part of this thesis, is the

quest for a perfect temperature model. Although a perfect model is impossible, the quest for it

resulted in some trade offs. First of all we found that heat exchange with in-stream rock clasts

is an important heat flux influencing transport of heat, and secondly, we showed the advantage

of using DTS to quantify groundwater surface water interactions. With the final temperature

model we were able to quantify spatial and temporal dynamics in discharge during a summer

rainstorm.

1.2 Objectives

This thesis fits in the long term objective to better understand discharge generation processes in

headwater catchments. Among other studies, tracer studies already gained decent understanding

of the different discharge generating mechanisms. However, the different fluxes that have been

distinguished were lumped, making it difficult to determine at which points along the stream

there are lateral inflows.

In this thesis we explore the suitability of using high resolution temperature observations to

identify different lateral inflows at higher resolution. The focus lies on developing and combining

methods to better interpret the observed temperature signal (in space and time) and to quantify

fluxes that influence in-stream temperature.

The following three objectives have been defined for this research:

• To explore opportunities and limitations of DTS in the field of hydrology.

• To model all flow and energy processes (including hyporheic exchange) during steady

state flow using combined transport and energy balance models.

• To quantify discharge dynamics during stormflow.

All these objectives have a specific focus on high spatial and temporal resolution.
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1.3 Outline of thesis

In Chapter (2) the study area has been described. In the same Chapter all measurements have

been described and the DTS technique is explained in detail. Two sprinkling tests, performed

on a small plot next to the stream, have been described and interpreted to get a general idea of

how the catchment functions and to get an idea of the heterogeneity of the subsurface.

The temperature model has been described in Chapter (3). The used transport formulas are

shown and all fluxes of the energy balance model are explained. However, in Chapters (4) and

(5), the temperature model is improved, by adding more processes to the model.

In Chapter (4) the influence in-stream rock clasts have on water temperature has been explored

and quantified. This has been done by releasing cold water, with a salt tracer, from a small basin

into the stream. By comparing breakthrough curves of salt and heat the effect of in-stream rock

clasts could be quantified. Also a method to quantify stream losses is presented in this Chapter.

In Chapter (5) the focus lies on hyporheic exchange. Here we developed a method to quantify

hyporheic exchange at high resolution using DTS, while also being able to estimate the location of

the hyporheic zone. The proposed method offers more freedom to experimental setup, compared

to studies using other tracers.

With the improvements made in Chapter (4) and (5), in-stream temperature could be adequately

simulated during steady state discharge conditions. In the next step (Chapter 6) the same model

has been applied to quantify spatial and temporal dynamics of discharge during a summer

rainstorm. Here we showed that stream losses are a function of discharge and different hypotheses

have been tested about the location of extra, by rain induced, lateral inflow. Also the change in

hyporheic exchange fluxes during this summer rainfall has been tested.

In Chapter (7) we performed long term simulations of full months to show the information

hidden in longer simulation periods, without going to much into the details. Subsequently we

discuss how they can be used for developing hypotheses about the causes of mismatches between

observed and simulated temperature.

Finally, all results are brought together and the case studies are synthesized in Chapter (8). Some

practical issues concerning the DTS measurement device are discussed as well as the limitations

of the method to quantify discharge generation processes. We show that large temperature

variations of a few degrees are needed to quantify different fluxes. In the study area, where our

measurements have been done, the temperature variations are only sufficient during low flow

and warm summer days. However, possible ways forward to overcome this problem have been

discussed as well.
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Chapter 2

Site description and measurements

2.1 Site description

All field experiments and data collection took place in a branch of the Maisbich, a first order

stream located in central Luxembourg; latitude 49◦53’ N and longitude 6◦02’ E.

The Maisbich is located in the Oesling region, which covers the Northern third of Luxembourg.

The Oesling is underlain by Palaeozoic rocks of Lower Devonian age1 (Fig. 2.1). The most

common rock type in this area is ‘schist’ or ‘Schiefer’. These fine-to-medium near-shore deposits

with a low degree of metamorphosis are slates (http://www.geology.lu) although others classify

it as shales. The Oesling is a generally NE-SW-trending fold system; the Maisbich is located in

the Wiltz syncline structure (Fig. 2.1).

During the Pleistocene, a general uplift of the region occurred, which was then transected by

rivers. This resulted in many small plateaus at an altitude of 470-490 m above sea level, from

which long, gentle slopes lead to steeply incised valleys with maximum valley side slope of more

than 58% [Kwaad and Mücher, 1977]. Generally the slopes in the Oesling region have undergone

creep processes and important erosion resulting in colluvial deposits along the slope. At the

bottom of the slope it is gradually replaced with alluvial valley deposits.

The soils in the Oesling part of Luxembourg are generally (very) young. Detailed soil evolution

studies describe polygenetic soil evolution [Kwaad and Mücher, 1977]. In the higher regions soil

development from the Holocene period is available in the Weichselien2 mass-wasting deposits.

Often these soils were truncated or totally eroded after especially late medieval and later human

induced forest clearing. Reafforestation started after 1800 reducing the soil erosion process to

slow normal rates [Kwaad and Mücher, 1977]. Generally, the Oesling soils classify as dystric

cambisols (FAO classification), a soil with weak soil horizons and a low base saturation.

A hydrological interpretation of the schist area was published by Van den Bos et al. [2006]. They

stated that significant runoff occurred before the top surface layer was saturated, which they

1. The Lower Devonian is the geological period spanning from 416 to 397 million years ago.

2. The Weichselien is the last glacial period spanning from approximately 116 until 11.5 thousand years ago.
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Figure 2.1: Geological Map of Luxembourg. Adapted from http://www.geologie.lu.
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Figure 2.2: Map of the studied branch of the Maisbich. The shaded areas are areas which are never

exposed to direct solar radiation. The vertical profile are temperature measurements at four depths below

the streambed.
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explain by the abundant macropores, created by roots and cracks in the bedrock, that surpass

the interception capacity of the soil.

In the Maisbich, the schist bedrock is covered with a layer of loose rock clasts (partly in-situ

weathered bedrock) with variable clay content of a few meters thick. This layer is overlain by

a thin layer of fine sediments which is 0 to 1 m thick in the direct surroundings of the stream

(alluvium) and on the hillslopes (colluviums). The stream scours the soil layer in the valley

bottom, creating steep banks of 0.2 to 1 m high at many places. The investigated stream reach

is 565 m long, with an average slope of 18% (Fig. 2.2).

During this study, we found four distinct sources of lateral inflow in the stream at 104, 177,

351 and 414 m measured from the upstream V-notch weir, among two small ones at 383 and

393 m which contribute less than 5% of the discharge just downstream of the inflow and are

therefore not monitored. All inflows are groundwater sources: the first and last one flow over the

land surface for ∼3 and ∼10 m, respectively, while the other sources are within 0.5 m from the

stream. Summer baseflow can be less than 1 l s−1, while the observed annual maximum discharge

is in the order of 50-100 l s−1, with some extreme values above 100 l s−1. Just upstream of the

first lateral inflow (104 m) and between 233 and 247 m a zone exists where a substantial portion

of the stream water infiltrates into the bed. During low summer baseflow, as in Chapter (5) and

(6), the stream loses 90% of its water between 60 and 77 m and ∼45% of its water between 233

and 247 m. During extremely dry conditions, the stream disappears completely downstream of

these zones, while it reappears again at the next lateral inflow. Stream tracer tests (unpublished

data) indicate that at least a part of the water that infiltrates between 60 and 77 m returns to

the stream at 104 m, since some of the injected salt was found back in the source water.

Most of the banks are covered with vegetation. During summer and only during relatively short

periods of time (often around two hours), when the sun’s azimuth is close to the stream’s aspect,

parts of the stream are exposed to solar radiation. Between 66 and 106 m, 225 and 400 m, and

467 and 530 m the canopy prevents most of the solar radiation reaching the stream, even during

summer.

2.2 Measurements3

2.2.1 Hydrometric measurements

At the upstream and downstream end of the studied reach, two V-notch weirs have been in-

stalled and equipped with Keller DCX22 pressure sensors recording water levels with a temporal

resolution of 10 min and an accuracy of ∼0.05 l s−1 during summer base flow.

3. All observed data are on http://data.3tu.nl, doi:10.4121/uuid:57acdc8d-5c86-478a-9ada-8c075cc30b0a

� � � � � � � � � � � � � � � � � �� �� �� �� �� �� � � � � � � � � � � � � � �	 °


��  � � � � � � � � � Animation 1: Observed (black line) and simulated (grey

line) temperature without hyporheic exchange (see Chapter 5).



2.2. Measurements 11

N O P Q R S P T N N U N O P Q R S P T N N V N O P Q R S P T N N W N O P Q R S P T N O N X Y ZY [ O [ \ ] S ^ _ ` aY b c N \ ] S ^ _ ` aY b c N \ d ` a SY b c N \ e fY O U V \ ] S ^ _ ` aY O U V \ d ` a SY O U V \ e fY O N [ \ ] S ^ _ ` aY O N [ \ d ` a SY O N [ \ e fY T N \Y g ` ] _ V b \Y g ` ] _ b O T \h d ` a Sh e fY R ] ij ] S d g f k k dZ ` _ R i i R d ] R l ] ` Sm k _ n o e \ ] d ] l pq i k r ] f ] l R l ] ` S

s t g k i u k d ` S g ] l k v d ` f l k d ^ i ` \ w l l f x y y \ k l k ` n _ r d n _ ev d ` f l k d ^ i ` \ Y ] f f ] S z { e r | k l v d ` f l k d ^ i ` \ w l l f x y y a a a n R g l R n k l R l n _ e
Figure 2.3: Overview of available data. T xxm are TidbiT temperature loggers located at distance xx. up,

down and inflow means just upstream, downstream or of the lateral inflow itself. Gaps in meteorological

data have been filled with data from nearby stations. The Tipping Bucket was located in the same

catchment as the HOBO weather station.

On the plateau, just uphill of the upstream V-notch weir, a HOBO weather station monitors

incoming solar radiation, air temperature, wind speed and direction, rainfall and relative humid-

ity at a 10 min interval. Gaps in this data were filled with data from nearby stations: relative

humidity data was taken from a nearby weather station in Ettelbruck (∼6 km from the site)

from the Administration des Services Techniques de l’Agriculture4, which had a temporal res-

olution of 10 min. Rainfall was taken from a tipping bucket located ∼300 Northwest from the

weather station. Solar radiation, air temperature and wind speed were taken from meteoLCD

in Diekirch5 (∼ 8 km from the site). For an overview of all data availability see Fig. (2.3). As a

first estimate, cross-sectional areas of the stream have been determined, assuming a trapezoidal

shape (Chapter 4). In Chapter (5) and (6) the cross-sectional riverbed profiles were measured at

64 places along the stream using a pin-meter (Fig. 2.4). The pins were situated 2 cm from each

4. http://www.asta.etat.lu

5. Meteorological Station of the Lycee Classique Diekirch, L-9233 Diekirch, Luxembourg. Head: Francis Massen,

francis.massen@education.lu http://meteo.lcd.lu
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Figure 2.4: Photo of pin-meter (top) and the digitalized bed profile including the contour line (bottom).

Note, that to avoid numerical problems, we sometimes added some points on the right or left sides of the

observed points to identify the river banks. During the case studies, the water level always stayed within

the observed range.

other. The vertical displacement of each pin could be determined with an accuracy of ∼2 mm. To

distinguish between in-stream rock clasts and the riverbed (see Chapter 5), we drew a contour

around the lower pins. For each water level it is now possible to determine the cross-sectional

area of the stream water and the rock clasts, the wetted perimeter and the surface width of the

stream.

2.2.2 Temperature measurements†

Along the entire stream, temperature has been measured using a fibre optic Distributed Tem-

perature Sensing (DTS) system. A DTS system consists of a dedicated desktop computer with

built-in data-acquisition and processing software, to which a fibre optic cable is attached. Short

laser pulses (in the order of a few nanoseconds) are sent through the fibre optic cable. When

light strikes matter a small portion of the light may be reflected. By measuring the time between

the moment the laser pulse is sent through the cable and the moment a reflected photon comes

back, the location of reflectance can be determined, since the speed of light in glass is known.

Most of the reflected light is reflected at the original energy, while a portion of that light is

adsorbed and reemitted at wavelengths just above and below the frequency of the incident light

due to loss or gain from quanta of energy exchanged with electrons. This frequency shifted light

†. Based on: Selker, J. S., Thvenaz, L., Huwald, H., Mallet, A., Luxemburg, W., van de Giesen, N., Stejskal,

M., Zeman, J., Westhoff, M., Parlange, M. B., 2006b. Distributed fiber-optic temperature sensing for hydrologic

systems. Water Resour. Res. 42 (12), W12202
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Figure 2.5: Diagram of Raman return scattering intensity below (Stokes) and above (anti-Stokes) the

frequency of the injected light.

is referred to as Raman scattering, with the light of frequency below the incident light being

referred to as Stokes backscatter, and that above the incident light the anti-Stokes backscatter

(Fig. 2.5).

Below a critical light intensity the magnitude of Raman Stokes scattering is a linear function of

the intensity of illumination, while at these intensities the anti-Stokes scattering is a function of

the intensity of illumination and exponentially of the temperature of the fibre. Hence the ratio of

the magnitudes of the anti-Stokes to Stokes scattered light eliminates the intensity dependency

and provides a quantity that depends exponentially on the fibre temperature. The precision of

this measurement is limited primarily by the accuracy of this ratio, that is a function of the total

number of photons observed, which, by the law of large numbers, follows a normal distribution

decreasing with the square root of the total number of photons observed. Hence the precision of

temperature measurements increases with the square root of the integration interval, as long as

instrument drift and other sources of error are insignificant. At the same time, the greater the

spatial resolution, the fewer photons are observed per unit time per interval of measurement,

resulting in a lower rate of temperature reading convergence.

The strength of the optical signal decays exponentially with distance from the source (Beer’s

law), so points further from the instrument have lower photon counts, and will therefore also

require proportionally longer integration times to obtain a desired level of precision. In summary,

the precision of a Raman measurement is, in first approximation, proportional to the square root

of the product of the linear distance from the instrument and the number of resolved sections

divided by the integration time.
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Figure 2.6: Photo and cross-section of Kaiphone fibre optic cable. On the photo, the gel and fibres are

not visible. From: Kaiphone Technology Co., Ltd.

One might think that the precision could be improved to an arbitrary degree by using more

intense lasers, but this approach is limited by the optical nonlinearity in the scattering that

arises at high intensities: it is critical to keep the intensity below this threshold. To obtain the

greatest photon count suggests the use of a larger diameter (50 µm diameter, or roughly 2000

µm2) multimode fibre, which is no longer employed in long-haul communications due to the

higher dispersion. On the contrary, a standard 9 µm diameter single-mode cable has almost

negligible dispersion, but the allowable signal strength is reduced by a factor of 25 due to the

smaller cross section. Because of the greater optical dispersion, the spatial resolution of Raman

scattering systems is limited to about 1 m for cable lengths of up to 1000 m, and to about 2 m

for lengths up to 10,000 m.

For this research we used a Halo DTS system (Halo, Sensornet, UK), which has a spatial res-

olution of 2 m and a temporal resolution of 3 min. This configuration resulted in a precision

of ∼0.1◦C. The DTS obtained temperatures were calibrated with five independent temperature

loggers (TidbiT v2 Temp logger, HOBO, USA) located along the cable at 26, 395, 931, 1111

and 1270 m from the DTS desktop computer, respectively. Note that the investigated branch

lies between 717 (downstream V-notch weir) and 1282 m (upstream V-notch weir) from the

desktop computer. For each Tidbit temperature logger, which measured at a 6 min interval,

a linear relation was determined between the DTS derived temperature and the difference be-

tween the TidbiT and DTS derived temperature for the period 4-Apr-2008 until 4-Dec-2008

(∆T = aTDTS + b). For each Tidbit location we now have a slope (a) and an offset (b). We

then derived a lineair relation between distance from the DTS desktop computer and slope,

and between distance from desktop computer and offset, resulting in an offset as a function of

distance and DTS derived temperatures. Subsequently, this offset was added to the initial DTS

derived temperatures.
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The cable used is an armored fibre optic cable (Kaiphone Technology Co., Ltd, Pan Chiao

City, Taipei Hsien, Taiwan) with two multimode fibres. The fibres are first covered by very

thin plastic, surrounded by gel after which several layers of different materials protect the fibres

(Fig. 2.6). Many small stones were put on top of the fibre optic cable, to keep it submerged.

However, after storm events, the water replaced many stones and sediments causing the cable to

be partly buried or partly above the water, where it measures air temperature. For this reason,

employment of a DTS system requires high maintenance in a stream as small as the Maisbich.

In the four major lateral inflow points the temperature was monitored with independent temper-

ature loggers (TidbiT). The temperature upstream and downstream of the three most upstream

lateral inflow points was monitored as well with TidbiT temperature loggers. They all had a

temporal resolution of 6 min.

At 83 and 312 m from the upstream V-notch weir, temperature loggers (HOBO TMC6-HD

sensors connected to an U12-008 logger) monitored the temperature below the stream at depths

of 5, 10, 20 and 40 cm at a 30 min interval. These observations were only used for Chapter (5).

2.3 Sprinkling tests

To get an idea of the subsurface structure and its hydrological response, we performed two

sprinkling tests at the same plot, which was located just uphill of the lateral inflow point at

350 m (Fig. 2.7). At this location eight piezometers were installed and all were equipped with

pressure loggers (Diver, Schlumberger) measuring on a 30 min interval, while a salt tracer was

added to the sprinkling water. The two tests were different in design.

Sprinkling test 1

The first experiment was performed between 8-May-2009 and 14-May-2009 and was the subject

of the MSc thesis of Rothuizen [2010]. In this section, only a short summary is given. During

five days we sprinkled each day 1400 l over an area of ca 150 m2 during one hour, while on day

6, 1600 l was infiltrated in piezometer P3.3. The sprinkled water had an electrical conductivity

of ca 4 mS cm−1. 2D ERT profiles were measured along the steepest gradient, during and right

after each sprinkling period. Between 9-May and 12-May a total of 37.8 mm of natural rainfall

was observed, of which 20 mm fell on 11-May (day four).

Each day, while sprinkling, the salt tracer was encountered in the lateral inflow, with a delay of

15 to 30 min after the start of the sprinkling test, while the time to peak in the lateral inflow

increased from 44 min during the first two days to 81 min at day 4, after which it decreased

again to 69 min at day 5. All piezometers showed only minor response to the sprinkled water,

except piezometer P1.2, where the water level increased ∼70 cm due to the sprinkling alone.
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Figure 2.7: Map of sprinkling site, just uphill of the lateral inflow at 350 m. The isohypses are altitudes

relative to the surface level of piezometer P1.1. The large star indicates the point where water exfiltrated

from the hillslope during an injection test in piezometer P3.3.

This indicates that this piezometer is located in an area collecting water from an uphill area.

The 27 mm of natural rain influenced only piezometers P1.2 and P2.3 significantly, where the

water level increased with 95 and 80 cm respectively. Especially the increase in P2.3 is assumed

to be water fallen on the hillslope uphill of this location. This also indicates that the hillslope

was connected to this plot after ca 30 mm of rainfall.

The increase in tracer concentration of the lateral inflow was highest on day 4: an increase of 266

µS cm−1 versus ∼70 µS cm−1 during all other days. This can also be explained by the natural

rain, which flushes the unsaturated zone where previous sprinkled salt was stored. Time lapse

ERT results show that a decrease in electrical resistivity occurred only in the top 1.5 m of the

subsurface. This confirms that most sprinkled water is stored in the unsaturated zone and on

top of the saturated zone.

During the injection test in piezometer P3.3 on day 6, first high concentrated water (4.3 mS

cm−1) was injected followed by more diluted water ∼1 mS cm−1. Reason for this was that

injected water was found back at a location Southeast from piezometer P1.2 (large star in Fig.
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2.7), where it exfiltrated out of the hillslope. After injecting the diluted water, the EC of the

exfiltrated water went down after ca 40 min, indicating a flow velocity of ∼25 m h−1. During

the injection, the water level in piezometer P1.2 increased until 0.30 m below surface level and

remained this high until the injection stopped. This indicates that all excess water rapidly flows

through the top 30 or 40 cm of the soil where lots of macropores are present.

Sprinkling test 2 †

During the second sprinkling test, performed between 5 and 8-Oct-2010, we sprinkled 9.3 m3

on an area of ca 80 m2 during a period of 22.5 hours, resulting in an intensity of 5.2 mm/h. A

salt tracer was added to the sprinkling water, increasing the electrical conductivity to ∼1300

µS cm−1. 3D electrical resistivity tomography (ERT) was performed, using a grid with 291 elec-

trodes. A dipole-dipole configuration running in x and y directions was used to obtain a 3D

picture of soil resisivities. Each 1.5 h an acquisition was made containing about 1700 measure-

ments. The inversion of the ERT measurements of the was done using the FE code Bert [Günther

et al., 2006; Rücker et al., 2006] and was done in two different ways. On the one hand, the orig-

inal data were directly inverted and on the other hand, the ratio of the new measurements and

the measurements taken before the infiltration was inverted as ratio data. In particular these

ratio data were found to have a small root mean square error (RMSE) which implies that the

quality of the measurements is good in spite of the partly difficult, stony subsurface with poor

electrode contact

During the whole experiment, the largest response was found in piezometers P2.3 and P1.2,

with an maximum increase in water level of >146 cm (P2.3 was dry before start of sprinkling)

and 124 cm, respectively. piezometers P2.2 and P3.2 only showed a maximum increase in water

level of 33 and 12 cm, while P1.1, P2.1 and P3.1 did not show any response. Piezometer P3.3

remained dry during the entire experiment.

The 3D ERT ratios between acquisition at t=t1 and the pre-event acquisition confirmed the

preferential flow towards piezometer P1.2 (Fig. 2.8; a threshold of 0.83 was taken to better

visualize the infiltration front, while a value of 1 means no change in electrical resistivity). From

this figure it can also be seen that most of the water percolates in a vertical direction, while no

lateral flow is visible along the steepest gradient (Northeast - Southwest).

From both experiments, we can conclude that the majority of subsurface flow is through pref-

erential flowpaths, which, in the investigated plot does not follow the steepest gradient of the

surface. We can also conclude that the ‘observed’ preferential flowpath is relative large, resulting

in flow velocities in the order of meters per hour.

†. Based on: Noell, U., Wießner, C., Ganz, C., Westhoff, M., 2011. Direct observations of surface

watergroundwater interaction using electrical resistivity tomography. IAHS Publ. 345, 42–47
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Figure 2.8: Top left: absolute resisivities of the subsoil just before the sprinkling experiment, obtained

with 3D ERT. All other figures: time lapse ERT results. The ratio between the acquisition at t=t1 and

the pre-event acquisition is shown, where a value of one means no change in resistivity. A threshold of

0.83 was taken to better visualize the wet infiltration front. The sprinkling lasted for 22.5 hours, with an

intensity of ∼5.2 mm/h.
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Chapter 3

Model setup†

3.1 Routing and transport model

With the DTS fibre optic cable, we measured in-stream temperature with a 2 m and 3 min

resolution. To be able to fully analyze the obtained temperature profiles, an energy balance

model is needed, describing the energy exchanges between the water-air interface and the water-

streambed interface. Since the stream transports heat, the energy balance model should be

coupled with a transport model for heat, where the enrgy balance can be treated as a sink/source

term. To determine the (dynamic) hydraulic parameters in the transport model, the transport

model should also be coupled with an hydraulic model. The coupled models should be able to

account for the fast variations in discharge and in-stream temperature in both space and time.

We therefore chose a spatial resolution of 1 m, while the used timestep was ≤ 5 s, depending on

the how fast the discharge varied. The basic equations for these models are:

The mass balance for water:

∂Aw

∂t
+

∂Q

∂x
=

∑

qL (3.1)

the routing model, based on the Saint Venant equation [Stelling and Duinmeijer, 2003]:

∂u

∂t
+ g

∂ζ

∂x
+ u

∂u

∂x
+ Cf

u|u|
R

= 0 (3.2)

and the transport model:

∂(AwTw)

∂t
+

∂(QTw)

∂x
+

∂

∂x

(

−AwD
∂Tw

∂x

)

=
∑

qLTL +
WΦatm

ρwcw
+

PΦcond

ρwcw
(3.3)

where A, Q and T are the cross-sectional area (m2), discharge (m3 s−1) and temperature (◦C).

qL is the lateral inflow per unit stream length (m2 s−1), u is the stream velocity (m s−1), ζ

†. Based on: Westhoff, M. C., Savenije, H. H. G., Luxemburg, W. M. J., Stelling, G. S., van de Giesen, N. C.,

Selker, J. S., Pfister, L., Uhlenbrook, S., 2007. A distributed stream temperature model using high resolution

temperature observations. Hydrol. Earth Syst. Sci. 11 (4), 1469–1480, http://www.hydrol-earth-syst-sci.

net/11/1469
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is the water level a.m.s.l. (m) and g is the acceleration of gravity (m s−2). Cf and R are the

hydraulic friction of streambed (-) and the hydraulic radius (m). D is the longitudinal dispersion

coefficient (m2 s−1), W is the width of the stream (m) and P is the wetted perimeter (m). Φatm

and Φcond are the net energy flux (W m−2) between the water-air interface and between the

water riverbed interface, respectively, and ρ and c are the density (kg m−3) and heat capacity

(J kg−1 ◦C−1), while x and t are distance (m) and time (s). The subscripts w and L stand for

water and lateral.

The first term of the lefthand side of Eq. (3.3) represents the dynamic energy storage, the second

and third term the advective and dispersive transport of energy and the righthand members the

sinksource terms, accounting for advective energy exchange of lateral inflows, heat exchange

between the water-air interface and energy exchange between the water-riverbed interface.

The numerical solutions for Eq. (3.1 - 3.3) are given in Appendix (A). In Chapter (4) and (5),

more processes will be added to Eq. (3.3) to improve the temperature model: In Chapter (4) heat

exchange with in-stream rock clasts has been added, and in Chapter (5) hyporheic exchange has

been added. All energy balance components are described in Section (3.3).

3.2 Determination of lateral inflows

The second objective is to quantify all flow processes. An important one are the lateral inflows.

The four major ones have been equipped with temperature sensors, which makes it possible to

determine their relative contribution a priori using a mass balance for temperature:

Qd = Qu +QL (3.4a)

QdTd = QuTu +QLTL (3.4b)

where the subscripts d and u refer to the location just downstream and just upstream of the

lateral inflow. When all temperatures are known and Qd is assumed to be 100%, the relative

contribution can be determined by solving Eqs. (3.4a and 3.4b):

QL

Qd
=

Td − Tu

TL − Tu
(3.5)

Assuming normally distributed errors in the temperature observations, the absolute error σ(QL/Qd)

(◦C) of the relative contribution of a lateral inflow, is determined as [Genereux, 1998]:

σ(QL/Qd) =

{

1

(TL − Tu)
2σ

2
Td

+

[

Td − TL

(TL − Tu)
2

]2

σ2
Tu

+

[

Tu − Td

(TL − Tu)
2

]2

σ2
TL

}0.5

(3.6)

where σT is the standard deviation of the temperature measurements (◦C). The relative error

(r) in QL/Qd is then obtained by dividing Eq. (3.6) by Eq. (3.5).
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3.3 Energy balance model

The energy fluxes in Eq. (3.3) were split up in two components: The first one (Φatm) describes

all energy fluxes through the water-air interface, the second one (Φcond) describes the energy flux

through the water-streambed interface. A positive flux is defined as a flux towards the water,

meaning that the water heats up. The energy flux through the water-air interface is given as the

sum of net solar radiation, longwave radiation, latent heat and sensible heat:

Φatm = Φsolar +ΦLW +Φlatent +Φsens (3.7)

where each component is determined separately.

3.3.1 Solar radiation

Solar radiation consists of direct radiation and diffuse radiation of which a part is reflected

by the water surface and a part is absorbed by the water body. The remaining part reaches

the streambed, of which also a part is reflected and a part is absorbed by the streambed.

Shadowing influences the direct radiation, and thus must be estimated. Critical shadow angles

were calculated for each grid cell. Partial shading due to vegetation was also taken into account.

The diffuse radiation is assumed not to be influenced by shadow effects (i.e. diffuse radiation

in shaded parts is assumed to be the same as in non-shaded parts) . The net solar radiation is

computed as:

Φsolar = β(1−Df )(Φdirect +Φdiffuse) (3.8)

Φdirect = (1−Ddiff )CshadowΦobs (3.9)

Φdiffuse = DdiffΦobs (3.10)

where Φobs is the observed solar radiation, Φdirect and Φdiffuse are the direct beam and diffuse

solar radiation,Df is the fraction of solar radiation that reaches the streambed, while β andDdiff

are the albedo and fraction of diffuse solar radiation. The factor Cshadow is the shadow factor

and is determined by looking at thresholds for shading. For each moment in time the aspect and

solar angle was determined and compared with the topographic and vegetation angles. When

the stream is completely in the shadow, Cshadow = 0, and when there is no shading Cshadow = 1.

3.3.2 Longwave radiation

Longwave radiation ΦLW includes the atmospheric longwave radiation, back radiation (radiation

flux emitted from the water column) and land cover longwave radiation. They are all determined

using the Stefan-Boltzman law.

The total incoming longwave radiation is the sum of atmospheric and longwave radiation, where

the ‘view to sky’ coeficient (θvts) determines their relative weight: if vegetation is denser more
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radiation is emitted from the vegetation to the stream, but less radiation is received from the

atmosphere. Atmospheric longwave radiation is the longwave radiation the water receives from

the atmosphere. It is computed as [Boderie and Dardengo, 2003]:

ΦLWa = 0.96θvtsεatmσSB(Tair + 273.2)4 (3.11)

εatm = 1.1Bc + a1
√
ea (3.12)

es = 0.61275 exp (
17.27Tair

237.3 + Tair
) (3.13)

ea =
H

100%
es (3.14)

where ΦLWa is the atmospheric longwave radiation, θvts is the ‘view to sky’ coefficient (-), εatm

is the emissivity of the atmosphere (−), σSB is the Stefan Boltzman constant (W m−2 ◦C−4)

and Tair is the air temperature (◦C). ea is the actual vapour pressure (kPa), es is the saturation

vapour pressure (kPa), H is the relative humidity (-), a1 is an empirical constant (0.094 kPa−1/2)

and Bc is the ‘Brunt’ coefficient (-). Bc is an emperical function of air temperature and the ratio

of observed solar radiation and clear sky radiation [Koberg, 1964]. It is approximated by:

Bc =
(

−2.96e−4C2
L + 1.39e−4CL − 0.12e−4

)

T 2
air (3.15)

+
(

5.33e−2C2
L − 5.3e−2CL + 1.43e−2

)

Tair +
(

−1.51C2
L + 1.69CL + 0.25

)

where CL is ratio between Φsolar and the maximum theoretical solar radiation during clear sky

conditions (-).

Back radiation (ΦLWb) is the energy flux emitted from the water column. It is computed as

[Boderie and Dardengo, 2003]:

ΦLWb = −0.96σSB(T + 273.2)4 (3.16)

Land cover longwave radiation (ΦLWc) is the longwave radiation emitted by the vegetation and

received by the water. The land cover longwave radiation is computed as [Boyd and Kasper,

2003]:

ΦLWc = 0.96(1− θvts)εvegσSB(Tair + 273.2)4 (3.17)

where εveg is the emmisivity of the vegetation and is set to 0.96. Note that during cloudy

conditions, when εatm ≈ εveg, θvts is insensitive.

3.3.3 Latent heat

Latent heat is the energy used for evaporation. It is computed using the Penman equation for

open water [Monteith, 1981]:

Φlatent = −ρwλE (3.18)
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λ = 1000(2501.4 + Tw) (3.19)

E =
s(Φsolar +ΦLW )

ρwλ(s+ γ)
+

cairρair(es − ea)

ρwλra(s+ γ)
(3.20)

ra =
245

0.54Uwind + 0.5
(3.21)

s=
∂es
∂T

=
es(T=Tair) − es(T=Tw)

Tair − Tw
(3.22a)

for Tw ≈ Tairthis becomes:

s= es(
17.27

237.3Tw
− 17.27Tw

(237.3 + Tw)
) (3.22b)

where Φlatent is the latent heat (W m−2), λ and E are the latent heat of vaporization (J kg−1)

and open water evaporation (m s−1), s is the derivative of the saturation vapour pressure over

temperature (kPa ◦C−1), γ is the psychometric constant (kPa ◦C−1), ra is the aerodynamic

resistance (s m−1) and Uwind is the wind speed (m s−1) at 2 m high.

3.3.4 Sensible heat flux

The sensible heat flux is the heat exchange between the water and the air, which is driven by

temperature differences. It is computed as [Boyd and Kasper, 2003]:

Φsens = BrΦlatent (3.23)

Br = 6.1e−4Pa
Tw − Tair

es(T=Tw) − es(T=Tw)
(3.24)

where Φsens is the sensible heat flux (Wm−2), Br is the Bowen ratio (-) and Pa is the atmospheric

pressure (kPa)

However, when the relative humidity is 100%, the Bowen ratio (Br) is going to infinity, which

is physically not possible. For this reason we used the following equation in Chapter (5) and (6)

[Monteith, 1981]:

Φsens =
γ(Φsolar +ΦLW )

s+ γ
+ ρaircair

Tair − Tw

ra
(3.25)

3.3.5 Riverbed conduction

Heat transfer between the water and the riverbed is called streambed conduction. It is driven

by temperature gradient between water and subsurface. It is computed as [Boyd and Kasper,

2003], assuming that the river bed is saturated:

Φcond = −Ksoil
Tw − Tsoil

dz
(3.26)
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where Ksoil is the thermal conductivity of the subsurface (W m−1◦C−1), Tsoil is the temperature

of the subsurface (◦C) and z is the depth (m). The change in temperature of the subsurface is

given as
∂Tsoil

∂t
= −Ksoil

∂2Tsoil

∂z2
+

βΦbed

csoilρsoildz
(3.27)

where Φbed is the solar radiation reaching the streambed (W m−2) and the subscript soil stands

for subsurface. In the schematization of the subsurface, Φbed = 0 for all layers, except for the

top layer.
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Chapter 4

Quantifying the effect of in-stream rock clasts on the

retardation of heat along a stream†

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

Abstract. The objective of this Chapter is to explore and quantify the retardation of heat along

the stream. We carried out two tracer experiments. A small water storage basin was emptied into

the stream over time periods of 50 and 18 min increasing stream discharge roughly by a factor of

two. Salt was added as a tracer in both experiments. In the second experiment the temperature

of the added water was additionally cooled to about 0◦C by adding snow into the storage basin.

The electrical conductivity was measured at three points along the 565 m long stream, while the

temperature was measured with a resolution of 2 m and 3 min using the DTS system. During

the second experiment, we observed a significant time lag between the salt breakthrough curves

(BTC) and the heat BTCs. We routed the water with a hydraulic model, which we coupled

with a 1D advection-dispersion model, and in case of heat we also coupled it with an energy

balance. We used the salt BTCs to calibrate the transient storage zones, after which we applied

the energy balance to simulate the heat BTCs. Although heat exchange with the streambed delays

the advection of heat, it could not fully explain the retarded BTC we observed. We hypothesize

that the retardation of heat is caused by its storage in the many rock clasts present in the stream

and positioned on top of the streambed. To allow for water-rock clast interaction, we included the

fraction of rock clasts in the storage term of the advection-dispersion equation. In this approach

we only have to add one additional parameter to account for the fraction of rock clasts in the

cross-sectional area of the stream. By applying a fraction of 35% we were able to simulate the

retarded heat BTC correctly. Although the fraction of rock clasts in the stream will change with

different water levels, it is a straightforward approach, which enables us to couple the hydraulic

model directly with the advection-dispersion model, while ensuring that the retardation of heat is

simulated correctly.

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

†. Based on: Westhoff, M. C., Bogaard, T. A., Savenije, H. H. G., 2010. Quantifying the effect of in-stream

rock clasts on the retardation of heat along a stream. Adv. Water Resour. 33 (11), 1417–1425
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4.1 Introduction

Recently, Distributed Temperature Sensing (DTS) was introduced as a new monitoring device in

hydrology [Selker et al., 2006a]. The number of applications of DTS in hydrological studies is now

growing rapidly [e.g. Lowry et al., 2007; Moffett et al., 2008; Selker et al., 2006b; Steele-Dunne

et al., 2010; Tyler et al., 2009; Westhoff et al., 2007, and numerous contributions at conferences].

However, it is difficult to use the observed temperature signal to quantify hydrological processes

due to its non-conservative behaviour, especially when the temperature of the medium is exposed

to solar radiation. In such cases, the energy balance needs to be considered, which in our study

implied the integration of the energy balance model with the hydraulic model of the stream

discharge.

Heat transport models have been developed for numerous different applications, across all hy-

drological domains. For example, in the saturated and unsaturated soil VS2DI [Healy, 2008] was

used to simulate solute and heat transport, while SUTRA [Voss and Provost, 2002] has also been

used to simulate density flows in these environments. Transport of heat has also been coupled

with distributed hydrological models. Morin et al. [1983] developed CEQUEAU, a 3D hydro-

logical model able to model temperature in the whole model domain. St-Hilaire et al. [2000]

adapted this model to more accurately simulate the subsurface temperature yielding a better

estimate of the temperature of the groundwater inflows into a stream. Bicknell et al. [1997]

developed the software package HSPF to simulate heat and solute transport in surface water

and subsurface water. HSPF was extended by Chen et al. [1998a,b] to include a shading module

to more accurately simulate the influence of the incoming solar radiation on the surface water.

Maxwell et al. [2007] coupled a 3D atmospheric model (ARPS) with the 3D variably saturated

groundwater model Parflow. Brookfield et al. [2009] adapted HydroGeoSphere to simulate heat

transport in the whole model domain. For a case study in the Pine river in Ontario, Canada

they were able to simulate distributed atmospheric input and heat and solute transport over the

land surface, and in the subsurface.

In cases where the focus is mainly on the surface water, or when there is (as in our case)

no clear connection between the surface water and an extensive groundwater body, in-stream

temperature models are sufficient. When longitudinal temperature differences in a stream are

negligible, only the energy balance has to be considered [e.g. Bogan et al., 2003, 2004; Brown,

1969; Caissie et al., 2007; Evans et al., 1998; Webb and Zhang, 1997, 1999]. However, in many

small streams the advection of heat is not negligible and the advection-dispersion equation must

be applied [e.g. Bartholow, 2000; Boyd and Kasper, 2003; Foreman et al., 1997, 2001; Sinokrot

and Stefan, 1993; Kim and Chapra, 1997; Westhoff et al., 2007; Younus et al., 2000].

Consequently, to simulate retarded heat transport, transient storage zones have to be taken into

account due to surface-subsurface water interactions. In solute transport models [e.g. Bencala

and Walters, 1983; Briggs et al., 2009; Choi et al., 2000; Gooseff et al., 2003, 2005, 2007; Runkel,

1998] this is common practice. These models use one or multiple transient storage boxes and

Ë Ì Ë Ë Í Ë Ë Î Ë Ë Ï Ë Ë Ð Ë Ë Ì ÍÌ ÏÌ ÑÌ ÒÍ ËÍ ÍË Ì Ó Ô Õ Ö Ó Ë × Ì Î Ø Ë Ë ÙÚ °

ÛÜÝ Þ ß à á â ã ä å æ ç Animation 1: Observed (black line) and simulated (grey

line) temperature without hyporheic exchange (see Chapter 5).



4.2. Methods 27

different residence time distributions to simulate observed breakthrough curves of certain solutes.

However, only a few temperature models included this in either a steady state [Cozzetto et al.,

2006; Story et al., 2003], or dynamic model [Meier et al., 2003; Neilson et al., 2009].

In these models, two processes are responsible for retarded transport of heat: (1) transient stor-

age zones, in which the stream water is retarded and (2) energy exchange with the streambed,

in which only heat is retarded. The first can be quantified by simulating observed tracer break-

through curves (BTC) of a conservative tracer. The second is often described with a diffusion

model, taking into account the thermal properties of the sediment and the wetted perimeter of

the stream.

Heat exchange between water and the streambed is very sensitive to the contact area, which is

often taken to be the same as the wetted perimeter determined with a hydraulic model. Also,

the hydraulic models are based on energy losses due to friction (momentum exchange) between

water and streambed. This is generally described by a roughness coefficient, which is a different

concept to heat exchange. However, it would be desirable if both momentum and heat exchange

through the water-streambed interface could be modelled in a coupled fashion.

The objective of this research is to explore and quantify the retardation of heat along a small

stream, with the long-term objective of identifying different runoff mechanisms by using heat

as a tracer. We developed a transient storage model for non-uniform flow and combined it with

an energy balance model. To quantify the different behaviour of water and heat transport, we

performed a combined heat-solute tracer test in a first order stream. We used both heat and salt

as tracers and observed a significant time lag between the BTC of the two tracers, which could

not be explained by heat exchange between the water and the streambed alone. We hypothesize

that the delayed arrival time of the heat BTC is partly caused by storage of heat in the streambed

and partly by heat exchange with in-stream rock clasts present in the stream.

4.2 Methods

4.2.1 Setup of experiment

Two tracer experiments were performed on 2-Dec-2008 and 3-Dec-2008 (referred to as experiment

1 and 2, respectively), in which water from a 3 m3 flexible plastic basin was released at the

upstream end of the stream. The basin was filled during the hours preceding the experiment by

redirecting a portion of the stream flow. During both experiments salt was added to the basin

increasing the electrical conductivity (EC) from 520 to 2830 µS cm−1 and from 421 to 2220

µS cm−1, respectively. For the second experiment snow was also added, which cooled the water

from 7.3 to 0◦C (Table 4.1).

During the first experiment the discharge from the basin was approximately 0.5 l s−1 for the

first 31 min, then 0.7 l s−1 for 9 min and 1.7 l s−1 during the last 10 min. The release of the
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Figure 4.1: Overview of experimental setup

second experiment was constant at 2.0 l s−1 for 18 min. During the second experiment, the basin

partly blocked the stream, causing an accumulation of water behind the reservoir. This volume

then became available during the release of the reservoir.

At three points along the stream (133 m, 233 m and 381 m downstream of the upper V-notch

weir. See Fig. 4.1) the breakthrough curves of both the EC and the temperature were mea-

sured (handheld conductivity meter 340i, WTW) with an interval of 1 to 5 min, depending on

how quickly the EC changed, until the EC was close to its background concentration again.

Temperature observations were made for the whole stream, using the DTS.
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4.2.2 Modelling approach

To filter out the effect of the streambed on the advection of heat, we first simulated the break-

through curves of EC in the first experiment. This experiment also served to calibrate the stream

roughness, the dispersion coefficient and the transient storage along the stream. Subsequently,

we applied the energy balance model to the first experiment. We calibrated the energy balance

model with the DTS observations to determine the temperature of the alluvium. This influences

the heat exchange with the riverbed via conduction. Both models were applied to the second

experiment for validation.

We simulate the breakthrough curves of EC with a transient storage model [e.g. Runkel, 1998].

∂(AwCw)

∂t
+

∂(QCw)

∂x
+

∂

∂x

(

−AwD
∂Cw

∂x

)

=
∑

qLCL +Awα (CS − Cw) (4.1)

AS
∂CS

∂t
= Awα (Cw − CS) (4.2)

where C is the salt concentration (kg m−3), α is the exchange coefficient between the stream

and transient storage (s−1), while subscript S stands for transient storage. In Eq. (4.2) the cross-

sectional area of the transient storage is assumed to be constant over time (∂AS/∂t = 0). To

include transient storage in the heat transport model, we adapted Eq.(3.3) to:

∂(AwTw)

∂t
+

∂(QTw)

∂x
+

∂

∂x

(

−AwD
∂Tw

∂x

)

(4.3)

=
∑

qLTL +Awα (TS − Tw) +
WΦatm

ρwcw
+

PΦcond

ρwcw

while writing Eq. (4.2) as:

AS
∂TS

∂t
= Awα (Cw − TS) (4.4)

Table 4.1: Details of the tracer experiments.

TBF Tbasin ECinitial ECbasin Qbaseflow
a Qbasin

(◦C) (◦C) (µS cm−1) (µS cm−1) (l s−1) l s−1

Exp 1 8.4 8.3 520 ± 3 2830 ± 14 2.4 ± 0.1 0.5 ± 0.3 for 31 min

0.7 ± 0.04 for 9 min

1.7 ± 0.06 for 18 min

Exp 2 7.3 0 421 ± 3 2220 ± 11 3.2-4.1b ± 0.1 2.0 ± 0.07 for 18 min

a Baseflow observed at the upper V-notch weir.
b Just before the start of the experiment, the discharge was 3.2 l s−1, while just after the basin was emptied a

discharge of 4.1 l s−1 was observed.
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During the experiment, we observed a delayed arrival time of heat, compared to the solute,

which could not be explained by heat exchange between the water and the streambed alone (see

Section 4.3.3). To simulate this retarded transport of heat along the stream, we added an extra

term to Eq. (4.4) to account for storage of heat in in-stream rock clasts:

ρwcw
∂AwTw

∂t
+ ρrcr

∂ArTr

∂t
+ ρwcw

∂QTw

∂x
+ ρwcw

∂

∂x

(

−AwD
∂Tw

∂x

)

(4.5)

= ρwcw
∑

qLTL + ρwcwαAw(TS − Tw) +WbΦatm + PbΦcond

where subscript r stands for in-stream rock clasts. If we now assume that the heat exchange

between the water and the rock clasts is instantaneous; meaning the temperature of rock clasts

is always the same as the stream water temperature, the first two terms in Eq. (4.5) can be

combined, simplifying the equation to:

ρbcb
∂(AbTw)

∂t
+ ρwcw

∂(QTw)

∂x
+ ρwcw

∂

∂x

(

−AwD
∂Tw

∂x

)

(4.6)

= ρwcw
∑

qLTL + ρwcwAwα (TS − Tw) +WΦatm + PΦcond

were ρb and cb are the density (kg m−3) and the specific heat capacity (J kg−1 ◦C−1) of the

weighted average of water and rock clasts present in the stream. They are given by ρb = (1 −
η)ρw + ηρr and cb = (1− η)cw + ηcr. η is the fraction of rock clasts in the total cross-sectional

area of the stream, and (1−η) is the fraction of water present in the total cross-sectional area of

the stream. Ab is bulk cross-sectional area, meaning the cross-sectional area of both water and

rock clasts, and is given by Aw/(1− η).

Calibration was performed on the resistance term, the dispersion term (D), and the transient

storage terms (AS and α). The EC of the lateral inflows (CL) was determined by matching the

initial observed EC at the observation points. The resistance term consists of two components,

namely the Manning coefficient and a term accounting for Carnot losses [Chanson, 2004]. The

latter is included because the rock clasts in the stream function as numerous small rapids,

causing flow expansions and thus energy dissipation. The rock clasts are partly submerged

during the peak flow. This reduces the number of rapids, thereby reducing the total resistance

of the streambed. Both terms account for energy losses in the hydraulic model and are optimized

by mimicking peak arrival times of the observed BTCs of EC.

4.2.3 Determination of initial discharge profile

In a stream where several inflows and outflows are present, it is important to know the ini-

tial longitudinal discharge profile. To obtain an estimate of the initial discharge at the three

observation points, we determined the volume of the flood wave as:

Vnew =

∫ ∞

t=0
QBF

Ctot(t)− CBF

Cnew − CBF
dt (4.7)
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where Vnew is the volume of the new water at the observation point (m3), QBF is baseflow or

initial discharge at the same point (m3 s−1), and Cnew, CBF and Ctot are the EC of the water

in the basin, the background EC at the observation point and the EC of the mixed water (µS

cm−1), respectively.

Vnew should correspond with the total volume of water released from the basin minus the losses

between the observation points and the basin. Other constraints that should be met are:

• The upstream discharge plus all positive and negative exchange flows should equal the

downstream discharge:

Qdown = Qup +
∑

QL (4.8)

where the subscripts down, up and L are the downstream V-notch weir, the upstream

V-notch weir and the lateral inflows and outflows, respectively. The relative contribu-

tions of the four biggest inflows were estimated with Eq (3.5). The outflows of water

were estimated using Eq. (4.8) and their locations are based on detailed field surveys of

discharge distributions along the stream throughout the year. For example, during very

dry conditions, the stream disappears completely just upstream of observation point 1.

During such a dry spell, 0.3 l s−1 infiltrated. This can be seen as a lower boundary to

constrain the number of solutions determining the initial discharge profile.

• The upstream EC plus all sink and source terms should equal the observed EC at ob-

servation point i during baseflow:

QBF i =
QupCup +

∑

QLCL

CBF i
(4.9)

where
∑

QLCL are all lateral inflows between the upstream V-notch weir and observation

point i.

To meet all constraints, the initial discharge profile is obtained iteratively.

The initial discharge profiles for the two experiments are different due to significant snowfall

between the two experiments. We assumed that the total snowmelt along the stream is the

amount needed to close the water balance between the upstream and downstream V-notch weir.

The EC of snow is taken to be 20 µS cm−1.

4.3 Results

4.3.1 Initial discharge profile

Just before the start of the first experiment, the upstream and downstream discharge values were

2.4 l s−1 and 4.4 l s−1 (Fig. 4.2). The volume of the basin was 2.48 m3± 10% (this was estimated

by measuring the outflow over time, which has an error of ∼10%). The initial discharge values
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Figure 4.2: Initial discharge profiles for both experiments. The numbers show the estimated volumes,

Vnew, of the basin at the observations points. The numbers -0.2 and -0.3 indicate the volumes of new

water which are lost.

at the three observation points were 2.8, 3.5 and 3.9 l s−1, resulting in new water volumes, Vnew,

of 2.2, 2.2 and 2.0 m3. We estimated the loss of water upstream of observation point 1 to be

0.4 l s−1, resulting in a loss of 0.3 m3 of new water. The small inflows at 370 and 395 m have

been observed in the field, but they were too small to quantify using a mass balance. Therefore

they are quantified by closing the water balance, with the constraint that they are smaller than

5% of the discharge in the stream. Due to significant snowfall between the two experiments,

the initial discharge profile of the second experiment was more uncertain. For this profile we

added two extra sources of lateral inflow, in addition to the lateral inflows determined for the

first experiment. Between 185 and 190 m overland flow was observed and estimated to be 0.3 l

s−1. To close the water balance we have set the snowmelt to be 1.25 l s−1 uniformly distributed

along the stream (Fig. 4.2). Due to the unknown distribution of snowmelt, we were unable to

obtain realistic volume estimates at observation points 2 and 3.

4.3.2 Breakthrough curves of EC

For experiment 1, the simulated BTCs of EC match the observed BTC reasonably well (Fig.

4.3A), with a RMSE of 71 µS cm−1 (Nash-Sutcliffe=0.89). The values of the calibrated param-

eters are given in Table (4.2). The upstream EC was determined as a weighted average of the

EC of the baseflow and the ‘new’ water. The simulated BTCs all arrive 1 or 2 min too early.

The timing of the peaks are good, while the tail is too short in the simulations. Without further

calibration we applied the transport model to the second experiment, which gave a RMSE of

108 µS cm−1 (Nash-Sutcliffe=0.76) (Fig. 4.3B). The poorer performance is mainly caused by
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Figure 4.3: Observed and simulated BTC of EC for (A) experiment 1 and (B) experiment 2.

the poor fit of the BTC at observation point 1. The timing of the first arrival time of the BTC

at observation points 2 and 3 is better than during the first experiment, and the shape of the

tail also looks better, although, the timing is too late.

4.3.3 Breakthrough curves of heat

Looking at the observed BTC of heat (only during the second experiment) a time lag can

be observed between the peak arrival time of EC and heat (Fig. 4.4). Going downstream (from

observation point 1 to 3) the time lag increases. To be able to simulate this time lag, we optimized

the fraction of rock clasts in the stream using experiment 2. The optimal value is found to

be 0.35 (Fig. 4.5: for comparison we added the black line indicating the points of the lowest

simulated temperatures during experiment 2). Except for the fraction of rock clasts, no further

calibration was done: the same parameters were used as during the first experiment. The RMSE

of experiment 1 is 0.22 ◦C (Nash-Sutcliffe=0.89) and 0.23 ◦C (Nash-Sutcliffe=0.90) for the second

experiment.
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4.4 Discussion

4.4.1 Breakthrough curves of EC and heat

As stated in Section (4.2.2), a reliable routing model (including transient storage zones) is needed

to see the net effects of the streambed on the advection of heat. The routing model for the first

experiment appears reliable, resulting in good simulations of the BTC of EC. However, in the

second experiment the model performance is worse.

First of all, the initial discharge profile during the second experiment is not as clear as during

the first experiment due to snowfall the night before, and snowmelt just before and during the

experiment. In other words: the stream conditions were changing during the experiment. This

results in unreliable estimates of QBF , using Eq. (4.7).

Secondly, the maximum observed EC at observation point 1 is higher than the maximum EC

determined at the upstream boundary. This is physically not possible unless there is an inflow

with a high EC (which we did not observe in the field). The EC of the new water was not

measured directly, but determined as a weighted average of the EC of the baseflow and the

new water. Therefore it is sensitive to both the baseflow and the new water discharge. Due to

the uncontrolled release of the accumulated water behind the basin, the baseflow was uncertain

during the experiment.

Initially we assumed that there was a constant release of the accumulated water behind the basin

during the 18 min it took to empty it. However, it is likely that the accumulated water behind

the basin only became available when part of the water from the basin had been released (as the

obstruction was removed). If it is assumed that the obstruction was still functioning during the

first 6 min, and that the accumulated water was released in the following 12 min at a constant

rate, the shape of the simulated EC at the observation points corresponds much better with the

observations (Fig. 4.6), resulting in a RMSE of 100 µS cm−1 (Nash-Sutcliffe=0.79). However,

the peak of the simulated EC at point 1 is still much lower than the observed, implying further

uncertainty in the flow regime, probably due to a variable inflow distribution from snowmelt

along the stream. The homogeneous distribution of the snowmelt in our simulations is likely

responsible for the fact that although the BTC at point 1 is simulated too low, BTCs at the

two downstream observation points are simulated correctly. If the snowmelt upstream of point

Table 4.2: Calibrated values of D, CL, AS and α.

D (m2/s) 0.2

CL (µS cm−1) 190

75-100 m 234-345 m

AS (m2) 0.006 0.010

α (s−1) 0.0010 0.0014
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Figure 4.4: Observed BTCs of EC and temperature (measured with the handheld conductivity meter)

at the three observation points for experiment 2. The red lines indicate the time lag between the peak

arrival times of EC and heat.

1 is less, and is corrected with extra snowmelt between point 1 and 2, the first BTC will be

simulated better, while the BTCs at point 2 and 3 remain the same.

Because the spatial distribution of preferential snowmelt pathways is unknown, we assumed

a constant snowmelt of 1.25 l s−1 uniformly distributed over the length of the stream. By

redistribution of the snowmelt contribution and the related base flows, a better fit could be

obtained, but we cannot confirm this with observations.

A peculiar phenomenon can be observed in Fig. (4.5). Downstream of the inflow point at 175

m the lowest temperature occurs earlier than just upstream of this point. This phenomenon is

visible in both the observed and the simulated temperature. This is caused by the fact that the

flood wave travels faster than the thermal wave (Fig: 4.7). At 175 m a relatively warm inflow

enters the stream and mixes with the stream water. If the stream discharge is high, the inflow
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Figure 4.5: Observed and simulated temperature for both experiments. The black lines indicate the

lowest simulated temperature and are shown to compare the advection of the thermal wave of the observed

and the simulated temperature.

does not heat up the stream as much as when the stream discharge is low. In Fig. (4.7) it can

be seen that downstream of the inflow, the coldest water passes when the discharge is still high.

4.4.2 Storage of heat in the rock clasts

Our objective was to explore and quantify the retardation of heat along a small stream. We found

a significant time lag between the arrival times of EC and heat, which we could not explain with

heat exchange with the streambed alone. We hypothesize that the in-stream rock clasts store

heat as well. If the heat exchange between the rock clasts and the water is fast enough, the rock
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Figure 4.6: Simulated EC of experiment 1, if the accumulated water behind the basin is released 6 min

after the start of the experiment. This changes the flow regime in the stream and the simulated upstream

boundary condition of EC.

clasts in the stream have the same temperature as the stream water. Using this assumption,

we only have to increase the cross-sectional area of the stream with the fraction of rock clasts,

which slows down the advection of heat. This phenomenon was earlier described for vertical

groundwater flow [e.g. Blasch et al., 2007; Constantz and Thomas, 1996; Silliman et al., 1995;

Stallman, 1965; Taniguchi and Sharma, 1990]. However, in these studies the objective was to

determine percolation rates, given the porosity (which is the similar to 1 minus the fraction of

rock clasts) of the medium. Here, we use the fraction of rock clasts in the cross-sectional area of

the stream to determine transit times of heat. In larger streams, and in streams with a sandy or

gravel streambed, the fraction of rock clasts in the cross-sectional area is close to zero. However,

if we apply a fraction of rock clasts of 0 in our simulations (which is the same as applying Eq.

4.4), the thermal wave travels too fast. The black line in Fig. (4.8A) and (4.8B) is the line of

the lowest temperature using a fraction of 0.35, the red line in Fig. (4.8B) indicates the line of

the lowest temperature if a fraction of 0 is used (no storage of heat in rock clasts).

A simplification in our modelling approach is that we assume that the rock clasts have the same

temperature as the surrounding water. To test this assumption, we considered a flat rock clast

with a thickness of 2 cm, subject to a temperature change at both sides of the rock clast of 4◦C

per hour (this was the maximum observed temperature change of the water during a studied

period in July 2009; see Chapter 5). Numerical simulations showed that the temperature at the

middle of the stone is always within 0.06◦C from the outside temperature. Because most of the

rock clasts are smaller than this, while the contact area between water and rock clasts is larger

than considered in this calculation, the assumption that Tw = Tr seems valid. Only a few larger

rock clasts violate this assumption, but their relative contribution is minor. A disadvantage of
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Figure 4.7: Simulated temperature and discharge just upstream and downstream of the inflow point

at 175 m. The lowest temperature downstream of the inflow, occurs earlier in time than the lowest

temperature upstream of the inflow.

applying this method in an open stream, compared to vertical groundwater flow, is that the

cross-sectional area of the stream varies with varying discharge, making the fraction of rock

clasts dynamic as well. Therefore we suggest using the fraction of rock clasts as a calibration

parameter.

The big advantage of this method is that a hydraulic model can easily be coupled with an energy

balance model. All flow parameters, such as the flow velocity, cross-sectional area and wetted

perimeter, can be directly used in the energy balance model, while only one extra parameter

(fraction of rock clasts in the stream) is needed to account for the retarded advection of heat,

caused by the rock clasts in the stream.

4.5 Conclusion

Temperature contains information for a wide variety of hydrological processes. With the in-

troduction of DTS into the field of hydrology, temperature observations have become available

in both space and time. The long-term objective of our study is to identify different runoff

mechanisms focusing on the detection of groundwater discharge zones using heat as a tracer.

However, the interpretation of the observed temperature signal is often not straightforward,

due to its non-conservative behaviour. Therefore, coupled hydraulic-energy balance models are

needed. One might ask why we should use a non-conservative tracer in stream hydrology instead

of working with a conservative tracer like salt. In our opinion, the answer is found in the very
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Figure 4.8: Simulated temperature during experiment 2 for (A) the optimized fraction of rock clasts,

(B) for the case when no heat is stored in rock clasts, present in the stream and (C-E) the observed (with

DTS) and the simulated thermal waves at the three observation points. The black lines in (A) and (B)

indicate the line of lowest temperature of the optimized simulation and the red line indicates the line of

lowest temperature without storage of heat in rock clasts.

high spatial and temporal resolution of the measurements and the high accuracy/precision of

the temperature observations. We believe this outweighs the extra effort put into energy balance

modelling to reduce the uncertainty associated with its nonconservative behaviour.

In this study we carried out a tracer experiment using salt and heat as a tracer. We observed a

significant time lag between the breakthrough curves of both tracers, with salt travelling faster� � � � � � � � � � � � � � � �� �� �� 	� 
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�� � � � � � � � � � � �Animation 2: Observed (black line) and simulated (grey

line) temperature with hyporheic exchange (see Chapter 5).
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than heat. We hypothesize that, besides transient storage zones (in our case the hyporheic zone is

most important), heat BTCs can be retarded by heat exchange with the streambed as well as with

the in-stream rock clasts. To simulate the delayed arrival time of heat, we propose accounting

for the fraction of rock clasts present in the total cross-sectional area of the stream, in which

heat is stored as well. This is simply done by increasing the cross-sectional area in the advection-

dispersion equation, with the assumption that the rock clasts have the same temperature as the

surrounding water. Applying this method makes it possible to use the hydraulic parameters,

such as cross-sectional area and wetted perimeter (determined with the hydraulic model) in the

energy balance model. The fraction of in-stream rock clasts then accounts for a larger cross-

sectional area in the storage term of the advection-dispersion equation, thus slowing down the

advection of heat. This is a pragmatic solution, which makes it easy to couple a hydraulic model

with an energy balance model, while still accounting for the slower advection of heat.
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��� � � � � � � � � � � Animation 1: Observed (black line) and simulated (grey

line) temperature without hyporheic exchange (see Chapter 5).



Chapter 5

Quantifying hyporheic exchange at high spatial resolution using

natural temperature variations along a first order stream†

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

Abstract. Hyporheic exchange is an important process that underpins stream ecosystem func-

tion, and there have been numerous ways to characterize/quantify exchange flow rates and hy-

porheic zone size. The most common approach, using conservative stream tracer experiments

and 1D solute transport modeling, results in over-simplified representations of the system. Here

we present a new approach to quantify hyporheic exchange and the size of the hyporheic zone

(HZ) using high-resolution temperature measurements and a coupled 1D transient storage and

energy balance model to simulate in-stream water temperatures. Distributed Temperature Sens-

ing was used to observe in-stream water temperatures with a spatial and temporal resolution of

2 m and 3 min, respectively. The hyporheic exchange coefficient (which describes the rate of ex-

change) and volume of the HZ were determined to range between 0 to 2.7e-3 s−1 and 0 to 0.032

m3m−1, respectively, at a spatial resolution of 1-10 m by simulating a time series of in-stream

water temperatures along a 565 m stretch of a small first-order stream in central Luxembourg. As

opposed to conventional stream tracer tests, two advantages of this approach are that exchange

parameters can be determined for any stream segment over which data has been collected and

that the depth of the HZ can be estimated as well. Although the presented method was tested on

a small stream, it has potential for any stream where rapid temperature change (with regard to

time) of a few degrees can be obtained.

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

†. Based on: Westhoff, M. C., Gooseff, M. N., Bogaard, T. A., Savenije, H. H. G., 2011 (accepted). Quantifying

hyporheic exchange at high spatial resolution using natural temperature variations along a first order stream. Water

Resour. Res
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5.1 Introduction

Stream water-groundwater interactions (hyporheic exchange) may influence stream water quality

significantly [Findlay, 1995]. In this study we defined the hyporheic zone as the subsurface volume

of alluvial aquifer through which stream water exchanges, although we recognize that different

disciplines may define the hyporheic zone differently [Krause et al., 2010]. However, it is often

difficult to either quantify hyporheic exchange or to locate the extent of the hyporheic zone.

Different approaches have been applied to quantify the hyporheic exchange or to identify the

hyporheic zone. Vertical hydraulic gradients have been measured to identify zones of upwelling

and downwelling stream water [Anderson et al., 2005]. Ward et al. [2010] successfully used

Electrical Resistivity Tomography (ERT) to visualize the hyporheic zone during a stream tracer

test using dissolved salt as a conservative tracer. Groundwater models have also been developed

to investigate hyporheic exchange. Gooseff et al. [2006] used a 2D groundwater model and

showed the effect different bed forms and stream sizes have on hyporheic exchange. Residence

time distributions of exchange over different spatial scales of exchange have been investigated

by using groundwater flow models [Cardenas, 2008]. Such approaches have also elucidated the

influence of stream sinuosity and larger groundwater flow boundary conditions on hyporheic

zone extent and exchange [Cardenas, 2009]. However, Wondzell et al. [2009] showed that due

to equifinality (i.e. different model parameterizations give similarly good model outcomes [e.g.

Beven and Freer, 2001]) in groundwater models the simulated hyporheic exchange can differ

significantly with different hydraulic conductivities, while observed groundwater heads were

simulated well.

Another approach to characterize hyporheic exchange is to analyze in-stream tracer break-

through curves with 1D transient storage models [e.g. Bencala and Walters, 1983; Runkel, 1998].

However, Harvey and Wagner [2000] showed that this approach is sensitive to experimental setup

(i.e., the “window of detection”), such as the length of the experimental reach, and Wörman

and Wachniew [2007] showed that the chosen ‘goodness of fit’ parameter to quantify the model

performance, also influences the analysis of the observed breakthrough curves. Nevertheless,

this approach has been widely used to infer size of hyporheic zones and their influence on solute

transport in streams [e.g. Haggerty et al., 2000, 2002; Gooseff et al., 2003, 2005; Zarnetske et al.,

2007].

A general complication of the 1D transient storage model is that the transient storage zone

represents both in-stream transient storage zones (e.g. eddies) and hyporheic zones (or even

more processes), without distinguishing between the two. Choi et al. [2000] compared a one-

zone transient storage model with a two-zone transient storage model. They showed that only if

the two transient storage zones have completely different characteristics in terms of exchange rate

and volume, the two-zone model outperforms the one-zone model. Briggs et al. [2009] estimated

the exchange rate and storage volume of one of the two zones by field observations: in their case

they measured the volumes of in-stream transient storage zones as well as the breakthrough� � � � � � � � � � � � � � � � � �� �� 	� 
� �� �� � � �  � � � � � � � � � �� °

��� � � � � � � � � � � Animation 1: Observed (black line) and simulated (grey

line) temperature without hyporheic exchange (see Chapter 5).
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curves in these in-stream transient storage zones. However, a major disadvantage of most tracer

studies that are designed to quantify hyporheic exchange is that the locations of the observation

points should be chosen a priori, and no knowledge about the location of the hyporheic zone

beneath the streambed is gained.

The in-stream tracer studies mentioned above all relied upon the application of chemical tracers

in the stream or streambed. In this study, we use temperature as a tracer. Temperature has been

used as a tracer to identify upwelling or downwelling stream water by analyzing temperature

variations at different depths in the streambed [e.g. Stallman, 1965; Lapham, 1989; Silliman

et al., 1995; Constantz, 1998; Constantz et al., 2003; Becker et al., 2004; Anderson et al., 2005;

Niswonger et al., 2005; Hatch et al., 2006; Keery et al., 2007], though it is a useful stream

tracer as well. Hyporheic exchange dampens the stream water temperature oscillations at both

the daily and annual timescales [e.g. Poole and Berman, 2001; Burkholder et al., 2008] thus

potentially allowing for the quantification of hyporheic dynamics from analysis of temperature

dynamics. However, temperature is not a conservative tracer. Heat exchanges occur throughout

coupled stream-hyporheic systems. Yet analysis of the energy balance of stream and hyporheic

waters is needed [e.g. Brown, 1969; Sinokrot and Stefan, 1993; Kim and Chapra, 1997; Boyd and

Kasper, 2003; Becker et al., 2004; Westhoff et al., 2007; Roth et al., 2010]. Such an approach

requires extensive information on spatial and or temporal temperature patterns. For example, in

cases where hyporheic exchange is an important flux, the temperature of the return flux should

be known as well as the stream temperature. Cozzetto et al. [2006] used observed subsurface

temperature as an estimate for the temperature of the hyporheic zone. Loheide II and Gorelick

[2006] and Westhoff et al. [2010] used simulated subsurface temperatures as a proxy for the

temperature of the hyporheic return flux. However, they ignored the fact that the hyporheic

exchange can influence subsurface temperature as well. Story et al. [2003] and Neilson et al.

[2009] included this effect, assuming that the hyporheic zone only covered the top layer of the

streambed. Meier et al. [2003] also included energy exchange with transient storage zones (such

as the hyporheic zone), but they only considered the influence of in-stream transient storage

zones. All of these studies were constrained by the fact that the locations of the observation

points had to be chosen a priori.

The aim of this study is to identify hyporheic exchange at a spatial resolution on the order

of 1 to 10 m and to estimate the depth of the hyporheic zone beneath the streambed. This

study is unique in that we make use of high-frequency (3 minute interval), high spatial (2

m) resolution temperature observations, which allows us to choose the segments of constant

hyporheic exchange parameters after the observations are made (section 5.2.2). We develop and

demonstrate results of a heat transport model that accounts for exchange with transient storage

zones, and allows us to identify the size of the hyporheic zone and hyporheic exchange fluxes

along the study reach. There is significant potential to advance our general understanding of

hyporheic exchange, its dynamics through space, and influence on stream ecosystems using this� � � � � � � � � � � � � � � �� �� �� 	� 
� �� � � � � �  � � � � � � � � ��� °

�� � � � � � � � � � � �Animation 2: Observed (black line) and simulated (grey

line) temperature with hyporheic exchange (see Chapter 5).
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new modelling approach.

5.2 Methods

5.2.1 Improvements to model

In this Chapter, a couple of improvements were made compared to Chapter (4): First of all,

we obtained a better representation of the cross-sectional profiles by measuring them with a

pin-meter (Fig. 2.4). To differentiate between hyporheic exchange and heat exchange between

water and in-stream rock clasts, the cross-sectional areas of the rock clasts were estimated by

drawing a contour line around the observed profile. Secondly, at 83 and 312 m from the upstream

V-notch weir, temperature loggers (HOBO TMC6-HD sensors connected to an U12-008 logger)

monitored the temperature below the stream at depths of 5, 10, 20 and 40 cm at a 30 min

interval. These observations were used to better validate our model results.

In the temperature model, improvements were made to be able to simulate the temperature of

the hyporheic zone and thus the subsurface. The previous model was unable to simulate the

temperature of the hyporheic zone. Therefore, model improvements for this Chapter involved a

better description of the vertical subsurface heat conduction and simulation of the temperature

of the hyporheic zone. In Chapter (4) we used only two layers of ∼7 cm to simulate heat

conduction at subsurface-stream water interface. In this Chapter, however, because we simulate

the temperature of the hyporheic zone, we needed to simulate the subsurface temperature to

greater depth. Hence, we extended the subsurface model domain to a depth of 1 m below the

stream and combined Eq. (3.27) and (4.4):

∂Tsoil

∂t
= −Ksoil

∂2Tsoil

∂z2
+ α

Aw

Ahz
(Tw − Thz) +

βΦbed

cbρbdz
(5.1)

where subscript hz replaces S , since we now assume that hyporheic exchange is the only transient

storage. The first term on the right hand side of Eq. (5.1) represents the vertical heat conduction

in the subsurface; the second term represents the temperature change by hyporheic exchange

and the third term the heat conduction between the stream and the first subsurface layer. Note

that the second term is only applied at the locations where hyporheic exchange is defined and

the third term is only applied at the top layer of the subsurface. In the numerical solution we

defined 25 horizontal subsurface layers with a vertical thickness of 4 cm each. At the lower

boundary (at 1 m depth) we assumed a constant temperature of 14◦C. This temperature was

estimated by analyzing the subsurface temperature observations at 83 and 313 m. The hyporheic

zone is assumed to be somewhere within this 1 m thick profile (Fig. 5.1), which is reasonable for

such a small stream. The thickness of the hyporheic zone is determined as dhz = Ahz/P . The

temperature of the hyporheic return flow is taken as the average temperature of all vertical grid

cells where hyporheic exchange was determined. Equation (4.6) was solved explicit, while Eq.� � � � � � � � � � � � � � � � � �� �� 	� 
� �� �� � � �  � � � � � � � � � �� °

��� � � � � � � � � � � Animation 1: Observed (black line) and simulated (grey

line) temperature without hyporheic exchange (see Chapter 5).
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Figure 5.1: Schematic of the 1D advection-dispersion model with transient storage. The grey arrows are

water fluxes, the black arrows are energy fluxes. qhyp is the hyporheic flux, given by αAwdx.

(5.1) was solved with an implicit scheme, all with time steps of 5 s and longitudinal grid cells of

1 m. For the sensible heat flux Eq. (3.25) was used.

5.2.2 Calibration strategy

For this study we focus on two consecutive warm days on July 1 and 2, 2009. In our approach

we first determined the discharge profile, after which we calibrated the parameters describing

hyporheic exchange.

Stream discharge was observed at the weirs located upstream and downstream of the investigated

reach. No direct discharge measurements have been done in-between. Instead we determined the

longitudinal discharge profile in an indirect way. The relative contributions of the two major

inflows at 351 and 414 m have been determined with a mass balance equation knowing the

temperature of the inflow and the temperature just upstream and downstream of the inflow

(Eq. 3.5).

This was not possible for the first lateral inflow at 104 m, because upstream of this point the

stream was almost dry, leading to very high uncertainty using Eq. (3.5), nor for the lateral inflow

at 177 m because its measurement of TL was influenced by mixed stream water. To determine

the discharge of these two lateral inflows, we calibrated the discharge of the stream segment just

downstream of the inflow. These two sections (at 108-180 m and 182-234 m), were exposed to

solar radiation during two to three hours leading to a rapid increase in temperature (max 8.9\ ] \ \ ^ \ \ _ \ \ ` \ \ a \ \] ^] `] b] c^ \^ ^ \ ] d e f g d \ h ^ ^ i \ \jk °

lm n o p q r s t u v w xAnimation 2: Observed (black line) and simulated (grey

line) temperature with hyporheic exchange (see Chapter 5).



46 Chapter 5. Quantifying hyporheic exchange using natural temperature variation

and 4.7◦C/100 m for both sections, respectively). Because the temperature increase is linearly

dependent on the depth of the stream, a smaller stream depth results in a faster increase in

temperature. The stream depth is, in turn, a function of discharge, with lower discharge resulting

in shallower depths. The inflows at 383 and 393 m were not monitored, since they were too small

to affect in-stream temperature. We estimated both at QL = 0.05Qd.

We directly observed the influence of streamflow losses at several locations. The loss of water

upstream 93 m has been estimated as 98% of the discharge because the stream was almost

dry between 93 and 104 m. For numerical stability, we assumed there was a small fraction of

water left in the stream. The location where stream water infiltrated is, as a best guess (based

on detailed field surveys), set between 60 and 93 m from the upstream V-notch weir where we

assumed for each grid cell the same relative amount of water to infiltrate. The loss between 234

and 248 m was estimated in such a way that the observed upstream discharge plus all gains

minus all losses equals the observed downstream discharge. For this loss of water also counts

that the location is a best estimate. The sensitivity of the energy budget to these latter three

assumptions is minor, but important to maintain the water balance in the model. Fig. 5.2 shows

the discharge profile that resulted from the discharge calibration.

We used in-stream temperature observations to calibrate the exchange coefficient (α), the cross-

sectional area of the hyporheic zone (Ahz) and the average depth of the hyporheic zone. We

calibrated these parameters in predefined short segments of the stream (between 40 and 170 m

long) to prevent error propagation from upstream to downstream. For each segment, the observed

upstream water temperature was taken as boundary condition. The segment boundaries were

chosen 2 to 4 m downstream of a lateral inflow or at the upstream end of a completely shaded

section. These were the areas where we could constrain the calibration parameters well (see

section 5.4.2). The selected segments were 0-106 m (until the first inflow), 108-180 m (between the

first and second inflow), 182-350 m (between the second and third inflow), 354-421 m (between

the third inflow and the end of a shaded area), 421-465 m (beginning of open area until the

start of a shaded area) and 466-565 m (start of a shaded area until the downstream V-notch

weir). The small gaps between segments are points where there is a lateral inflow which has

to mix completely before we observe a representative water temperature. Within each segment

subsections of constant α, Ahz and depth of the hyporheic zone were considered, to best fit

the observed in-stream temperature. The predefined segments were determined a priori while

the selection of subsections was done by trial and error, trying to minimize the number of

subsections.

At 83 and 312 m from the upstream V-notch weir we observed subsurface temperature at 5, 10, 20

and 40 cm below the stream using independent temperature sensors. From this we determined

the hyporheic exchange parameters α, Ahz and depth of the hyporheic zone by simulating

subsurface temperature with the vertical temperature diffusion equation (Eq. 5.1). As boundary

condition, we used observed stream water temperature. We then varied α, Ahz and depth of the\ ] \ \ ^ \ \ _ \ \ ` \ \ a \ \ ] ^] `] b] c^ \^ ^\ ] d e f g d \ h ^ _ i \ \ jk °

lmn o p q r s t u v w x Animation 1: Observed (black line) and simulated (grey

line) temperature without hyporheic exchange (see Chapter 5).



5.3. Results 47

12
14
16
18
20
22

T
e

m
p

e
ra

tu
re

 (
°
C

) Temperature pro!le at 02−Jul−2009 07:00

 

 

Tobs Tsim

12
14
16
18
20
22

T
e

m
p

e
ra

tu
re

 (
°
C

) Temperature pro!le at 02−Jul−2009 14:00

 

 

D
e

p
th

 (
m

)

 

 0

0.2

0.4

0.6

0.8

1

Distance (m)

D
e

p
th

 (
m

)

 

 

0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

12 14 16 18 20 22

12 14 16 18 20 22

0

0.2

0.4

0.6
Q

 (
m

3
)

 

 

B

A

C

Temperature ( °C)

Temperature ( °C)

Figure 5.2: Base case simulation without hyporheic exchange, with (A) stream discharge; and observed

and simulated stream water temperature with simulated subsurface temperatures at (B) 2-Jul-2009 7:00

and (C) 2-Jul-2009 14:00.

hyporheic zone to minimize the RMSE of observed and simulated temperature at 5, 10, 20 and

40 cm depth. The resulting parameter values for α, Ahz and depth of the hyporheic zone were

then compared with the parameter values obtained by calibrating on in-stream temperature,

as a way of validation. We also compared the observed subsurface temperatures with simulated

subsurface temperatures calibrated with in-stream temperatures (as described above).

5.3 Results

As a base case we first simulated the stream water and subsurface temperature without hyporheic

exchange, taking only heat exchange with the in-stream rock clasts into account (Fig. 5.2B and

C Animation 11). Figure (5.2B) shows the observed and simulated stream water temperature

1. Animation 1 is plotted at the lower left of all even pages between page 1 and 91.\ ] \ \ ^ \ \ _ \ \ ` \ \ a \ \] ^] `] b] c^ \^ ^ \ ] d e f g d \ h ^ _ i \ \jk °

lm n o p q r s t u v w xAnimation 2: Observed (black line) and simulated (grey

line) temperature with hyporheic exchange (see Chapter 5).
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at 2-Jul-2009 07:00 and the simulated subsurface temperature over depth and along the stream.

Figure (5.2C) shows the same but for 2-Jul-2009 14:00. Up to 250 m, the temperatures were

very well simulated with a RMSE of 0.85◦C. Further downstream, the simulated temperatures

deviate more strongly from the observed with a RMSE for the whole stream of 1.27◦C. During

the day, the simulated stream water temperatures are too high and during nighttime too low.

This indicates a storage effect of heat where energy is stored during the day and released during

the night. Hyporheic exchange is a likely candidate for this phenomenon.

Subsequently we introduced hyporheic exchange into the model. After calibration we ended up

with 13 stream segments of constant Ahz, α and depth of the hyporheic zone (Fig. 5.3A). The

hyporheic exchange buffered the temperature, resulting in a much better fit with a RMSE of

0.65◦C (Fig. 5.3B and C, Animation 22). One particular behaviour in the observed stream water

temperatures was the occurrence of negative longitudinal temperature gradients visible at 2-

Jul-2010 14:00 at 80-100 m, 250-300 m and 470-520 m. Indeed, these stream reaches were never

exposed to direct short wave radiation due to the thick canopy cover. But the net energy flux,

although small, was still positive due to longwave radiation and sensible heat, indicating that the

stream should have been warming-up. Exchange with the relative cooler water in the hyporheic

zone made it possible to simulate the observed negative longitudinal temperature gradients.

The observed subsurface temperatures at 83 and 312 m were used for validation. Comparing the

simulated subsurface temperatures with the observed, gave a RMSE at 83 and 312 m (averaged

for all observed depths) of 0.30 and 0.26◦C, respectively (Fig. 5.4, Table 5.1). At 83 m simulated

peak temperatures were underestimated, especially during 2-Jul (by 1.3, 0.57, 0.47 and 0.35◦C

at 5, 10, 20 and 40 cm depth). Also the peak temperature in in-stream water temperature was

underestimated at this position by 1.7◦C. At 312 m simulated in-stream water temperature was

underestimated during peak temperatures by 0.4◦C, while at 5, 10 and 20 cm this was only 0.2,

0.1 and 0.25◦C. The difference at 40 cm depth was larger with 0.55◦C. At 83 and 312 m, we

solved for the values of α, Ahz and depth of the hyporheic zone independently using the observed

subsurface temperature profiles. The values of these parameters are in the same range as the

values obtained when calibrating on stream water temperature (Table 5.1).

The influence of the hyporheic zone on the subsurface temperature is best seen in Fig. (5.3C).

Hyporheic exchange circulation acts as a heat sink during the day, conducting heat from the

stream into the subsurface. This resulted in higher simulated subsurface temperatures than at

areas without hyporheic exchange during the day.

The relative influence of the hyporheic exchange, compared with Φatm and Φcond, is illustrated

in Fig. (5.5). The hyporheic exchange is presented here as qhyp = ρwcwα(Thz − Tw) [W m−3].

Here, Φatm and Φcond are also expressed as an energy flux per unit volume [W m−3]. During the

night qhyp is positive, while Φatm and Φcond are close to zero. During the day, qhyp is a cooling

flux which can be, in absolute terms, larger than Φatm.

2. Animation 2 is plotted at the lower right of all odd pages between page 1 and 91.\ ] \ \ ^ \ \ _ \ \ ` \ \ a \ \ ] ^] `] b] c^ \^ ^\ ^ d e f g d \ h \ \ i \ \ jk °
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line) temperature without hyporheic exchange (see Chapter 5).
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Figure 5.3: Optimal solution with (A) values of Ahz and α along the stream; and observed and simulated

stream water temperature with simulated subsurface temperatures at (B) 2-Jul-2009 7:00 and (C) 2-Jul-

2009 14:00. The black lines in the subsurface temperature panels visualize the thickness and depth of the

hyporheic zone for each ∆x. The transparent boxes indicate areas where hyporheic exchange parameters

were poorly identifiable. On top the a priori determined stream segments are indicated. Note that in the

results shown here, simulated temperatures were not corrected at segment boundaries.

5.4 Discussion

5.4.1 Limitations

Since each model is a simplification of the real world, several assumptions had to be made. In

our case, we showed excellent model performance for simulated stream water temperatures. Here

we discuss the validity of our assumptions.

No lateral hyporheic exchange was taken into account. This means that downwelling hyporheic

water returns to the stream within the same grid cell. Since we assume instantaneous mixing\ ] \ \ ^ \ \ _ \ \ ` \ \ a \ \] ^] `] b] c^ \^ ^ \ ^ d e f g d \ h \ \ i \ \jk °

lm n o p q r s t u v w xAnimation 2: Observed (black line) and simulated (grey

line) temperature with hyporheic exchange (see Chapter 5).
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Figure 5.4: Observed and simulated subsurface temperatures. The simulated temperatures were cali-

brated on observed stream water temperatures only.

Table 5.1: Comparison of calibration parameters using two different strategies:

1) Calibration was done by mimicking the observed stream water temperatures

(Tw), and 2) calibration was done by mimicking the observed subsurface tem-

peratures at four different depths while the observed stream water temperature

was used as boundary condition (Tsoil).

83 m 312 m

Calibration Calibration Calibration Calibration

on Tw on Tsoil on Tw on Tsoil

RMSEa (◦C) 0.30 0.29 0.26 0.26

α (s−1) 2.2e−3 2.1e−3 2.7e−3 3.3e−3

Ahz (m2) 2.2e−3 2.1e−3 10.8e−3 6.5e−3

Depth (m) 0.16 0.16 0.10 0.14

P (m) 0.08b 0.08 0.50b 0.54

a The RMSE was determined as the average RMSE between the simulated and

observed subsurface temperatures at 5, 10, 20 and 40 cm depth for the whole

simulation period.
b These values of the wetted perimeter are taken directly from the routing model.

\ ] \ \ ^ \ \ _ \ \ ` \ \ a \ \ ] ^] `] b] c^ \^ ^\ ^ d e f g d \ h \ ] i \ \ jk °
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line) temperature without hyporheic exchange (see Chapter 5).
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Figure 5.5: Mean simulated energy fluxes during night (02:00-06:00) and day (12:00-16:00). The energy

fluxes have been averaged over 4 hours during 1 and 2-Jul-2009.

within each grid cell (both in the stream as in the subsurface), lateral hyporheic exchange cannot

be tested within this model framework. However, some of the longer lateral hyporheic flow paths

were taken into account implicitly. For example, salt that was injected in the stream around 60

m was found back in the inflow at 104 m (data not shown), indicating that this inflow (partly)

consist of stream water infiltrated into the subsurface between 60 and 93 m. Because we observed

the temperature of the inflow at 104 m, the temperature of this hyporheic return flux was known,

and therefore it was not needed to simulate this temperature.

We also ignored the effect of vertical (upwelling) groundwater flow on subsurface temperature. In

this catchment, groundwater flows through preferential flowpaths and enters the stream at con-

centrated inflow points. These inflows are then visible as temperature anomalies in the stream.

During this study we only found six lateral inflows, meaning that only at these six locations this

assumption is violated. With longitudinal grid cells of 1 m, this is only 1% of the whole stream.

In our model setup, we allowed the hyporheic zone to be somewhere in the subsurface (up to

1 m depth), without forcing it to be in the top layers. The rationale for this is that the rocky

subsurface allows for many preferential flow paths, making it possible for stream water to be

connected with a somewhat deeper hyporheic zone. However, after calibrating the model, most

hyporheic zones seem to be directly beneath the stream. Only two sections (182-250 m and

360-420 m) appear to be really deeper in the subsurface. Yet, these are two sections where the\ ] \ \ ^ \ \ _ \ \ ` \ \ a \ \] ^] `] b] c^ \^ ^ \ ^ d e f g d \ h \ ] i \ \jk °
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line) temperature with hyporheic exchange (see Chapter 5).
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Figure 5.6: Diurnal temperature amplitudes in the subsurface divided by the amplitude at the top of

each column. The green lines visualize the thickness and depth of the hyporheic zones.

parameters representing hyporheic exchange were poorly identified (see Section 5.4.2).

An assumption that has a much larger impact is that the width of the hyporheic zone is assumed

to be the same as the wetted perimeter of the stream (which is responsible for the high variability

of the thickness of the hyporheic zone, since the wetted perimeter is different for each grid cell).

We recognize that this is an arbitrary way to determine the shape of the hyporheic zone, but since

we do not have any observation, any shape would be arbitrary. At the two locations where we

observed subsurface temperatures (at 83 and 312 m), we inferred the thickness of the hyporheic

zone with two different sets of observations (i.e. calibrating on in-stream temperature, and

calibrating on observed subsurface temperature, as described in section 5.2.2). Both methods

gave similar results (Table 5.1), indicating that the assumed shape of the hyporheic zone is

correct for these two locations. Yet, between 420 and 520 m, the calibrated thickness of the

hyporheic zone seems rather large. Since a large volume was needed to buffer the temperature

in the model, a wider and thinner hyporheic zone would have given similar model results while

the shape of the hyporheic zone could have been more realistic.

Finally, we must consider the simulated depth of the subsurface. In our simulations we defined

a constant temperature at 1 m depth below the stream. To test the validity of this assumption,

we determined for each vertical section in the subsurface the diurnal temperature amplitude at

2-Jul-2009 and divided that by the amplitude at the top of each vertical subsurface column.

For most areas, the temperature amplitude below a depth of 0.2 m was less than 25% of the

amplitude at the top of the column. Only between 250 and 300 m this was slightly deeper at

maximum 0.5 m depth (Fig. 5.6). This indicates that simulating subsurface temperatures up to a

depth of 1 m was sufficient. We also found no change in RMSE when the subsurface temperatures

where simulated up to 2 m depth (results not presented).\ ] \ \ ^ \ \ _ \ \ ` \ \ a \ \ ] ^] `] b] c^ \^ ^\ ^ d e f g d \ h \ ^ i \ \ jk °
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line) temperature without hyporheic exchange (see Chapter 5).
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Figure 5.7: Length between tracer input and observation point, for a Damkohler number between 0.5

and 5. The shaded areas are parts which are shaded all day. The non-shaded areas are exposed to solar

radiation for at least some period during the day.

5.4.2 How well is the hyporheic zone constrained?

Harvey and Wagner [2000] stated that for a good identifiability of α and Ahz the Damkohler

number should be between 0.5 and 5. The Damkohler number is a dimensionless number de-

scribing the ratio between hyporheic exchange rate and advection and is given by NDaI =

α(1 + Aw/Ahz)L/u [Harvey and Wagner, 2000], where L is the distance between tracer input

and observation point and u is stream velocity. Since the Damkohler number is a function of α

and Ahz, which are both calibration parameters, it is only possible to determine the Damkohler

number a posteriori.

In this study the main tracer input is solar radiation. Close to an area exposed to solar radiation

NDaI < 0.5, while far away NDaI > 5. This means that although we have temperature observa-

tion every 2 m along the stream, we cannot determine α and Ahz everywhere along the stream

with the same confidence level. To investigate the indentifiability of α and Ahz, we determined

the required distance L needed to obtain 0.5 < NDaI < 5 (Fig. 5.7). For example: between 182

and 250 m the stream is exposed to solar radiation. This means that in this reach L is very small

since the tracer injection point (solar radiation) is at the same place as the temperature obser-

vations. An NDaI of 0.5 indicates that a length of ∼150 m is needed for a good identifiability

of α and Ahz (Fig. 5.7). We therefore conclude that the identified hyporheic exchange at this

(non-shaded) stream reach is unreliable. On the other hand, between 250 and 350 m the stream

is not exposed to solar radiation. The mentioned range of 0.5 < NDaI < 5 indicates that good

identifiability is obtained when the distance L between the tracer input and point of observation\ ] \ \ ^ \ \ _ \ \ ` \ \ a \ \] ^] `] b] c^ \^ ^ \ ^ d e f g d \ h \ ^ i \ \jk °
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line) temperature with hyporheic exchange (see Chapter 5).
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Figure 5.8: Scatter plots for three different parameters describing the hyporheic exchange for a poorly

constrained section (left) and a well constrained section (right). 694 (segment 182-250 m) and 454 (segment

250-350 m) Monte Carlo simulations were used, during which the values of α, Ahz and average depth of

the hyporheic zone varied randomly around their optimal value.

is between ∼12 and ∼120 m from the tracer input, which is the case for this stream reach. This

identifiability is also seen in the scatter plots for both stream sections (Fig. 5.8). These plots

were obtained from 694 (segment 182-250 m) and 454 (segment 250-350 m) Monte Carlo runs

during which the values of α and Ahz and average depth of the hyporheic zone varied randomly

around their optimal value. Good identifiability is obtained when the lowest RMSE converges

to a unique value of the considered parameter. This was the case for the stream segment be-

tween 250 and 350 m, while for the segment 182-250 m, the parameter values did not converge

to a unique value with a lower RMSE. This means that with this method, in a natural setup

hyporheic exchange can only be identified in shaded areas downstream of an open area, which

is exposed to direct solar radiation. During less favorable conditions, such as cloudy days or for

completely shaded stream segments, a possible solution would be to heat up the stream water

artificially, although we recognize that a large amount of energy will be needed to heat up the

water a few degrees. Another reason for poor identifiability of the hyporheic exchange is when

the temperature variations are too low. This is the case between 360 and 420 m. At this stream

segment the standard deviation of the 2 day temperature time series is ∼0.9◦C, while this is

between 1.1 and 1.5◦C between 250 and 350 m.\ ] \ \ ^ \ \ _ \ \ ` \ \ a \ \ ] ^] `] b] c^ \^ ^\ ^ d e f g d \ h \ _ i \ \ jk °
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line) temperature without hyporheic exchange (see Chapter 5).
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Figure 5.9: Spatial variation of mean residence times in the hyporheic zone, determined with Ahz/(αAw).

Our results show that at places where hyporheic exchange is identifiable the hyporheic flow

is 4% of the stream flow per unit stream length (determined as αAhz/Q), which is an order

of magnitude higher than found by Gooseff et al. [2003] and Wondzell [2006] in similar sized

streams with a ‘poorly sorted mix of boulders, cobbles, gravels and finer textured sediments’

[Wondzell, 2006], while in a 4th order stream Gooseff et al. [2003] found values between 0.1 and

3%. Zarnetske et al. [2007] found for five low gradient tundra streams with 10 to 1000 times

higher flows, hyporheic exchange fluxes between 0.1 and 3% of the stream flow per unit stream

length.

In this model framework we used the assumption of a well mixed hyporheic zone. The mean resi-

dence time (MRT) of water in the hyporheic zone can then be easily determined with Ahz/(αAw).

However, we could not test whether the assumption of a well-mixed hyporheic zone is the best

one, or if, for example a different residence time distribution (i.e., power-law, gamma), were

more appropriate. Although we cannot be certain about the best residence time distribution,

the assumption of a well mixed hyporheic zone gives a first estimate of the MRT, which is vari-

able along the stream reach (Fig. 5.9), from more than 2.5 h between 90 and 104 m to less than

0.5 h between 250 and 420 m. The MRTs downstream of 420 m are relatively large, although

a large exchange coefficient was found here. As stated in Section 5.4.1, a large hyporheic zone

volume was needed in the simulations to buffer enough energy to decrease the diurnal in-stream

temperature oscillations. Besides having a different shape of the hyporheic zone, it is also pos-

sible that the assumption of a well-mixed hyporheic zone is not valid here, and that in reality,

lateral hyporheic flow paths are present at this area. \ ] \ \ ^ \ \ _ \ \ ` \ \ a \ \] ^] `] b] c^ \^ ^ \ ^ d e f g d \ h \ _ i \ \jk °
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line) temperature with hyporheic exchange (see Chapter 5).
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5.5 Summary and conclusions

Hyporheic exchange is a process that moves stream water into the subsurface and back to the

stream. However, it is often difficult to determine the flux and the volume and location of the

hyporheic zone. A widely used method to estimate the hyporheic flux and volume is by analyzing

observed in-stream tracer breakthrough curves. However, in that approach the observation points

must be determined a priori, while no knowledge is obtained on the specific location or variance

of the size of the hyporheic zone between observation locations.

In this work, we present a novel approach to estimate the parameters that describe the hyporheic

exchange. We use high spatial and temporal resolution in-stream temperature observations to

inform our model of heat transport in the stream and exchange with the hyporheic zone. Because

of the high spatial resolution (2 m) of the observations, we were able to choose the stream

segments of constant hyporheic exchange parameters after the experiment (instead of a priori),

which gave us more spatial flexibility.

To interpret the high-resolution temperature observations, a coupled energy balance model with

an advection-dispersion model is needed. An advantage of this coupled model is that energy

exchange (conductive and advective) between the stream and the subsurface can be modeled and

compared to the observed. Because the hyporheic zone is located somewhere in the subsurface,

the depth of the hyporheic zone below the stream influences the temperature of this zone and

thus of the hyporheic return flux. This makes it possible to estimate the depth of the hyporheic

zone over small spatial scales (<10m), which is another important feature of this work.

However, the method also has some limitations. Temperature variations of several degrees are

needed to identify the hyporheic exchange parameters. As a result, this method can only be

applied in streams where the diurnal temperature fluctuations are sufficiently large. The low

flow situation and relative warm meteorological conditions during this study were therefore

suitable for testing this method.

The second limitation, which accounts for all in-stream tracer studies, is that a certain distance

is needed between the point of tracer input and the observation point. In most cases, solar

radiation is the main heat (i.e., tracer) input. This means that it is only possible to identify

hyporheic exchange in shaded areas downstream of areas subject to solar radiation. A possible

solution to overcome this problem is artificial heating (or cooling) of stream water or artificial

shading of streams that are fully exposed to solar radiation.

This study contributes to the long-term objective of using heat as a tracer to quantify runoff

mechanisms during stormflow and baseflow conditions. This work enabled us to more fully

quantify the processes that influence the temperature distribution along the stream during steady

discharge conditions. The following Chapter will concentrate on the dynamic changes of discharge

and temperature during stormflow.
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Chapter 6

Quantifying spatial and temporal discharge dynamics of an

event in a first order stream, using Distributed Temperature

Sensing†

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

Abstract. Understanding the spatial distribution of discharge can be important for water quality

and quantity modeling. Non-steady flood waves can, particularly as a result of short high intensity

summer rainstorms, influence small headwater streams significantly. The aim of this paper is to

quantify the spatial and temporal dynamics of stream flow in a headwater stream during a summer

rainstorm. These dynamics include gains and losses of stream water, the effect of bypasses that

become active and hyporheic exchange fluxes that may vary over time as a function of discharge.

We use an advection-dispersion model coupled with an energy balance model to simulate in-stream

water temperature, which we compare with high resolution temperature observations obtained with

Distributed Temperature Sensing. This model was used as a learning tool to stepwise unravel

the complex puzzle of in-stream processes subject to varying discharge. Hypotheses were tested

and rejected, which led to more insight in the spatial and temporal dynamics in discharge and

hyporheic exchange processes. We showed that, for the studied stream infiltration losses increase

during a small rain event, while gains of water remained constant over time. We conclude that,

eventually, part of the stream water bypassed the main channel during peak discharge. It also

seems that hyporheic exchange varies with varying discharge in the first 250 m of the stream;

while further downstream it remains constant. Because we relied on solar radiation as the main

energy input, we were only able to apply this method during a small summer storm and low

flow conditions. However, when additional (artificial) energy is available, the presented method

is also applicable in larger streams, during higher flow conditions or longer storms.

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

†. Based on: Westhoff, M. C., Bogaard, T. A., Savenije, H. H. G., 2011. Quantifying spatial and temporal

discharge dynamics of an event in a first order stream, using distributed temperature sensing. Hydrol. Earth Syst.

Sci. 15 (6), 1945–1957, http: // www. hydrol-earth-syst-sci. net/ 15/ 1945
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6.1 Introduction

Understanding discharge generation processes in headwater catchments is crucial for water qual-

ity and quantity modeling [Bonell, 1998]. However, it is often difficult to differentiate between

different runoff generation processes. A classical way to do this is by hydrograph separation

using end-member mixing analysis approach [Sklash and Farvolden, 1979]. This technique can

be useful in differentiating between different source areas or between event and pre-event water

[Uhlenbrook and Hoeg, 2003]. However, the spatial resolution is often low, fluxes are lumped

and uncertainties can be high.

Understanding the spatial distribution of discharge can be important since non-steady flood

waves can influence small headwater streams significantly, particularly as a result of short high

intensity summer rainstorms. During such events, discharge can more than double, and side

channels can become active. Also subsurface stormflow may occur, although a certain storage

threshold in the hillslope has to be passed before this mechanism becomes active [e.g. Tromp-van

Meerveld and McDonnell, 2006a].

To observe the spatial and temporal distribution of lateral inflows, several researchers excavated

trenches [Woods and Rowe, 1996; Weiler et al., 1998; Uchida et al., 2005; Retter et al., 2006;

Gomi et al., 2008; Tromp-van Meerveld et al., 2008]. Although these were able to give spatial

and temporal flow information, installation of trenches is destructive and limited in size (2–60

m).

Another approach was presented by Ragan [1968]. He monitored all incoming water fluxes in a

190 m long stretch, including the change of in-stream storage. He added one term to close the

water balance, which he concluded to be subsurface stormflow. Although he is one among some

others [e.g. Anderson and Burt, 1978; Hjelmfelt Jr. and Burwell, 1984] who gained insights in

temporal and spatial dynamics of lateral inflow without the use of trenches or 3D groundwater-

surface water models , he did not include infiltration losses of stream water or hyporheic exchange

in his analysis while also the location of the calibrated subsurface stormflow was unknown.

Stream water losses (or downwelling fluxes) are difficult to quantify, since they do not influence

stream water quality directly. To determine these fluxes, some researchers observed vertical

subsurface temperature profiles, which, when coupled with a vertical advection-dispersion model

gave flow rates and directions [Stallman, 1965; Lapham, 1989; Taniguchi and Sharma, 1990;

Silliman et al., 1995; Constantz and Thomas, 1996; Constantz, 1998; Constantz et al., 2003;

Becker et al., 2004; Niswonger et al., 2005; Blasch et al., 2007]. However, these profiles were

point measurements along the stream and obtained during steady state discharge conditions.

Moreover, hyporheic exchange fluxes may change with varying discharge. This triggered research

on seasonal changes in hyporheic exchange, determined from head differences in a vertical profile

using piezometer nests [Harvey and Bencala, 1993; Wroblicky et al., 1998; Bartolino, 2003]. In

addition, on the timescale of one flood wave, coupled 3D groundwater-surface water models were
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developed [Lal, 2001; Habel and Bagtzoglou, 2005; Boano et al., 2007; Ha et al., 2008]. However,

these deterministic models require an accurate description of hydraulic conductivities and bed-

forms while such data are often not available. To overcome this problem, hyporheic exchange

has been quantified using in-stream tracer tests. Most studies linking hyporheic exchange with

discharge did their tracer tests during different discharge regimes [Legrand-Marcq and Laude-

lout, 1985; Harvey et al., 1996; Morrice et al., 1997; Wörman and Wachniew, 2007; Zarnetske

et al., 2007; Schmid, 2008; Schmid et al., 2010], different morphological states [Hart et al., 1999;

Harvey et al., 2003] or between different streams [D’angelo et al., 1993; Morrice et al., 1997;

Schmid et al., 2010], but always during steady state flow conditions and not during a complete

rainstorm.

The aim of this paper is to quantify the spatial and temporal dynamics of stream flow in a

headwater catchment during a summer rainstorm. These dynamics include gains and losses of

stream water, the effect of bypasses (in our case a side channel of ca 20 m long) that become

active and hyporheic exchange fluxes that may vary over time as a function of discharge. In a

previous study we showed the relation between hydraulics, in-stream temperature and hyporheic

exchange in a first order stream during steady state discharge conditions [Westhoff et al., 2011

(accepted ]. In this paper we focus on the dynamic effects that occur during and after a small

intensive summer rainstorm of 6.4 mm, with a maximum intensity of 4.8 mm in 10 min. We use

an advection-dispersion model coupled with an energy balance model to simulate in-stream water

temperature, which we compare with high resolution temperature observations obtained with

Distributed Temperature Sensing (DTS). Together with upstream and downstream discharge

observations, we were able to locate and estimate the dynamics of hyporheic exchange, lateral

inflows and bypasses. We used the method as a learning tool in which we stepwise unravel the

complex interactions and dynamics in discharge.

6.2 Methods

6.2.1 Model description

In this Chapter we use the same model as in Chapter (5), except that we add rainfall as an

additional source. Equation (3.1) and (4.6) are now written as:

∂Aw

∂t
+

∂Q

∂x
= qL +RWR (6.1)

ρbcb
∂AbTw

∂t
+ ρwcw

∂QTw

∂x
+ ρwcw

∂

∂x

(

−AwD
∂Tw

∂x

)

(6.2)

= ρwcw(qLTL +RWRTR) + ρwcwαAw(Thz − Tw) +WbΦatm + PbΦcond

where R is rainfall (m/s), WR is the width where rainfall turns into runoff immediately (m) and

TR is the temperature of the rain (◦C). In this Chapter, we use the model as a learning tool
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Figure 6.1: Observed and simulated (Reference) discharge of second peak on 22 and 23 June 2008.

The reference discharge is simulated discharge using parameters obtained from calibration of the first

discharge peak. The subscripts d and up refer to downstream and upstream. The shaded area is the

difference between observed and simulated discharge.

to identify the spatial and temporal dynamics during a summer rainstorm. The studied period

is 22 and 23-Jun-2008, during which a short but intensive rain event caused a double peak in

discharge (Fig. 6.1), which is typical for this stream during low flows. During such conditions,

the first discharge peak is mainly caused by ‘rain on water’ and rain on saturated riparian

land (saturation overland flow), while the second discharge peak is assumed to be subsurface

stormflow. Prior to the rain event, the discharge was 0.44 and 0.65 l s−1 for the upstream and

downstream V-notch weir, respectively, while peak discharge was 1.9 and 1.8 l s−1. All hyporheic

exchange parameters were taken the same as in Chapter (5). For this study, we first validated

the model for a two day period prior to the rainfall event at 22-Jun-2008 20:40, during which

the discharge was steady.

6.2.2 Stepwise improvement of dynamic discharge simulations

In this study, we follow a downward approach in which we stepwise improve the model [Klemes̆,

1983; Jothityangkoon et al., 2001; Sivapalan et al., 2003]. This means that we first model a

simple case, and based on the results, we stepwise increase model complexity and develop and

test new hypotheses to improve the model results. We combine this with a multi-objective

model evaluation [Fenicia et al., 2008]. The objective functions are (1) the Root Mean Square

Error of the downstream discharge (RMSEQ), (2) the Root Mean Square Error of the in-stream
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temperature (RMSET ) and (3) the Root Mean Square Error of the relative contribution of the

second lateral inflow at 178 m (RMSEL).

For calibration, we split the observed hydrograph in two parts because different processes are

responsible for the discharge peaks: the first peak is mainly caused by rain on water, while the

second peak is assumed to be caused by subsurface stormflow. By first calibrating on the first

discharge peak, we could test that parameter set on the second discharge peak, which allowed

us to formulate different hypotheses to improve our understanding of the discharge dynamics

(section 6.2.2.2).

6.2.2.1 First discharge peak

In a first step we only focus on the first discharge peak (between 22-Jun-2008 20:40 and 23-Jun-

2008 01:00). Here we calibrated three parameters. These parameters are: 1) the losses of water

which we describe as a function of discharge, 2) the area where saturation overland flow takes

place (WR): this is the stream itself and its near surroundings and 3) the temperature of the

rain water (TR). The first two influences both downstream discharge and in-stream temperature,

while the third parameter only influences in-stream temperature.

6.2.2.2 Second discharge peak

During the second step of the calibration we focus on different processes that occur during

the second discharge peak, which we assume is subsurface stormflow originating from the area

upstream of the upstream V-notch weir. We first extend the simulation period of the first step

with nine hour until 23-Jun-2008 10:00 to cover the second discharge peak, without changing

any parameter. In this run we found a couple of mismatches between observed and simulated

discharge and temperature. For reasons of clarity we treat these temperature and discharge

mismatches separately, although we recognize that discharge influences temperature as well.

In-stream temperature

To improve the simulated temperature, we investigated the effect of constant and variable hy-

porheic exchange parameters (i.e. the flux between the stream and hyporheic zone, and volume

of the hyporheic zone). This resulted in four different alternatives:

1. qhyp = αAw and Ahz = Pbdhz, where dhz is the thickness of the hyporheic zone, and is

assumed to be constant in time. For the exchange flux we used the widely used expression

from Runkel [1998]. For the volume of the hyporheic zone we assumed that the thickness

would remain the same, and Ahz depends linearly on the wetted perimeter of the stream.

2. Both the qhyp and Ahz are constant over time and keep the pre-event values.

3. qhyp = αAw and Ahz is constant over time.

4. qhyp is constant over time and Ahz = Pbdhz.
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Discharge

The calibrated run of the first discharge peak was used for the second peak. This simulation

resulted in a difference between simulated and observed downstream discharge for the second

peak. In this step we took the difference between observed and simulated downstream discharge,

and added this as a lateral inflow at distance xi. By changing the position of this new lateral

inflow, we tested three different hypotheses on where this water came from.

1. As a diffuse source between 250 and 350 m. The reason for this is that when this new

water is cooler than the stream water (as a first estimate we took the temperature of

the third lateral inflow for the temperature of this new inflow), it would cool down the

stream water, which would result in a better fit.

2. As extra water from the second lateral inflow point at 178 m. Reason for this is that

when the stream discharge is higher, the water would not heat up as rapidly. The reason

for adding this new water at an already existing source is that preferential flowpaths

already direct water to this point. Extra subsurface stormflow would easily directed to

the same place.

3. As a new source at 117 m. This source is actually a bypass or side channel, bypassing

the stream between ∼80 and 117m. It has a similar bedform as the stream, and is

completely shaded by vegetation. During high (winter) flows, we have observed that

part of the stream water flowed through this bypass. Here we test if this also happens

during this summer rainstorm.

6.3 Results

Validation of the model as being calibrated in Chapter (5) was done for the period 21 June 2008

00:00 until 22 June 2008 20:40, which was just before the start of the storm event. During this

validation, the four major lateral inflows (at 104, 178, 350 and 414 m from the upstream V-notch

weir, respectively) were determined to be 0.32±0.013, 0.27±0.016, 0.11±0.008 and 0.16±0.064

l s−1, the two smaller inflows at 383 and 393 m were estimated to be 0 and 0.01 l s−1, and the

two losses between 60 and 77 m and between 233 and 247 m were determined to be 0.41 and

0.27 l s−1 to match the observed downstream discharge (Fig. 6.3a: blue line in bottom panel).

The validation run had a RMSET of 0.51◦C (for comparison: the RMSET of the calibrated model

was 0.66◦C for the same time span at 1 and 2-Jul-2009. Note that this is slightly different than

reported in Chapter (5), since the simulation period is 3:20 hour shorter). The difference in the

RMSET was mainly caused by the fact that during the calibration period the fibre optic cable

was not submerged at a few distinct places. During the validation the simulated temperature

downstream of 420 m was about 1◦C too high during the night.
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234 5 6 7 8 9 : ; < = > Animation 1: Observed (black line) and simulated (grey

line) temperature without hyporheic exchange (see Chapter 5).
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Figure 6.2: Observed and simulated first discharge peak on 22-Jun-2008. The subscripts d and up refer

to downstream and upstream.

6.3.1 First discharge peak

The first discharge peak was calibrated by varying the infiltration losses (qL < 0), the width

accounting for ‘rain on water’ (WR) and the temperature of the rain (TR). Keeping the losses

constant over time andWR the same as the stream widthWb, resulted in a simulated downstream

peak discharge arriving 50 min too late (line a in Fig. 6.2). Therefore we made the losses

dependent on discharge (line b in Fig. 6.2): between 233 and 247 m the loss was set to be 45%

of the discharge at 232 m. Between 60 and 80 m, the loss was set to 95% during pre-event

discharge (0.4 l s−1) and 88% during peak discharge (1.9 l s−1). To be able to simulate the

observed downstream discharge peak properly, we had to change WR to 1.7 m for the entire

stream to account for the additional saturated overland flow. After this refinement we obtained

a RMSEQ of 0.11 l s−1 (line c in Fig. 6.2,Table 6.1). Good temperature simulations were obtained

when TR was taken 2.4◦C lower than Tair, which can be seen as a correction for the wet bulb

temperature. This resulted in a RMSET of 0.34◦C (Fig. 6.3A). For an overview of all steps in

the calibration process and the corresponding objection functions, see Table 6.1.

6.3.2 Second discharge peak

Extending the simulation period until the second discharge peak, while keeping the same pa-

rameters as during the first discharge peak, resulted in a too low downstream discharge between

3:00 and 10:00h (Fig. 6.1). During the same period, the temperature between 250 and 350 m and

downstream of 420 m was also too high (Fig. 6.3B). Here, we treat both discrepancies separately.� � � � � � � � � � � � � � � �� �� �� �� �� �� � � � � � � � � � � � � � � � ¡ °
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Figure 6.3: Observed and simulated temperature and simulated discharge during (A) first discharge

peak (after calibration) and (B) second discharge peak using the same parameters as during the first

discharge peak. qhyp and Ahz are variable over time.

In-stream temperature

Although we recognize that discharge influences in-stream temperature as well, we focus first

on the influence of different hyporheic exchange scenarios. The four different scenarios tested

(qhyp = αAw and Ahz = Pbdhz; qhyp and Ahz are constant over time; qhyp = αAw and Ahz is

constant over time; and qhyp is constant over time and Ahz = Pbdhz), gave different results for

different sections in the stream. In Fig. (6.4A) the RMSET is shown for the time series between

1:00 and 10:00h for each observation point (a moving average over three points was plotted

to get slightly smoother lines). Until 250 m the temperature was best simulated when both� � � � � � � � � � � � � � � � � �� �� �� �� �� �� � � � � � � � � � � � � �  ¡ °
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the hyporheic flux and the volume of the hyporheic zone were taken variable over time, while

downstream of 250 m best results were obtained when both were constant over time. From Fig.

(6.4A), it is also seen that when only Ahz is variable while qhyp is constant, results hardly differ

from the case where both are constant over time. The difference between a constant and variable

Ahz is slightly larger when qhyp is variable.

Discharge

During the second peak, the simulated downstream discharge is too low between 3:00 and 10:00h:

apparently there is some lateral inflow, which we did not encounter for (Fig. 6.1). The difference

between the two hydrographs (shaded area in Fig. 6.1) has been added to the stream at different

locations xi, while we used the RMSET and RMSEL to test the effect of the different locations

(the RMSEQ are equal for each scenario, because the same amount of water was added for each

Table 6.1: Overview of calibration parameters for each step, with corresponding RMSE values.

First discharge peak (simulations between 20:40 and 00:00h)

qL < 0 WR TR RMSET [◦ C] RMSEL [%] RMSEQ [l s−1]

1 constant Wb Tair 0.38 8.6 0.45

2 f(Qup) Wb Tair 0.38 10.7 0.35

3 f(Qup) 1.7 m Tair 0.38 6.8 0.11

4 f(Qup) 1.7 m Tair − 2.4◦ C 0.34 6.8 0.11

Second discharge peak (simulations between 01:00 and 10:00h)

Calibration on in-stream temperature

qhyp Ahz RMSET [◦ C] RMSEL [%] RMSEQ [l s−1]

1 αAw Pbzhz 0.50 5.8 0.12

2 constant constant 0.48 5.8 0.12

3 αAw constant 0.49 5.8 0.12

4 constant Pbzhz 0.49 5.8 0.12

Calibration on discharge

RMSET [◦ C] RMSEL [%] RMSEQ [l s−1]

Referencea 0.46 5.8 0.12

Scenario 1: inflow added between 250-350 m 0.40 5.8 0.01

Scenario 2: inflow added at 178 m 0.41 18.2 0.01

Scenario 3: inflow added at 117 m 0.41 4.3 0.01

a Reference refers to the simulation where qhyp and Ahz are variable between 0 and 250 m and constant

between 250 and 564 m, but without the new source.
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Figure 6.4: RMSET for (A) different hyporheic exchange scenarios, and (B) different locations of the

new source. Reference refers to the simulation where qhyp and Ahz are variable between 0 and 250 m and

constant between 250 and 564 m, but without the new source. The numbers of the other solutions are

the location of the new source. A moving average of three observation point in space was taken for all

time series between 23-Jun-2008 1:00 and 10:00h.

scenario). As a reference case, we used a hyporheic exchange scenario during which qhyp and

Ahz are variable between 0 and 250 m while downstream of 250 m they are constant over time.

Because the temperature downstream of 420 m was also too high during the validation, we only

focus on the area upstream of 420 m. Between 117 and 260 m, the RMSET is the lowest when

the new source is added at 117 m. Between 260 and 320 m best results were obtained when the

new source was added at 178 m, while downstream of 320 m the diffuse source added between

250 and 350 m gave best results (Fig. 6.4B). Comparing the different scenarios with the observed

relative contribution of the second source shows the best results when water is added at 117

m, with a RMSEL of 4.3% for the time series between 01:00 and 10:00h (Fig. 6.5, Table 6.1),

with slightly poorer performance for the diffuse source (RMSEL is 5.8%). Note that the latter

does not affect the second source compared to the reference simulation, since the new source

was added downstream of this point. The scenario where the source was added as extra water at

the second source totally mismatches the observations (RMSEL is 18.2%), indicating that this

hypothesis should be rejected.� � � � � � � � � � � � � � � � � �� �� �� �� �� �� � � � � � � � � � � � � �  ¡ °
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Figure 6.5: Observed and simulated (three scenarios) relative contribution of the second source. The

different scenarios are the locations where the new source was added. Shaded area is observed contribution

±1σ

6.4 Discussion

6.4.1 Reality check

The presented method combines two sources of measured information: discharge observations

and temperature observations. By combining these with a transport model for heat, we were

able to investigate the spatial and temporal distribution of discharge along the whole length of

the stream. In our approach we used the method as a learning tool to test, and more important,

to reject hypotheses. In such a top-down approach, stepwise improvement of the model should

be coupled with expert knowledge. Since a large number of different observations are needed to

constrain the calibration parameters, all parameters and scenarios should be discussed for their

physical meaning and realism [Seibert and McDonnell, 2002].

During the first discharge peak we calibrated three parameters: WR, TR and stream losses.

In our case study WR has limited physical meaning, since it corrects for errors in observed

rainfall and discharge. The intensive rainstorm lasted for less than 10 min, while the logging

interval of both, rainfall and discharge was also 10 min, which makes it likely that observed

discharged is underestimated. Because the ‘rain on water’ and saturation overland flow is the

main process causing the first discharge peak, a higher WR could easily correct for these errors

in the observations. Yet, the obtained value of 1.7m seems realistic, since it is only slightly larger

than the stream width itself. � � � � � � � � � � � � � � � �� �� �� �� �� �� � � � � � � � � � � � � � � � ¡ °
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The temperature of the rain TR is difficult to measure. As a first estimate air temperature was

taken. However, the simulated in-stream temperature appeared to be too high during and just

after the rainstorm, which was reason to decrease this temperature with 2.4◦C. This corresponds

with the wet bulb temperature obtained with a relative humidity of 80%, which is similar to the

observed relative humidity in Ettelbruck (ca 6 km from the site).

We conclude that infiltration losses are relative to in-stream discharge, while gains of water are

constant over time. We explain that with the fact that the whole catchment was relatively dry

during the studied period and a 5 mm rainstorm is likely not enough to increase the groundwater

level or to initiate runoff from the hillslopes. Infiltration losses, on the other hand, can be large

under these conditions and can vary with discharge. When the width of the stream increases,

the water can infiltrate in the initially dry part of the streambed.

Fig. 6.2, line a shows that when the infiltration loss between 60 and 77m is taken constant

over time, the peak in downstream discharge occurs 50 min too late. This indicates that the

observed downstream discharge is not the same peak as the observed upstream peak, but that it

originates from different water. This means that 1) the upstream discharge peak should disappear

in-between the upstream and downstream V-notch weirs and 2) another source of water is

responsible for the observed downstream discharge peak.

The second point can be easily explained by an increased amount of “rain on water”: when

increasing the stream width on which rain turns immediately into runoff to 1.7 m the observed

downstream peak discharge was simulated correctly. To verify the first point, a location (or

locations) has to be identified where the excess water infiltrates. The already existing infiltration

loss between 60 and 77 m is a very likely place. Also because the simulated temperature anomaly

caused by the lateral inflow at 104 m will be a factor 2 too small if the discharge peak is not

reduced upstream of this point. This gives us confidence that the infiltration loss between 60 and

77 m is not constant but a function of stream discharge during these dry antecedent conditions.

The variability of the infiltration loss between 233 and 247 m is less clear. Assuming a constant

loss here, would result in a downstream discharge peak lasting 15–20 min longer than observed,

thus making the peak wider. Since the distinction between observed and simulated downstream

discharge is less pronounced in case of a constant loss, we could not conclude with the same

certainty that the excess water should have been infiltrated between 233 and 247 m. Nevertheless,

a variable loss of 45% of upstream discharge gave the best results.

The different hyporheic exchange scenarios were tested during the second discharge peak because

during the first discharge peak, the different scenarios did not lead to significantly different

temperatures. This could be because the discharge peak was not long enough to influence the

temperature in the hyporheic zone. The different scenarios during the second peak indicate that

between 0 and 250m qhyp and Ahz are variable with varying discharge, while downstream of

250 m they remain constant with varying discharge (Fig. 6.4A). A possible explanation for this� � � � � � � � � � � � � � � � � �� �� �� �� �� �� � � � � � � � � � � � � �  ¡ °
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spatial variability is that between 0 and 250 m, the width of the stream increases a lot during

peak discharge: about 1.7 times during the second discharge peak and between 75 and 90 m

the width increases to 6 to 10 times the original width, compared to a factor 1 to 1.3 for the

area downstream of 250 m. This results in a much higher contact area between the stream and

hyporheic zone. Beside the increase in stream width, more upwelling groundwater could influence

the hyporheic exchange as well [Harvey and Bencala, 1993; Harvey et al., 1996]. However, as

stated before, the catchment was dry, so in our case an increase in upwelling groundwater is not

so likely.

The main objective of this study is to see where and when discharge was generated. Here we

tested three hypotheses about the location of the missing water to close the water balance.

The tested locations were chosen after the first results of the reference simulation of the second

peak. In principle, each location could be tested, but with knowledge of the field site, only three

locations where considered feasible. The location of the diffuse source (250-350 m) was chosen,

since it directly influences the in-stream temperature at this location. However, because the

catchment was relatively dry and the the rainstorm small, this hypothesis is not so likely. The

hypothesis of an increase of the excisting source at 178 m seems realistic, since only some extra

water is needed to increase the lateral inflow. However, our model results (especially expressed

in RMSEL and Fig. 6.5) gave reasons to reject this hypothesis.

In the third scenario, we hypothesize that a bypass becomes active during the second discharge

peak. An active bypass has been observed during higher flows, and therefore it is likely that it

happened during this event as well. It also means that a significant amount of water that we

accounted for as infiltration loss between 60 and 77 m, filled the dry bypass, and only when

the whole bypass was saturated, it connected to the stream again. The initial wetting up of the

bypass would also explain the time lag between the first discharge peak and the activation of

the bypass. Overall, the third scenario seems the most likely one.

6.4.2 Limitation of method

Because temperature is used as a natural tracer, sufficient temperature fluctuations, both in

space and time, are needed to be able to distinguish between different fluxes. Unfortunately,

we therefore could only apply this method during a warm low flow period as we use natural

heating via solar input. During winter, we observed temperature fluctuations that were too

small to apply this method. Even during larger summer rainstorms, the spatial and temporal

temperature fluctuations were not large enough to differentiate between different runoff fluxes.

We have to conclude that during high water conditions, when subsurface stormflow becomes

active and hydrologically it becomes more interesting, the method cannot rely on solar energy

input, but sufficient additional energy has to be added to the stream with, for example, a

powerful heat exchanger or by adding ice (we recognize that these methods also have their

practical limitations). Another way would be to test this method downstream of reservoirs. For� � � � � � � � � � � � � � � �� �� �� �� �� �� � � � � � � � � � � � � � � � ¡ °
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example: Toffolon et al. [2010] reported temperature increases of 3 to 4◦C due to releases from

a reservoir, with stream discharges in the order of 10 m3s−1.

Another interesting question was what would happen with the hyporheic exchange during non-

steady state discharge conditions. The relation between hyporheic exchange and discharge or

cross-sectional area is not known a priori. For reasons of simplicity, we only tested the linear

relation between qhyp and cross-sectional area as described by Runkel [1998], versus no relation

at all, while Ahz was assumed to be linearly dependent with the wetted perimeter. Although

these relationships are arbitrary, it gives a first estimate of how hyporheic exchange varies with

discharge.

In our case study the spatial and temporal distribution of both hyporheic exchange and discharge

had to be taken into account. In streams with limited hyporheic exchange, it is possible to focus

only on the discharge distribution, making the method more reliable. The same is true when

limited gains and losses are present in a stream. In such a case it may be possible to test more

complex relations between hyporheic exchange and discharge.

6.5 Conclusions

In this paper we demonstrate a new method to identify spatial and temporal dynamics of

in-stream discharge. We combined a routing model with an advection-dispersion model and an

energy balance model, which we compared with both, discharge observations and high resolution

temperature observations. This model was calibrated for steady state discharge by Westhoff et al.

[2011 (accepted ]. In the present study, it was used to unravel discharge dynamics during a small

but intense summer rainstorm.

We used the model as a learning tool, where hypotheses were formulated, tested and rejected

or accepted. We showed that during this rainstorm gains of water remained constant for the

whole simulation period, while losses of stream water increase with increasing discharge. This

resulted in large dampening of the observed upstream peak discharge. “Rain on water” and

saturation overland flow in the riparian zone were likely the main processes responsible for

the first discharge peak. For the second discharge peak, we conclude that most likely a bypass

becomes active, which first had to be filled, before it was connected to the stream again.

Hyporheic exchange is likely to be variable with discharge in the upstream half of the stream,

where the stream width increases significantly with increasing discharge, while in the downstream

half temperature was better simulated if a constant hyporheic exchange was assumed.

Overall, the proposed method offers more detailed insight in spatial and temporal discharge

dynamics while routing a small summer rainstorm to the stream. However, for now application

of this method is limited, because a large amount of energy input is needed to create large enough

temperature differences in both space and time. In our case, we used only natural temperature� � � � � � � � � � � � � � � � � �� �� �� �� �� �� � � � � � � � � � � � � �  ¡ °
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variations, which made this method only applicable for a small intensive summer rainstorm,

during low initial discharge. To apply this method during higher discharge or less favorable

meteorological circumstances, more (artificial) energy input is needed. A possible way forward

may be to test this method downstream of a large dam or reservoir.
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Chapter 7

Long term temperature simulations

7.1 Introduction

So far the method has only been applied for a short time frame of maximum two days. Reason

for that was that the model was used as a learning tool while it was stepwise improved in an

iterative way. To do that, simulation results had to be analysed in great detail and based on

these analyses we adapted and reran the model several times. This is labour and time intensive

and therefore only applied for short periods of time. Nevertheless, there may be interesting

information in longer time series, without performing the detailed analyses as done so far.

In this section we therefore show results of extended simulation periods. Without further cal-

ibration two discharge scenarios were run for four different months, with the aim to show the

capabilities of the model to simulate longer time series and higher flows and to show the effect

of two different a priori determined discharge regimes.

The four different months were chosen based on data availability and quality while they should

also present different periods of the year. The months were: March 2008, September 2008, De-

cember 2009 and May 2010. This time no calibration was performed and the dicharge profiles

(also dynamic in time) were determined a priori: During low flow, when the stream is a net

losing stream, the distribution of inflows is similar to the profile described in Chapter (6). Dur-

ing higher flows, when the stream becomes a net gaining stream, we tested two scenarios that

differ from each other in the way the gained (difference between initial simulated and observed

downstream discharge) water was distributed over the stream.

Scenario 1 The gained water was equally distributed over the four known major lateral inflows

(at 104, 178, 350 and 414 m).

Scenario 2 The first lateral inflow (104 m) got 50% of the gained water, while the other three

inflows received 16.7% of the gained water.
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Figure 7.1: Flow duration curves of observed downstream discharge for four different months.

7.2 Comparing two different scenarios

The two months September 2008 and May 2010 both had similar (low) flow regimes (between

0.2 and 7 l s−1 as observed at the downstream V-notch weir), while discharge in March 2010

and December 2009 ranged between 3 and 37 l s−1 and 10 and 50 l s−1, respectively (Fig. 7.1).

At the upstream and downstream end of the reach, there is no difference in discharge between the

two scenarios, but only in-between the lateral inflows and only during periods that the stream

was gaining. For all four months, the largest difference in simulated temperature between the

two scenarios occured just upstream of the second lateral inflow at 178 m because differences

in simulated discharge are largest between the first and second lateral inflow, and thus at the

downstream end of this section the simulated temperature differences are the largest as well.

The maximum difference between the two scenarios was 0.3◦C for March 2008, 1.0◦C for Septem-

ber 2008, 1.3◦C for December 2009 and 1.8◦C for May 2010. The relatively small difference for

the March 2008 simulation is caused by the small energy input during a relative large flow, re-

sulting in small temperature variation over time. The September 2008 and May 2010 simulation

show larger differences despite the fact that the discharge profiles between the two scenarios were

relatively small. However, discharge was low, making the relative difference much higher. This

was then combined with a relative large net energy flux, resulting in these larger differences.

The December 2009 simulation had much larger differences in discharge between the two scenar-

ios, while one may expect small temperature differences due to a low net energy flux during this

period. However, large temperature differences between the two scenarios occurred during this

month as well. This was caused by the relative warm lateral inflow at 104 m, during a 10 day� � � � � � � � � � � � � � � � � �� �� �� �� �� �� � � � � � � � � � � � � �  ¡ °
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period of severe frost. A larger lateral inflow (as in scenario 2) influences the temperature just

downstream of the inflow more than a smaller inflow. This caused the differences in simulated

temperature: but only when the temperature of the inflow was much higher than the stream

water temperature and when discharge from the lateral inflow was significantly different.

7.3 Comparing simulations with observations

Besides the sensitivity of the model to different discharge profiles, we also compared the simulated

temperatures with the observed. For all months the RMSE was small (<0.2◦C) and only slightly

different for different scenarios (Table 7.1). These small differences are mainly caused by the

fact that the RMSE is an average over the entire time series and stream length, while differences

between the two scenarios are only present during gaining stream conditions and in-between the

first and last lateral inflow (between 104 and 414 m). Because the RMSE for the two different

scenarios are small, we only discuss temperature simulations obtained with scenario 1.

In Fig. 7.2, observed versus simulated temperature is plotted for all four months at four different

locations along the stream. At 80 m, the simulated temperatures matches the observed well,

except for the peak temperatures during May-2010 (and in a smaller extend during Sep-2008),

which were simulated too high. At 170 m the simulated peak temperatures during May-2010 were

too low, while the Dec-2009 simulations were simulated too high during minimum temperatures.

At 340 and 540 m fom the upper V-notch weir, the simulated temperatures match the observed

well for all months except for Dec-2009, during which the simulated temperatures were also too

low in the colder range. Duration curves provide temporal signatures of the temperature and

discharge (Fig. 7.3). The relatively large scatter in the high range at 80 and 170 m in May 2010

is less appearent here, indicating that these were biasses possibly linked to timing of peaks.

To explain the mismatches between simulated and observed temperature, one can think of several

issues. The simulated discharge is either too high or too low. Small under-, or overestimated

discharge has a large influence on temperature simulations, especially when discharge is small

Table 7.1: RMSE of simulated vs. observed temperatures. The RMSE is averaged over all observation

points along the stream and over the whole month

RMSE (◦C) RMSE (◦C)

Scenario 1 Scenario 2

Mar-2008 0.064 0.066

Sep-2008 0.093 0.090

Dec-2009 0.181 0.190

May-2010 0.176 0.183
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Figure 7.2: Scatter plots of observed vs. simulated temperature at four different locations along the

stream for four different months
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Figure 7.3: Duration curves of observed and simulated temperature for (A) March 2008, (B) September

2008, (C) December 2009 and (D) May 2010
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(as during May 2010 and Sep-2008). The overestimated temperature during Dec-2009 is likely

caused by the fact that, as explained in Section 7.2, the discharge of the first lateral inflow (at

104 m) was simulated too high. During the cold spell between 12-Dec and 22-Dec the relative

warm lateral inflow then results in too high temperatures downstream of this inflow.

There may also be errors in the energy balance. For example in the shadow calculations: there

may have been less vegetation cover than the static description derived in August 2008 (as may

be the case for May-2010), or in the soil heat flux: e.g. during the cold spell in Dec-2009, it

seems that the temperature at 1 m depth was assumed too high.

It could also be that the cable was not submerged everywhere. This was likely the case during

the May-2010 simulation, where it seems that at the upstream boundary the cable was not sub-

merged, leading to high observed temperatures at this point that, in the simulations, propagate

in downstream direction, but also during the Dec-2009 simulations during which the observed

temperatures were below freezing point. In very shallow and slow flowing water it could also

be that the cable is heated by direct solar radiation as may be the case during the May 2010

simulations.

Simulations of March 2008 showed the best simulation results in terms of RMSE, which is

mainly caused by the fact that discharge was relatively high and energy fluxes were relatively

low. This resulted in small temperature fluctuation over time and space which is relatively easy

to simulate. However, not much about the hydrological functioning of the catchment can be

learned using this methodology, since different water fluxes will only have a minor influence on

the in-stream temperature (as shown in section 7.2).

Overall, this analysis shows that, especially when large differences between different scenarios

or between observations and simulations occur, it is possible to formulate hypotheses (as we

did here) to be able to learn something from the model. This can be about input parameters,

such as shadow calculations that changes over the course of a year; quality of the observations,

such as direct solar radiation heating the fibre optic cable, or periods when the cable was

not submerged; processes the model cannot handle, such as freezing water; and quantification

of lateral inflows over time and space, such as the too high lateral inflow at 104 m for the

December 2009 simulations. To test these hypotheses, it is recommended to do the analyses on

shorter simulation periods than one month, since most of these processes only influence a small

period of the time series. This also reduces simulation times significantly.
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Chapter 8

Synthesis and discussion

Hydrology is to a large extent an empirical science, based on observations. Several scientific

breakthroughs were triggered by either new measurement techniques or denser observation net-

works. For example, Anderson and Burt [1978] were one of the first using a network of soil

moisture measurements and showed that the hillslope curvature plays an important role in sub-

surface stormflow. The capability to measure different chemical and isotope tracers led to the

important conclusion that in many headwaters pre-event water dominates the hydrograph dur-

ing peak flow [e.g. Sklash and Farvolden, 1979] while isotope measurements made it possible to

estimate mean residence times of groundwater [e.g. McDonnell, 1988].

The new measurement device this thesis deals with is fibre optic Distributed Temperature Sens-

ing (DTS). Although already developed in the 1980’s, it was not until 2006 that John Selker

introduced this technique in the field of hydrology. During approximately one month, five dif-

ferent hydrological applications were tested showing the large potential of DTS [Selker et al.,

2006b].

The opportunities of DTS are large, since temperature contains information on many hydrolog-

ical states and processes, such as soil moisture, evaporation, groundwater flow, infiltration and

stream flow. Due to the high temporal and spatial resolution, it has many advantages above

classical point measurements. Most temperature models are calibrated using only a couple of

point measurements, while in our case, a single temperature profile shows a large spatial varia-

tion in temperature along the stream. For example, by using DTS, Roth et al. [2010] were able

to calibrate different parameters in the energy balance model for different land use classes along

a stream (such as shading effects and landcover longwave radiation), while classical studies had

to use lumped parameters. Hoes et al. [2009] showed the advantage of using DTS for identifying

seepage points of upwelling water in canals, since these seepage points are very local and only

visible during periods when limited mixing with the canal water occurred.

While these studies were short term campaigns lasting for only a couple of days, we performed the

first long term DTS measurements in hydrology, with the aim to quantify subsurface stormflow
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at high spatial and temporal resolution. The more specific objectives (as described in Chapter

1) were:

• To explore opportunities and limitations of DTS in the field of hydrology.

• To model all flow and energy processes (including hyporheic exchange) during steady

state flow using combined transport and energy balance models.

• To quantify discharge dynamics during stormflow.

The largest part of this thesis focused on the last two objectives. However, many practical issues

had to be solved as well, such as the kind of cable to use, how to calibrate the DTS and how

to employ it in the field for a longer period of time. In this synthesis, we discuss some of these

practical issues involved when using DTS and we summarize the findings of this thesis. By doing

so, quantitative examples are given, to get a better feeling on how much temperature differences

or energy exchanges are needed to answer hydrological questions for different stream sizes and

accuracy levels.

8.1 Opportunities, set-backs and hands-on experience of DTS

This section describes more practical issues when employing DTS in a stream. Many of these

issues came up during field experiments and were often solved by trial and error. Note that my

experiences are limited to the Halo DTS device from Sensornet, U.K.

8.1.1 DTS calibration: some experiences

The DTS offers the oppurtunity to perform single-ended or double-ended measurements. Single-

ended refers to a setup where only one end of the fibre optic cable is plugged into the DTS

desktop computer, while double-ended refers to the case where the cable is looped and both

ends are plugged in.

To calibrate the single-ended measurement a minimum of two independent temperature mea-

surements have to be done, preferably at the beginning and at the end of the fibre optic cable.

The DTS device offers the opportunity to do this a priori during a calibration run or to update

it real-time with independent temperature sensors connected to the DTS device.

During a double-ended measurement, the laser pulse is sent in turn in both directions through

the cable, and is then able to correct for the fact that a temperature trace obtained from a pulse

sent into one direction should be the same as the trace obtained from a laser pulse send into

the other direction. This is especially useful when one cable contains two fibres, which can be

connected at the far end of the cable to make a loop. In this setup only a temperature correction

has to be done at one place along the cable where temperature is independently measured.

Disadvantage of the double-ended measurement is that close to the DTS desktop computer, the� � � � � � � � � � � � � � � � � �� �� �� �� �� �� � � � � � � � � � � � � �  ¡ °
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precision of the temperature observation is lower than for a single-ended measurement. This is

because the cable is twice as long leading to lower precision at the far end of the cable. Since

the cable is looped, the temperature at the far end of the cable will then be averaged with the

temperature at the beginning of the cable (these are the same part of the cable, depending from

which direction the laser pulse was send). However, the accuracy in the middle of the looped

cable is higher. The reason why we used single-ended measurements was that the connection

at the far end of the cable was poor (this was the point where the two glass fibres of the same

cable were connected), resulting in a artificial anomaly in temperature, which resulted in a lower

precision, for the double-ended measurement.

While the a priori calibration is sufficient when only relative temperatures are of importance,

it is not recommended when absolute temperatures are needed. This is because the calibration

parameters appear to vary over time (both for single-ended and double-ended measurements).

First of all, the calibration parameters change when the cable is disconnected and connected

again. Second, the temperature of the DTS desktop computer itself influences the observed

temperature, and third, the difference between the ‘true’ temperature and the observed DTS

temperature changes with higher absolute temperatures. The last issue was observed by com-

paring five independent temperature loggers (TidbiT), which were placed along the entire length

of the cable: the difference between the DTS obtained temperature and the TidbiT obtained

temperature varied with absolute temperature. Because of these three issues, it is recommended

to calibrate a posteriori with at least two independent point observations of temperature.

At this moment, better ways of calibrating the temperature signal are available. Suárez et al.

[2011] described in detail how to calibrate a single-ended measurement, using the Stokes and anti-

Stokes signal. In the optimal setup, a cold and warm water bath is needed, where independent

temperature sensors measure the temperature. Van de Giesen et al. [In prep.] describes in a

similar way how to calibrate double-ended measurements, and how to deal with anomalies in the

Stoke or anti-Stoke signal due to sharp bends or other small damages in the cable, which would

overcome the problems we encountered when trying double-ended measurements for our setup.

However, all data presented in this thesis, is calibrated using five TidbiT temperature sensors (as

described in Chapter 2), which is less accurate than the method described by Suárez et al. [2011].

Reason to stay with this method was not to change the calibration method halfway the timeseries

to be able to better compare different modelling results. we recognize that the obtained values

of parameters such as α or Ahz can be slightly different when slightly different temperatures

where used for calibrating these parameters, but that does not influence the validity of the used

methodology. Nevertheless, in future applications it is advisable to calibrate according to Suárez

et al. [2011] or Van de Giesen et al. [In prep.], since a higher accuracy in the observations leads

to a more accurate determination of, for example, lateral inflows.� � � � � � � � � � � � � � � �� �� �� �� �� �� � � � � � � � � � � � � � � � ¡ °
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Figure 8.1: Picture of the broken, with stainless-steel inforced fiber optic cable, that was used during

the first pilot study [Selker et al., 2006a,b]

8.1.2 Employment of fibre optic cables in the field

Most fibre optic cables are used as communication lines, and are situated underground. However,

when employed in streams, requirements for cables are different. The cables should be well

protected and preferably easy to handle. In this section some experiences with different cables

are shared as well as experiences when maintaining long term measurement campaigns.

During the first pilot studies [Selker et al., 2006a,b], the cable was inforced by stainless-steel

housing of 1 mm thickness and wrapped by stainless-steel wires. This cable was employed in a

borehole before it was used in the stream. Due to its own weight the cable was slightly stretched

and due to the fact that the cable was wrapped in only one direction, the cable tended to coil

up automatically. This caused a kink in the cable, causing the solid steel to break, and with it

the glass fibre (Fig. 8.1). Fortunately, this happened when removing the cable, just after the

experiments had finished.

During the next employment of DTS in the Maisbich, we chose to use a cable without steel,

to avoid the experiences we had before. However, to our astonishment, the cable was bitten by

animals at a few locations where the cable was out of the water. This experience forced us to

use the cable as described in Chapter (2), in which a steel spiral prevents animals from biting

the cable, while at the same time the spiral prevents kinks in the cable. Others still use a cable

similar to the one used during the first pilot studies, with the difference that the wrapping with

steel wires is done in two directions to prevent coiling up of the cable. But the best type of

cable also depends on its application. If there is no danger of animals biting the cable, a steel

cover may not be needed. This may be the case when the cable is employed underground [e.g.

Steele-Dunne et al., 2010] or completely under water [e.g. Roth et al., 2010]. However, a steel

cover may be useful in these settings as well, to make the cable heavier or to be able to heat up

the cable artificially. When the cable is fully exposed to solar radiation a white and thinner cable

may be more feasible. When a higher spatial resolution is required, the cable can be wrapped� � � � � � � � � � � � � � � � � �� �� �� �� �� �� � � � � � � � � � � � � �  ¡ °

¢£¤ ¥ ¦ § ¨ © ª « ¬  ® Animation 1: Observed (black line) and simulated (grey

line) temperature without hyporheic exchange (see Chapter 5).



8.2. Quantifying all flow and energy processes during steady state flow 83

around a pole [e.g. Selker et al., 2006b; Vogt et al., 2010; Suárez et al., 2011]. For the same

purpose, Brugg Cables, Switzerland, developed a cable in which 10 m of fibre is wrapped in

1 m cable, increasing the spatial resolution with a factor of 10. This is especially useful when

employing the cable in a borehole.

In a stream as small as the Maisbich, a lot of maintenance is needed to keep the cable prop-

erly submerged. Especially after large discharge events, when relative large loads of rocks and

sediment are transported, the cable can be exposed to the air or burried under the streambed

sediments. It also happened that large parts of the stream completely dried up during summer,

leaving no water in the stream to submerge the cable. Reaches where the cable was exposed to

the air can be relatively easily determined since direct solar radiation heats up the cable very

fast. As long as the cable is properly submerged, this effect is, according to Neilson et al. [2010]

minimal and stays within tenths of degrees C depending on depth, turbidity and flow velocity.

However, from my own experience, it appears there is some influence when the cable is in very

shallow water (< a few cm). We suspect this because we have witnessed moments when the

temperature dropped a few degrees within a few minutes after the stream was in the shadow

again. In the cases we suspected this, we only looked if the timing of the increase in simulated

temperature was correct and if the simulated temperature was correct just downstream of the

stream segment exposed to solar radiation or just after the stream segment was in the shadow

again. However, when the effect of direct solar radiation resulted in an observed temperature

increase of only a few degrees C, this may have remained unnoticed. But since differences be-

tween observed and simulated temperature often exceeded a few tenths of degrees, this would

not influence our finding significantly.

Due to the large maintenance needed to keep the cable properly submerged in such a small

stream, a relatively large part of the three years timeseries is of poor quality (i.e. parts of the cable

measures air temperature or temperature of the riverbed). Because a lot of data is needed for

the temperature model, such as temperature of the lateral inflow, discharge and meteorological

data, a gap in these observations reduces the total time frame suitable for further analyses.

Other gaps in the data were caused by power failure of the DTS device itself. Although the

DTS device automatically continues measuring after a power cut, we still encountered periods

of many days where the device was (for some inexplicable reasons) switched off.

8.2 Quantifying all flow and energy processes during steady state flow

The second objective of this research was to model all flow and energy processes during steady

state flow using a combined transport and energy balance model. Such a transport and energy

balance model is needed to interpret the observed temperature signal correctly. In literature,

these models have been well described [e.g. Brown, 1969; Sinokrot and Stefan, 1993; Foreman

et al., 1997; Kim and Chapra, 1997; Webb and Zhang, 1997; Evans et al., 1998; Webb and Zhang,� � � � � � � � � � � � � � � �� �� �� �� �� �� � � � � � � � � � � � � � � � ¡ °
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Figure 8.2: Absolute temperature difference between (A) Td and Tu, and (B) TL and Tu, that is needed

to obtain a contribution of QL/Qd with a relative error r(QL/Qd) of 10, 20 and 30% for a standard

deviation 0.1◦C in the temperature observations

1999; Bartholow, 2000; Younus et al., 2000; Foreman et al., 2001; Bogan et al., 2003; Boyd and

Kasper, 2003; Bogan et al., 2004; Caissie et al., 2007; Westhoff et al., 2007]. However, the

high resolution DTS temperature observations require a more detailed and spatially distributed

description of lateral inflows, losses or downwelling water, heat transport in the stream and

hyporheic exchange fluxes. These issues are discussed in this section.

8.2.1 Quantification of lateral inflows

Lateral inflows can significantly influence in-stream temperature, especially during very warm

days or very cold days. During such warm or cold moments, one DTS obtained temperature

profile can localize the major lateral inflows, provided that they are large enough to influence

the temperature of the stream. When the temperature of an inflow is known as well, the relative

contribution of this inflow can be determined with a mass balance (Eq. 3.5), while the relative

error (or uncertainty) can be estimated by dividing Eq. (3.6) by Eq. (3.5). As with any other

tracer, the lateral inflow should cause a sufficient change in in-stream temperature (or concen-

tration when other tracers are used) to be able to quantify this inflow relative to the downstream

discharge with a certain error band.

For example, assuming a standard deviation in temperature observations of 0.1◦C, the difference

between Tup and Td should be >0.47◦C when a maximum relative error rQL/Qd
of 30% is allowed

(Fig. 8.2A). A relative error of 20% is obtained when the difference between Tup and Td is >0.7◦C,

while a difference >1.4◦C is needed to have relative errors <10%.� � � � � � � � � � � � � � � � � �� �� �� �� �� �� � � � � � � � � � � � � �  ¡ °
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The differences between upstream and downstream temperature should be caused by differences

between TL and Tup. Fig. 8.2B shows that, to obtain a maximum relative error of 20% in QL/Qd,

the difference between TL and Tup should be 14◦C when QL = 0.05Qd. For a contribution of

QL = 0.1Qd this difference should be 6.7◦C and a temperature difference of 3.2◦C is needed

for a contribution of QL = 0.2Qd . When the error in the temperature observation are twice

as large, the difference between TL and Tup should also be twice as large to obtain the same

error in QL/Qd. During steady state discharge conditions, it is possible to identify the moment

of largest temperature difference over a day, to reduce the error in QL/Qd.

8.2.2 Quantifying losses of water

In this thesis, losses of water are defined as water that leaves the stream and model boundaries as

downwelling water. Small scale hyporheic fluxes that stay within the first meter of the subsurface

(as in Chapter 5) is not meant with this definition.

Losses of water are always difficult to identify, since they, in contrast to incoming water, do not

influence the concentration or temperature of the water. However, in this thesis we were able to

estimate these losses along the stream. An important requirement is that upstream discharge

plus all gains and losses should match the observed downstream discharge. Since this requirement

alone leads to many possible solutions, a first estimate is needed on where these losses occur.

For this, knowledge of the field site is needed.

During the many field visits, two locations were found where the stream completely dried up

during very low flow. Knowing the discharge upstream of these losses then gives a first estimate

on the minimum water loss at that location. In Chapter (4), the losses were estimated by looking

at the tracer recovery after releasing water from a small basin, in combination with mass balances

for water and initial tracer concentrations (Eq. 4.7 - 4.9). However, this is only possible when

an upstream reservoir with a concervative tracer is released.

Another method was used in Chapter (5). Making use of the fact that a small volume of water

heats faster than a large volume, we were able to iteratively optimize the discharge within stream

reaches of several tens of meters, where rapid heating of the water was observed when exposed

to solar radiation. However, this method only works when enough energy input is available to

heat up the stream rapidly. During the low flow conditions as in Chapter (5), the available

solar radiation was large enough. However, when discharge increases, solar radiation may not

be sufficient anymore.

Another stream loss we did not account for in this thesis is evaporation of stream water. However,

this loss is minor: for example, during the relative warm days on 1 and 2-Jul-2009 (the study

period used in Chapter 5), the maximum (simulated) loss due to evaporation was 0.013 l s−1

at the downstream end of the stream, which is smaller than the accuracy of the discharge� � � � � � � � � � � � � � � �� �� �� �� �� �� � � � � � � � � � � � � � � � ¡ °
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measurements. The change in RMSE of the temperature simulations during this period was

<0.003◦C.

8.2.3 Heat exchange with in-stream rock clasts

In Chapter (4), we showed that transport of heat was retarded compared to that of diluted

salt. Hyporheic exchange and heat exchange with the streambed were not found to be sufficient

to fully account for the observed retardation. Therefore we argued that heat exchange with in-

stream rock clasts is partly responsible for the retardation. The many small rock clasts present in

the stream exchange heat fast enough to assume that the temperature of the rock clasts always

equals the stream water temperature, making it possible to simply sum up the cross-sectional

area of water and rock clasts.

Abundant in-stream vegetation could have the same effect as in-stream rock clasts. They also

store heat and the individual plants have a relative large surface area to exchange heat fast

enough to adopt to the stream water temperature, but it will be difficult to measure their cross-

sectiona area. However, if the water inbetween the plants is stagnant, one should model it as an

extra transient storage. This may be the case is deeper low gradient channel with abundant plant

growth. Disadvantage of such an extra transient storage are the more unknown model parameters

leading to more equifinality. To limit these extra dregrees of freedom, one can measure these

parameters in the field together with their temperatures [e.g. Briggs et al., 2009].

The influence of the in-stream rock clasts on the retardation of heat is most pronounced when

there is a large longitudinal temperature gradient in the stream and when solar radiation inputs

are relatively small. The longitudinal temperature gradient is needed because without a gradient

it is not possible to see the advective velocity of heat. Solar radiation should be relatively low

since large energy inputs also changes the water temperature, making it difficult to separate this

influence from that of in-stream rock clasts.

In Chapter (4) the amount of rock clasts in the total cross-sectional area was not known a

priori, while the cross-sectional area of the stream was simplified as a trapezoidal shape. At that

stage in the research, we calibrated the relative amount of in-stream rock clasts of the total

cross-sectional area as a constant fraction of 0.35. However, a higher discharge results in a lower

fraction of in-stream rock clasts. Therefore, in the Chapters that followed, we used measured

cross-sectional areas, including an estimate of the cross-sectional area of the in-stream rock

clasts. This made it possible to quantify this fraction a priori for each discharge. In Fig. (8.3)

the fraction of in-stream rock clasts is given as an average over the whole stream length for a

range of discharge values. A discharge of 6 l s−1 corresponds with a fraction of 0.35. In Chapter

(4), the pre-event discharge was between 3.2 and 7 l s−1 with a peak discharge 4 l s−1 higher.

Thus the obtained calibrated value in Chapter (4) of 0.35 is in the same range as the a priori

determined value using the detailed measurements of the cross-sectional areas (Fig. 8.3).� � � � � � � � � � � � � � � � � �� �� �� �� �� �� � � � � � � � � � � � � �  ¡ °
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Figure 8.3: Fraction of rockclasts (η) averaged over the whole stream length, for different simulated

stream discharges when measurements from the pin-meter are used. Note that the calibrated value of η

in Chapter (4) is 0.35. Discharge during this study ranged from 3.2 untill 7 l s−1 during baseflow with

peak flow ∼4 l s−1 higher.

8.2.4 Hyporheic exchange

The last water flux we determined during steady state was hyporheic exchange (see Chapter

5). This was done with a top-down approach, where in-stream temperature transport was used

to quantify the retardation of heat due to hyporheic exchange. The principles of this method

are the same as many other studies that analyze breakthrough curves of an artifically injected

tracer [Haggerty et al., 2000, 2002; Gooseff et al., 2003, 2005; Zarnetske et al., 2007], but in our

case, solar radiation was the (main) tracer input.

The advantage of using high resolution temperature observations is that the experimental design

is more flexible. This is because a certain distance is needed between the location of tracer

input and observation point since the timescale of advection should be in the same range as

the timescale of hyporheic exchange. The Damkohler number, which is a dimensionless number

describing the ratio between hyporheic exchange rate and advection, is used for this and should

be between 0.5 and 5 for a good identifiability of hyporheic exchange parameters [Harvey and

Wagner, 2000]. The distance between tracer input and observation point (which is one of the

parameters in the Damkohler number) depends on experimental design. However, the range

of optimal distances depends on hyporheic exchange. Thus only after analyzing the data, it is

possible to see if the chosen distances between tracer injection point and observation points are

sufficient. Because DTS gives temperatures every 2 m, there are always observation points at a

sufficient distance from the tracer injection point. � � � � � � � � � � � � � � � �� �� �� �� �� �� � � � � � � � � � � � � � � � ¡ °
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The non-conservative behaviour of temperature is often a disadvantage, but in this case it offers

the opportunity to get more insight into the depth of the hyporheic zone below the surface. This

is because the temperature of the hyporheic zone also changes over time due to heat conduction

within the subsurface. A deeper hyporheic zone (which will then be connected with the stream

through preferential flowpaths) will have less influence from surface temperature, and will thus

have a more constant temperature than shallow hyporheic zones. Model results showed that

most likely the hyporheic zones are located directly under the stream (Chapter 5). This has

been assumed in other studies [e.g. Story et al., 2003; Neilson et al., 2009], but never been

confirmed before.

The major limitations of the proposed model framework is that only small scale hyporheic

exchange can be simulated (i.e. water fluxes that return to the stream within the length of one

gridcell). Longer flowpaths have not been accounted for explicitly. Another assumption made is

that the hyporheic zone is a well mixed reservoir. Although there are studies indicating that this

assumption may be valid for some streams, we could not check it independently, since the model

framework is not suitable for modelling other types of residence time distributions. Nevertheless,

the proposed method gives a first estimate on hyporheic exchange and its spatial distribution.

8.3 Quantifying discharge dynamics during stormflow

In Chapter (6) we used the model that was calibrated for steady state discharge, to quantify

spatial and temporal discharge dynamics during a short intensive summer rainstorm. During

this storm a double discharge peak was observed of which the first peak occured during the

rainfall, while the second peak started three to four hours later with peak discharge ∼8 hours

after the rainstorm. To unravel the discharge dynamics during this stormflow, we used the model

as a learning tool, during which we stepwise develloped, tested and either accepted or rejected

hypotheses.

During this stormflow we show that the first peak discharge was mainly caused by ‘rain on

water’; stream losses increased significantly with higher discharge and lateral inflows remained

constant over time. We also show that the dew point temperature gives a good estimate for the

temperature of the rain itself.

During the second discharge peak, which started four hours after the rainstorm, we showed that

in-between the two V-notch weirs most likely no subsurface stormflow occurred, but that it is

likely that a bypass (in this case a side channel) became active, after it had filled and connected

to the stream.

The dynamics in hyporheic exchange were also investigated during this summer rainstorm. Best

temperature simulation were obtained when between 0 and 250 m from the upstream V-notch

weir, hyporheic exchange increases with increasing discharge, while downstream of this point� � � � � � � � � � � � � � � � � �� �� �� �� �� �� � � � � � � � � � � � � �  ¡ °
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best model results were obtained when hyporheic exchange remained at pre-event level. This

could be explained by the fact that during higher discharge, the width of the stream increased

significantly in the upstream half of the stream, while downstream of 250 m the increase in

stream width was less pronounced. In this study, we only tested a linear relationship between

hyporheic fluxes and in-stream discharge versus no dynamics at all. We recongnize that a linear

relation with in-stream discharge is only one out of many different relations, but it is the first

attempt to give a first estimate on the dynamics in hyporheic exchange during a rain event.

Unraveling spatial and temporal discharge dynamics during stormflow is the long term objective

of this thesis. However, we were only able to do this for a small summer storm during low

flow conditions, where the stream was a net losing stream. During wetter pre-event conditions,

or larger rainstorms, the stream becomes a net gaining stream, indicating that more water

should come from the hillslopes as subsurface stormflow. Especially the subsurface stormflow

during such high flow conditions were targeted in the long term objective. However, during these

conditions temperature differences were not large enough to be able to locate and quantify this

subsurface stormflow. This is one of the major limitations of our approach.

It would be interresting to see whether the proposed method also works for slightly larger

headwaters, where minimum discharge is always larger than 10 l s−1. This has the advantage

that the cable will be better submerged, while the assumption of complete mixing over the

cross-sectional area is not yet violated. The disadvantage of larger streams is that more energy

is needed to heat up the stream to create the necessary temperature differences.

For example: to quantify a lateral inflow of 0.1Qd with a relative error of 20%, a temperature

difference between Tup and TL should be ∼7◦C (see Section 8.2.1). When this difference should

be caused by changing the temperature of the main stream, enough energy should be available

to do this. The required energy is given by Φ = ρwcwQ∆T/W where Φ is expressed in W m−1

per unit stream width. Assuming a stream discharge of 10 l s−1 per unit stream width, 293 kW

m−1 is needed to cause a 7◦C temperature change. When solar radiation is used as the main

energy source, which can be about 1200 W m−2 during summer, a stream length of 244 m should

then be exposed to solar radiation. However, during winter or during cloudy conditions which

always occur during rainstorms, much less solar radiation reaches the stream. When ice is used

to cool down the stream water with 7◦C, 0.88 kg s−1 of ice is needed. To reach a cold water

plateau lasting for 10 min the amount of ice adds up to 530 kg.

8.4 Outlook

Over the last five years, DTS has found its way to the hydrological community. More and

more people use it and many different hydrological applications have been found. In all these

applications DTS has proven its value due to its high resolution and accuracy.� � � � � � � � � � � � � � � �� �� �� �� �� �� � � � � � � � � � � � � � � � ¡ °
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The aim of this research was to use DTS to unravel discharge dynamics in a small headwa-

ter. Therefore, we combined a coupled routing and temperature model with high resolution

temperature observations. In this thesis, we successfully applied the presented model framework

during low flows and warm days. However, temperature fluctuations were too small to apply this

method during higher flows. To overcome this problem, improvements should be made in the

accuracy in temperature observations or in artificially creating larger temperature fluctuations

in the stream.

Already significant progress has been made in getting a higher temperature resolution and accu-

racy. DTS systems with a spatial resolution of 25 cm are already available while new calibration

techniques improve the accuracy, which, in turn, makes it possible to quantify lateral inflows

with higher accuracies as well. For example, Suárez et al. [2011] report a resolution of 0.035◦C

integrated over 5 min for a lab setup. For cables with small damages, as is often the case when

employed in the field, Van de Giesen et al. [In prep.] work on calibration techniques that take

these damages into account, and thus give more accurate temperature observations. However,

this work is still in preparation.

Larger temperature fluctuations could be created by releasing cold or warm water upstream of

the stream segment of interest. We described such an experiment in Chapter (4), but one may

also think of larger permanent reservoirs: e.g. Toffolon et al. [2010] report temperature increases

of 3 to 4◦C due to releases from such a reservoir, with stream discharges in the order of 10 m3

s−1. However, such streams are often no headwater streams and the assumption of a well mixed

cross-sectional area may be violated.

Instead of adding a large volume of hot or cold water, one could also try to heat or cool the

water by, for example, a large heat exchanger. Because of the large amount of energy that will

be needed, innovative ideas are needed to realize such a heat exchanger.

To move away from the disadvantages of temperature (i.e. not conservative and amount of

available energy is a limiting factor), one could focus on other natural tracers. A new interesting

tracer may be diatoms [Pfister et al., 2009], which are unicellular algea present in and around

many fresh water bodies, while different species occur at different wetness levels in the riparian

zone. Because they can be easily flushed out during a rainstorm, they can be used to understand

spatial patterns in discharge generation. Up to now, it is still too labour intensive to apply this

method at larger scale, but future developments may solve this problem.

Conventional tracers, such as ions or isotopes, are not out of play either, be it that they should be

measured at higher spatial resolution than traditional studies that measure tracer concentrations

at one or two locations along the stream. However, to our knowledge, no devices to measure

at high spatial resolution along an entire stream are available yet, other than applying many

independent loggers in the stream a few meters apart from each other, which will be very

expensive as well as labour intensive. However, more and more devices become available to� � � � � � � � � � � � � � � � � �� �� �� �� �� �� � � � � � � � � � � � � �  ¡ °
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analyse chemical [e.g. Sandford et al., 2007; Van der Velde et al., 2010] or isotope [Berman

et al., 2009] concentrations at high temporal resolution, making it possible to analyze many

samples that may be collected at different places along the stream.

Overall, we believe that new breakthroughs in headwater hydrology will be triggered by high

temporal, but especially by high spatial resolution observations. DTS provides such data in the

form of temperature. But any other new technique providing high resolution tracer data is more

than welcome, and should be tested right away!
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Appendix A

Numerical schemes

A.1 Numerical solution routing model

A staggered scheme is used for the numerical implementation of the routing model, where the

state values are given at the centre of gridcell i, while the fluxes are determined between the

border of two grid cells at e.g. i + 1/2. First we write the water balance equation (Eq. 3.1) in

discrete form.

rc
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〈

ζn+1∗∗

i

〉

− V
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ζni
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= Qn

i−1/2 −Qn
i+1/2 +Qn
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where V is a function of ζ, i is the current grid cell and n is the current time step at which all

states and fluxes are known. Because the cross-section is not rectangular, the volume at the next
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Now we bring ζn+1∗∗

i to the left hand side:
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For u > 0, the discharge Q is given by

Qn
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un+θ
i−1/2 Qn

i+1/2 = A 〈ζni 〉un+θ
i+1/2 (A.2)

where un+θ is the ‘theta’ rule, meaning θun+1 + (1 − θ)un where θ varies between 0 and 1; a

value of 0 results in a fully explicit scheme, a value of 1 results in a fully implicit scheme.

The relation between u and ζ is given by the Saint Venant Equation (Eq. 3.2). In discrete form

this becomes [Stelling and Duinmeijer, 2003]
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where ε is an arbitrary value [m/s]. Because A is not known at i+1/2 and Q is not known at

i+1, average values are taken (A and Q) which are the averages of the values of half a grid cell

upstream and downstream. Applying the theta rule and reorganizing Eq. (A.3) results in
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Combining Eq. (A.1), (A.2) and (A.4) gives
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When ζ and the cross-sectional profiles are known, Q, u, V , Ao, W and P can be solved with Eq.

(A.1), (A.2) and (A.4). Note that the upstream boundary condition Q(i=−1/2) should already be

determined in Eq. (A.1).

A.2 Numerical solution transport model

The transport model was solved with an explicit scheme. Writing Eq. (3.3) in discrete form gives
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For Q > 0, Tn
i−1/2 and Tn

i+1/2 are given by:

Tn
i−1/2 = Tn

i−1 +∆Tn
i−1 and Tn

i+1/2 = Tn
i +∆Tn

i (A.7)

where ∆Tn
i−1 and ∆Tn

i are the temperature gradients between section i and the downstream

and upstream section, respectively. They are given by [Van Leer, 1974]:

∆Tn
i−1 =

max(0,∆+Tn
i−1 ∆−Tn

i−1)

∆+Tn
i−1 +∆−Tn

i−1

and ∆Tn
i =

max(0,∆+Tn
i ∆−Tn

i )

∆+Tn
i +∆−Tn

i

where ∆+Tn
i−1 and ∆−Tn

i−1 are the interpolated and extrapolated gradients of the downstream

and upstream node of section i−1 while ∆+Tn
i and ∆−Tn

i are the interpolated and extrapolated

gradients of the downstream and upstream node of section i (Fig. A.1). Combining Eq. (A.6)

and (A.7) gives
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where CFL = udt/dx is the Courant number.
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¢£¤ ¥ ¦ § ¨ © ª « ¬  ® � � � � � � � � � � � � � � Animation 1: Observed (black line) and simulated (grey

line) temperature without hyporheic exchange (see Chapter 5).
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