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ABSTRACT

Opening and closing operators play an important role in the field of mathematical morphology,
mainly because of their useful property of idempotence, which is similar to the notion of ideal
filter in linear filtering. From a theoretical point of view, the study of openings has focused
on the algebraic characterization of the operators themselves. Morphological filters have been
studied for more than 30 years; the effects of the first filters (erosions,openings, and so on) are
known in depth. In discussing the effects of a filter, it is not only the operator that is studied but
also its relationship with the processed function or image and, in the particular case of mathe-
matical morphology, the structuring element. In addition, there are several approaches to this
analysis. For example, the analysis can consider the whole function or somesubparts of the
function, as in Van Droogenbroeck and Buckley (2005), who introduced the notion ofmorpho-
logical anchors. Anchors were defined in the context of morphological openings, as defined
by the cascade of an erosion followed by a dilation. The extension to other kinds of openings is
not straightforward. Despite the fact that all morphological openings induce the appearance of
anchors, some opening operators (like the quantization opening defined inthis chapter) might
have no anchors. This chapter presents the theory of anchors relatedto morphological erosions
and openings, and establishes some properties for the extended scope of algebraic openings.
It is shown under which circumstances anchors exist for algebraic openings and how to locate
some anchors; for example, it suffices for an opening to be spatial or shift-invariant to guar-
antee the existence of anchors. As for morphological openings, the existence of anchors may
help clarify some algorithms or lead to new algorithms to compute algebraic openings.
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1. INTRODUCTION

Over the years mathematical morphology, a theory initiatedby Matheron (1975) and Serra
(1982), has grown to a major theory in the field of nonlinear image processing. Tools of math-
ematical morphology, such as morphological filters, the watershed transform, and connectivity
operators, are now widely available in commercial image processing software packages and the
theory itself has considerably expanded over the past decade (Najman and Talbot, 2008). This
expansion includes new operators, algorithms, methodologies, and concepts that have led math-
ematical morphology to become part of the mainstream of image analysis and image-processing
technologies.

The growth in popularity is due not only to the theoretical work of some pioneers but also to the
development of powerful tools for image processing such as granulometries (Matheron, 1975),
pattern spectrum analysis-based techniques (Maragos, 1989) that provide insights into shapes,
and transforms like the watershed (Beucher and Lantuéjoul, 1979; Vincent and Soille, 1991)
or connected operators (Salembier and Serra, 1995) that help to segment an image. All these
operators have been studied intensively and tractable algorithms have been found to implement
them effectively, that is, in real time on an ordinary desktop computer.

Historically, mathematical morphology is considered a theory that is concerned with the pro-
cessing of images, using operators based on topological andgeometrical properties. According
to Heijmans (1994), the first books on mathematical morphology discuss a number of mappings
on subsets of the Euclidean plane, which have in common that they are based on set-theoretical
operations (union, intersection, complementation), as well as translations. More recently re-
searchers have extended morphological operators to arbitrary complete lattices, a step that has
paved the way to more general algebraic frameworks.

The geometrical interpretation of mathematical morphology relates to the use of aprobewhich
is a set calledstructuring element. The basic idea in binary morphology is to probe an image with
the shape of the structuring element and draw conclusions onhow this shape fits or misses the
regions of that image. Consequently, there are as many interpretations of an image as structuring
elements, although one often falls back to a few subset of structuring elements, such as lines,
squares, balls, or hexagons. In geometrically motivated approaches to mathematical morphology,
the focus clearly lies on the shape and size of the structuring element.

Algebraic approaches do not refer to geometrical or topological concepts. They concentrate
on the properties of operators. Consequently, algebraic approaches embrace larger classes of
operators and functions. But in both approaches the goal is tocharacterize operators to help
design solutions useful for image processing applications.

1.1. Terminology and Scope

Let R andZ be the set of all real and integer numbers, respectively. In this chapter, we consider
transformations and functions defined on a spaceE , which is the continuous Euclidean spaceR

n

or the discrete spaceZn, wheren ≥ 1 is an integer. Elements ofE are writtenp, x, . . ., while
subsets of elements are denoted by upper-case lettersX, Y, . . . Subsets ofR2 are also called
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binary sets or images because two colors suffice to draw them (elements of X are usually drawn
in black, and elements that do not belong toX in white).

Next we introduce an order onP(E ), the power set comprising all subsets ofE , that results
from the usual inclusion notion.X is smaller or equal toY if and only if X ⊆ Y. Note that we
decide to encompass the case of equality in contrary to strict inclusion⊂. The power setP(E )
with the inclusion ordering is a complete lattice (Heijmans, 1994).

This chapter also deals with images. Images are modeled asfunctions(denoted asf , g, . . .),
that map a non-empty setE of E into R, whereR is a set of binary values{0, 1}, a discrete
set of grey-scale values{0, . . . , 255}, or a closed interval[0, 255], defining, respectively,binary,
grey-scaleor continuousimages. The ordering relation≤ is given by “f ≤ g if and only if
f (x) ≤ g(x) for everyx ∈ E.” It can be shown that the space Fun(E , R) of all functions and
≤ form a complete lattice, which means among others that everysubset of the lattice has an
infimum and a supremum.

The frameworks ofP(E ) and⊆, or Fun(E , R) and≤, are equivalent as long as we deal with
complete lattices. Most results can thus be transposed fromone framework to the other. In the
following we arbitrary decide to restrict functions to be single-valued grey-scale images. Also,
for convenience, we use the unique termoperatorsto refer to operations that map sets ofE into
E or handle Fun(E , R). In addition, we restrict the scope of this chapter to operators that map
sets to sets, or functions to functions. This implies that both the input and the output lattices are
the same, or equivalently, that there is only one complete lattice under consideration. Operators
are denoted by greek lettersε, δ , γ, ψ, . . .

1.1.1.The Notion of Idempotence

Linear filters and operators are common in many engineering fields that process signals. As
an analogy, remember that every computer with a sound card contains a hardware module that
prefilters the acquired signal before sampling to prevent aliasing. Likewise, digital signals are
converted to analog signals by means of a low-pass filter.

The concept of a reference filter called anideal filter is often used to characterize linear filters.
Ideal filters have a binary transmittance with only two values: 0 or 1. Either they retain a fre-
quency or they drop it. Ideal filters stabilize the result after a single pass; further applications do
not modify the result any more in the spectral domain (nor in the spatial domain!). Unfortunately,
it can be shown that because practical linear filters have a finite kernel in the spatial domain, they
cannot be ideal. It might be impossible to build ideal filters, but they nevertheless serve as a
reference because it is pointless to repeat the filtering process.

The notion of frequency is irrelevant in nonlinear image processing. Nonlinear operators op-
erate in the initial domain, either globally or locally. An important class of nonlinear operators
computes rank statistics inside a moving window. For example, themedian operatorthat selects
the median from a collection of values taken inside a moving local window centered onx and that
allocates the median value toψ( f )(x) is known to be efficient for the removal ofsalt-and-pepper
noise (Figure1). However, in some cases, the median filter oscillates as shown in Figure2.
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(a) (b) (c)

FIGURE 1. Effect of a median filter. (a) Original grey-scale image, (b) original
image corrupted by noise, and (c) filtered image.
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FIGURE 2. Successive applications of a three-pixel wide median filter on a binary
image may result in oscillations.

Oscillations may not be common in practice, but they still cast doubts on the significance of
the output function. Therefore, the behavior of median operators has been characterized in terms
of root signals. Technically, a root signalf of an operator, which is sometimes called afixed
point, is a function that is invariant to the applications of that operator for each location:∀x∈ E ,
ψ( f )(x) = f (x), where f is the root signal.

The existence of root signals is not restricted to the medianoperator. Let us consider a simple
example of a one-dimensional constant functiong(x) = k and a linear filter with an impulse
responseh(x). The filtered signalr(x) is the convolution ofg(x) by h(x): r(x) =

∫ +∞
−∞ g(t −

x)h(t)dt = k
∫ +∞
−∞ h(t)dt = kH (0), whereH (0) is the Fourier transform ofh(t) taken for f = 0.

In the case of an ideal filter,H (0) = 1 so thatr(x) = k = g(x). This illustrates that, up to
a constant, root signals for linear operators typically include constant-valued or straight-line
signals.

For nonlinear operators, there is a property somewhat similar to that of an ideal filter for linear
processing. Mathematical morphology uses a property called idempotence.
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Definition 1. Consider an operatorψ on a complete lattice(L , ≤), and letX be an arbitrary
element ofL . An operatorψ is idempotentif and only if

(1) ψ(ψ(X)) = ψ(X)

for anyX of L . In the following, we use this notation or the operator composition: ψψ = ψ.

In contrast to the case of ideal filters, it is possible to implement idempotent operators. There-
fore, the property is part of the design of filters and not justa goal; idempotence is chosen as one
of the compulsory property for the operator. This explains why many idempotent operators have
been proposed: algebraic filters, morphological openings,attribute openings,...

Idempotence might be one of the requirements in the design ofan operator, it does not suffice!
For example, an operatorψ that maps every function tog(x) = −∞ is idempotent but useless.
Hereafter, we present additional properties to complete the algebraic framework and elaborate
on the formal definition of openings.

1.2. Toward Openings

By definition, a notion of order exists on a complete(L , ≤). The property of increasingness
guarantees that an order between objects in the lattice is preserved (remember that we deal only
with objects that belong to a unique lattice, that isX, ψ(X) ∈ L and there is only one notion of
order≤). That is,

Definition 2. The lattice operatorψ is calledincreasingif X ≤Y impliesψ(X)≤ψ(Y) for every
X, Y ∈ L .

Let ψ be an operator onL , and letX be an element ofL for which ψ(X) = X. ThenX is
called invariant underψ or, alternatively, afixed pointof ψ. The set of all elements invariant
underψ is denoted by Inv(ψ) and is called theinvariance domainof ψ. The Tarski’s fixpoint
theorem specifies that the invariance domain Inv(ψ) of an increasing operatorψ on a complete
lattice is nonempty.

Increasingness builds a bridge between ordering relationsbefore and after the operator. But,
asX andψ(X) are defined on the same lattice, one can also compareX to ψ(X), leading us to
define additional properties:

Definition 3. Let X, Y be two sets (or functions) of a lattice(L , ≤). An operatorψ on L is
called

• extensiveif ψ(X) ≥ X for everyX ∈ L ;
• anti-extensiveif ψ(X) ≤ X for everyX ∈ L .

In more practical terms, increasingness tells us if an orderin the source lattice is preserved in
the destination lattice, idempotence if the application ofthe operator stabilizes the results, and
extensivity if the result is smaller or larger than its source. Figure3 shows these remarks in
illustrative terms:f (x) ≤ g(x) impliesγ( f ) ≤ γ(g), γ( f (x)) ≤ f (x), andγ(g(x)) ≤ g(x).
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(a) f (x) (b) γ( f (x))

(c) g(x) (d) γ(g(x))

FIGURE 3. Illustrations of increasingness and anti-extensivity.(a) and (b) Orig-
inal grey-scale imagef (x) and after processing with an opening operatorγ; (c)
and (d) Similar displays for a whiter imageg(x).

When an operatorψ is both increasing and idempotent, it is called analgebraic filter. Regard-
ing the extensivity property, there are two types of algebraic filters: anti-extensiveor extensive
algebraic filters are respectively calledalgebraic openingsor algebraic closings. Openings and
closings share the common properties of increasingness andidempotence, but are dual with re-
spect to extensivity. Thanks to this duality, we can limit the scope of this chapter to openings;
handling closings brings similar results.

Figure4 shows the effect of an algebraic opening Qn that rounds grey-scale values to a closest
inferior multiple of an integern; this operator is calledquantizationin signal processing. It is
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(a) f (x) (b) Q10( f (x)) (c) Q50( f (x))

FIGURE 4. Quantization operator. (a) Original grey-scale image, (b) image
rounded to the closest inferior multiple of 10, and (c) imagerounded to the closest
inferior multiple of 50.

increasing, anti-extensive, and idempotent, but it shouldbe noted that if nonef (x) is a multiple
of n, then f (x) 6= ψ( f (x)) for all x ∈ E . In other words, quantization may produce values that
are not present in the original image and thus have questionable statistical significance.

Note that the definition oforder is a pointwise property.f (x) is compared withg(x) or γ( f x))
but not compared with the value at a different location (calledpixel in image analysis). In prac-
tice, however, neighboring pixels share some common physical significance that, for example,
rank operatorsexplore. A rank operator of rankk within a discrete sliding window centered at
a given locationx is obtained by sorting in ascending order the values fallinginside the window
and by selecting as output value forx thekth value in the sorted list. Some of the best-known rank
operators are the local minimum and maximum operators. In mathematical morphology, these
operators are referred to aserosionanddilation, respectively, and the window itself is termed a
structuring elementor astructuring set. There filters are also referred to asmin-or max-filtersin
the literature. The presence of some interaction between neighboring pixels introduced by rank
operators is why their characterization becomes more challenging.

Consider a complete lattice(L , ≤). To elaborate on the notion of neighborhood, we propose
the definition of a property calledspatiality.

Definition 4. An operatorψ on (L , ≤) is said to bespatial if for every locationx∈ E and for
every functionf , there existsy∈ E such that

(2) ψ( f (x)) = f (y),

and at least oney is different fromx. The trivial case ofx = y, for everyx∈ E , is thus excluded.
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As explained previously, the quantization operator is not spatial because it does not consider
the neighborhood ofx.

Assuming that an image is the result of an observation, the smaller the choice of the neigh-
borhood for findingy, the higher the physical correlation between pixels will be. On purpose,
there is no notion of distance betweenx andy in the definition of spatiality, although one hopes
that operators with a reasonable physical significance should restrict the search fory to a close
neighborhood ofx.

Spatiality constrains operators to select values in the neighborhood of a pixel. But the under-
lying question that is twofold remains: (1) Does an operatordrive any input to a root signal (this
is called theconvergence property), and (2) if not, do oscillations propagate? Root signals have
been studied with a particular emphasis on median filters (Arce and Gallagher, 1982; Arce and
McLoughlin, 1987; Astola et al., 1987; Eberly et al., 1991; Eckhardt, 2003; Gallagher and Wise,
1981).

The convergence property is of no particular interest for idempotent operators, asψ(ψ( f )) =
ψ( f ), so that the question becomes that of determining the subsetof locationsx ∈ E such that
f (x) = ψ( f (x)). In different terms, the study of the invariance domain Inv(ψ) is a key to a better
understanding ofψ; indeed, characterizing locations for a functionf with respect toψ can help
implement the operator (as shown in Van Droogenbroeck and Buckley, 2005).

1.3. Anchors

To analyze the behavior of some operators, we introduce the concept ofanchors. We now define
this concept, which can be seen as an extension of that of roots. An anchor is essentially a version
of the root notion where the domain of definition is reduced toa subset of it.

Definition 5. Given a signalf and an operatorψ on a complete lattice(L , ≤), the pair com-
prising a locationx in the domain of definition off and the valuef (x) is ananchor for f with
respect toψ if

(3) ψ( f )(x) = f (x).

In marketing terms, one would say “The right value at the right place.”

The set of anchors is denotedAψ ( f ). Note that Definition5 differs from the initial definition
provided in Van Droogenbroeck and Buckley (2005) to emphasize the role of both the location
x and the value off (x). We provide an illustration in Figure5. In this particular case, there is
no evidence that anchors should always exist. Take a grey-scale image whose valuesf (x) are all
odd, then Q2( f ) has no anchor, althoughf and Q2( f ) look identical.

The existence of anchors is an open issue. Also it is interesting to determine whether an order
between operators implies a similar inclusion order between anchor sets. In general,γ1 ≤ γ2
is no guarantee to establish an inclusion of their respective anchor sets. However, drawings
(d) and (e) of Figure5 suggest thatAQ50 ( f ) ⊆ AQ10 ( f ), which is true in this case because,
in addition to Q50( f ) ≤ Q10( f ), Q50( f ) “absorbs” Q10( f ); more precisely, it is required that
Q50( f ) = Q50(Q10( f )) (see Theorem8).
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(a) f (x) (b) Q10( f (x)) (c) Q50( f (x))

(d) Anchors of Q10( f (x)) (e) Anchors of Q50( f (x))

FIGURE 5. Quantization operator and anchors whose locations are drawn in
black in (d) and (e). (a) Original image, (b) image rounded tothe closest infe-
rior multiple of 10, (c) image rounded to the closest inferior multiple of 50, (d)
and (e), respectively, anchors of (b) and (c).

Figure6 shows anchors of two other common operators: morphologicalerosions and openings
(detailed further in Section2).

Papers dealing with roots, convergence, or invariance domains focus either on the operator
itself or on the entire signal. Anchors characterize a function locally, but they also help in finding
algorithms, or interpreting existing algorithms. Van Droogenbroeck and Buckley (2005) pre-
sented algorithms applicable to morphological operators based on linear structuring elements
and show how they offer an alternative to implementations like the one of van Herk (1992).
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(a) f (b) εB( f ) (c) Anchors ofεB( f )

(d) γB( f ) (e) Anchors ofγB( f )

FIGURE 6. Illustration of anchors [marked in black in (c) and (e)]. (a) Original
image, (b) an image eroded by a 3× 3 square structuring element, (c) anchor
locations ofεB( f ), (d) an image opened by a 3× 3 square structuring element,
and (e) anchor locations ofγB( f ).

In this chapter, we use an algebraic framework, with an eye onthe geometrical notions, to ex-
pose the notion ofanchors. The remainder of this chapter is organized as follows: Section 2 re-
calls several definitions and details theoretical results valid for morphological operators; anchors
related to morphological operators are calledmorphological anchors. This section rephrases
many results presented in Van Droogenbroeck and Buckley (2005). Section3 extends the no-
tion of anchors to the framework of algebraic operators. In particular, we present the concept
of algebraic anchorsthat applies for algebraic openings and closings. The majorcontribution is
the proof that if some operators might have no anchors (remember the case of the quantization
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operator Q2 of an image filled with odd grey-scale values), classes of openings and closings,
others than their morphological “brothers,” have anchors,too.

2. MORPHOLOGICAL ANCHORS

After a brief reminder on basic morphological operators, weemphasize the role of anchors in
the context of erosions and openings by discussing their existence and density. It is shown that
anchors are intimately related to morphological openings and closings (their duals), and that the
existence of anchors is guaranteed for openings. Furthermore, it is possible to derive properties
useful for the implementation of erosions and openings. Section 3 generalizes a few results in
the case of algebraic openings.

2.1. Set and Function Operators

If E is the continuous Euclidean spaceR
n or the discrete spaceZn, then the translation ofx by b

is given byx+b. To translate a given setX ⊆ E by a vectorb∈ E , it is sufficient to translate all
the elements ofX by b: Xb is defined byXb = {x+b|x∈ X}. Due to the commutativity of+, Xb
is equivalent tobX, wherebX is the translate ofb by all elements ofX.

Let us consider two subsetsX andB of E . The erosion and dilation of these sets by a setB are
respectively defined as

(4) X⊖B =
⋂

b∈B

X−b = {p∈ E |Bp ⊆ X},

(5) X⊕B =
⋃

b∈B

Xb =
⋃

x∈X

Bx = {x+b|x∈ X, b∈ B}.

ForX⊕B, X andB are interchangeable, but not for the erosion, where it is required thatBp be
contained withinX. Note that there are as many erosions as setsB. AsB serves to enlighten some
geometrical characteristics ofX, it is called astructuring elementor structuring set. Although
the window shape might be arbitrary, it is common practice inapplied image analysis to use
linear, rectangular, or circular structuring elements. IfB contains the origino,

(6) X⊖B =
⋂

b∈B

X−b =





⋂

b∈B\{o}

X−b



∩X,

which is included inX. Therefore, ifo ∈ B, the erosion and dilation are, respectively, anti-
extensive and extensive. In addition, both operators are increasing but not idempotent.

Because erosions and dilations are, respectively, anti-extensive and extensive (when the struc-
turing element contains the origin), the cascade of an erosion and a dilation suggests itself. This
set, denoted byX ◦B, is called theopeningof X by B and is defined by

(7) X ◦B = (X⊖B)⊕B.
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B

X

X ◦B X•B

FIGURE 7. Opening and closing with a ballB.

Similarly, theclosingof X by B is the dilation ofX followed by the erosion, both with the same
structuring element. It is denoted byX •B and defined byX •B = (X ⊕B)⊖B. Dilations and
erosions are closely related although not inverse operators. A precise relation between them is
expressed by the duality principle (Serra, 1982) that states that

(8) X⊖B = (Xc⊕ B̌)c or X⊕B = (Xc⊖ B̌)c
,

where thecomplementof X, denotedXc, is defined asXc = {p∈ E | p 6∈ X}, and thesymmetric
or transposedset ofB ⊆ E is the setB̌ defined asB̌ = {−b|b ∈ B}. Therefore, all statements
concerning erosions and openings have an equivalent form for dilations and closings and vice
versa.

WhenB contains the origin,X ⊖B is the union of locationsp that satisfyBp ⊆ X. When a
dilation is applied to this set, the resulting set sumspB-like contributions, which are equivalent
to Bp. SoX ◦B is the union ofBp that fits intoX:

(9) X ◦B = {Bp|Bp ⊆ X}.

In addition, it can be shown thatX ◦B is identical toX ◦Bp, so that the opening does not depend
on the position of the origin when choosingB. The interpretation ofX ◦B as the union{Bp|Bp ⊆
X} is referred to as thegeometrical interpretationof the morphological opening. A similar
interpretation yields for the closing. The closing is the complementary set of the union of all the
translatesBp contained inXc. Figure7 illustrates an opening and a closing with a ball.
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The geometrical interpretation suffices to prove that ifX ◦B is not empty, then there are at
least #(B) anchors, where #(B) denotes thecardinality or area of B. The existence of anchors
for X ⊖B is less trivial; assume thatX is a chessboard andB = {p}, wherep is located at the
distance of one square of the chessboard. In this case,X⊖B = Xp andX∩Xp = /0; AX⊖B(X) is
empty. To the contrary, ifo∈ B andX⊖B is not empty, then the erosion ofX by B has anchors.
In the following, we define operators on grey-scale images and then discuss the details of anchors
related to erosions and openings.

Previous definitions can be extended to binary and grey-scale images. Iff is a function and
b∈ E , then thespatial translateof f by b is defined byfb(x) = f (x−b). The spatial translate
is also calledhorizontaltranslate. Thevertical translate, used later in this chapter, of a function
f by a valuev is defined byf v(x) = f (x)+v. The vertical translate shifts the function values in
the grey-scale domain.

The erosion of a functionf by a structuring elementB is denoted byεB( f )(x) and is defined
as the infimum of the translations off by the elements−b, whereb∈ B

(10) εB( f )(x) =
∧

b∈B

f−b(x) =
∧

b∈B

f (x+b).

Likewise, we define the dilation off by B, δB( f )(x), as

(11) δB( f )(x) =
∨

b∈B

fb(x) =
∨

b∈B

f (x−b).

Note that we consider so-called flat structuring elements; more general definitions using a non-
flat structuring elements exist but they are not considered here.

Just as for sets, themorphological openingγB( f ) andclosingφB( f ) are defined as composi-
tions of erosion and dilation operators:

(12) γB( f ) = δB(εB( f )),

(13) φB( f ) = εB(δB( f )).

Figure8 shows the effects of several morphological operators on an image.

Again, εB( f ) andδB( f ), andγB( f ) andφB( f ) are duals of each other (Serra, 1982), which
is interpreted as stating that they process the foreground and the background symmetrically. If,
by convention, we choose to represent low values with dark pixels in an image (background)
and large values with white pixels (foreground), erosions enlarge dark areas and shrinks the
foreground.

From all the previous definitions, it can be seen that erosions, dilations, openings, and closings
arespatial operators, as defined previously. They use values taken in the neighborhood.

Heijmans (1984) and other authors have shown that set operators can be extended to function
operators and hence the entire apparatus of morphology on sets is applicable in the grey-scale
case as well. The underlying idea is to slice a functionf into a family of increasing sets obtained
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(a) f (x) (b) εB( f ) (c) δB( f )

(d) γB( f ) (e) φB( f )

FIGURE 8. Original image (a), erosion (b), dilation (c), opening (d), and closing
(e), with a 15×15 square.

by thresholdingf . Without further details, consider a complete lattice Fun(E , R). We associate
a series of threshold sets tof as defined by (Figure9)

(14) X(t) = {x∈ E | f (x) ≥ t}.

Note thatX(t) is decreasing int and that these sets obey the continuity condition

(15) X(t) =
⋂

s<t

X(s).
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x

f (x)

t

X(t)

FIGURE 9. The profile of a functionf and one of its threshold sets.

In addition, there is a one-to-one correspondence between afunction and families of setsX(t). In
fact, the functionf can be recovered from the series ofX(t) by means off (x) =

∨

{t|x∈ X(t)};
this is thethreshold superposition principle. One interesting application of the correspondence is
the possibility to interpret an opening onf as the union ofB that fits in the threshold sets. From
an implementation point of view, this leads to alternative definitions for morphological opera-
tors. Although morphological openings were defined as the cascade of an erosion followed by a
dilation [see Eq. (12)], this does not mean that one must implement an opening according to its
definition. Examples of the conclusion are, among others, the two implementations of an opening
with a line proposed in Van Droogenbroeck (1994) and Vincent(1994). These implementations
scans the image line by line and use threshold sets to computethe opening.

2.2. Theory of Morphological Anchors

Let us first consider the simple case of the set opening ofX by B. If X is empty,X ◦B is empty,
and there is no anchor. Similarly, ifX = E andB is finite,X◦B= E , all points are again anchors.
Leaving these trivial cases, let us takeX containing some elements ofE . As X ◦B⊆ X, if X ◦B
is not empty, all locations ofX ◦B are anchors. Therefore, in the binary case, anchors do always
exist for non-empty sets.

For openings, the notion of anchors is linked to that of invariance domain. Remember that the
opening ofX by B is the union of the translate ofB that fit intoX. Therefore, the corresponding
invariance domain ofX ◦B is given by Inv(X ◦B) = {Y⊕B|Y ∈ P(E )}. Accordingly, if X ◦B
is not empty, there exists a setY and, asX ◦B⊆ X, the amount of anchors must be larger than
#(Y)+#(B) for continuous sets (#(Y)+#(B)−1 on a digital grid).

If ψ is an opening byB, then one can derive, from the decomposition off by threshold sets or
equivalently by the geometrical interpretation of an opening, that the lower bound of a function
f is an anchor, if the lower bound exists. However, some topological issues arise here. To
circumvent the case of functions such asf (x) = 1

x for x > 0 which have no lower bound, we
have previously restricted the range of grey-scale values to a finite set (which means that it is
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countable) or a closed interval. Likewise, we must deal withfinite structuring elements to be
able to count the number of anchors. Both finiteness assumptions are used in the following.
Consequently, there is at least one global minimum, and at least one anchor point. That is,

Theorem 1. Consider a finite structuring element B, the set of anchors of a morphological
opening is always non-empty:

(16) AγB ( f ) 6= /0.

We provide an improved formal statement on the number of anchors for openings later.

Note that the position of the origin inB has no influence on the set of anchors ofγB( f ). This
originates from the corresponding property on the operatoritself, that is,γB( f ) = γBp( f ), for any
p (on a infinite domain).

Similar properties do not hold for erosions. In fact, the setof anchors of a morphological ero-
sion may be empty, and the location of the origin plays a significant role; a basic property states
thatX⊖Bp = (X⊖B)−p. Figure10 shows two erosions with a same but translated structuring
element. Note that the choice of the origin in the middle ofB is no guarantee for the number of
anchors to be larger.

Again, based on the interpretation of openings in terms of threshold sets, larger structuring
elements are less likely to lead to large sets of anchors. Indeed, large structuring elements do not
fit into higher threshold sets, so that at higher grey-scale levels there are fewer anchors. Figure11
shows the evolution of the cardinality ofAγB ( f ), as the size ofB increases.

2.3. Local Existence of Anchors

BecauseδB( f ) is defined as
∨

b∈B f (x−b), the dilation is aspatialoperator. So the supremum
(or maximum for real images) is reached at a given locationp such thatδB( f )(x) = f (p), where
p= x−b′. But if b′ ∈B, thenp∈ B̌x; B̌x is the symmetric ofB translated byx. Up to a translation,
B̌x = x+ B̌ defines the neighborhood where the supremum forx can be found. Intuitively, there
are as many anchor candidates forδB( f ) as disjoint sets likěBx. Similar arguments lead to a
relation valid for erosions. The following proposition gives the respective neighborhoods:

Proposition 1. If B is finite and x is any point in the domain of definition of f , then

δB( f )(x) = f (p)(17)

εB( f )(x) = f (q)(18)

for somep∈ B̌x, and someq∈ Bx.

We can combine Eqs. (17) and (18) to find the neighborhoods of openings and closings. From
Eq. (12), we haveγB( f ) = δB(εB( f )). Therefore,γB( f )(x) = εB( f )(p) with p∈ B̌x. Similarly,
εB( f )(p) = f (q) with q∈ Bp. So we haveγB( f )(x) = f (q), andq∈ (B̌⊕B)x = (B⊕ B̌)x. For
the closing, the neighborhood is identical. This can be summarized as
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(a) f (x) (b) εB( f ) (c) εBp( f )

(d) Anchors ofεB( f ) (e) Anchors ofεBp( f )

FIGURE 10. Original image (a), erosion byB (b), erosion byBp (c), and their
anchor sets marked inE , respectively, (d) and (e).B is a 11×11 centered square
andp = (5, 5).

Proposition 2. If B is finite and x is any point in the domain of definition of f , then

γB( f )(x) = f (p)(19)

φB( f )(x) = f (q)(20)

for somep, q∈ (B⊕ B̌)x.

As mentioned previously, the openings and closings are insensitive to the location of the origin
of the structuring element. Let us considerBr instead ofB and compute the corresponding
neighborhood. As ˇ(Br) = (B̌)−r , this neighborhood becomes(Br ⊕ B̌r)x = (B⊕ B̌)x+r−r = (B⊕
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FIGURE 11. Percentage of opening anchors with respect to a size parametern;
B is an n× n square structuring element and the percentage is the ratio of the
cardinality ofAγB ( f ) to the image size. The figure also displays the lower bound
established later in the chapter.

B̌)x. Also, note thatB⊕ B̌ always contains the origin, which means thatx∈ (B⊕ B̌)x in all cases.
To the contrary, ifB does not contain the origin, the neighborhood ofx for a dilation (that isB̌x,
does not containx, nor doesBx for the erosion).

Let us now consider thato ∈ B. Then the dilation is extensive:f (x) ≤ δB( f )(x). If f is
bounded, then there existsr ∈ E such thatf (r) is the upper bound off . As r belongs to its
own neighborhood andf (r) is an upper bound,δB( f )(r) ≤ f (r) too. This means that(r, f (r)) is
an anchor with respect to the dilation:δB( f )(r) = f (r). In other words, the(r, f (r)) pair of an
upper bound is an anchor for the dilation when the structuring elementB contains the origin.

In contrast to the cases of dilations and erosions, the number of anchors for the opening is not
limited by the number of lower or upper bounds. To get a betterlower bound of the cardinality
of anchors, we establish a relationship between erosion anchors and openings. By definition and
according to Eq. (18),

(21) εB( f )(x) =
∧

b∈B

f (x+b) =
∧

q∈Bx

f (q).
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As B is finite, there existsq∈ Bx such that

(22) εB( f )(x) = f (q).

Next we show that(q, f (q)) is an anchor for the opening. As before, note thatq ∈ Bx implies
x∈ (B̌)q. Now

γB( f )(q) =
∨

r∈(B̌)q

εB( f )(r)(23)

≥ εB( f )(x)(24)

= f (q).(25)

As before, we use the anti-extensivity property of an opening, that isγB( f )≤ f . This proves that
γB( f )(q) = f (q) and therefore(q, f (q)) is an anchor for the opening. The following theorem
establishes a formal link between erosion and opening anchors.

Theorem 2. If B is finite and x is any location in the domain of definition off , then

(26) εB( f )(x) = γB( f )(p)

for some p∈ Bx. Moreover(p, f (p)) is an anchor forγB( f ), that is

(27) γB( f )(p) = f (p).

The density of anchors for the opening is thus related to the size of Bx. It is also true that for
each(B⊕ B̌)x-like neighborhood, there is an anchor forγB( f ). To prove this result, remember
that

(28) γB( f )(x) = εB( f )(p) = f (q)

for somep∈ B̌x andq∈ Bp. Next, we want to prove that(q, f (q)) is an anchor.

By definition,γB( f )(q) may be written as

(29) γB( f )(q) =
∨

r∈(B̌)q

εB( f )(r).

Howeverr ∈ (B̌)q implies thatq∈ Br . Then, according to Eq. (28),

(30) γB( f )(q) =
∨

r∈(B̌)q

εB( f )(r) ≥ εB( f )(p)

and, asεB( f )(p) = f (q),

(31) γB( f )(q) ≥ εB( f )(p) = f (q).

But openings are anti-extensive, which means thatγB( f )(q) ≤ f (q). This proves that(q, f (q))
is an opening anchor.

Theorem 3. If B is finite and x is any point in the domain of definition of f , then

(32) γB( f )(x) = γB( f )(q) = f (q)

for some q∈ (B⊕ B̌)x.
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Theorems2 and3 lead to bounds for the number of anchors because they establish the ex-
istence of anchors locally. Intuitively, regions with a constant grey-scale value contain more
anchor points; in such a neighborhood all points will be anchors. But the number of anchors is
also related to the size of the structuring element. Theorem3 specifies that at least one opening
anchor exists for each region of type(B⊕ B̌)x. Surprisingly, it is Theorem2, which links erosion
to opening, that provides the tightest lower bound for the density of opening anchors:

(33)
1

#(B)
.

This limit is the minimum proportion of opening anchors contained in an image; it is plotted
on Figure11. It is reachable only ifE can be tiled by translations ofB. Where such tiling is not
possible, for example, whenB is a disk, this bound is conservative. Note also that the number
of opening anchors is expected to decrease when the size ofB increases. This phenomenon is
illustrated in Figure12, where opening anchors have been overwritten in black.

2.4. Algorithmic Properties of Morphological Anchors

In addition to providing a weak bound for the number of anchors, Theorem3 has an important
practical consequence. It shows that all the information needed to computeγB( f ) is contained in
its opening anchors. In other words, from a theoretical point of view, it is possible to reconstruct
γB( f )(x) from a subset ofAγB ( f ). The only pending question is how to determine this subset of
AγB ( f ). Should an algorithm be able to detect the location of opening anchors that influence their
neighborhood, it would provide the opening for eachx immediately. Unfortunately, unlessf (x)
has been processed previously and information on anchors has been collected, there is no way
to locate anchor points. But with an appropriate scanning order and a linear structuring element,
it is possible to retain some information aboutf to locate anchor points effectively. Such an
algorithm has been proposed by Van Droogenbroeck and Buckley(2005). Figure13 shows the
computation times of such an algorithm for a very large imageand a linear structuring elementL
whose length varies. For this figure, one image was built by tiling pieces of a natural image, the
other was filled randomly to consider the worst case.

An interesting characteristic of this algorithm is that thecomputation times decrease with the
size of the structuring element. To explain this behavior, remember that the number of anchors
also decreases with the size ofB. Because the algorithm is based on anchors, there are fewer
anchors to be found. Once an anchor is found, it is efficient inpropagating this value in its
neighborhood.

We have thus so far worked on the opening, but we can use Theorem 2 and anchors for a
different algorithm to compute the erosion. Because the set of erosion anchors may be empty,
we cannot rely on erosion anchors to develop an algorithm to compute the erosion. However, it is
known (Heijmans, 1994) that the erosion off is equal to the erosion ofγB( f ): εB( f ) = εB(γB( f ))
for any function f andB. The conclusion is that the computation of erosions should be based
on opening anchors rather than on erosion anchors. Computation times of such an algorithm for
several erosions are displayed in Figure14, side by side to that of the opening.
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(a) f (b) γ3×3( f )

(c) γ11×11( f ) (d) γ21×21( f )

FIGURE 12. Density of opening anchors for increasing sizes of the structuring
element. From left to right, and top to bottom: original (a) and openings with a
squared structuring elementB (of size 3×3, 11×11, and 21×21 respectively).

The algorithm for the erosion is slower for two reasons: Anchors are to be propagated in
a smaller neighborhood and the propagation process is more complicated than in the case of
the opening. However, this shows that opening anchors are also useful for the computation of
erosions.

Note that the relative position of the computation times curves is unusual. Openings are de-
fined as the cascade of an erosion followed by a dilation, so slower computation of openings
would be expected. Figure14contradicts this belief.
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FIGURE 13. Computation times on two images (of identical size).

To close the discussions on morphological anchors, let us examine the impact of the shape
of B on the implementation. The shape ofB is usually not arbitrary: Typical shapes include
lines, rectangles, circles, hexagons, and so on. IfB is constrained to contain the origin or to be
symmetric, we can derive useful properties for implementations.

Suppose, for example, that(p, f (p)) is an anchor with respect to the erosionεB( f ) and thatB
contains the origino. Then the dilation is extensive (δB( f ) ≥ f ) and therefore

(34) f (p) = εB( f )(p) ≤ δB(εB( f ))(p) = γB( f )(p).

But openings are anti-extensive (γB( f ) ≤ f ) so thatγB( f )(p) = f (p). In other words, an anchor
for εB( f ) is always an anchor forγB( f ) whenB contains the origin as below,

Theorem 4. If o ∈ B and(p, f (p)) is an anchor for the erosionεB( f ), then

(p, f (p)) ∈ AγB ( f ) .

Another interesting case occurs whenB is symmetric (that is whenB= B̌). This coversB being
a rectangle, a circle, an hexagon, and so on (many software packages propose only morphological
operations with symmetric structuring elements to facilitate handling border effects). Anchors
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FIGURE 14. Computation times of two algorithms that use opening anchors to
compute the erosion and the morphological opening.

of operations withB andB̌ then coincide and it is equivalent to scan images in one orderor in
the reverse order.

3. ANCHORS OF ALGEBRAIC OPENINGS

The existence of anchors has been proven for morphological openings. The question is whether
the existence of anchors still holds for other types of openings, or even for any algebraic opening.
From a theoretical perspective, an operator is called analgebraic openingif it is increasing,
anti-extensive, and idempotent. Therefore, algebraic openings include but are not limitedto
morphological openings. Known algebraic openings are areaopenings (Vincent, 1992), openings
by reconstruction (Salembier and Serra, 1995), attribute openings (Breen and Jones, 1996), and
so on. The family of algebraic openings is also extensible, as there exist properties, like the one
given hereafter, that can be used to engineer new openings.

Proposition 3. If γi is an algebraic opening for every i∈ I, then the supremum
∨

i∈I γi is an
algebraic opening as well.
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Attribute openings are most easily understood in the binarycase. Unlike morphological open-
ings, attribute openings preserve the shape of a setX, because they simply test whether or not a
connected component satisfies some increasing criterionΓ, called anattribute. An example of
valid attribute consists of preserving a setX if its area is superior toλ and removing it otherwise.
This is, in fact, the surface area opening. More formally, the attribute openingγΓ of a connected
setX preserves this set if it satisfies the criterionΓ:

(35) γΓ(X) =

{

X, if X satisfiesΓ,

/0, otherwise.

The definition of attribute openings can be extended to nonconnected sets by considering the
union of all their connected components. Since the attribute is increasing, attribute openings can
be directly generalized to grey-scale images using the threshold superposition principle. Such
openings always have anchors. But do all openings have anchors?

The reason we fail to prove that all openings have anchors is as follows. Let us consider
an algebraic openingγ. Sinceγ is increasing (as it is an opening),γ is upper bounded by the
identity operator:γ ≤ I . Assume now thatAf (γ) = /0, thenγ < I . Remember thatγ is also
anti-extensive; it follows thatγγ ≤ γI . Would it instead be here thatγγ < γI (this property is
not true!), then using the property of idempotenceγγ = γ, and one would conclude thatγ < γ,
which is impossible and anchors would exist in all the cases.But γγ ≤ γI and notγγ < γI ,
so that we derive that the anti-extensivity itself does not provide a strict order and that it gives
some freedom on the operator to allow functions not to have some anchors. The properties of an
algebraic opening are not sufficient to guarantee the existence of anchors. We need to introduce
additional requirements on an algebraic opening to ensure the existence of anchors.

Openings that explicitly refer to the threshold value can have no anchor. Remember the case
of the quantization operator Q2 applied on an odd image. Obviously, iff (x) = 3, Q2( f )(x) = 2;
there is no anchor. Similarly, consider an operatorψ( f )(x) = x∧ f (x). This operator is an
opening, but ifg(x) = x+1, ψ(g)(x) = x; again, there is no anchor. This time the opening does
not refer to threshold levels but explicitly to the location, and not therelative location.

Two constraints are considered hereafter. The first constraint, spatiality, relates to the usual
notion of neighborhood as used in the section on morphological anchors, and the second con-
straint,shift-invariance, relates to the ordering of function values.

Definition 6. An operatorϕ is shift-invariant if for every function f , it is equivalent to translate
f vertically by v (v ∈ R) and applyϕ or to applyϕ on the vertical translatef v (see previous
definition of a vertical translate). In formal terms, for every function f and every real valuev
(v∈ R) :

(36) ϕ ( f v(x)) = ϕ( f (x)+v) = ϕ( f )(x)+v.

3.1. Spatial and Shift-Invariant Openings

Section2 showed that the minima of a function automatically provide anchors for every morpho-
logical opening. A simple example suffices to show that this property does not necessarily hold
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for any opening. Let us reconsider the previous examples anda constant function̄k, defined as
k̄(x) = k for all x∈ E . If ψ( f ) = Q2( f ), thenψ(3̄) = 2̄. In addition, forψ( f )(x) = x∧ f (x), we
haveψ(3̄) 6= 3̄. Therefore, the processing of a constant function by an algebraic opening can pro-
duce a nonconstant function or a constant that takes a different value. If entropy is meant here as
the cardinality of grey-scale values after processing, then to the contrary of what morphological
operators suggest, the entropy of an algebraic opening may increase. Obviously, these situations
do not occur for spatial openings.

Morphological openings are a particular case ofspatial openings, denotedξ hereafter. We
have proven that the minimum values of a function are anchorswith respect to a morphological
opening. Let us denote by minf , the minimum of a lower bounded functionf , and assume that
the minimum is reached forp∈ E . Becauseξ is an opening,ξ ( f ) ≤ f for any function f . In
particular,ξ ( f )(p) ≤ f (p) = minf . By definition of spatiality, for every location, includingp,
there exists a locationq such thatξ ( f )(p) = f (q). But such a value is lower bounded by minf .
Therefore,ξ ( f )(p) ≥ minf , andξ ( f )(p) = f (p) = minf .

Theorem 5. Consider a spatial openingξ . Then global minima of f provide all anchors forξ .

This theorem can also be rephrased in the following terms: Provided a set of grey-scale values
of a function processed by an opening is a subset of the original set of grey-scale values, there
are anchors. Indirectly, it also proves the existence of anchors for any spatial opening; to some
extent, it generalizes Theorem1.

Let us now consider the shift-invariance property. From a practical point of view, shift-
invariance means that functions can handle offsets, or equivalently that offsets have no impact
on the results except that the result is shifted by the same offset. This is an acceptable theo-
retical assumption, but in practice images are defined by a finite set of integer values (typically
{0, . . . , 255}); handling an offset requires redefining the range of grey-scale values to maintain
the full dynamic of values.

Consider a shift-invariant operatorϕ. Imagine, for a moment, that there is no anchor with
respect toϕ. Sinceϕ is anti-extensive (as it is an opening),ϕ( f )(x) ≤ f (x) becomes

(37) ϕ( f )(x) < f (x)

for everyx∈ E . In other words, there existsλ > 0 such that

(38) ϕ( f )(x)+λ ≤ f (x).

By increasingness,ϕ(ϕ( f )+λ )≤ϕ( f ). After some simplifications and using the shift-invariance
property,ϕ(ϕ( f )+ λ ) = ϕ(ϕ( f ))+ λ = ϕ( f )+ λ ≤ ϕ( f ), which is equivalent toλ ≤ 0. But
this conclusion is incompatible with our initial statementon λ . Therefore,

Theorem 6. Every shift-invariant openingϕ has one or more anchors. For every function f ,

(39) Aϕ ( f ) 6= /0.
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A subsequent question is whether the minimum is an anchor, regardless of the type of open-
ing. Let us build a constant function filled with the minimum value of f (x); this function is
denotedτ̄min. Since an anchor does exist for̄τmin, at least some of the values of̄τmin are an-
chors, though not necessarily all of them (see previous discussions forψ( f )(x) = x∧ f (x)).
Through increasingness,̄τmin ≤ f implies γ(τ̄min) ≤ γ( f ), whereγ is an algebraic opening.
Anti-extensivity implies thatγ( f ) ≤ f . We can conclude that there existsp ∈ E such that
γ(τ̄min)(p) = τ̄min(p) ≤ γ( f )(p) ≤ f (p). So, if f (p) = τmin, thenτmin = γ( f (p)). Therefore,

Theorem 7. If the set of anchors with respect to an algebraic opening is always non-empty, then
at least one global minimum of a function f is an anchor for that opening.

This theorem applies for morphological, spatial, and shift-invariant openings but in the two first
cases, we have proven thatall minima are anchors. Note, however, that anchors should always
exist for this property to be true. Neither the quantizationoperator Q2 nor ψ( f )(x) = x∧ f (x)
meet this requirement.

3.2. Granulometries

In practice, one uses openings that filter images with several different degrees of smoothness. For
example, one opening is intended to maintain many details; another opening filters the image to
obtain a background image. When the openings are ordered, we have agranulometry.

Definition 7. A granulometryon Fun(E ) is a one-parameter family of openings{γr | r > 0}, such
that

(40) γs ≤ γr , if s≥ r.

If γs ≤ γr , thenγsγr ≥ γsγs = γs. Also, γr ≤ I implies thatγsγr ≤ γs. So thatγsγr = γs. The
identity γrγs = γs is proved analogously. It follows that a family of operatorsof granulometry
also satisfies the semigroup property:

(41) γrγs = γsγr = γs, s≥ r.

As a result, anchor sets are ordered like the openings of a granulometry as below,

Theorem 8. Anchor sets of a granulometry{γr | r > 0} on Fun(E ) are ordered according to

(42) Aγs ( f ) ⊆ Aγr ( f ) .

There is a similar statement for morphological openings. SupposeB containsA (that isA⊆ B)
andB◦A = B, then, according to Haralick, Sternberg, and Zhuang (1987),

(43) γB( f ) ≤ γA( f ).

For example,B is a circle andA is a diameter, orB is a square andA is one side of the square.
Note thatA⊆B is not sufficient to guarantee thatγB( f )≤ γA( f ). Applying Theorem8, we obtain

Corollary 1. For any function f , if A⊆ B, B◦A = B, and A, B are both finite, then

(44) AγB ( f ) ⊆ AγA ( f ) .
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This theorem is essential for morphological granulometries. It tells us that if we order a fam-
ily of morphological openings, anchor sets will be ordered (reversely) as well. In fact, Vincent
(1994) developed on algorithm based on the concept of opening trees that is based on this prop-
erty.

4. CONCLUSIONS

Anchors are features that characterize an operator and a function. This chapter has discussed
the properties of an opening and shown how they related to anchors. First, we have established
properties valid for morphological operators. Anchors then depend on the size and shape of the
chosen structuring element. For example, it has been proventhat anchors do always exist for
openings and that global minima are anchors.

The concept of a structuring element is not explicitly present any longer for algebraic openings.
It also appears that some algebraic openings have no anchor for some functions. However, with
additional constraints on the openings (that is, spatiality or shift-invariance), the framework is
sufficient to ensure the existence of anchors for any function f . In addition, it has been proven
that the existence of anchors then implies that some global minima are anchors. This is an
interesting property that could lead to new algorithms in the future.
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