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Abstract

Because of their widely spread use in many industries, composites are the subject of many research campaigns. More particularly,
the development of both accurate and flexible numerical models able to capture their intrinsically multiscale modes of failure is
still a challenge. The standard finite element method typically requires intensive remeshing to adequately capture the geometry of
the cracks and high accuracy is thus often sacrificed in favor of scalability, and vice versa. In an effort to preserve both properties,
we present here an extended finite element method (XFEM) for large scale composite fracture simulations. In this formulation, the
standard FEM formulation is partially enriched by use of shifted Heaviside functions with special attention paid to the scalability of
the scheme. This enrichment technique offers several benefits, since the interpolation property of the standard shape function still
holds at the nodes. Those benefits include (i) no extra boundary condition for the enrichment degree of freedom, and (ii) no need
for transition/blending regions; both of which contribute to maintain the scalability of the code.

Two different cohesive zone models (CZM) are then adopted to capture the physics of the crack propagation mechanisms. At
the intralaminar level, an extrinsic CZM embedded in the XFEM formulation is used. At the interlaminar level, an intrinsic CZM
is adopted for predicting the failure. The overall framework is implemented in ALYA, a mechanics code specifically developed for
large scale, massively parallel simulations of coupled multi-physics problems. The implementation of both intrinsic and extrinsic
CZM models within the code is such that it conserves the extremely efficient scalability of ALYA while providing accurate physical
simulations of computationally expensive phenomena. The strong scalability provided by the proposed implementation is demon-
strated. The model is ultimately validated against a full experimental campaign of loading tests and X-ray tomography analyses for
a chosen very large scale.
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1. Introduction

The prediction of structural failure in laminated compos-
ites is particularly challenging since both intra and interlaminar
failure mechanisms (highly multiscale in nature) contribute to
the fracture process [1]. Indeed, a full understanding of frac-
ture mechanisms in composites requires an approach linking
microscale deformation features within a ply to its macroscale
laminate counterpart. One way to predict mesoscale fracture
from numerical simulations is to analyze the microscale defor-
mation mechanisms with constitutive models accounting for the
fracture processes ranging from micro-crack initiation to meso-
crack propagation. A natural way to achieve this goal is to en-
rich the finite element model with the so-called cohesive zone
method (CZM).

Email address: antoine.jerusalem@eng.ox.ac.uk (Antoine
Jérusalem)

The CZM [2, 3] defines a traction between crack lips dur-
ing the separation process, which is modeled using a traction
separation law (TSL). Figures 1a and 1b show two examples
of cohesive laws. In both laws, the TSL curve eventually de-
creases monotonically until reaching zero at a critical opening
displacement δc to model a progressive damage of the material.
The energy dissipated during this process corresponds to the
fracture energy Gc. The TSL for quasi-brittle materials is thus
related to the breaking of atomic bonds which is characterized
by two physical parameters: the material strength σc and the
fracture energy Gc.

In most of the finite element applications of the CZM, the
cohesive elements are inserted at the beginning of the simu-
lation, in which case the TSL is decomposed into an initial
loading phase, followed by an unloading phase once the stress
reaches the material strength σc (see Figure 1a). Depending on
the model, the unloading can either be reversible or irreversible
in case of closure of the crack. Such approach is attractive as it
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can easily be implemented, in particular when the crack path is
well defined, e.g. for composite delamination [4, 5]. This so-
called “intrinsic” cohesive law has thus extensively been used to
model fracture in the matrix phase of composites [6] or to pre-
dict the interaction between intralaminar and interlaminar fail-
ure mechanisms by inserting cohesive elements in-between all
bulk elements [7, 8]. However, such scheme exhibits a strong
mesh dependency, alters the structural stiffness and adds spuri-
ous stiffness elements in a mesh dependent way, since the ini-
tial slope in the reversible part of the TSL does not satisfy the
consistency condition. Some authors have tried to mitigate this
problem by increasing the initial slope of the TSL [4, 9, 10],
but this technique leads to an ill-conditioned stiffness matrix for
static simulations or to unacceptable small values of the critical
time step for explicit dynamic simulations [11].

In order to avoid the drawbacks inherent to the intrinsic ap-
proach, an “extrinsic” cohesive law accounting exclusively for
the irreversible phase can be used [12, 13], see Figure 1b. Prac-
tically a simulation using such scheme proceeds with a classical
finite element approach and cohesive elements are introduced at
the interface of bulk elements at the onset of fracture. Although
the 3D implementation of this framework [14] is not straight-
forward due to the mesh topology changes during the compu-
tation, it predicts crack propagation with an energy and a crack
path that both converge with the mesh size, as shown by Arias
et al. [15] and by Molinari et al. [16]. However the implemen-
tation complexity increases drastically for parallel framework
[17] and can suffer from low scalability unless a graph-based
internal structure is used [18, 19].

The difficulties presented by the extrinsic CZM and the lim-
itations of the CZM in its intrinsic form, where a scalable ap-
plicability is reduced to cases for which the crack path is well
defined, have led some authors to propose hybrid models com-
bining the use of CZM with some numerical methods for simu-
lating damage processes. Research efforts have thus focused on
combining intrinsic cohesive elements for delamination, with
continuum damage models for ply damage [20, 21, 22]. Al-
though this mesomechanical approach has proved to be suc-
cessful for some structural configurations [20], the use of two
different kinematic representations for interlaminar and intralam-
inar failure presents some fundamental problems. For exam-
ple, in the modeling of the interaction between transverse ma-
trix cracks and delamination it is necessary to capture the high
stresses at the tip of the transverse crack. However, a me-
somechanical model cannot possibly capture this interaction
because the elements where the transverse crack is predicted
soften without being able to accurately capture the stress field
at the interface.

Some other approaches have suggested hybrid discontinu-
ous Galerkin (DG)/CZM approaches [23, 24, 25]. The main
feature of the DG method for non-linear solid mechanics is
its ability to take into account discontinuities of the unknown
field between bulk elements [26, 27, 28, 29, 30]. With the hy-
brid DG/CZM method, interface elements are therefore inserted
between bulk elements at the beginning of the simulation and
continuity during the pre-fracture stage is ensured by having
recourse to the consistent DG interface terms. An extrinsic co-

hesive law can thus be integrated on the already existing inter-
face elements once a fracture criterion is met, without requiring
mesh topology changes. This approach has been successfully
implemented in a 3D parallel framework for micro-meso simu-
lation of intralaminar fracture in composites [31]. The method
has also been used in 2D to study the effect of the fibers shapes
on the composite resistance [25]. Such an approach has also
been developed for thin homogeneous elastic bodies [32, 33]
and for thin homogeneous elasto–plastic structures [34]. How-
ever, similarly to the simple CZM approach, the discontinu-
ities defined by the DG/CZM approach suffer from mesh de-
pendency. It might thus be adequate for interlaminar failure
simulations, but not for intralaminar failure.

In order to alleviate the mesh-dependency inherent to the
intrinsic cohesive approach, the eXtended (or Generalized) Fi-
nite Element Method (XFEM) [35] has been used in combi-
nation with CZM [36, 37] for predicting fracture mechanisms.
XFEM offers the possibility to represent the entire crack ge-
ometry independently of the mesh, so that refined meshes are
not necessary to model crack growth. Also, XFEM exploits
the partition-of-unity property of finite elements [38], which al-
lows local enrichment functions to be easily incorporated into
a finite element approximation. A standard approximation is
thus enriched in a region of interest by the local functions in
conjunction with additional degrees of freedom. For the pur-
pose of fracture analysis, the enrichment functions are the near-
tip asymptotic fields and a discontinuous function to represent
the jump in displacement across the crack line. These features
make XFEM an attractive method for fracture prediction since
it can flexibly represent the crack path without prior knowledge
of the orientation of the crack plane.

Due to its multiscale nature, the simulation of delamina-
tion and ply failure results in high computational requirements
which solid mechanics codes traditionally do not manage effi-
ciently. Most of the commercial codes cannot efficiently scale
in parallel computers when more than hundreds of cores are
used (this is especially true when using implicit solvers). Aca-
demic codes, on the other hand, have often relied on the need
to develop one unique technique of interest for their develop-
ment, potentially followed by a secondary development phase
aimed at scaling it up because of the prohibitive cost of the tech-
nique. Led by the Barcelona Supercomputing Center (BSC-
CNS), Alya [39, 40], on the contrary, has been conceived from
the beginning as a massively large scale computational me-
chanics code aimed at solving Partial Differential Equations
(PDEs) in non-structured meshes. Alya exploits the similari-
ties of the PDE-governed problems to solve with high paral-
lel performance (thousands of cores) compressible and incom-
pressible flows, solid mechanics, thermal flows, excitable me-
dia or quantum mechanics for transient molecular dynamics
[41, 42, 43, 44, 40]. Parallelization is hidden behind a com-
mon solver that assembles matrices and residuals and carries
out the solution scheme. The scalability of the code thus ex-
clusively depends on one unique set of parallel communication
subroutines independently of the physics of the problem.

We thus propose herein an Alya-implementation of XFEM
for the simulation of fracture in laminated composite materials.
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Figure 1: Cohesive laws

In this approach, the intrinsic CZM is used to model interlam-
inar fracture, whereas XFEM is combined with the extrinsic
CZM to model intralaminar fracture. The models are imple-
mented so as to conserve the extreme scalability of Alya while
ensuring the accurate physical description of the material defor-
mation and failure. The details of this scalable implementation
are thoroughly described.

The implementation is ultimately validated against experi-
mental open hole tensile tests of laminated carbon fiber rein-
forced polymers (CFRP) where damage has been thoroughly
characterized by X-ray computed tomography (XCT). XCT pro-
vides actual 3D information of the damage and microstructure
in every ply from a number of X-ray radiographies obtained at
different angles in a non-destructive manner. In addition, con-
trast enhancement was obtained by infiltrating a liquid with a
high X-ray absorption coefficient (e.g. ZnI), leading to a com-
plete characterization of damage by matrix cracking and in-
terply delamination [45, 46]. While the damage mechanisms
in fiber reinforced polymers are qualitatively well documented
in the literature [47, 48, 49, 50, 51, 52], quantitative data on
the evolution of matrix cracking and interply delamination with
strain is less common [53]. Traditionally, quantitative charac-
terization has been limited by time consuming and destructive
serial sectioning microscopy methods or to simpler laminate se-
quences due to the inability of X-ray radiography to separate
the contribution from different plies [54, 53]. These limitations
are overcome by XCT, which has been used in this work to
follow the development of damage of each individual ply of
[90/ + 45/ − 45/90/0]s carbon fiber laminates during the ten-
sile deformation. The evaluation was focused on the evolution
of crack density and delamination as a function of strain, for
direct comparison with the simulation results, which show an
excellent agreement.

Section 2 presents the numerical scheme implemented in
Alya and Section 3 focuses on implementation specificities re-
quired to conserve both the robustness and scalability of Alya.
The experimental campaign, i.e. materials mechanical and XCT

characterization, is provided in Section 4. The results are dis-
cussed in Section 5, and the conclusions of this work are finally
given in Section 6.

2. Numerical Scheme

This section describes the standard Galerkin formulation
with XFEM enrichment of the solution, and the cohesive laws
used for the inter- and intralaminar fracture models. Implemen-
tation details of the discretization and integration are also de-
scribed. See Ref. [23, 24, 31] for more details.

2.1. Enrichment of solution approximation
Let X ∈ B0 be a material point in the reference configu-

ration, and x = ϕ(X) ∈ B be the corresponding point in the
deformed configuration, where ϕ is the deformation function.
The deformation gradient tensor F is defined as

F = Grad x . (1)

In a Cartesian basis the components of F are given by

FiJ =
∂xi

∂XJ
. (2)

Let the undeformed body B0 be approximated by a domain
Ω0 ≈ B0, where Ω0 is subdivided into a set of triangular ele-
ments Ωe

0, such that Ω0 =
⋃

e Ωe
0.

Recall that in a standard finite element method, the solution
approximation of nodal displacement u = x − X can be written
as

u(X) ≈ uh(X) =
∑
a∈I

Na(X)ua , (3)

where I is the set of nodes a supporting the domain Ω0, and
Na is the shape function corresponding to the nodal support a.
In a finite element discretization, Na is chosen such that it has a
compact support on node a, i.e. Na(Xa) = 1 and Na(Xb) = 0 for
all b , a. Therefore, the above solution approximation satisfies
the Kronecker-delta or interpolation property, ua = uh(Xa).
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In order to account for discontinuities, the solution approx-
imation (3) is enriched using additional interpolation functions
capturing the discontinuities (or sharp gradients). Let ψ(X) be
an enrichment function, such that the enriched solution approx-
imation can be written as

uh(X) =
∑
a∈I

Na(X)ua +
∑
a∈I

f a(X)ψ(X)αa , (4)

where αa is the vector of additional unknowns or degrees of
freedom associated with the enriched solution for node a, and
where f a(X) is the corresponding interpolation function that
satisfies the partition-of-unity property, i.e.∑

a∈I

f a(X) = 1 . (5)

For simplicity, the partition-of-unity function f a is chosen to
be the same as the standard finite element shape function, i.e.
f a = Na. The expression for the enriched approximation of the
displacement field thus reads as

uh(X) =
∑
a∈I

Na(X) (ua + ψ(X)αa) . (6)

Cracks are growing open interfaces and can thus be rep-
resented by two level set functions Φ and Λ, describing re-
spectively the path of the crack and the position of the crack
tip(s)/edge(s), such that Γ0c = {X |Φ(X) = 0 and Λ(X) ≤ 0}.
In this case, the level set function Φ can be described using a
signed-distance function as follows:

Φ(X) = ‖X − XΓ‖ sign (nΓ · (X − XΓ)) , (7)

for all X ∈ Ω0, where XΓ is the projection of X on the crack
path Γ0c and nΓ is a vector normal (with a continuous orienta-
tion along the crack path) to the path at point XΓ. Meanwhile,
the level set function Λ(X) is constructed such that its path is
orthogonal/perpendicular to the path of Φ(X) at the crack tip(s).

Note that special treatments need to be introduced to deal
with singularity at the crack tip. Such approaches generally in-
clude additional enrichment functions at the crack tip based on
the elastic fracture mechanics model in order to deal with the
singularity associated with the crack tip. Alternatively, the co-
hesive law model typically used in quasi-brittle and ductile ma-
terials can be used to solve both the crack opening and the crack
tip singularity problem without additional enrichment [55]. More-
over in the cohesive crack approach, cracks are virtually ex-
tended up to the edge of the partitioned elements, such that
locally (element-wise), the crack path can be considered as a
closed interface. More details on the cohesive crack model will
be presented in Section 2.3.

Assuming closed interfaces at the element level, the Heavi-
side enrichment function H for fully partitioned elements (with
Λ ≤ 0) is given by

ψ(X) = H(Φ(X)) =

{
1 ∀Φ(X) > 0 ,
0 ∀Φ(X) < 0 , (8)

as illustrated in Figure 2a. The effective enrichment function
of node a is then obtained by Na(X)H(X), see Figure 2b. How-
ever, the above enrichment function does not satisfy the Kronecker-
delta (or interpolation) property at nodes:

uh(Xa) = ua + H(Xa)αa , ua . (9)

To overcome this issue, a shifted Heaviside function H̃a(X) =

H(X) − H(Xa) is applied in place of the original Heaviside en-
richment function, such that the enriched solution approxima-
tion of Equation (6) reads [55]:

uh(X) =
∑
a∈I

Na(X)
(
ua + H̃a(X)αa

)
. (10)

The enriched solution approximation in Equation (10) guaran-
tees the interpolation property of diplacement uh(Xa) = ua,
whereas the effective jump in the displacement field across the
crack path Γ0c is given by Juh(X)K =

∑
a∈I Na(X)αa, for all

X ∈ Γ0c, as indicated in Figure 2d.
Because the effect of discontinuity is local within a limited

region around the crack, Heaviside enrichments can be applied
partially, i.e. only on a particular domain Ω0c ⊂ Ω0 in the neigh-
borhood of the crack path Γ0c. Another advantage of this for-
mulation is that there is no need for special treatments in the
blending/transition elements situated in-between enriched and
non-enriched elements: the elements in the transition region
can be treated as standard elements. Indeed, smooth transition
between the displacement unknowns of the enriched element
and of the standard elements is guaranteed, thanks to the inter-
polation property of the shifted shape function, ua = uh(Xa).
Note that blending elements could potentially still be needed in
other situations, such as general stress intensity factor calcula-
tions.

2.2. Governing equations
The equation of balance of momentum with respect to the

reference configuration can be written as

Div P + b0 = ρ0ü , ∀X ∈ B0 , (11)

where ρ0 is the mass density (with respect to the reference vol-
ume) and Div is the divergence operator with respect to the ref-
erence configuration. Tensor P and vector b0 stand for, respec-
tively, the first Piola–Kirchhoff stress and the distributed body
force on the undeformed body. Prescribed displacements and
tractions are applied on the reference boundary Γ0 = Γd0 ∪ Γn0,
where Γd0 and Γn0 correspond to the Dirichlet and Neumann
boundary conditions, respectively, as follows:

u = ū , ∀X ∈ Γd0 , (12)
P · n0 = t̄0 , ∀X ∈ Γn0 . (13)

where n0 is the normal to the reference surface at the corre-
sponding boundary.

The weak form of balance of the momentum Equation (11)
can be formulated as∫

B0

Div P · w dV0 +

∫
B0

b0 · w dV0 =

∫
B0

ρ0ü · w dV0 . (14)
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(a) Standard FE shape functions
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Figure 2: Finite element shape functions Na(X) and the enriched functions Na(X)ψ(X) using Heaviside function as enrichment

for any arbitrary admissible virtual displacement w.
By making use of the finite element approximation of the

enriched solution (see Equation (10)) for both the discretized
solution and the discretized virtual displacement, the XFEM
formulation for the balance of momentum Equation (14) thus
reads as follows: find the vector of unknowns z made of all
ua ∈ R3 and αa ∈ R3 of all nodes a such that:[

Muu Muα
Mαu Mαα

]
· z̈ +

(
fint,u
fint,α

)
=

(
fext,u
fext,α

)
, (15)

where Muu, Muα, Mαu, Mαα, fint,u, fint,α, fext,u and fext,α are,
respectively, the mass matrices, vectors of internal and external
forces for the unknown displacements and additional degrees
of freedom, along with the cross-terms for the mass matrices.
These quantities are constructed and assembled from the corre-
sponding element quantities Me

uu, Me
uα, Me

αu, Me
αα, f e

int,u, f e
int,α,

f e
ext,u and f e

ext,α, which are the corresponding mass matrix, in-
ternal force vector and external force vectors.

In the above expression, the components Me,iakb
uu , Me,iakb

uα ,
Me,iakb
αu , and Me,iakb

αα of the elementary mass matrix are given by

Me,iakb
uu =

∫
Ωe

0

ρ0δikNaNbdV0 ,

Me,iakb
uα =

∫
Ωe

0

ρ0δikNa(NbH̃b)dV0 ,

Me,iakb
αu =

∫
Ωe

0

ρ0δik(NaH̃a)NbdV0 ,

Me,iakb
αα =

∫
Ωe

0

ρ0δik(NaH̃a)(NbH̃b)dV0 .

(16)

where δik is the Kronecker symbol. The components f e,ia
int,u and

f e,ia
int,α of the elementary internal force vector are given by

f e,ia
int,u =

∫
Ωe

0

PiJ Na
,JdV0 ,

f e,ia
int,α =

∫
Ωe

0

PiJ H̃aNa
,JdV0 +

∫
Γe

0c

t̃c
i NadS 0 ,

(17)

where t̃c is the traction at the crack surface1. The components
of the external force vector f e,ia

ext,u and f e,ia
ext,α are given by

f e,ia
ext,u =

∫
Γe

0t

t̄0iNadS 0 +

∫
Ωe

0

b0iNadV0 ,

f e,ia
ext,α =

∫
Γe

0t

t̄0i(NaH̃a)dS 0 +

∫
Ωe

0

b0i(NaH̃a)dV0 .

(18)

The spatial integration in the equations above are done by
Gauss quadrature. In the case of a cracked element, the element
is cut by a planar interface. This partition results in a failure of
the standard Gauss quadrature integration method, as there is no
guarantee to have at least one Gauss point on each side of the
crack. In order to solve this issue, the element is decomposed
into subelements. For example, a cracked tetrahedron is split
into a tetrahedral and a pentahedral subelement, in turn subdi-
vided into tetrahedral elements, whereas a cracked hexahedron
can be split into a combination of prisms and hexahedra. The
numerical integrations on the partitioned element can then be
performed using standard Gauss quadrature over the (smooth
and continuous) subelements.

In addition, to evaluate the integrals over surfaces/paths Gauss
integration points are also defined on surfaces/boundaries. This

1Note that Nanson’s formula should actually be used to relate the traction
in the current configuration to the one in the reference configuration. However,
matrix cracking almost exclusively occurs at small strain, thus justifying the
approximation.
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is specifically the case when evaluating cohesive traction on
the crack surface, or when applying Neumann boundary condi-
tions. Due to the formation of interfaces (or cracks), additional
Gauss integration points are also defined on the (partitioning)
interface Γ0c (which is a triangle for tetrahedral elements, or
either a triangular or a quadrilateral element for hexahedral el-
ements).

Finally, the time integration of Equation (15) is done by use
of the explicit form of the generalized Newmark algorithm, see
Ref. [40] for more details.

2.3. Constitutive model
As commonly done, simple orthotropic linear elasticity (with

adequate rotation with respect to the fiber orientation) is used
for the bulk constitutive model, with fiber orientation specific
to each ply. This section thus focuses on the interlaminar and
intralaminar failure constitutive models. The formulations of
the proposed models are briefly summarized in the following,
see Camacho and Ortiz [12] for more details.

Both models define the traction–separation law, t̃c(δΓ), which
is required in order to describe the evolution of cohesive crack.
The jump/discontinuity in the displacement field (crack open-
ing) δΓ is obtained from

δΓ(X) = Juh(X)K =
∑
a∈Ic

Na(X)αa , (19)

for all X ∈ Γ0c, where the crack surface is Γ0c defined by Ic, a
subset of I.

A scalar representing the effective opening of displacement
δΓ can be defined as

δ̃Γ =

√
λ2(δΓ,s)2 + (δΓ,n)2 . (20)

where λ determines the effective contribution/weight of the norm
of the sliding/tangential component δΓ,s of the displacement
opening with respect to the norm of its normal component δΓ,n.
The interface traction t̃c corresponding to the above effective
displacement opening can then be expressed as

t̃c =
t̃c

δ̃Γ

(
λ2δΓ,ssΓ + δΓ,nnΓ

)
, (21)

where t̃c is a scalar representing the effective interface traction,
and where sΓ and nΓ are the local tangential and normal basis
vectors on the crack surface.

2.3.1. Interlaminar failure
The Rose–Ferrante intrinsic cohesive law is used to model

the interlaminar delamination process [13]. The corresponding
elements are introduced from the beginning as a preprocessing
steps. This choice is rationalized by the fact that the delamina-
tion is expected to occur between the plies. This intrinsic law
describes the envelope of the relation between the effective trac-
tion t̃c and the corresponding effective displacement separation
δ̃Γ upon loading (or crack opening):

t̃c = etcrit
δ̃Γ

δcrit
exp

(
− δ̃Γ

δcrit

)
, if δ̃Γ = δ̃max and ˙̃δΓ ≥ 0 , (22)

where e = exp(1), tcrit and δcrit are, respectively, the critical ef-
fective cohesive traction and the critical/characteristic displace-
ment opening, and δ̃max is the maximum attained effective dis-
placement opening. Note that this formulation assumes that
Mode I and Mode II have the same properties as a first ap-
proximation; other models can be straightforwardly added if
necessary. Additionally, even if this approximation is acknowl-
edgedly rough (a ratio of 1:5 is generally observed between the
cohesive energy of both modes), the results in the following
sections exhibit a very good fit with experiments, thus justify-
ing further this initial assumption.

Upon unloading (or upon subsequent loading), the traction–
separation relationship follows a linear elastic curve to the ori-
gin,

t̃c =
t̃max

δ̃max
δ̃Γ , if δ̃Γ < δ̃max or ˙̃δΓ < 0 , (23)

where t̃max = t̃c(δ̃max). For practical purpose, the traction is set
to be zero after a certain amount of opening δ∞, i.e. t̃c(δ̃Γ) = 0
if δ̃Γ ≥ δ∞.

The fracture energy (or fracture toughness), defined as Gc =∫ ∞
0 t̃cdδ̃Γ, for the Smith–Ferrante cohesive model is finally given

by

Gc = etcritδcrit , (24)

2.3.2. Intralaminar failure
Intralaminar failure should theoretically account for matrix

failure, matrix-fiber failure and fiber failure altogether [31]. The
latter will generally occur in situations where the laminates are
loaded in the direction of the fibers. This can easily be im-
plemented by projecting the stress tensor in the fiber direction,
defining a stress threshold at which the fibers would fail and
open a crack perpendicular to this direction. However, one of
the current challenges of intralaminar failure is related to the re-
maining failure modes (matrix and matrix-fiber), where contin-
uum models fail at capturing the correct crack propagation ori-
entation [56]. This is due to the fact that such a crack is actually
physically constrained by the fiber direction, phenomenon im-
possible to capture by means of a regular continuum approach.
To this end, we focus here our work on these two failure modes
and make sure in the following that none of the failure modes
involved in the proposed configurations immediately leads to
fiber failure. Extension to fiber failure could eventually be con-
sidered by simply adding another nodal degree of freedom for
the corresponding crack description.

In this case, the cohesive elements are introduced on-the-
fly in the then-enriched elements following a modified Rankine
principal tensile stress criterion projected on the plane perpen-
dicular to the fibers, i.e. when the maximum of the eigenval-
ues of the Cauchy stress within such plane reaches a threshold
σmax (see also Section 3.2). The crack normal nΓ is then cho-
sen as the corresponding eigenvector, and crack continuity with
neighboring elements is enforced when applicable, see Section
3. A linearly-decreasing cohesive law is used to simulate the
intralaminar damage since this model is more suitable for an
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extrinsic cohesive zone model, where the cohesive law is ap-
plied only when the crack/discontinuity is introduced.

In the linearly-decreasing cohesive model, the effective trac-
tion t̃c upon loading (crack opening) is given by

t̃c = tcrit

(
1 − δ̃Γ

δ∞

)
, if δ̃Γ = δ̃max and ˙̃δΓ ≥ 0 , (25)

with δ∞ the maximum level of displacement opening where the
traction is non-zero (t̃c = 0 for δ̃Γ > δ∞). Note that the above
traction–separation relation is valid only for positive opening,
δ̃Γ > 0. Upon unloading/reloading, the traction–separation re-
lation follows the elastic unloading path described by Equa-
tion (23). The fracture toughness associated with the linearly-
decreasing cohesive law is given by

Gc =
1
2

tcritδ∞ . (26)

3. Robustness and scalability requirements

The framework described above was implemented in Alya
by adding the corresponding degrees of freedom to the solid
mechanics module of the code. This solid mechanics module
was implemented specifically so as to retain the extremely high
scalability of Alya while being flexible enough for future ex-
tension such as the one proposed here [40]. However, the nu-
merical scheme proposed here does not easily lend itself to the
scalability requirements of Alya, or to a strong robustness. To
this end, some special attention was paid to important details of
the implementations. They are summarized in the following.

3.1. Local enriched element remeshing

As described in Section 2.2, enriched elements are split in
subelements on each side of the crack path. This step is done
exclusively locally by adding the additional nodes only at the
element level while the neighboring elements remain unaware
of the splitting and of these additional nodes. The evaluation
of the (original) element mass and stiffness matrices, and corre-
sponding right-hand side vector is then done by summing up the
contributions of all the subelement Gauss points instead of the
original ones, and their sizes remain conditioned by the original
element nodes.

It is important to note that the above element decomposition
is merely done for the purpose of Gauss integration method and
does not create new degrees of freedom (or unknowns). In other
words, there is no need to inform the neighboring elements, or
processors in the case of parallel simulations. As the number
of enriched elements is in general largely outnumbered by the
number of regular elements, the balancing of the number of
Gauss point evaluations per processor and thus the overall code
scalability remain unaffected.

3.2. Non-locality of the crack propagation

Based on the modified Rankine principal tensile stress crite-
rion used here, the normal in the reference configuration of the
crack/discontinuity plane within an element, nΓ, is set by the

direction of the maximum principal tensile stress in the plane
perpendicular to the fiber direction, i.e the eigenvector associ-
ated with the most positive eigenvalue of the projected stress
tensor,

nΓ =
FT · νmax

‖FT · νmax‖ , (27)

where νmax is the eigenvector associated with the most posi-
tive eigenvalue in the plane perpendicular to the fiber direction.
Note that this finite deformation formulation can actually be
easily simplified to small deformation (nΓ = νmax) in the case
of composites laminates as failure occurs generally at strains
of only a few percents. In order to improve the accuracy, the
Cauchy stress tensor σ used for the eigenproblem is averaged
over the element in orded to improve the accuracy of the predic-
tion. This is done in Alya by extrapolating the stress values at
the nodes, assembling them with the other elements (and pro-
cessors when required) as it is done in a postprocessing step
for field visualization purposes. Doing so, each element stress
considered is the average of these node values and the stress
averaging thus includes the neighboring elements. Without this
non-local step, crack orientation is only conditioned by the local
element field, which was observed to lead to spurious curvature
of the crack.

Once the crack orientation is defined, it needs to be at-
tached, when applicable, to the cracks of the neighboring el-
ements. Let pi be the mid-point of the intersection line-segment
between the element facet fi and the existing discontinuity plane
from the adjacent element, as illustrated in Figure 3. When the
modified Rankine criterion is fulfilled, the crack surface/plane
is formed within the element through a point pΓ, which is de-
fined as

pΓ =
1
Ni

Ni∑
i=1

pi , (28)

with Ni the total number of facets of the element that intersect
with the existing crack. This above condition is applied to en-
sure the continuity of the crack path. Although in 3-dimensional
cases this condition cannot guarantee the connectivity of the
piecewise elementary crack planes across the element faces (see
Figure 3), the present scheme should be able to resemble the ap-
proximation of the global crack surface [57]).

In case of crack initiation, where there is no existing crack
path adjacent elements, the crack position is assumed to form
through the center of the element:

pΓ =
1

Na

Na∑
a=1

Xa , (29)

where Xa is the coordinate of the nodes, with Na the number of
nodes of the element.

3.3. Topological constraints for crack propagation

The present discrete/element-wise crack propagation model
often encounters severe numerical instability issues. In the cases
presented in this work, two crack propagation scenarii have
been identified, which lead to unstable crack propagation.
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Figure 3: The orientation and the position of “new” crack/discontinuity propagating through elements after modified Rankine maximum principal stress criterion.

Crack passing through nodes:. Though extremely rare, there
are cases where the crack plane intersects an element at its
node(s). This situation results in non-unique nodal displace-
ment, which leads to the failure of the property of displacement
interpolation (see, Equations (9) and (10)). To overcome this
issue, a small neighborhood Ψk is defined around the (intersec-
tion) node k, as illustrated in Figure 4. Intersection points be-
tween crack plane and element edges that fall inside this small
neighborhood Ψk are forced to move (away from the node) to
the boundary of Ψk, such that the nodal displacement interpola-
tion property of Equations (9)–(10) is again fulfilled.

Clearly, the above scheme alters the overall crack topology.
However, this can be minimized by choosing sufficiently small
radius (or tolerance) for the small neighborhood Ψk. A value
around 10−4`e is recommended, where `e represents the size of
the element.

Unstable/reversing crack topology:. In the second case, unsta-
ble crack propagation often encounters when the angle between
a crack plane and the intersecting face is too small. Crack orien-
tation may change when the crack propagates from one element
to another. If the angle between the crack plane and the inter-
section face is too small, the change in crack orientation across
the intersecting face may lead to reversing/unstable crack prop-
agation in the subsequent element when passing through an el-
ement face with low-angle intersection, as shown in Figure 5
(top).

To avoid this problem, the orientation of the crack plane
within an element is constrained by the following condition:

θ f = cos−1
(
nΓ · nf

)
≥ θΓ , (30)

for all intersecting faces of the element, where θΓ is the smallest
allowable intersection angle. If the intersection angle with a
particular face is smaller than the minimum allowable angle,
θ f < θΓ, the orientation of the crack is slightly modified such
that it becomes parallel to the face, nΓ ≡ nf and, consequently,
the crack plane will no longer intersecting face f , as sketched
in Figure 5 (bottom).

4. Experimental campaign

A full experimental campaign was conducted to validate the
model. The open hole tensile test of a [90/ + 45/ − 45/90/0]s

composite laminate (regularly used in the industry) was selected
for validation. The complexity of the deformation mechanisms
during failure of such sample naturally lends itself to the vali-
dation of the proposed model.

4.1. Materials mechanical characterization

The samples for the mechanical tests were obtained from
panels of 300×300 mm2 and 2.7 mm in thickness. Unidirec-
tional carbon fibers/epoxy resin UD300/M10.1 prepreg sheets
were supplied by Hexcel R©[58]. Individual ply tensile and dou-
ble cantilever beam (DCB) tests were performed for model cal-
ibration. Finally, laminate panels were manufactured in auto-
clave from the prepreg sheets with a stacking sequence [90/ +

45/ − 45/90/0]s. An autoclave cure cycle was applied with a
maximum cure temperature of 120◦C for 60 min and a pressure
of 4 bar. The heating and cooling rates were set to 4◦C/min.
The total curing time was 120 min. Each ply thickness was ap-
proximately 270 µm. In this paper, the different plies will be
named “ply n” for n ∈ [1, 10], plies 1 and 10 being the outer-
most plies, and plies 5 and 6 the central ones with the same 0◦

orientation.
Twelve open hole specimens of 200×30×2.7 mm3 (length

× depth × thickness) were machined from the panels with the
external plies at 90◦ with respect to the length axis. Very lit-
tle damage was introduced during machining. Steel tabs were
fixed to the specimens borders to avoid damaging the samples
with the jaws. The distance between tabs was 120 mm. The
hole diameter was 6 mm. Tensile tests were carried out in an
electromechanical universal testing machine (Instron 3384) at
constant cross-head speed of 2 mm/min. Load was monitored
with a 150 kN load cell. The strain was measured with an exten-
someter with 50 mm gage length. In addition, strains were mon-
itored by digital image correlation (DIC). An artificial speckle
pattern was created with black and white paints in order to mon-
itor de displacements on the specimen’s surface. A commercial
DIC system from Correlated Solutions, model VIC-2D 2009
was used for this purpose. Both techniques provided equivalent
results.

Three specimens were loaded monotonically until failure to
determine the average failure stress and strain. The remaining
nine specimens were separated in three groups and loaded up to
50, 75 and 90% of the ultimate tensile stress, respectively. The
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tests were stopped at the set conditions and one specimen from
each group was immersed in a dye penetrant liquid during 30
minutes while holding the displacement constant. The dye pen-
etrant procedure enhance the contrast between the cracks and
the composite material for tomographic measurements. The liq-
uid was composed of 60 g of ZnI in 10 ml of water, 10 ml of
ethanol and 10 ml of Kodak Photo-Flo 200. The specimen was
removed from the machine and inspected by XCT as detailed
below. It should be noticed that the stress-strain curve of all the
specimens were practically superposed.

4.2. X-ray Computed Tomography

The spatial distribution of the failure mechanisms was stud-
ied by XCT using a Nanotom 160NF (GE Sensing & Inspection
Technologies Phoenix—X-ray). The tomograms were collected
at 100 kV and 120 µA using a tungsten target. For each tomo-
gram, 2,000 radiographs were acquired with an exposure time
of 500 ms. Tomogram voxel size was set to 15 µm. The to-
mograms were then reconstructed using an algorithm based on
the filtered back-projection procedure for Feldkamp cone beam
geometry. The damage in the reconstructed volumes was qual-
itatively and quantitatively analyzed using the freeware ImageJ
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software and the commercial software VGStudio Max 2.0. Ac-
curate quantification of crack density and delaminated area was
possible because of the use of a dye penetrant liquid contain-
ing ZnI which caused the cracks and delaminations to appear
brighter in the tomograms due to the higher X-ray absorption
coefficient of ZnI as compared with the carbon fibers or the
polymeric matrix.

Damage at the interface between plies was evaluated from
several slices constituting that interface. The information of
delaminated area was obtained from superimposed information
of these slices by projecting the maximum gray level (brightest)
into one plane. The delaminated area was manually segmented
at each interface and for each loading condition.

The individuals plies at different orientations showed differ-
ent cracking patterns. The cracks were properly detected thanks
to the dye penetrant technique and were therefore, quantified in
each ply. Contrast fading between matrix and cracks occurs
when cracks with openings less than the tomographic resolu-
tion are filled with the dye-penetrant. However, according to
Ref. [46], crack openings of about 5% of the reconstructed
voxel size can be detected using the dye penetrant technique.
The selected intralaminar cracks were used to quantify matrix
crack density in each ply.

5. Results

In this section, the computational model is calibrated against
experimental results and validated by direct quantitative com-
parison between the experimental and simulated interlaminar
and intralaminar failure. Finally, the scalability of the code is
demonstrated.

The stress-strain curves obtained from the open hole ten-
sile test of the carbon fiber laminates are shown in Figure 6.
The strain was determined using both the recording from the
extensometer and the DIC data. The response was identical in
both cases. The average ultimate tensile stress determined from
three samples was 479±17 MPa. The curves are quasi-linear up
to the failure, although damage was already observed at 50%
of the ultimate tensile stress (see damage analysis below). The
linear behavior of the curves is mainly due to the 0◦ plies in
which fiber fracture doesn’t occur until full sample failure. The
tests up to 50%, 75% and 90% of the ultimate stress are also
included in Figure 6, confirming the high reproducibility of the
test.

The deformation maps obtained from the DIC measurements
at selected deformation conditions in the loading direction are
presented in Figure 7. The regions around the hole where the
strain ultimately localizes in the outer ply corresponds to the fi-
nal fracture location, see Figures 7c and 7d. Similar strain local-
ization patterns in open hole specimens have been observed pre-
viously [59, 60], however in panels with different stacking se-
quences than the one presented in this work. Note also that ad-
ditional load introduction and alignment issues cannot be fully
discarded. Although the DIC technique provides valuable infor-
mation on the strain field (and fracture location in the external
ply), it does not give information on the strain nor the damage
mechanisms in the inner plies. Therefore, X-ray tomography
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Figure 6: Stress-strain curves for experimental tests and simulation.

was used below to investigate the damage mechanisms inside
the specimens.

5.1. Model calibration

The transversely isotropic mechanical properties correspond-
ing to each ply of the laminate was obtained from single ply ten-
sile tests. The values of the five elastic constants of the corre-
sponding linear elastic transversely isotropic constitutive model
were found to be El = 139.835 GPa, Et = 8.515 GPa, νl = 0.257,
νt = 0.033 and Gl = 6.3 GPa (respectively, the longitudinal and
transversal Young’s moduli and Poisson’s ratios, and the shear
modulus).

The parameters of the two cohesive laws were also cali-
brated from experiments. For the Rose–Ferrante law (interlam-
inar intrinsic cohesive model), a DCB test was performed, ob-
taining a fracture energy Gc = 600 N/m. Using this value, σc

was calibrated by simulating the DCB test. A value of σc = 60
MPa provided the best fit for the force-displacement curve.

The parameters for the intralaminar extrinsic cohesive model
were taken from previous work of the authors [31]. In this refer-
ence, the calibration was done for the same material by use of a
micro–meso-model of intra-laminar fracture which yielded Gc

= 121 N/m andσc = 45 MPa for the overall continuum intralam-
inar failure, i.e., accounting for both matrix and matrix-fiber
failure). Figure 6 shows the numerical stress-strain curve ob-
tained for the model parameters selected, truncated at the strain
for which the numerical sample fails, and confirms the validity
of these parameters.

In order to compute the number of elements needed for the
model, the maximum cohesive element length α was estimated
from [16]:

α =
π

8
E Gc

σ2
c (1 − ν2)

(31)

A good compromise for α for the interlaminar and intralaminar
cohesive zones yielded a value of the order of tenths of microns,
i.e. 4 million elements were needed for the mesh. Except for
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(a) Deformation map at 0.2% strain (b) Deformation map at 0.8% strain

(c) Deformation map at 1.2% strain (d) Fractured specimen (at 1.3% strain)

Figure 7: Deformation maps for several strain conditions and fractured specimen after tensile test (surface with speckle pattern).
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(a) Experimental sample in the initial state

(b) Numerical model used for the simulations

Figure 8: Initial states of experimental sample and numerical model before
tensile test.

(a) Experimental sample after the tensile test

(b) Numerical model after the simulation

Figure 9: Final states of experimental sample and numerical models after tensile
test.

the scalability study of Section 5.3, this mesh was used for the
subsequent results. Figures 8a and 8b show the initial states of
both the experimental sample and the 4 million element numer-
ical model after the tensile test.

Figures 9a and 9b show the states of both the experimental
sample and numerical model after the tensile test.

5.2. Quantitative damage analysis

Visual inspection of the volumes was performed after re-
construction of the three 25%, 50% and 90% failure load sam-
ples. The three specimens were scanned before loading to iden-
tify any damage produced by machining. Very small edge de-
lamination was observed around the hole and at the edges of the
specimens, and they were located between the two outermost
plies (plies 1 and 2). The initial damage, probably introduced
during machining, was symmetrically distributed with respect
to the loading axis. Despite the initial damage, the mechanical
response of the different specimens was identical and the dam-
age developed during the tests was symmetrically distributed
with respect to the central ply (ply 5) as it will be shown later.

5.2.1. Matrix Cracking
The inspection of the tomographic data at 50% failure load

(0.6% strain) revealed that cracks appeared in all the plies of
the specimens. In the outermost 90◦ plies (plies 1 and 9), ma-
trix cracking was observed emanating from the border of the
laminate and growing towards the center of the laminate above
and below the open hole region following the fiber direction.

On both sides of the hole the cracks were found to already en-
compass the whole region between the hole and the edge. In
the region above and below the hole, matrix cracking then de-
veloped with deformation towards the center of the laminate
in plies 1 and 9 until they either coalesced at the center of the
laminate or stopped growing when no crack grew from the op-
posite direction at the same position, as it is observed in ply 1
of Figure 10 for 90% failure load (1.1% strain).

In the +45◦ plies (plies 2 and 8) short matrix cracks (also
called “stitch cracks” to differentiate them from “developed cracks”)
appeared over the positions of the 90◦ cracks. The density of
the stitch cracks increased with deformation, see plies 2 and 8
at 90% failure load in Figure 10. Most of the stitch cracks in
the +45◦ plies did not grow in length except for the ones located
in a region at +45◦ (following the fibers direction) and contain-
ing the hole, as well as some cracks located at the edges of the
specimen. The fact that the cracks maintained the same length
but increased in number is related to the susceptibility of crack
growth to strain energy release rate and the crack spacing in
the adjacent and actual ply, as calculated for a [0/60/90]s and
[0/30/90]s laminates in Refs. [61, 62].

Stitch cracks were not observed in the -45◦ plies (plies 3
and 7), see Figure 10. Instead, developed cracks were observed
as early as at 50% failure load, mainly around the hole at -45◦

following the fibers direction and in less proportion at the spec-
imen’s edges. With further deformation, the cracks developed
mainly in regions located at ±45◦ between the hole and at the
edge of the specimens, however in these -45◦ plies the cracks
were located predominantly at +45◦ from the hole, i.e. in a di-
rection perpendicular to the fiber direction in these plies.

The 90◦ plies (plies 4 and 6), located between the -45◦ plies
and the central 0◦ ply, showed a slower development of the
cracks with deformation when compared to the outer 90◦ plies.
However, the crack density is noticeably higher (smaller crack
spacing) than in the outer 90◦ plies, see Figure 10. Moreover, a
larger concentration of cracks was noticed on both the right and
left sides of the hole in comparison with the regions above and
below. Even at 90% failure load, most cracks above and below
the hole did not encompass the whole laminate width and were
arrested reaching a vertical imaginary line running tangentially
to the hole in the loading direction. This effect is related to the
damage pattern in the central 0◦ ply (ply 5) in which two cracks
grew tangentially from right and left of the hole with deforma-
tion following the loading direction, see Figure 10.

Finally, even if a complete quantitative analysis of the sim-
ulations is provided below, it can already be noted that the sim-
ulations qualitatively fit very closely the experimental results.

5.2.2. Delamination
Figure 11 show the interfaces between the outermost ply

and the central ply at 90% failure load. The images were ob-
tained from superimposed information from the tomographic
slices composing the interfaces stacked in the direction perpen-
dicular to the plies. The delaminated area is displayed in Fig-
ure 11 by the yellow envelopes delineating the damage.

Delamination between plies was first observed at 50% fail-
ure load around the hole when cracks from subsequent plies
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Figure 10: Matrix cracks for plies 1,2,3,4 and 5 at 90% failure load.
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(stitch and/or developed) intersected at the ply interface. The
delaminated area around the hole increased with deformation
and, at 75% failure load (0.9% strain), delamination at the edges
of the specimen was noticeable in the outermost interfaces. At
90% failure load, delamination at the interface 1-2 (between
plies 1 and 2), and its symmetric interface 8-9, progressed from
the edges towards the interior of the laminate. This delamina-
tion was located in the region confined between the 90◦ cracks
and the stitch cracks in the +45◦ adjacent ply, see Figure 11.

The second interfaces (interfaces 2-3 and 6-7) showed at
90% failure load the typical triangular shaped delamination en-
closed between the ±45◦ cracks at the edges and around the
hole, see Figure 11. Most of the delaminated area was located
at +45◦ from the hole.

Towards the middle plane of the specimen (interfaces 3-
4 and 4-5) delamination at the edges was less extensive than
around the hole. Delamination developed mainly from crack
intersection as shown in Figure 11 and was very well correlated
to the 0◦ ply cracks running parallel to the loading direction and
tangentially to the open hole.

Again, the simulation results match very well the experi-
mental results, despite a few differences at interplies 3-4 and
4-5 underneath the hole, probably due to some experimental
defects (by the lack of symmetry). It is also noticeable that the
boundary effects on the delamination are remarkably well cap-
tured.

5.2.3. Quantitative validation
Matrix crack density was evaluated for each ply and for

the three measured deformation steps. The equivalent non-
dimensional crack density was selected to quantify the crack
density. It was obtained according to Ref. [53]:

ρeq =
L t
A

(32)

where L is the total crack length in every ply, t is the ply thick-
ness (since all cracks encompass the whole ply thickness), and
A is the in-plane area of the laminate measured by tomography.

The experimental non-dimensional crack density is presented
in Figure 12 and shows a very heterogeneous behavior for the
different plies. For instance, the outer and inner 90◦ plies (1
and 9, and 4 and 6) showed different behaviors. While the out-
ermost ply saturates after 75% failure load, the inner 90◦ plies
can withstand a higher crack density. The highest crack density
was achieved in the inner 90◦ plies (plies 4 and 6) followed by
the density in the +45◦ plies (plies 2 and 8) where stitch cracks
predominated. The high equivalent crack density observed in
the +45◦ plies (plies 2 and 8) suggests that the stitch cracks
should have a strong effect on the constraint ply stiffness. The
-45◦ plies (plies 3 and 7) developed few cracks around the hole
and the density in these plies only increased at the end of the
test. No stitch cracks were observed in these -45◦ plies. The
crack density in the 0◦ ply (ply 5) is very low, as expected, and
is a consequence of the development of the two cracks located
tangentially to the hole, see Figure 12.

Figure 13 shows the non-dimensional crack density pro-
vided by the simulation. It can be seen that experimental values
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Figure 13: Simulated crack density.

and simulation values are in very good agreement with each
other.The curve trend between experiments and simulations is
similar and the small differences between experiments and sim-
ulations are within the experimental error.

The delamination area obtained from the tomographic vol-
umes is shown in Figure 14. The delaminated area was about
0.1% at 50% failure load for all the plies. The development of
delamination was symmetric with respect to the middle ply.

At 75% failure load, the delaminated area reached 1.2% and
was practically the same in all the plies. At 90% failure load,
however, the delamination at the interfaces 3-4 and 6-7 devel-
oped faster reaching 8.3%.

Figure 15 shows the area fraction of delamination obtained
from simulations, again providing an excellent comparison with
the experiments.
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Figure 15: Simulated delamination.

5.3. Mesh size effect and scalability analysis
In the following, the parallel implementation performance

was evaluated with a convergence study of the XFEM imple-
mentation. Note that for this study, interlaminar CZM ele-
ments were not introduced in order to evaluate exclusively on
the XFEM scalability.

The convergence study was performed by measuring the
non-dimensional crack density obtained when using a mesh with
different resolutions. To this end, four different resolutions
were used: 10k elements, 100k elements, 1M elements and
10M elements. The results for the previously used 4M element-
mesh (with CZM) are also provided. Figures 16a, 16b, 16c and
16d show the density of cracks provided for the three meshes
for plies 1, 2, 3 and 4, respectively. The crack densities seem
bounded and converging. The former property is extremely im-
portant as it indicates that the failure of the material is dictated
by the energy used to do so, and not by the precision of the ele-

ments. Note that, because of the additional dissipation mecha-
nisms used in the corresponding model (interlaminar CZM), the
4M element-mesh provides a lower crack density and delami-
nation area than its converged intralaminar-only counterparts.

The scalability of the proposed implementation was then
evaluated in order to check the performance of the proposed
framework for large-scale simulations. Both explicit and im-
plicit simulations using XFEM alone and XFEM combined with
cohesive elements were performed. In all cases, the previous 4
million element mesh was used and only the explicit formula-
tion was used for the XFEM/CZM study.

Figure 17 shows the speed-up when simulating the finer
mesh with up to 2,048 processors in the explicit case. It can
be seen that the proposed implementation provides an excellent
scalability since the efficiency is not severely affected when in-
creasing the number of processors. Figure 18 shows that when
using the implicit formulation, the performance of the system
is reduced. This effect is mainly caused by the scalability of
the preconditioners used for solving the system of equations.
In this case a Deflated Conjugent-Gradient preconditioner was
used and was shown to provide the best scalability results. Al-
though the scalability is reduced when using implicit formula-
tion, the implementation still shows a strong scalability.

Finally, Figure 19 shows that when using cohesive elements
the scalability of the system is preserved since it can provide an
excellent strong scalability.

Note finally that the maximum number of elements used
here is not per se representative of “very large scale” simu-
lations. However, the benefits of large scale parallelization is
evaluated here by means of a scalability analysis. Such analy-
sis does not necessarily needs a large mesh, but only needs to
exhibit a quasi-linear behavior of the speedup, for an increas-
ing number of processors (and not necessarily a large number
number of elements).

6. Conclusions

In this paper, a coupled XFEM/CZM parallel implementa-
tion of large-scale fracture in composites was proposed. The
method was carefully presented and both robustness and scala-
bility were specially targetted by accounting for the non-locality
and topological constraints of crack propagation. Both inter-
laminar and intralaminar failures were shown to be perfectly
captured for the open hole tensile test of a quasi-isotropic lam-
inate sequence. The overall framework was shown a) to con-
verge in an energy dependent manner for relatively coarse meshes,
and b) to retain the high scalability of Alya, thus paving the road
for full component failure simulation in industrial applications.
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//dx.doi.org/10.1016/j.cma.2006.10.052.
URL http://www.sciencedirect.com/science/article/
pii/S0045782507001107

[16] J. F. Molinari, G. Gazonas, R. Raghupathy, A. Rusinek, F. Zhou, The
cohesive element approach to dynamic fragmentation: the question of
energy convergence, International Journal for Numerical Methods in En-
gineering 69 (3) (2007) 484–503. doi:10.1002/nme.1777.
URL http://dx.doi.org/10.1002/nme.1777

[17] A. Pandolfi, M. Ortiz, An efficient adaptive procedure for three-
dimensional fragmentation simulations, Engineering with Computers
18 (2) (2002) 148–159. doi:10.1007/s003660200013.
URL http://dx.doi.org/10.1007/s003660200013

[18] A. Mota, J. Knap, M. Ortiz, Fracture and fragmentation of simplicial fi-
nite element meshes using graphs, International Journal for Numerical
Methods in Engineering 73 (11) (2008) 1547–1570. doi:10.1002/
nme.2135.
URL http://dx.doi.org/10.1002/nme.2135

[19] G. H. Paulino, W. Celes, R. Espinha, Z. J. Zhang, A general topology-
based framework for adaptive insertion of cohesive elements in finite ele-
ment meshes, Eng. with Comput. 24 (1) (2008) 59–78. doi:10.1007/
s00366-007-0069-7.
URL http://dx.doi.org/10.1007/s00366-007-0069-7

[20] V. K. Goyal, N. R. Jaunky, E. R. Johnson, D. R. Ambur, Intralaminar
and interlaminar progressive failure analyses of composite panels with
circular cutouts, Composite Structures 64 (1) (2004) 91 – 105. doi:
http://dx.doi.org/10.1016/S0263-8223(03)00217-4.
URL http://www.sciencedirect.com/science/article/
pii/S0263822303002174

[21] L. Daudeville, O. Allix, P. Ladevèze, Delamination analysis by damage
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[35] N. Moës, J. Dolbow, T. Belytschko, A finite element method
for crack growth without remeshing, International Journal for
Numerical Methods in Engineering 46 (1) (1999) 131–150.
doi:10.1002/(SICI)1097-0207(19990910)46:1<131::
AID-NME726>3.0.CO;2-J.
URL http://dx.doi.org/10.1002/(SICI)
1097-0207(19990910)46:1<131::AID-NME726>3.0.
CO;2-J

19

http://www.sciencedirect.com/science/article/pii/S1359645401002920
http://www.sciencedirect.com/science/article/pii/0020768395002553
http://www.sciencedirect.com/science/article/pii/0020768395002553
http://dx.doi.org/http://dx.doi.org/10.1016/0020-7683(95)00255-3
http://dx.doi.org/http://dx.doi.org/10.1016/0020-7683(95)00255-3
http://www.sciencedirect.com/science/article/pii/0020768395002553
http://www.sciencedirect.com/science/article/pii/0020768395002553
http://dx.doi.org/10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
http://dx.doi.org/10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
http://dx.doi.org/10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
http://dx.doi.org/10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
http://dx.doi.org/10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
http://dx.doi.org/10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
http://dx.doi.org/10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
http://www.sciencedirect.com/science/article/pii/S0020768399001559
http://www.sciencedirect.com/science/article/pii/S0020768399001559
http://www.sciencedirect.com/science/article/pii/S0020768399001559
http://dx.doi.org/http://dx.doi.org/10.1016/S0020-7683(99)00155-9
http://dx.doi.org/http://dx.doi.org/10.1016/S0020-7683(99)00155-9
http://www.sciencedirect.com/science/article/pii/S0020768399001559
http://www.sciencedirect.com/science/article/pii/S0020768399001559
http://www.sciencedirect.com/science/article/pii/S0045782507001107
http://www.sciencedirect.com/science/article/pii/S0045782507001107
http://www.sciencedirect.com/science/article/pii/S0045782507001107
http://dx.doi.org/http://dx.doi.org/10.1016/j.cma.2006.10.052
http://dx.doi.org/http://dx.doi.org/10.1016/j.cma.2006.10.052
http://www.sciencedirect.com/science/article/pii/S0045782507001107
http://www.sciencedirect.com/science/article/pii/S0045782507001107
http://dx.doi.org/10.1002/nme.1777
http://dx.doi.org/10.1002/nme.1777
http://dx.doi.org/10.1002/nme.1777
http://dx.doi.org/10.1002/nme.1777
http://dx.doi.org/10.1002/nme.1777
http://dx.doi.org/10.1007/s003660200013
http://dx.doi.org/10.1007/s003660200013
http://dx.doi.org/10.1007/s003660200013
http://dx.doi.org/10.1007/s003660200013
http://dx.doi.org/10.1002/nme.2135
http://dx.doi.org/10.1002/nme.2135
http://dx.doi.org/10.1002/nme.2135
http://dx.doi.org/10.1002/nme.2135
http://dx.doi.org/10.1002/nme.2135
http://dx.doi.org/10.1007/s00366-007-0069-7
http://dx.doi.org/10.1007/s00366-007-0069-7
http://dx.doi.org/10.1007/s00366-007-0069-7
http://dx.doi.org/10.1007/s00366-007-0069-7
http://dx.doi.org/10.1007/s00366-007-0069-7
http://dx.doi.org/10.1007/s00366-007-0069-7
http://www.sciencedirect.com/science/article/pii/S0263822303002174
http://www.sciencedirect.com/science/article/pii/S0263822303002174
http://www.sciencedirect.com/science/article/pii/S0263822303002174
http://dx.doi.org/http://dx.doi.org/10.1016/S0263-8223(03)00217-4
http://dx.doi.org/http://dx.doi.org/10.1016/S0263-8223(03)00217-4
http://www.sciencedirect.com/science/article/pii/S0263822303002174
http://www.sciencedirect.com/science/article/pii/S0263822303002174
http://www.sciencedirect.com/science/article/pii/0961952695939763
http://www.sciencedirect.com/science/article/pii/0961952695939763
http://dx.doi.org/http://dx.doi.org/10.1016/0961-9526(95)93976-3
http://dx.doi.org/http://dx.doi.org/10.1016/0961-9526(95)93976-3
http://www.sciencedirect.com/science/article/pii/0961952695939763
http://www.sciencedirect.com/science/article/pii/0961952695939763
http://dx.doi.org/10.1007/BF00356486
http://dx.doi.org/10.1007/BF00356486
http://dx.doi.org/10.1007/BF00356486
http://dx.doi.org/10.1007/BF00356486
http://dx.doi.org/10.1002/cnm.689
http://dx.doi.org/10.1002/cnm.689
http://dx.doi.org/10.1002/cnm.689
http://dx.doi.org/10.1002/cnm.689
http://www.sciencedirect.com/science/article/pii/S0045782510002471
http://www.sciencedirect.com/science/article/pii/S0045782510002471
http://www.sciencedirect.com/science/article/pii/S0045782510002471
http://dx.doi.org/http://dx.doi.org/10.1016/j.cma.2010.08.014
http://dx.doi.org/http://dx.doi.org/10.1016/j.cma.2010.08.014
http://www.sciencedirect.com/science/article/pii/S0045782510002471
http://www.sciencedirect.com/science/article/pii/S0045782510002471
http://www.sciencedirect.com/science/article/pii/S0013794411000117
http://www.sciencedirect.com/science/article/pii/S0013794411000117
http://dx.doi.org/http://dx.doi.org/10.1016/j.engfracmech.2011.01.007
http://dx.doi.org/http://dx.doi.org/10.1016/j.engfracmech.2011.01.007
http://www.sciencedirect.com/science/article/pii/S0013794411000117
http://www.sciencedirect.com/science/article/pii/S0013794411000117
http://dx.doi.org/10.1002/nme.1699
http://dx.doi.org/10.1002/nme.1699
http://dx.doi.org/10.1002/nme.1699
http://dx.doi.org/10.1002/nme.1699
http://dx.doi.org/10.1002/nme.1667
http://dx.doi.org/10.1002/nme.1667
http://dx.doi.org/10.1002/nme.1667
http://dx.doi.org/10.1002/nme.1667
http://dx.doi.org/10.1002/nme.2213
http://dx.doi.org/10.1002/nme.2213
http://dx.doi.org/10.1002/nme.2213
http://dx.doi.org/10.1002/nme.2213
http://dx.doi.org/10.1002/nme.2213
http://dx.doi.org/10.1007/978-1-4020-9090-5_21
http://dx.doi.org/10.1007/978-1-4020-9090-5_21
http://dx.doi.org/10.1007/978-1-4020-9090-5_21
http://dx.doi.org/10.1007/978-1-4020-9090-5_21
http://dx.doi.org/10.1007/978-1-4020-9090-5_21
http://www.sciencedirect.com/science/article/pii/S0045782508000789
http://www.sciencedirect.com/science/article/pii/S0045782508000789
http://www.sciencedirect.com/science/article/pii/S0045782508000789
http://dx.doi.org/http://dx.doi.org/10.1016/j.cma.2008.02.020
http://dx.doi.org/http://dx.doi.org/10.1016/j.cma.2008.02.020
http://www.sciencedirect.com/science/article/pii/S0045782508000789
http://www.sciencedirect.com/science/article/pii/S0045782508000789
http://dx.doi.org/10.1016/j.engfracmech.2013.03.018
http://dx.doi.org/10.1016/j.engfracmech.2013.03.018
http://dx.doi.org/10.1002/nme.3008
http://dx.doi.org/10.1002/nme.3008
http://dx.doi.org/10.1002/nme.3008
http://dx.doi.org/10.1002/nme.3008
http://dx.doi.org/10.1002/nme.3008
http://www.sciencedirect.com/science/article/pii/S0045782511002490
http://www.sciencedirect.com/science/article/pii/S0045782511002490
http://dx.doi.org/http://dx.doi.org/10.1016/j.cma.2011.07.008
http://dx.doi.org/http://dx.doi.org/10.1016/j.cma.2011.07.008
http://www.sciencedirect.com/science/article/pii/S0045782511002490
http://www.sciencedirect.com/science/article/pii/S0045782511002490
http://dx.doi.org/10.1002/nme.4381
http://dx.doi.org/10.1002/nme.4381
http://dx.doi.org/10.1002/nme.4381
http://dx.doi.org/10.1002/nme.4381
http://dx.doi.org/10.1002/nme.4381
http://dx.doi.org/10.1002/nme.4381
http://dx.doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
http://dx.doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
http://dx.doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
http://dx.doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
http://dx.doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
http://dx.doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
http://dx.doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
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