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Abstract— This paper studies the optimal control of trajec-
tories converging to or escaping from a stable equilibrium. The
control duration is assumed to be short. When the control is
turned off, the trajectories have not reached the target and they
subsequently evolve according to the free motion dynamics.
In this context, we show that the problem can be formulated
as a finite-horizon optimal control problem which relies on
the notion of isostables. For linear and nonlinear systems,
we solve this problem using Pontryagin’s maximum principle
and we study the relationship between the optimal solutions
and the geometry of the isostables. Finally, optimal strategies
for choosing the magnitude and duration of the control are
considered.

I. INTRODUCTION

Optimal control techniques have been widely used for
time-optimal steering of systems toward the equilibrium (see
e.g. [1], [6], [11]). In this context, it is usually assumed
that the control effectively drives the trajectory toward the
desired target, however long it takes. In some situations,
however, the control duration is limited (e.g. limited amount
of available energy, etc.) and the controlled trajectory may
not have reached the equilibrium when the control is turned
off. This is even so when the initial condition is far from
the target or when the control is weak. In this case, the
time-optimal control problem is irrelevant. More importantly,
it is not straightforward to formulate an optimal control
problem which optimizes the (infinite-time) convergence of a
trajectory whose asymptotic behavior is governed by the free
motion dynamics. For instance, choosing a neighborhood of
the equilibrium as alternative target set is not convenient,
since the obtained results would depend on the size of the
neighborhood. A similar issue arises when considering the
optimal (finite-duration) escape from a stable equilibrium
with a large basin of attraction.

In this paper, we propose a relevant formulation for the
above problem (i.e. convergence to/escape from the equilib-
rium) which is adapted to the short duration of the control.
In particular, we show that the relevant end cost function for
the problem—to be maximized when the control is switched
off—is based on the notion of isostables. Introduced in our
recent work [5] (see also [10] for slow-fast systems), the
isostables are sets of the state space that capture the asymp-
totic behavior of the uncontrolled system. They provide a
unique and rigorous measure of how far—with respect to
time—the trajectory is from the equilibrium. Note that the
mere distance to the equilibrium is not a good measure since
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the trajectory evolves according to a (possibly nonlinear)
system. The isostables are also related to the global stability
properties of the equilibrium [4], and it is therefore natural
to use them for the optimal control problem.

We assume that the control is a vector of constant magni-
tude, thereby considering a steering control problem (e.g.
vehicles moving in a velocity field [12]). Although the
optimal control problem cannot be solved analytically, the
optimal control direction is directly related to the geometry
of the isostables in some particular cases. In addition, we
show that the best results are obtained with a weak and long
control, in which case the optimal control is perpendicular
to the isostables (local control).

The paper is organized as follows. The concept of isosta-
bles and its related Koopman operator framework are intro-
duced in Section II. In Section III, we present the optimal
control problem that we solve for both linear and nonlinear
systems, using Pontryagin’s maximum principle. Section
IV discusses the optimal strategies when the duration and
magnitude of the control can be chosen. Finally, we give
some concluding remarks in Section V.

II. PRELIMINARIES:
ISOSTABLES AND KOOPMAN OPERATOR

The isostables (of a stable equilibrium) are defined in our
previous work [5] as particular sets related to the asymptotic
behavior of the trajectories. (Note that a similar notion
was introduced in [10] in the particular case of slow-fast
systems.) In this section, we review the concept of isostables
for both linear and nonlinear systems and we highlight
their relationship with the so-called Koopman operator. The
interested reader may refer to [5] for more details on the
isostables and their properties.

A. Linear systems

Consider the stable linear system

ẋ = Ax , x ∈ R
n (1)

where the real matrix A has n distinct eigenvalues λj with
ℜ{λj} ≤ ℜ{λ1} < 0 for all j, associated with the right and
left eigenvectors vi and ṽj respectively. We assume that the
eigenvectors are normalized so that (vj · ṽj) = 1, where ·
denotes the inner product in C

n. The solution ϕt(x) of (1)
for the initial condition x—i.e., the flow map—is given by

ϕt(x) =
n
∑

j=1

(x · ṽj) vj e
λjt .
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Since the first term is dominant over the other terms as t →
∞, the function φ(x) , x · ṽ1 is sufficient to characterize
the asymptotic behavior of the trajectory starting at x. In [5],
the isostables of a linear system are defined as the level sets
of |φ(x)| = |x · ṽ1|. They provide a measure of “how long”
the trajectory will take to converge toward the origin (see
the properties below). For two-dimensional linear systems,
each isostable corresponds to a pair of straight lines parallel
to v2 (when λ1 is real) or to an ellipse centered at the origin
(when λ1 is complex).

B. Nonlinear systems and Koopman operator

We will now define the notion of isostables for the
nonlinear system

ẋ = F (x) , x ∈ R
n (2)

which admits a stable equilibrium x̂—i.e., F (x̂) = 0—with
a basin of attraction B(x̂) ⊆ R

n. We assume that the vector
field F is continuously differentiable and that the Jacobian
matrix J(x̂) at the equilibrium satisfies the same properties
as the matrix A in (1).

As a preliminary to a general definition of the isostables,
we introduce the so-called Koopman operator.

Definition 1 (Koopman operator): For a given functional
space F , the (semi-)group of Koopman operators U t : F →
F associated with a flow map ϕt is given by

U tf = f ◦ ϕt , f ∈ F , t ∈ R .

⋄
Through the Koopman operator framework, the notion of

isostables can be extended to nonlinear systems. We have
the following general definition [5].

Definition 2 (Isostables): For the system (2), the isosta-
bles are the level sets of |φ(x)|, where the function φ(x)
satisfies:
1. φ is C1 in the neighborhood of the equilibrium x̂;
2. φ is an eigenfunction of the Koopman operator, associated
with the eigenvalue λ1, i.e.

U tφ = φ ◦ ϕt(x) = eλ1tφ(x) . (3)

⋄
Through Definition 2, it can be shown that the isostables are
unique. This definition is also in agreement with the case of
linear systems: it is easy to verify that the function φ(x) =
x · ṽ1 is a C1 function that satisfies (3).

The isostables capture the asymptotic behavior of the
trajectories (of the unforced system) and provide a rigorous
and unique measure of the time required by the trajectories to
reach a close neighborhood of the equilibrium. In particular,
(3) implies the following properties.

Property 1: Two trajectories (of the unforced system)
with initial conditions on the same isostable simultaneously
intersect the successive isostables of decreasing value and
approach the equilibrium x̂ synchronously. Note that φ(x̂) =
0.

Property 2: If two initial conditions x1 and x2 belong
to different isostables, e.g. |φ(x1)| < |φ(x2)|, then the

corresponding trajectories (of the unforced system) intersect
the same isostables with a constant time delay

∆t =
ln |φ(x1)| − ln |φ(x2)|

ℜ{λ1}
. (4)

In particular, they approach the neighborhood of the equilib-
rium (i.e. a level set |φ(x)| = C ≪ 1) with the time delay
∆t.

Remark 1: If the flow ϕt is induced by (2), the function
f(t, x) = U tf0(x), f0 ∈ C1(Rn), satisfies (see e.g. [3])

∂f

∂t
= F · ∇xf (5)

with the initial condition f(0, x) = f0(x) and with the
gradient ∇xf = (∂f/∂x1, . . . , ∂f/∂xn). It follows that the
φ is solution of the partial differential equation

λ1φ = F · ∇xφ . (6)
Numerical computation: The isostables can be com-

puted by using Laplace averages [7] evaluated along the
trajectories. More precisely, the eigenfunction φ(x) is given
by

φ(x) = lim
T→∞

1

T

∫ T

0

f ◦ ϕt(x) e−λ1t dt (7)

for any function f ∈ C1(x̂) which satisfies f(x̂) = 0 and
|∇xf(x̂) · v1| = 1. This method yields numerical schemes
that are efficient to compute the isostables, even in high-
dimensional spaces (see [5] for more details).

III. OPTIMAL CONTROL PROBLEM

With the concept of isostables, we are now in position
to write the statement of the optimal control problem. Our
goal is to design a control input which is applied to the
system (2) during a short time interval [0, T ]. (We assume
that the control input cannot start at some time t > 0.) The
optimal control, related to the optimal trajectory x∗(t), t ∈
[0, T ], should minimize (optimal convergence problem) or
maximize (optimal escape problem) the time required by the
subsequent free motion ϕt−T (x∗(T )), t ∈ [T,∞), to reach
a close neighborhood of the equilibrium. In other words, the
optimal trajectory x∗(t) is the admissible trajectory which is
characterized by the maximum time delay (4) with respect
to a (virtual) trajectory ϕt(x0) of the uncontrolled system,
starting at the same initial condition x0. Property 2 with the
initial conditions x1 = x∗(T ) and x2 = ϕT (x0) implies that
this optimal time delay is given by

∆t∗ =

∣

∣

∣

∣

ln |φ(x∗(T ))| − ln |φ(ϕT (x0))|

ℜ{λ1}

∣

∣

∣

∣

=

∣

∣

∣

∣

ln |φ(x∗(T ))| − ln |φ(x0)|

ℜ{λ1}
− T

∣

∣

∣

∣

(8)

where we used (3). It is clear that the time delay (8)
is maximum provided that the optimal trajectory is the
admissible trajectory that reaches at time T the isostable with
the lowest value |φ| (optimal convergence problem) or the
highest value |φ| (optimal escape problem).

Since we assume that the input u(t) has constant magni-
tude ‖u(t)‖ = ū, for all t ∈ [0, T ], we only have to compute
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its orientation e(t), with ‖e(t)‖ = 1 (steering problem).
Finally, we can formulate the optimal control problem as
follows.

The optimal control problem: For x0 ∈ B(x̂), ū ∈ R
+,

and T ∈ R
+, find the time-dependent vector e∗(t) =

[0, T ] → S
n such that

e∗(t) =

{

argmin‖e(t)‖=1|φ(ϕ
T
ū (x0, e(t)))| convergence

argmax‖e(t)‖=1|φ(ϕ
T
ū (x0, e(t)))| escape

where ϕt
ū(x0, e(t)) is the solution of

ẋ = F (x) + ū e(t) (9)

with the initial condition ϕ0
ū(x0, e(t)) = x0.

This problem corresponds to a finite-horizon optimal con-
trol problem with no cost-to-go function and with the end
cost function g(x) = ±|φ(x)| (to be maximized). From
this point on, we consider that the symbol ± is a positive
sign for the optimal escape problem and a negative sign for
the optimal convergence problem. The end cost function is
directly related to the isostables and can be computed through
the Laplace average method (7).

Remark 2: For the optimal convergence problem, the ini-
tial condition x0 is assumed to be far from the equilibrium
x̂ (or equivalently ū and T are assumed to be sufficiently
small) so that the control cannot drive the trajectory to the
equilibrium within the time interval [0, T ]. Otherwise, the
proposed optimal control problem based on the notion of
isostables is irrelevant and should be replaced by a classic
time-optimal control problem [6]. Similarly, for the optimal
escape problem, we assume that the control cannot drive the
trajectory out of the basin of attraction B(x̂).

A. Local (suboptimal) control

A naive solution e(∗)(t) to the optimal control problem
can be obtained directly from the mere knowledge of the
isostables. At each time t ∈ [0, T ], a local approximation
of φ is computed through the Laplace average (7) and the
control follows the steepest descent/ascent policy

e(∗)(t) = ±
∇x|φ(x

(∗)(t))|

‖∇x|φ(x(∗)(t))|‖
(10)

with x(∗)(t) = ϕt
ū(x0, e

(∗)(t)). In this case, e(∗)(t) is always
perpendicular to the isostables along the trajectory.

Except in particular situations (see below), this “local”
control is suboptimal. However, it is the most optimal control
that can be found if only a local approximation of the
isostables is known or if the vector field F is unknown.
(Note that the computation of the Laplace averages (7) can be
performed even if the vector field is unknown.) The interest
of this local control is also demonstrated in Section IV.

B. Solving the optimal control problem

If the geometry of the isostables is known in the whole
basin of attraction, we can apply usual optimal control
methods to solve our optimal control problem (see e.g. the
monograph [2] for a review of the optimal control methods).

1) Pontryagin’s maximum principle: For the system (9),
the Hamiltonian is given by

H(x, p, e) = p · (F (x) + ūe)

where p ∈ R
n is the costate. The optimal trajectory x∗(t) =

ϕt
ū(x0, e

∗(t)) and the optimal control e∗(t) satisfy, for all
t ∈ [0, T ],

ẋ∗(t) = ∇pH(x∗(t), p∗(t), e∗(t)) = F (x∗(t)) + ū e∗(t)

ṗ∗(t) = −∇xH(x∗(t), p∗(t), e∗(t)) = −JT (x∗(t)) p∗(t)

for some costate function p∗(t) : [0, T ] → R
n and where

JT (x) is the transposed Jacobian matrix of F at x. In
addition, we have the terminal condition

p∗(T ) = ∇xg(x
∗(T )) = ±∇x|φ(x

∗(T ))| . (11)

From Pontryagin’s maximum principle [9], it follows that

e∗(t) = argmax‖e(t)‖=1H(x∗(t), p∗(t), e(t)) =
p∗(t)

‖p∗(t)‖
,

(12)
so that the optimal control is parallel to the costate.

The optimal control problem is solved as follows: (i)
compute the function φ on B(x̂) using the Laplace averages
(7) and (ii) solve

ẋ∗ = F (x∗) + ū p∗/‖p∗‖ (13)

ṗ∗ = −JT (x∗) p∗ (14)

with the final costate (11) and the initial state x∗(0) = x0.
Note that (11) and (12) imply that the final control value
e∗(T ) is perpendicular to the isostable at x∗(T ).

Remark 3: Taking the gradient of (6), we have

F · ∇xφ = −JT ∇xφ+ λ1 ∇xφ ,

where the left hand side corresponds to the time derivative of
∇xφ along the trajectory ϕt(x) of the unforced system. This
implies that ∇xφ(ϕ

t(x)) is parallel to the vector p̃ which is
solution of

˙̃p = −JT (ϕt(x))p̃ (15)

with p̃(0) = ∇xφ(x). It is remarkable that the dynamics
(14) (for the costate p∗) and (15) (for the gradient ∇xφ) are
identical, except that they hold on two different trajectories
(resp. ϕt(x) and x∗(t)). This explains why the optimal
control (12) is usually not the local control (10) perpendicular
to the isostables (see Section III-A).

2) Hamilton-Jacobi-Bellman equation: Although we
solve the optimal control problem using the Pontryagin’s
maximum principle as described above, we briefly introduce
the Hamilton-Jacobi-Bellman (HJB) equation. The (continu-
ously differentiable) value function v : [0, T ]×B(x̂) → R is
defined by

v(t, x) = sup
‖e(t)‖=1

g(ϕT−t
ū (x, e(t)))

= sup
‖e(t)‖=1

±|φ(ϕT−t
ū (x, e(t)))| .
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The value function is solution of the HJB equation

∂v

∂t
= − max

‖e‖=1
{(F + ū e) · ∇xv}

= −F · ∇xv − ū ‖∇xv‖

(16)

with the final condition v(T, x) = ±|φ(x)|. When (16) is
solved, the optimal trajectory x∗(t) can be obtained with the
dynamic programming method . Note that ∇xv(t, x

∗(t)) =
p∗(t) and e∗(t) = ∇xv(t, x

∗(t))/‖∇xv(t, x
∗(t))‖.

Remark 4 (HJB equation and Koopman operator): It is
noticeable that the HJB equation (16) is very similar to
the Koopman operator equation (5). Through the change of
variable t′ = T − t, (16) becomes

∂v

∂t′
= F · ∇xv + ū ‖∇xv‖ , (17)

with the initial condition v(t′ = 0, x) = ±|φ(x)|. It corre-
sponds to (5) with the additional nonlinear term ū ‖∇xv‖.

C. Weak and strong control

Even for simple dynamics, it is generally impossible to
find an (analytic) expression of the optimal control e∗(t)
that is directly derived from the function φ (i.e. from the
isostables). However, in case of weak or strong inputs,
the optimal control can be easily obtained from the mere
knowledge of the isostables.

1) Weak control: When the control magnitude is very
small with respect to the vector field, i.e. ū ≪ ‖F‖, we can
neglect the nonlinear term in (17), so that the (backward)
HJB equation is equivalent to the action of the Koopman
operator U t (see Remark 4). It follows that

v(t′, x) ≈ U t′v(t′ = 0, x) = ±U t′ |φ(x)| = ±|eλ1t
′

| |φ(x)|
(18)

with t′ = T − t and where we used (3). This implies that
the optimal control is given by

e∗(t) =
∇xv(t, x

∗(t))

‖∇xv(t, x∗(t))‖
≈ ±

∇x|φ(x
∗(t))|

‖∇x|φ(x∗(t))|‖

and corresponds to the local control (10) described in Section
III-A. In this case, e∗(t) is perpendicular to the isostables
not only at time T as imposed by the endpoint cost (11),
but also at any time t < T . This result can also be obtained
through the discussion in Remark 3 and by observing that
ϕt(x) ≈ x∗(t).

2) Strong control: When the control magnitude is very
large with respect to the vector field, i.e. ū ≫ ‖F‖, (9)
becomes

ẋ ≈ ū e(t)

and it is well-known that the optimal control is a constant
vector e∗(t) = e∗ with

e∗ = argmax‖e‖=1 ± |φ(x0 + ūT e)| .

In this case, the optimal direction e∗ can be determined
directly from the global geometry of the isostables.

D. Examples: linear and nonlinear systems

1) Linear system with stable sink: Consider the linear
system (1) where λ1 is real. We have φ(x) = x · ṽ1 and
∇x|φ| = sign(x · ṽ1) ṽ1. The costate dynamics (14) is
ṗ∗ = −AT p∗ and (11) yields p∗(T ) = ±sign(x∗(T ) · ṽ1) ṽ1.
It follows that

p∗(t) = ±eλ1(T−t)sign(x∗(T ) · ṽ1) ṽ1

and (12) implies that the optimal control is

e∗(t) = ±sign(x0 · ṽ1)
ṽ1
‖ṽ1‖

, (19)

where we used sign(x∗(T ) · ṽ1) = sign(x0 · ṽ1) since
we assume that the optimal trajectory does not reach the
isostable x·ṽ1 = 0. The optimal control e∗(t) is constant and
perpendicular to the isostables. (The isostables are parallel
lines.) It corresponds to the local control (10) described in
Section III-A.

The optimal delay (8) can be computed analytically. We
have

dφ

dt
(x∗(t)) = ∇xφ(x

∗(t)) · (F (x∗(t)) + ū e∗(t))

= λ1 φ(x
∗(t))± ū sign(x0 · ṽ1)

where we used (6), (19), and ∇xφ = ṽ1. This implies that

φ(x∗(T )) = eλ1T

(

φ(x0)±
ū signφ(x0)

λ1

)

∓
ū signφ(x0)

λ1
(20)

with φ(x0) = x0 · ṽ1 and the optimal delay ∆t∗ is given by
(8).

2) Linear system with stable focus: In the case of a linear
system (1) with λ1 complex, the optimal control problem is
more complicated. It follows from (13)-(14) that

ẋ∗ = Ax∗ + ū
e−AT tp∗(0)

∥

∥e−AT tp∗(0)
∥

∥

for some p∗(0) so that we have

x∗(T ) = eAT (x0 + ūI(p∗(0)))

with the vector-valued function

I(p) =

∫ T

0

e−Aτe−AT τp
∥

∥e−AT tp
∥

∥

dτ .

Since φ(x∗(T )) = x∗(T ) · ṽ1, it follows that

p∗(0) = argmax‖p‖=1 ±
∣

∣eAT (x0 + ūI(p)) · ṽ1
∣

∣

and the optimal control is given by (12) with p∗(t) =
exp(−AT t) p∗(0). Optimal trajectories are illustrated in Fig.
1.

In contrast to the linear case with λ1 real, the optimal
control is not perpendicular to the isostables (see e.g. the
red optimal trajectory in Fig. 1). This is explained by the
fact that the gradient ∇x|φ(x)| = |x · ṽ1| is not constant
since ṽ1 is a complex-valued vector. The function φ has a
nonzero curvature (nonzero Hessian) and the isostables—i.e.,
ellipses centered at the origin—are characterized by regions
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x1

x2

−5 0 5
−5

0

5

Fig. 1. Optimal trajectories for a linear system with stable focus (ẋ1 =
3x1+4x2,ẋ2 = −4x1−4x2). For the optimal escape problem (blue curve),
the optimal time delay with respect to the unforced trajectory (green curve)
is ∆t∗ = 1.080. For the optimal convergence problem (red curve), the
optimal time delay is ∆t∗ = 2.068. The arrows are the controls e∗(0)
and e∗(T ). The black curves are the isostables. The red and black dots are
the stable equilibrium and the initial condition, respectively. (Parameters:
x0 = [4, 4], ū = 1, T = 1.)

of high concentration. In this context, the optimal control
results from the trade-off between (i) a high instantaneous
variation of φ (control perpendicular to the isostables) and
(ii) the expectation of a higher average variation of φ (control
toward regions of higher concentration of isostables). This
trade-off depends on the magnitude ū. If ū ≪ |F |, the control
cannot drive the trajectory toward regions of high gradient
∇x|φ| and the option (i) is preferred so that we recover the
result of Section III-C.1. This trade-off phenomenon, also
observed with nonlinear systems, is clearly shown in Fig.
4(b) in Section IV.

3) Nonlinear systems: For nonlinear systems, the isosta-
bles are computed through (7) and the optimal control prob-
lem is solved numerically. Optimal trajectories are illustrated
in Fig. 2 (convergence to a sink) and in Fig. 3 (escape from
a stable focus). In Fig. 2, we note that the isostable φ = 0
is a curve: it does not only contain the equilibrium, but
also corresponds to trajectories characterized by a rate of
convergence λ2 < λ1, which are preferable over any other
free motion trajectories.

Performances of the optimal control (12) and the local
control (10) perpendicular to the isostables (see Section III-
A) are compared. In Fig. 2, the two methods yield similar
results, an observation which is explained by the fact that
ū is small with respect to the vector field (so that the local
control is almost optimal). In contrast, the optimal control
in Fig. 3 yields much better results than the local control. In
this case, the two controls are completely different (see e.g.
the initial directions e∗(0) and e(∗)(0)). Taking advantage of
the global knowledge of the geometry of the isostables, the
optimal control steers the trajectory toward the equilibrium
to reach a region (on the other side of the equilibrium)
where the isostables are concentrated and where the escape
is more efficient. The optimal (but counter-intuitive) control
contrasts with the local control which tends to maximize the
instantaneous increase of |φ| and never points toward the
equilibrium. Note that this phenomenon is not observed in
the case of optimal convergence.

x1

x2

0 2 4

−4

−3

−2

−1

0

1

Fig. 2. Optimal convergence problem for the system ẋ1 = −2x1+x2
1−x2

2,
ẋ2 = −2.5x2+2x1x2 (optimal trajectory in red, local control in magenta,
free motion in green). The time delay obtained with the optimal control
(∆t∗ = 0.362) is similar to the time of delay obtained with the local control
(∆t(∗) = 0.348). The arrows are the initial and final controls. The black
curves are the isostables. The red and black dots are the stable equilibrium
and the initial condition, respectively. (Parameters: x0 = [−3, 1], ū = 1,
T = 1.)

x1

x2

1 2 3 4

1

1.5

2

2.5

3

3.5

Fig. 3. Optimal escape problem for the system ẋ1 = 2−4x1+x2
1x2−x1,

ẋ2 = 4x1−x2
1x2 (optimal trajectory in blue, local control in magenta, free

motion in green). The time delay obtained with the optimal control (∆t∗ =
5.120) is much larger than the time of delay obtained with the local control
(∆t(∗) = 2.685). The arrows are the initial and final controls. The black
curves are the isostables. The red and black dots are the stable equilibrium
and the initial condition, respectively. (Parameters: x0 = [2.5, 2.5], ū = 1,
T = 3.)

IV. MAGNITUDE AND DURATION OF THE CONTROL:
OPTIMAL STRATEGIES

In this section, we consider that the magnitude and dura-
tion of the control can be chosen and we discuss the strategy
which maximizes the time delay (8). Assuming that the net
effect of the control after time T is fixed, we impose the
constraint ūT = α. (The constant α > 0 corresponds to the
maximum deviation of the trajectory of the controlled system
with respect to the trajectory of the unforced system.) If there
is no (lower) bound on ū, we show that the optimal strategy
is to prefer a long control with small magnitude rather than
a short impulsive control with high magnitude.

The case of a linear system with λ1 real can be studied
analytically. In the case of optimal convergence, considering
(20) with ū = α/T , we can easily see that there exists a value
Tcr > 0 such that φ(x∗(Tcr)) = 0. It follows that, for values
T > Tcr (ū < α/Tcr), the control pushes the trajectory onto
the isostable |φ| = 0, thereby yielding an infinite time delay
(8). Choosing ū small and T large is therefore the optimal
strategy. In the case of optimal escape, there is no value
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Tcr. In addition, the derivation of (8) with (20) with respect
to T shows that the optimal delay increases as the time T
increases, for T ≫ 1. In this case, the optimal strategy is
also achieved with a large value T and a small magnitude ū.

For a nonlinear system with λ1 real, the above results still
hold since the trajectory driven by a weak control converges
to the neighborhood of the equilibrium, where the dynamics
is well approximated by a linear dynamics and where the
weak control is the optimal strategy (see Fig. 4). In the case
of systems with λ1 complex, numerical simulations show
that large optimal time delays are also obtained with a weak
control (see Fig. 5). Hence, choosing ū small and T large
is always the optimal strategy. This corresponds to the local
control (10).

If a weak control is not feasible (e.g. if we have the
additional constraint ū ∈ [ūmin, ūmax]), the presence of
(local) minima and maxima in Fig. 4(a) and 5(a) indicates
that other combinations (T, ū) might be optimal (and some
combinations should be avoided). For instance, if the control
duration must be very short, an impulsive control (T → 0,
ū → ∞) should be the optimal strategy.
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Fig. 4. Optimal strategy for the convergence problem with the system
considered in Fig. 2. (a) The maximum optimal time delay is obtained at
Tcr ≈ 1.36 (weak control). Note that the impulsive control (T → 0)
also yields a large time delay. Intermediate values give the worst results.
(b) Optimal trajectories obtained for different values T and ū = 1/T .
The number at the end of each trajectory corresponds to T . (Parameters:
x0 = [−1, 3], α = 1.)
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Fig. 5. Optimal strategy for the escape problem with the system considered
in Fig. 1. (a) Large optimal time delays are obtained with large values T .
We also remark the presence of local minima and maxima. (b) Optimal
trajectories obtained for different values T and ū = 1/T . The number
at the end of each trajectory corresponds to T . (Parameters: x0 = [2, 2],
α = 1.)

V. CONCLUSION

We have proposed and studied a finite-horizon optimal
control problem which corresponds to the optimal conver-
gence to (or escape from) an equilibrium and which is also
adapted to a control of short duration. In this context, we
have shown that the concept of isostables is of paramount
importance, since it is necessary to define an appropriate end
cost function for the problem.

In the case of weak and strong control inputs, exact
optimal solutions are directly related to the geometry of the
isostables. In addition, a so-called “local” control perpen-
dicular to the isostables can be considered when the global
isostables or the vector field are unknown. In the other cases,
the optimal control problem is solved numerically through
Pontryagin’s maximum and the solution is not directly related
to the isostables. Finally, we have shown that an optimal
strategy consists in choosing a small control magnitude in
favor of a long control duration, a situation which corre-
sponds to the local control.

The results presented in the paper are limited to systems
with a stable equilibrium. The optimal control problem could
be extended to other types of attractors, in which case the
notion of isostables might need to be generalized. In the
case of limit cycles, a similar problem using the so-called
isochrons (instead of the isostables) could be investigated
and related to existing results of time-optimal control [8].
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