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ABSTRACT
Opening and closing operators play an important role in the field of mathematigahaiogy,
mainly because of their useful property of idempotence, which is similar toatiemof ideal
filter in linear filtering. From a theoretical point of view, the study of opesihgs focused
on the algebraic characterization of the operators themselves. Morprallolgérs have been
studied for more than 30 years; the effects of the first filters (erosipesings, and so on) are
known in depth. In discussing the effects of a filter, it is not only the dpethat is studied but
also its relationship with the processed function or image and, in the partiadarof mathe-
matical morphology, the structuring element. In addition, there are seygedaches to this
analysis. For example, the analysis can consider the whole function orsdiparts of the
function, as in Van Droogenbroeck and Buckley (2005), who intredube notion ofmorpho-
logical anchors Anchors were defined in the context of morphological openings, fasedie
by the cascade of an erosion followed by a dilation. The extension to atites &f openings is
not straightforward. Despite the fact that all morphological openingsciadhe appearance of
anchors, some opening operators (like the quantization opening defittgd anapter) might
have no anchors. This chapter presents the theory of anchors telatedphological erosions
and openings, and establishes some properties for the extended $ebdpeboaic openings.
It is shown under which circumstances anchors exist for algebraiumggeand how to locate
some anchors; for example, it suffices for an opening to be spatialfoirstariant to guar-
antee the existence of anchors. As for morphological openings, thermésof anchors may
help clarify some algorithms or lead to new algorithms to compute algebraic ogening
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1. INTRODUCTION

Over the years mathematical morphology, a theory initidigdMatheron (1975) and Serra
(1982), has grown to a major theory in the field of nonlineaage processing. Tools of math-
ematical morphology, such as morphological filters, theewsdted transform, and connectivity
operators, are now widely available in commercial image@ssing software packages and the
theory itself has considerably expanded over the past ée@déajman and Talbot, 2008). This
expansion includes new operators, algorithms, methodedpgnd concepts that have led math-
ematical morphology to become part of the mainstream of evaaalysis and image-processing
technologies.

The growth in popularity is due not only to the theoreticatkwof some pioneers but also to the
development of powerful tools for image processing suchrasidometries (Matheron, 1975),
pattern spectrum analysis-based techniques (Marago8) 18& provide insights into shapes,
and transforms like the watershed (Beucher and Lantuéj@n9;1Vincent and Soille, 1991)
or connected operators (Salembier and Serra, 1995) thatdelegment an image. All these
operators have been studied intensively and tractableitdges have been found to implement
them effectively, that is, in real time on an ordinary degktomputer.

Historically, mathematical morphology is considered atlghat is concerned with the pro-
cessing of images, using operators based on topologicajemahetrical properties. According
to Heijmans (1994), the first books on mathematical morpiotliscuss a number of mappings
on subsets of the Euclidean plane, which have in commontiegtdre based on set-theoretical
operations (union, intersection, complementation), alf agetranslations. More recently re-
searchers have extended morphological operators toaspitomplete lattices, a step that has
paved the way to more general algebraic frameworks.

The geometrical interpretation of mathematical morphglagates to the use offobewhich
is a set calledtructuring elementThe basic idea in binary morphology is to probe an image with
the shape of the structuring element and draw conclusiorwanthis shape fits or misses the
regions of that image. Consequently, there are as many istatjpns of an image as structuring
elements, although one often falls back to a few subset o€tstring elements, such as lines,
squares, balls, or hexagons. In geometrically motivatpdagehes to mathematical morphology,
the focus clearly lies on the shape and size of the strugg@iement.

Algebraic approaches do not refer to geometrical or togofdgoncepts. They concentrate
on the properties of operators. Consequently, algebraimappes embrace larger classes of
operators and functions. But in both approaches the goal chdoacterize operators to help
design solutions useful for image processing applications

1.1. Terminology and Scope

Let R andZ be the set of all real and integer numbers, respectivelhithchapter, we consider
transformations and functions defined on a spécenhich is the continuous Euclidean spa&’®
or the discrete spacg", wheren > 1 is an integer. Elements @&f are writtenp, x, ..., while
subsets of elements are denoted by upper-case &téfs... Subsets ofR? are also called
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binary sets or images because two colors suffice to draw them (eteraBX are usually drawn
in black, and elements that do not belong<tm white).

Next we introduce an order of? (&), the power set comprising all subsetséfthat results
from the usual inclusion notionX is smaller or equal t&y if and only if X C Y. Note that we
decide to encompass the case of equality in contrary td stdlusionC. The power set” (&)
with the inclusion ordering is a complete lattice (Heijmabh@94).

This chapter also deals with images. Images are modeléshasons(denoted ad, g, ...),
that map a non-empty sé& of & into R, whereR is a set of binary value$0, 1}, a discrete
set of grey-scale valud9®, ..., 255}, or a closed intervdD, 255, defining, respectivelyinary,
grey-scaleor continuousimages. The ordering relatiof is given by “f < g if and only if
f(x) < g(x) for everyx € E.” It can be shown that the space FdéhR) of all functions and
< form a complete lattice, which means among others that eselpget of the lattice has an
infimum and a supremum.

The frameworks of” (&) andC, or Fun(&’, R) and<, are equivalent as long as we deal with
complete lattices. Most results can thus be transposed drarframework to the other. In the
following we arbitrary decide to restrict functions to bage-valued grey-scale images. Also,
for convenience, we use the unique tesperatorsto refer to operations that map setsfnto
& or handle Fuf¥’, R). In addition, we restrict the scope of this chapter to opesathat map
sets to sets, or functions to functions. This implies thahlioe input and the output lattices are
the same, or equivalently, that there is only one complétiedaunder consideration. Operators
are denoted by greek lettegsd, y, Y, ...

1.1.1.The Notion of Idempotence

Linear filters and operators are common in many engineereidsfithat process signals. As
an analogy, remember that every computer with a sound cantdios a hardware module that
prefilters the acquired signal before sampling to prevaasimlg. Likewise, digital signals are
converted to analog signals by means of a low-pass filter.

The concept of a reference filter calledideal filteris often used to characterize linear filters.
Ideal filters have a binary transmittance with only two vatu@ or 1. Either they retain a fre-
guency or they drop it. Ideal filters stabilize the resulea# single pass; further applications do
not modify the result any more in the spectral domain (nohédpatial domain!). Unfortunately,
it can be shown that because practical linear filters haveta karnel in the spatial domain, they
cannot be ideal. It might be impossible to build ideal filidsat they nevertheless serve as a
reference because it is pointless to repeat the filteringga®

The notion of frequency is irrelevant in nonlinear imagegassing. Nonlinear operators op-
erate in the initial domain, either globally or locally. Amportant class of nonlinear operators
computes rank statistics inside a moving window. For exaftpemedian operatothat selects
the median from a collection of values taken inside a mowviiegllwindow centered oxand that
allocates the median value 4 f)(x) is known to be efficient for the removal sélt-and-pepper
noise (Figurel). However, in some cases, the median filter oscillates asrsiroFigure2.
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FIGURE 1. Effect of a median filter. (a) Original grey-scale imad®, griginal
image corrupted by noise, and (c) filtered image.
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FIGURE 2. Successive applications of a three-pixel wide mediaer filh a binary
image may result in oscillations.

Oscillations may not be common in practice, but they stifita@oubts on the significance of
the output function. Therefore, the behavior of median afpes has been characterized in terms
of root signals. Technically, a root signdlof an operator, which is sometimes calledixed
point, is a function that is invariant to the applications of thaeator for each locatiorvx € &,
Ww(f)(x) = f(x), wheref is the root signal.

The existence of root signals is not restricted to the medgrator. Let us consider a simple
example of a one-dimensional constant functgin) = k and a linear filter with an impulse
responsen(x). The filtered signal(x) is the convolution ofg(x) by h(x): r(x) = [T2g(t —
x)h(t)dt = k [T h(t)dt = k#(0), where#(0) is the Fourier transform df(t) taken forf = 0.

In the case of an ideal filter#7(0) = 1 so thatr(x) = k = g(x). This illustrates that, up to
a constant, root signals for linear operators typicallylude constant-valued or straight-line
signals.

For nonlinear operators, there is a property somewhatainalthat of an ideal filter for linear
processing. Mathematical morphology uses a propertycalEmpotence
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Definition 1. Consider an operatap on a complete latticé.#, <), and letX be an arbitrary
element ofZ. An operatony is idempotentf and only if

(1) Y(P(X)) = Y(X)

for any X of .Z. In the following, we use this notation or the operator cosifon: Yy = (.

In contrast to the case of ideal filters, it is possible to enpént idempotent operators. There-
fore, the property is part of the design of filters and not gugbal; idempotence is chosen as one
of the compulsory property for the operator. This explaitywany idempotent operators have
been proposed: algebraic filters, morphological openiatjsbute openings,...

Idempotence might be one of the requirements in the design operator, it does not suffice!
For example, an operata@r that maps every function tg(x) = — is idempotent but useless.
Hereafter, we present additional properties to completeathebraic framework and elaborate
on the formal definition of openings.

1.2. Toward Openings

By definition, a notion of order exists on a complét#’, <). The property of increasingness
guarantees that an order between objects in the latticesepred (remember that we deal only
with objects that belong to a unique lattice, thaXigp(X) € . and there is only one notion of

order<). That s,

Definition 2. The lattice operatoy is calledincreasingf X <Y implies@/(X) < (Y) for every
X, Y e Z.

Let ¢ be an operator o, and letX be an element ofZ for which ¢(X) = X. ThenX is
calledinvariant undery or, alternatively, dixed pointof . The set of all elements invariant
undery is denoted by Inyy) and is called thénvariance domairof . The Tarski’s fixpoint
theorem specifies that the invariance domain(lpy of an increasing operatay on a complete
lattice is nonempty.

Increasingness builds a bridge between ordering relabefare and after the operator. But,
asX andy(X) are defined on the same lattice, one can also conaoay(X), leading us to
define additional properties:

Definition 3. Let X, Y be two sets (or functions) of a lattigeZ’, <). An operatory on.Z is
called

e extensivef (X) > X for everyX € .Z;
e anti-extensivef (X) < X for everyX € .Z.

In more practical terms, increasingness tells us if an arddre source lattice is preserved in
the destination lattice, idempotence if the applicatiothef operator stabilizes the results, and
extensivity if the result is smaller or larger than its saurd-igure3 shows these remarks in
illustrative terms:f (x) < g(x) impliesy(f) < y(g), y(f(x)) < f(x), andy(g(x)) < g(X).
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FIGURE 3. lllustrations of increasingness and anti-extensigy.and (b) Orig-
inal grey-scale imagé (x) and after processing with an opening operatofc)
and (d) Similar displays for a whiter imaggx).

When an operatap is both increasing and idempotent, it is calledadgebraic filter Regard-
ing the extensivity property, there are two types of algibiitiers: anti-extensiver extensive
algebraic filters are respectively callatfjebraic opening®r algebraic closings Openings and
closings share the common properties of increasingnesglangpotence, but are dual with re-
spect to extensivity. Thanks to this duality, we can limi gtope of this chapter to openings;
handling closings brings similar results.

Figure4 shows the effect of an algebraic openingt@at rounds grey-scale values to a closest
inferior multiple of an integen; this operator is callequantizationin signal processing. It is
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(@) f(x) (b) Quo(f(x)) (€) Qso(f (%))

FIGURE 4. Quantization operator. (a) Original grey-scale imad®, ihage
rounded to the closest inferior multiple of 10, and (c) imemended to the closest
inferior multiple of 50.

increasing, anti-extensive, and idempotent, but it shbeldoted that if noné (x) is a multiple
of n, thenf(x) # Y(f(x)) for all x € &. In other words, quantization may produce values that
are not present in the original image and thus have questi@statistical significance.

Note that the definition abrder is a pointwise propertyf (x) is compared witlg(x) or y(fx))
but not compared with the value at a different location éxilixel in image analysis). In prac-
tice, however, neighboring pixels share some common palysignificance that, for example,
rank operatorsexplore. A rank operator of rarkkwithin a discrete sliding window centered at
a given locatiorx is obtained by sorting in ascending order the values fallisgle the window
and by selecting as output value fathekth value in the sorted list. Some of the best-known rank
operators are the local minimum and maximum operators. lmenaatical morphology, these
operators are referred to amsionanddilation, respectively, and the window itself is termed a
structuring elemenor astructuring set There filters are also referred torasm- or max-filtersin
the literature. The presence of some interaction betweighbering pixels introduced by rank
operators is why their characterization becomes moreegithg.

Consider a complete lattiqeZ, <). To elaborate on the notion of neighborhood, we propose
the definition of a property callespatiality.

Definition 4. An operatory on (£, <) is said to bespatialif for every locationx € & and for
every functionf, there existy € & such that

) W(t(x) = f(y),

and at least ongis different fromx. The trivial case ok =, for everyx € &, is thus excluded.
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As explained previously, the quantization operator is pattigl because it does not consider
the neighborhood of.

Assuming that an image is the result of an observation, thedlenthe choice of the neigh-
borhood for findingy, the higher the physical correlation between pixels will kn purpose,
there is no notion of distance betweeandy in the definition of spatiality, although one hopes
that operators with a reasonable physical significanceldhestrict the search foy to a close
neighborhood ok.

Spatiality constrains operators to select values in thghteirhood of a pixel. But the under-
lying question that is twofold remains: (1) Does an operdtore any input to a root signal (this
is called theconvergence propertyand (2) if not, do oscillations propagate? Root signalsehav
been studied with a particular emphasis on median filters§/Aand Gallagher, 1982; Arce and
McLoughlin, 1987; Astola et al., 1987; Eberly et al., 199tkRkardt, 2003; Gallagher and Wise,
1981).

The convergence property is of no particular interest femgotent operators, @y (f)) =
Y(f), so that the question becomes that of determining the sebgetationsx € & such that
f(x) = @(f(x)). Indifferent terms, the study of the invariance domain(iyis a key to a better
understanding ofy; indeed, characterizing locations for a functibmvith respect tay can help
implement the operator (as shown in Van Droogenbroeck an&l8y@005).

1.3. Anchors

To analyze the behavior of some operators, we introduceahespt ofanchors We now define
this concept, which can be seen as an extension of that &f.rAatanchor is essentially a version
of the root notion where the domain of definition is reduced subset of it.

Definition 5. Given a signalf and an operato on a complete latticé.#, <), the pair com-
prising a locatiorx in the domain of definition of and the valuef (x) is ananchorfor f with
respect tay if

®3) Y(H)(x) = ().

In marketing terms, one would say “The right value at thetrghce.”

The set of anchors is denotég, (f). Note that Definitiorb differs from the initial definition
provided in Van Droogenbroeck and Buckley (2005) to empleeitie role of both the location
x and the value of (x). We provide an illustration in Figurg. In this particular case, there is
no evidence that anchors should always exist. Take a gedg-sBnage whose valudgx) are all
odd, then Q(f) has no anchor, althoughand Q( ) look identical.

The existence of anchors is an open issue. Also it is iniagess determine whether an order
between operators implies a similar inclusion order bebhnagchor sets. In genergh < y»
is no guarantee to establish an inclusion of their respecimnchor sets. However, drawings
(d) and (e) of Figures suggest thalf\q,, (f) € Ag,, (), which is true in this case because,
in addition to Qo(f) < Qio(f), Qso(f) “absorbs” Qo(f); more precisely, it is required that
Qso(f) = Qs0(Quo(f)) (see Theorers).
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FIGURE 5. Quantization operator and anchors whose locations aendm

black in (d) and (e). (a) Original image, (b) image roundedhi® closest infe-
rior multiple of 10, (c) image rounded to the closest infenaultiple of 50, (d)
and (e), respectively, anchors of (b) and (c).

Figure6 shows anchors of two other common operators: morphologrcaions and openings
(detailed further in Sectiof).

Papers dealing with roots, convergence, or invariance dwriacus either on the operator
itself or on the entire signal. Anchors characterize a fiomdbcally, but they also help in finding
algorithms, or interpreting existing algorithms. Van Dgeobroeck and Buckley (2005) pre-
sented algorithms applicable to morphological operatasetl on linear structuring elements
and show how they offer an alternative to implementatidkestihe one of van Herk (1992).
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(c) Anchors ofeg( )

(d) ys(f) | (e) Anchors ofys(f)

FIGURE 6. lllustration of anchors [marked in black in (c) and (e) Qriginal
image, (b) an image eroded by ax3 square structuring element, (c) anchor
locations ofeg(f), (d) an image opened by ax33 square structuring element,
and (e) anchor locations gf( f).

In this chapter, we use an algebraic framework, with an eytheigeometrical notions, to ex-
pose the notion odAnchors The remainder of this chapter is organized as follows: iBe&tre-
calls several definitions and details theoretical reswllisl\for morphological operators; anchors
related to morphological operators are caltfedrphological anchors This section rephrases
many results presented in Van Droogenbroeck and Buckley5j20Bection3 extends the no-
tion of anchors to the framework of algebraic operators. drtipular, we present the concept
of algebraic anchorghat applies for algebraic openings and closings. The neajotribution is
the proof that if some operators might have no anchors (rdmeemhe case of the quantization
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operator Q of an image filled with odd grey-scale values), classes ohmgs and closings,
others than their morphological “brothers,” have anchiors,

2. MORPHOLOGICAL ANCHORS

After a brief reminder on basic morphological operators,emgphasize the role of anchors in
the context of erosions and openings by discussing thesteamte and density. It is shown that
anchors are intimately related to morphological openings@osings (their duals), and that the
existence of anchors is guaranteed for openings. Furthretrnias possible to derive properties
useful for the implementation of erosions and openingsti@e8& generalizes a few results in
the case of algebraic openings.

2.1. Set and Function Operators

If & is the continuous Euclidean spdRe or the discrete spacé”, then the translation ofby b
is given byx+ b. To translate a given st C & by a vectorb € &, it is sufficient to translate all
the elements oX by b: X, is defined byX, = {x+b|x € X}. Due to the commutativity of-, X,
is equivalent tdox, whereby is the translate db by all elements oK.

Let us consider two subseXsandB of &. The erosion and dilation of these sets by eBsate
respectively defined as

(4) XoB=(1Xp={pec&|ByCX},
beB
(5) X®B=|JX = JBx={x+b|xeX,beB}.
beB xeX

ForX @B, X andB are interchangeable, but not for the erosion, where it isired thatB, be
contained withinX. Note that there are as many erosions asBefs B serves to enlighten some
geometrical characteristics &, it is called astructuring elemenbr structuring set Although
the window shape might be arbitrary, it is common practicapplied image analysis to use
linear, rectangular, or circular structuring element® tontains the origiro,

(6) XoB=[\Xp=| [ Xub]|NX,
beB beB\{o}

which is included inX. Therefore, ifo € B, the erosion and dilation are, respectively, anti-
extensive and extensive. In addition, both operators areasing but not idempotent.

Because erosions and dilations are, respectively, argnsikte and extensive (when the struc-
turing element contains the origin), the cascade of an@nasnd a dilation suggests itself. This
set, denoted b¥ o B, is called theopeningof X by B and is defined by

(7) XoB=(X&B)®B.
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FIGURE 7. Opening and closing with a bal

Similarly, theclosingof X by B is the dilation ofX followed by the erosion, both with the same
structuring element. It is denoted Bye B and defined by e B = (X & B) © B. Dilations and
erosions are closely related although not inverse opexatprecise relation between them is
expressed by the duality principle (Serra, 1982) that stiuat

(8) XoB=(X°@B)® or X&B=(X°aB)°,

where thecomplemenbof X, denoteob(vc, is definedvae(C ={pe &|p¢ X}, and thesymmetric
or transposedset of B C & is the setB defined a8 = {—b|b € B}. Therefore, all statements
concerning erosions and openings have an equivalent farmliledions and closings and vice
versa.

WhenB contains the originX © B is the union of locationg that satisfyB, C X. When a
dilation is applied to this set, the resulting set sypgdike contributions, which are equivalent
to Bp. SoX o B is the union ofB,, that fits intoX:

©) XoB={Bp|Bp € X}.

In addition, it can be shown thato B is identical toX o Bp, so that the opening does not depend
on the position of the origin when choosiBg The interpretation oK o B as the unior{Bp| Bp C

X} is referred to as thgeometrical interpretatiorof the morphological opening. A similar
interpretation yields for the closing. The closing is thenptementary set of the union of all the
translatedB, contained inX®. Figure7 illustrates an opening and a closing with a ball.
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The geometrical interpretation suffices to prove thaX if B is not empty, then there are at
least #B) anchors, where (B) denotes theardinality or areaof B. The existence of anchors
for X © B is less trivial; assume that is a chessboard ar8l= {p}, wherep is located at the
distance of one square of the chessboard. In this ¢aseB = X, andX NXp = 0; Axep (X) is
empty. To the contrary, ib € B andX & B is not empty, then the erosion ®fby B has anchors.
In the following, we define operators on grey-scale imagediaen discuss the details of anchors
related to erosions and openings.

Previous definitions can be extended to binary and greyesuoges. Iff is a function and
b € &, then thespatial translateof f by b is defined byfy(x) = f(x—b). The spatial translate
is also callechorizontaltranslate. Theertical translate used later in this chapter, of a function
f by a valuev is defined byfY(x) = f(x) +v. The vertical translate shifts the function values in
the grey-scale domain.

The erosion of a functiori by a structuring elemer is denoted byeg(f)(x) and is defined
as the infimum of the translations dfby the elements-b, whereb € B

(10) ea(f)(x) = /\ fop(¥) = /\ f(x+b).
beB beB

Likewise, we define the dilation df by B, dg(f)(x), as

(11) ds(f)(x) = \/ fo(x) = \/ f(x—b).
beB beB

Note that we consider so-called flat structuring elementsengeneral definitions using a non-
flat structuring elements exist but they are not consideegd.h

Just as for sets, thmorphological openings(f) andclosinggs(f) are defined as composi-
tions of erosion and dilation operators:

(12) ye(f) = d(es(f)),
(13) @s(f) = es((t)).

Figure8 shows the effects of several morphological operators omage.

Again, gg(f) and dg(f), andys(f) and gs(f) are duals of each other (Serra, 1982), which
is interpreted as stating that they process the foregronddree background symmetrically. If,
by convention, we choose to represent low values with dax&lgiin an image (background)
and large values with white pixels (foreground), erosionkarge dark areas and shrinks the
foreground.

From all the previous definitions, it can be seen that erssiditations, openings, and closings
arespatial operatorsas defined previously. They use values taken in the neitolook

Heijmans (1984) and other authors have shown that set @pgi@n be extended to function
operators and hence the entire apparatus of morphologytsrissapplicable in the grey-scale
case as well. The underlying idea is to slice a functionto a family of increasing sets obtained
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(@) f(x) (b) ea(f (c) %(f)

(d) y(f (€) ¢s(f)

FIGURE 8. Original image (a), erosion (b), dilation (c), opening, @hd closing
(e), with a 15x 15 square.

by thresholdingf. Without further details, consider a complete lattice R). We associate
a series of threshold sets faas defined by (Figurg)

(14) X(t) ={xe &| f(x) >t}

Note thatX(t) is decreasing ih and that these sets obey the continuity condition

(15) X(t) = [X(s)

s<t
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]

X

X(t)

FIGURE 9. The profile of a functiorf and one of its threshold sets.

In addition, there is a one-to-one correspondence betwaercion and families of sets(t). In
fact, the functionf can be recovered from the seriesxdt) by means off (x) = \/{t|x € X(t)};

this is thethreshold superposition principl®ne interesting application of the correspondence is
the possibility to interpret an opening dras the union oB that fits in the threshold sets. From
an implementation point of view, this leads to alternatiedirdtions for morphological opera-
tors. Although morphological openings were defined as tkeaxde of an erosion followed by a
dilation [see Eq.12)], this does not mean that one must implement an opening@ogpto its
definition. Examples of the conclusion are, among otheestvilo implementations of an opening
with a line proposed in Van Droogenbroeck (1994) and Vin¢&894). These implementations
scans the image line by line and use threshold sets to cortiputgpening.

2.2. Theory of Morphological Anchors

Let us first consider the simple case of the set opening loy B. If X is empty,X o B is empty,

and there is no anchor. Similarly)f= & andBiis finite, X o B = &, all points are again anchors.
Leaving these trivial cases, let us takecontaining some elements 6t AsXoBC X, if XoB

is not empty, all locations oX o B are anchors. Therefore, in the binary case, anchors do alway
exist for non-empty sets.

For openings, the notion of anchors is linked to that of irarae domain. Remember that the
opening ofX by B is the union of the translate & that fit intoX. Therefore, the corresponding
invariance domain oK o B is given by InyXoB) = {Y @ B|Y € &(&)}. Accordingly, if XoB
is not empty, there exists a sétand, asX o B C X, the amount of anchors must be larger than
#(Y) +#(B) for continuous sets (¥) +#(B) — 1 on a digital grid).

If Y is an opening by, then one can derive, from the decompositiorf &y threshold sets or
equivalently by the geometrical interpretation of an opgnthat the lower bound of a function
f is an anchor, if the lower bound exists. However, some tapolb issues arise here. To
circumvent the case of functions such &) = )—1( for x > 0 which have no lower bound, we
have previously restricted the range of grey-scale valoesftnite set (which means that it is
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countable) or a closed interval. Likewise, we must deal iiitfie structuring elements to be
able to count the number of anchors. Both finiteness assunspéce used in the following.
Consequently, there is at least one global minimum, and st &ee anchor point. That is,

Theorem 1. Consider a finite structuring element Bie set of anchors of a morphological
opening is always non-empty:

(16) Ay (F) #0.

We provide an improved formal statement on the number of@isdior openings later.

Note that the position of the origin i has no influence on the set of anchorsg(ff ). This
originates from the corresponding property on the opeitgelf, that is,ys(f) = yg,(f), for any
p (on a infinite domain).

Similar properties do not hold for erosions. In fact, theafetnchors of a morphological ero-
sion may be empty, and the location of the origin plays a §izamt role; a basic property states
thatX © By = (X© B)_p. Figure10 shows two erosions with a same but translated structuring
element. Note that the choice of the origin in the middi8a$ no guarantee for the number of
anchors to be larger.

Again, based on the interpretation of openings in terms &siold sets, larger structuring
elements are less likely to lead to large sets of anchorgekhdarge structuring elements do not
fitinto higher threshold sets, so that at higher grey-sealel$ there are fewer anchors. Figlifie
shows the evolution of the cardinality &f; (f), as the size oB increases.

2.3.Local Existence of Anchors

Becausedk( f) is defined ad/,g f(x— b), the dilation is aspatial operator. So the supremum
(or maximum for real images) is reached at a given locatisnch thaidg(f)(x) = f(p), where
p=x—b. Butif b/ € B, thenp € By; By is the symmetric oB translated by. Up to a translation,
Bx = x+ B defines the neighborhood where the supremunx fzan be found. Intuitively, there
are as many anchor candidates &g( f) as disjoint sets likéBy. Similar arguments lead to a
relation valid for erosions. The following proposition g&the respective neighborhoods:

Proposition 1. If B is finite and x is any point in the domain of definition of e

(17) %(f)(x) = f(p)
(18) es(f) ) = f(a)

for somep € By, and somej € By.

We can combine Eqs1{) and (L8) to find the neighborhoods of openings and closings. From
Eq. (12), we haveys(f) = dg(eg(f)). Therefore,s(f)(x) = es(f)(p) with p € Byx. Similarly,
es(f)(p) = f(q) with q € Bp. So we haves(f)(x) = f(q), andq e (B® B)x = (B& B)x. For
the closing, the neighborhood is identical. This can be sarneed as
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| (d) A'n(;hlor—s oféB(f) ” (.ej' Anchors ofeg, ()

FIGURE 10. Original image (a), erosion i (b), erosion byB, (c), and their
anchor sets marked ifi, respectively, (d) and (eBis a 11x 11 centered square
andp= (5, 5).

Proposition 2. If B is finite and x is any point in the domain of definition of e

(19) w(f)(x) = f(p)
(20) @w(f)(x) = f(a)

for somep, g € (B® B)x.

As mentioned previously, the openings and closings aresisee to the location of the origin
of the structuring element. Let us considér instead ofB and compute the corresponding
neighborhood. A$B;) = (B)_r, this neighborhood becoméB; ©B;)x = (B&B)xir—r = (B®
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FIGURE 11. Percentage of opening anchors with respect to a sizenpsen,

B is ann x n square structuring element and the percentage is the ratleeo
cardinality of Ay, (f) to the image size. The figure also displays the lower bound
established later in the chapter.

B)x. Also, note thaB® B always contains the origin, which means that (B B)y in all cases.
To the contrary, iB does not contain the origin, the neighborhood &br a dilation (that isBy,
does not contair, nor doeBy for the erosion).

Let us now consider thad € B. Then the dilation is extensivef(x) < dg(f)(x). If f is
bounded, then there existss & such thatf(r) is the upper bound of. Asr belongs to its
own neighborhood ané(r) is an upper boundg(f)(r) < f(r) too. This means thdt, f(r)) is
an anchor with respect to the dilatiods(f)(r) = f(r). In other words, thér, f(r)) pair of an
upper bound is an anchor for the dilation when the strucgueilemenB contains the origin.

In contrast to the cases of dilations and erosions, the nuaflachors for the opening is not
limited by the number of lower or upper bounds. To get a bétte@er bound of the cardinality
of anchors, we establish a relationship between erosiomaas@nd openings. By definition and
according to Eq.18),

(21) es(f)(x) = A f(x+b)= /\ f(q).

beB qeByx
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As B is finite, there existg € By such that

(22) es(f)(x) = f(a).
Next we show thatq, f(q)) is an anchor for the opening. As before, note that Bx implies

~

X € (B)q. Now

(23) wf)@ = \/ e(f)r)
re(B)q

(24) > eg(f)(x)

(25) = f(q).

As before, we use the anti-extensivity property of an opgrimat isys(f) < f. This proves that
ve(f)(q) = f(g) and therefordq, f(q)) is an anchor for the opening. The following theorem
establishes a formal link between erosion and opening ascho

Theorem 2. If B is finite and x is any location in the domain of definitionfpthen

(26) ea(f)(¥) = ys(f)(p)
for some pe Bx. Moreover(p, f(p)) is an anchor fory(f), that is
(27) we(f)(p) = f(p).

The density of anchors for the opening is thus related toitteecf By. It is also true that for
each(B @ B)x-like neighborhood, there is an anchor fgf( f). To prove this result, remember
that
(28) v(f)(x) = ea(f)(p) = f(q)
for somep € By andq € Bp. Next, we want to prove thdt, f(q)) is an anchor.

By definition, ys(f)(q) may be written as

(29) w(f)@=\/ e(f)r).
re(B)g

Howeverr € (B)q implies thatq € B;. Then, according to Eq26),
(30) w(f)(@ = \/ es(f)(r)>es(f)(p)

re(Blg
and, asg(f)(p) = f(a),
(31) ye(f)(a) > es(f)(p) = f ().
But openings are anti-extensive, which means {gét)(q) < f(q). This proves thatq, f(q))
is an opening anchor.

Theorem 3. If B is finite and x is any point in the domain of definition ofHfen
(32) w(f)(x) =w(f)(a) = f(q)

~

for some g (B® B)x.
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Theorems2 and 3 lead to bounds for the number of anchors because they eftabk ex-
istence of anchors locally. Intuitively, regions with a stant grey-scale value contain more
anchor points; in such a neighborhood all points will be anshBut the number of anchors is
also related to the size of the structuring element. The@specifies that at least one opening
anchor exists for each region of typ8® B)x. Surprisingly, it is Theorerg, which links erosion
to opening, that provides the tightest lower bound for thesdg of opening anchors:

1
(33) HE)
This limit is the minimum proportion of opening anchors ained in an image; it is plotted
on Figurell. Itis reachable only i’ can be tiled by translations & Where such tiling is not
possible, for example, whdB is a disk, this bound is conservative. Note also that the mumb
of opening anchors is expected to decrease when the sBenafeases. This phenomenon is
illustrated in Figurel2, where opening anchors have been overwritten in black.

2.4. Algorithmic Properties of Morphological Anchors

In addition to providing a weak bound for the number of anshd@heorenB has an important
practical consequence. It shows that all the informaticaded to computgs( ) is contained in
its opening anchors. In other words, from a theoretical jpafiview, it is possible to reconstruct
ye(f)(x) from a subset oA, (f). The only pending question is how to determine this subset of
Ay (). Should an algorithm be able to detect the location of ogeairchors that influence their
neighborhood, it would provide the opening for exdmmediately. Unfortunately, unlesgx)
has been processed previously and information on ancherbden collected, there is no way
to locate anchor points. But with an appropriate scanningraadd a linear structuring element,
it is possible to retain some information abduto locate anchor points effectively. Such an
algorithm has been proposed by Van Droogenbroeck and Bu¢k85). Figurel3 shows the
computation times of such an algorithm for a very large imagg a linear structuring elemelnt
whose length varies. For this figure, one image was builtlmgtpieces of a natural image, the
other was filled randomly to consider the worst case.

An interesting characteristic of this algorithm is that tmenputation times decrease with the
size of the structuring element. To explain this behaviemember that the number of anchors
also decreases with the size ®f Because the algorithm is based on anchors, there are fewer
anchors to be found. Once an anchor is found, it is efficiengropagating this value in its
neighborhood.

We have thus so far worked on the opening, but we can use Thediand anchors for a
different algorithm to compute the erosion. Because the fsetasion anchors may be empty,
we cannot rely on erosion anchors to develop an algorithrongpaite the erosion. However, itis
known (Heijmans, 1994) that the erosionfof equal to the erosion gk (f): eg(f) = ea(ys(f))
for any functionf andB. The conclusion is that the computation of erosions shoalthdsed
on opening anchors rather than on erosion anchors. Commutaties of such an algorithm for
several erosions are displayed in Figli¥e side by side to that of the opening.
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(C) yi1x1a(f) (d) yo1x21(f)

FIGURE 12. Density of opening anchors for increasing sizes of thecgiring
element. From left to right, and top to bottom: original (aplaopenings with a
squared structuring elemet(of size 3x 3, 11x 11, and 21x 21 respectively).

The algorithm for the erosion is slower for two reasons: Aushare to be propagated in
a smaller neighborhood and the propagation process is noonglicated than in the case of
the opening. However, this shows that opening anchors aceuseful for the computation of
erosions.

Note that the relative position of the computation timesrearis unusual. Openings are de-
fined as the cascade of an erosion followed by a dilation, ®@esl computation of openings
would be expected. Figurkt contradicts this belief.
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FIGURE 13. Computation times on two images (of identical size).

To close the discussions on morphological anchors, let amae the impact of the shape
of B on the implementation. The shape B®fis usually not arbitrary: Typical shapes include
lines, rectangles, circles, hexagons, and so oB. i#f constrained to contain the origin or to be
symmetric, we can derive useful properties for implemeéonat

Suppose, for example, thgp, f(p)) is an anchor with respect to the erosiyif) and thaB
contains the origim. Then the dilation is extensivéd(f) > f ) and therefore

(34) f(p) =es(f)(p) < d&(ea(f))(P) = ya(F)(P).

But openings are anti-extensivgs(f) < f) so thatys(f)(p) = f(p). In other words, an anchor
for eg(f) is always an anchor fogs( f) whenB contains the origin as below,

Theorem 4. If o € B and(p, f(p)) is an anchor for the erosiogg(f), then
(P, F(p) € Ay ().

Another interesting case occurs wHgis symmetric (that is wheB = B). This covers being
arectangle, a circle, an hexagon, and so on (many softwakages propose only morphological
operations with symmetric structuring elements to faatiéithandling border effects). Anchors
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FIGURE 14. Computation times of two algorithms that use opening arscto
compute the erosion and the morphological opening.

of operations wittB andB then coincide and it is equivalent to scan images in one ardar
the reverse order.

3. ANCHORS OF ALGEBRAIC OPENINGS

The existence of anchors has been proven for morphologiealings. The question is whether
the existence of anchors still holds for other types of opgsiior even for any algebraic opening.
From a theoretical perspective, an operator is calledlgabraic openingf it is increasing
anti-extensive and idempotent Therefore, algebraic openings include but are not limtted
morphological openings. Known algebraic openings are@peaings (Vincent, 1992), openings
by reconstruction (Salembier and Serra, 1995), attribpgsmgs (Breen and Jones, 1996), and
so on. The family of algebraic openings is also extensitde¢hare exist properties, like the one
given hereafter, that can be used to engineer new openings.

Proposition 3. If y is an algebraic opening for everyd |, then the supremuryyic, ¥ is an
algebraic opening as well.
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Attribute openings are most easily understood in the binasg. Unlike morphological open-
ings, attribute openings preserve the shape of X sbecause they simply test whether or not a
connected component satisfies some increasing crit€ricalled anattribute An example of
valid attribute consists of preserving a ¥eff its area is superior ta and removing it otherwise.
This is, in fact, the surface area opening. More formallg, dktribute openingr of a connected
setX preserves this set if it satisfies the criterion
e (X) = {X, if X satisfiesl",

35
(35) 0, otherwise

The definition of attribute openings can be extended to nomected sets by considering the
union of all their connected components. Since the atgi®lincreasing, attribute openings can
be directly generalized to grey-scale images using thestiold superposition principle. Such
openings always have anchors. But do all openings have as®hor

The reason we fail to prove that all openings have anchors ®lbws. Let us consider
an algebraic opening. Sincey is increasing (as it is an opening),is upper bounded by the
identity operator:y <. Assume now tha#; (y) = 0, theny < |. Remember thay is also
anti-extensive; it follows thayy < yl. Would it instead be here thay < yl (this property is
not true!), then using the property of idempoteryge= y, and one would conclude that< v,
which is impossible and anchors would exist in all the cadest yy < yl and notyy < W,
so that we derive that the anti-extensivity itself does row/jale a strict order and that it gives
some freedom on the operator to allow functions not to haweesanchors. The properties of an
algebraic opening are not sufficient to guarantee the edstef anchors. We need to introduce
additional requirements on an algebraic opening to enbarexistence of anchors.

Openings that explicitly refer to the threshold value caveh@o anchor. Remember the case
of the quantization operator @pplied on an odd image. Obviously,fifx) = 3, Q(f)(x) = 2;
there is no anchor. Similarly, consider an operaggif)(x) = XA f(x). This operator is an
opening, but ifg(x) = x+ 1, Y(g)(x) = x; again, there is no anchor. This time the opening does
not refer to threshold levels but explicitly to the locati@md not theelative location.

Two constraints are considered hereafter. The first canstspatiality, relates to the usual
notion of neighborhood as used in the section on morphadbgicchors, and the second con-
straint,shift-invariance relates to the ordering of function values.

Definition 6. An operatorg is shift-invariantif for every functionf, it is equivalent to translate
f vertically byv (v e R) and apply$ or to apply¢ on the vertical translaté’ (see previous
definition of a vertical translate). In formal terms, for gvéunction f and every real valug
(Ve R):

(36) B (1) = (£ () +v) = B(F) () +.

3.1. Spatial and Shift-Invariant Openings

Section2 showed that the minima of a function automatically providehers for every morpho-
logical opening. A simple example suffices to show that tinegoprty does not necessarily hold
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for any opening. Let us reconsider the previous examplesiazwhstant functio, defined as
k(x) =kforallxe &. If ¢(f)=Q(f), theny(3) = 2. In addition, fory(f)(x) = xA f(x), we
havey(3) # 3. Therefore, the processing of a constant function by aebaégc opening can pro-
duce a nonconstant function or a constant that takes aetlitfenlue. If entropy is meant here as
the cardinality of grey-scale values after processing; tbehe contrary of what morphological
operators suggest, the entropy of an algebraic opening meagase. Obviously, these situations
do not occur for spatial openings.

Morphological openings are a particular casespétial openingsdenotedé hereafter. We
have proven that the minimum values of a function are anchtrsrespect to a morphological
opening. Let us denote by minthe minimum of a lower bounded functidn and assume that
the minimum is reached fgo € &. Because is an openingé (f) < f for any functionf. In
particular,& (f)(p) < f(p) = mins. By definition of spatiality, for every location, including
there exists a locatiog such that (f)(p) = f(qg). But such a value is lower bounded by min
Therefore£ (f)(p) > mins, and& (f)(p) = f(p) = min;.

Theorem 5. Consider a spatial openin§. Then global minima of f provide all anchors fér

This theorem can also be rephrased in the following termsviéed a set of grey-scale values
of a function processed by an opening is a subset of the atiget of grey-scale values, there
are anchors. Indirectly, it also proves the existence oharsfor any spatial opening; to some
extent, it generalizes Theoren

Let us now consider the shift-invariance property. From acpecal point of view, shift-
invariance means that functions can handle offsets, owvalguitly that offsets have no impact
on the results except that the result is shifted by the saiisetof This is an acceptable theo-
retical assumption, but in practice images are defined byite Set of integer values (typically
{0, ..., 255}); handling an offset requires redefining the range of gmlesvalues to maintain
the full dynamic of values.

Consider a shift-invariant operatgr. Imagine, for a moment, that there is no anchor with
respect tap. Since¢ is anti-extensive (as it is an opening), f)(x) < f(x) becomes

(37) ¢(f)(x) < f(x)
for everyx € &. In other words, there exisfs > 0 such that
(38) ¢(F)(x%) +A < f(x).

By increasingnes# (¢ (f)+A) < ¢(f). After some simplifications and using the shift-invariance
property,¢ (¢ (f)+A) =d(¢(f))+A =¢(f)+A < ¢(f), which is equivalent tat < 0. But
this conclusion is incompatible with our initial statementA. Therefore,

Theorem 6. Every shift-invariant opening has one or more anchors. For every function f,

(39) Ay (f) #0.
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A subsequent question is whether the minimum is an anchgaydéess of the type of open-
ing. Let us build a constant function filled with the minimuralwe of f(x); this function is
denotedrin. Since an anchor does exist foi,, at least some of the values ofi, are an-
chors, though not necessarily all of them (see previousud&gons fory(f)(x) = XA f(X)).
Through increasingnessmin < f implies y(tmin) < y(f), wherey is an algebraic opening.
Anti-extensivity implies thaty(f) < f. We can conclude that there exigisc & such that
Y(Tmin) (P) = Tmin(P) < Y()(p) < f(p). So, if f(p) = Tmin, thentmin = y(f(p)). Therefore,

Theorem 7. If the set of anchors with respect to an algebraic openingusask non-empty, then
at least one global minimum of a function f is an anchor fort thgening.

This theorem applies for morphological, spatial, and shifariant openings but in the two first
cases, we have proven trat minima are anchors. Note, however, that anchors shouldyalwa
exist for this property to be true. Neither the quantizatperator Q@ nor (f)(x) = XA f(x)
meet this requirement.

3.2.Granulometries

In practice, one uses openings that filter images with sed#ferent degrees of smoothness. For
example, one opening is intended to maintain many detaitsth&r opening filters the image to
obtain a background image. When the openings are orderedawveeagranulometry

Definition 7. A granulometryon Fur(&) is a one-parameter family of openinfjg|r > 0}, such
that

(40) Vs < W, ifs>r
If vs < W, thenysyr > y¥s = Ve Also, < | implies thatysyy < ys. So thatysyy = ys. The

identity y s = s is proved analogously. It follows that a family of operatofsgranulometry
also satisfies the semigroup property:

(41) V¥s= Vel = Vs, SZT.

As a result, anchor sets are ordered like the openings ofraulgnaetry as below,

Theorem 8. Anchor sets of a granulometiy|r > 0} on Fun&’) are ordered according to
(42) Ay () CA,(T).

There is a similar statement for morphological openinggpp®seB containsA (that isA C B)
andBo A = B, then, according to Haralick, Sternberg, and Zhuang (1987)

(43) ye(f) < va(f).

For exampleB is a circle andA is a diameter, oB is a square and is one side of the square.
Note thatA C Bis not sufficient to guarantee thai( f) < ya(f). Applying Theoren8, we obtain

Corollary 1. For any function f, if AC B, BoA = B, and A B are both finite, then
(44) Ay (1) S Ay ().
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This theorem is essential for morphological granulomstrletells us that if we order a fam-
ily of morphological openings, anchor sets will be ordenexvérsely) as well. In fact, Vincent
(1994) developed on algorithm based on the concept of ogdrees that is based on this prop-
erty.

4. CONCLUSIONS

Anchors are features that characterize an operator andctidon This chapter has discussed
the properties of an opening and shown how they related tbaasc First, we have established
properties valid for morphological operators. Anchoraitdepend on the size and shape of the
chosen structuring element. For example, it has been prinaranchors do always exist for
openings and that global minima are anchors.

The concept of a structuring element is not explicitly presey longer for algebraic openings.
It also appears that some algebraic openings have no armhswrhe functions. However, with
additional constraints on the openings (that is, spatialitshift-invariance), the framework is
sufficient to ensure the existence of anchors for any functioln addition, it has been proven
that the existence of anchors then implies that some gloli@hma are anchors. This is an
interesting property that could lead to new algorithms mftiture.
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