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Abstract−A finite element perturbation method is developed for computing electrostatic field distortions and

the ensuing charges and forces on moving conductive regionssubjected to fixed potentials. It is based on the

subsequent solution of an unperturbed problem in a completedomain, where conductive regions have been

extracted, and of perturbation problems in sub-domains restricted to the surroundings of the added conductive

regions. The solution of the unperturbed problem serves as source (with a very reduced support) for the

perturbation sub-problems. For every new position of the conductors, the solution of the unperturbed problem

does not vary and is thus re-used, only the perturbation sub-problems have to be solved. Further, this approach

allows for the use of independent and well-adapted meshes. An iterative procedure is required if the conductive

regions are close to the sources.

Index Terms−Electrostatic field distortions and forces, finite element method, perturbation method.

1. Introduction

T HE finite element (FE) modeling of an electrostatically driven moving conductor needs successive computations

for each new position. This may be computationally expensive specially when dealing with 3D models. It is

worth then benefiting from previous computations instead ofstarting a completely new FE solution for every new

position.

The perturbation method has been shown to be of interest for computing field distortions and induced effects in

magnetodynamic [1][2] and electrostatic problems [3]. An unperturbed problem is first solved in a large domain taking

advantage of any symmetry and excluding additional regionsand thus avoiding their mesh. Its solution is applied as a

source to the further computations of the perturbed problems when some regions are added. The method benefits from

the use of different subproblem-adapted meshes, what increases the computational efficiency when the size of each sub-

problem diminishes [2]. For some positions where the coupling between regions is significant, an iterative procedure is

required to obtain an accurate solution. In [3], the perturbation method is applied to consider the introduction in a given

domain of conductors subjected to a floating potential. A global-to-local method for static electric field calculations

is presented in [4]. The mesh of the local domain is there included in that of the global domain. In the proposed

perturbation method, however, the meshes of the perturbingregions are independent of the meshes of the unperturbed

domain.

In this paper, the considered conductors are supposed to move with small speed in the absence of any magnetic field

in order to satisfy the static field assumption.

The perturbation method is developed herein for solving electrostatic problems with an electric scalar potential FE

formulation and computing the ensuing quantities, i.e. theelectric field, electric charges and forces. The method is
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extended to account for the addition of conductors subjected to fixed potentials.

By way of validation, a capacitor with an added conductor between its plates is considered.

2. Strong Formulations

A. Unperturbed and Perturbed Electrostatic Problems

We consider an electrostatic problem in a domainΩ, with boundaryΓ = Γe∪Γd, of the 2-D or 3-D Euclidean space.

The conductive parts ofΩ are denotedΩc, with boundaryΓc. The governing differential equations and constitutive

law in Ω are
curl e = 0, div d = q, d = ε e, (1a-b-c)

with associated boundary conditions (BCs)

n × e |Γe
= 0, n · d |Γd

= 0, (2a-b)

wheree is the electric field,d is the electric flux density,q is the electric charge density,ε is the electric permittivity

and n is the unit normal exterior toΩ. According to (1a), the electric fielde can be derived from an electric scalar

potentialv, i.e. e = −grad v.

Hereafter, the subscriptsu andp refer to the unperturbed and perturbed quantities and associated domains, respec-

tively. A so-called unperturbed electrostatic problem is first defined inΩ without considering the conductive region

Ωc,p. Using the solution of the unperturbed problem as a source, the perturbed problem is solved in a domainΩp, with

boundaryΓp = Γe,p ∪ Γd,p, including the so-called perturbing regionΩc,p and its neighborhood. Indeed, electrostatic

field distortions appear when the perturbing regionΩc,p is added to the initial configuration.

At the discrete level, two independent meshes are used. A mesh of the whole domain in the absence of some

additional conductive regions and a mesh of the perturbing region. The electrostatic problem defined in each domain

asks for mesh refinement of different regions [3].

B. Perturbation Problem

Particularizing (1a-b-c) and (2a-b) for both the unperturbed and perturbed quantities, and subtracting the unperturbed

equations from the perturbed ones, a perturbation problem is defined inΩp (initially in Ω) [1]-[3]. The obtained equations

are expressed in terms of the field distortionse = ep − eu andd = dp − du as follows

curl e = 0, div d = 0, d = εp e + (εp − εu) eu, (3a-b-c)

n × e |Γe,p
= n × es, n · d |Γd,p

= n · ds. (4a-b)

In (3b), we assume that no volume charge density exists inΩp. BCs (4a-b) on the outer boundary ofΩp are first

defined as homogeneous, i.e. with the given sourcesn × es = 0 and n · ds = 0, to neglect the field distorsion at a

certain distance fromΩc,p.

Note that in regions whereεp 6= εu, an additional source term given by the unperturbed solution (εp − εu) eu is

considered in (3c). Because the added regionΩc,p is a perfect conductor,εp andεu are equal and denotedε. Actually,

this region is extracted fromΩp and treated via a BC of type (4a) on its boundaryΓc,p (thus added toΓe,p), with

n × es |Γc,p
= −n × eu |Γc,p

(5)
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or
v |Γc,p

= −vs with vs = vu |Γc,p
. (6)

3. Weak Formulations

A. Unperturbed electric scalar potential formulation

The unperturbed field distribution is first calculated inΩ as the solution of an electric scalar potential formulation,

obtained from the weak form of the Laplace equation, i.e.div(−ε grad vu) = 0, as

(−ε grad vu, grad v
′)Ω − 〈n · du, v

′〉Γd
= 0, ∀v′ ∈ F (Ω), (7)

where (·, ·)Ω and 〈·, ·〉Γ denote a volume integral inΩ and a surface integral onΓ of the product of its arguments;

F(Ω) is the function space defined onΩ containing the basis functions forv as well as for the test functionv′ [5].

At the discrete level, F(Ω) is approximated with nodal FEs. The surface integral term in (7) can be associated with

a global quantity or used for fixing a natural BC (usually homogeneous for a tangent electric field constraint) on a

portionΓd of the boundary ofΓ.

B. Perturbation electric scalar potential formulation

The source of the perturbation problemvs (6) is determined in the new added regionΩc,p through a projection

method [6]. Given the conductive nature of the perturbing region, the projection ofvu from its original mesh to that

of Ωc,p is limited toΓc,p. It reads

〈grad vs, grad v
′〉Γc,p

− 〈grad vu, grad v
′〉Γc,p

= 0, ∀v′ ∈ F (Γc,p), (8)

where the function spaceF (Γc,p) containsvs and its associated test functionv′. At the discrete level,vs is discretized

with nodal FEs and is associated to a gauge condition fixing a nodal value inΓc,p.

Further, the projection is to be extended to the whole domainΩc,p in case of a dielectric perturbing region. We

choose to directly projectgrad vu in order to assure a better numerical behaviour in the ensuing equations where the

involved quantities are also gradients.

The perturbation electrostatic weak formulation inΩp is still of the form of (7) and reads

(−ε grad v, grad v′)Ωp
− 〈n · d, v′〉Γd,p

= 0, ∀v′ ∈ F (Ωp), (9)

with non-homogeneous Dirichlet BC (6) and BCs (4a-b) in homogeneous forms.

When the unperturbed electric fieldeu = −grad vu is needed in the layer of FEs touchingΓc,p in Ωp\Ωc,p, denoted

Ωl,p, the projection (8) ofvu has to be extended only to this transition layer. This way, the computational effort of the

projection is also reduced. Having access toeu ande in this layer allows to compute there the perturbed electricfield

ep. Both charges and electric forces can thus be calculated onΓc,p.

C. Iterative sequence of perturbation problems

For close relative positions where the coupling between thesource and perturbing regions is significant, an accurate

solution can be obtained via an iterative procedure that calculates successive perturbations not only from the initial

source region to the added conductor but also from the latterto the former. Each region gives a suitable correction as

a perturbation with an accuracy dependent of the fineness of its mesh.

For each iterationi (i = 0, 1, ...), we determine the electric scalar potentialv2i in Ω, with v0 = vu. The projection

of this solution from its original mesh to that of the added conductorΩc,p gives a sourcevs,2i+1 for a perturbation
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problem. This way, we obtain a potentialv2i+1 and an electric charge onΓc,p that counterbalance the potential and the

electric charge onΓc. For iterationi+ 1, a new sourcevs,2i+2 for the initial configuration has to be then calculated.

This is done by projectingv2i+1 from its support mesh to that ofΩ. This projection can be limited to the layer of FEs

touchingΓc in Ω\Ωc, denotedΩl, i.e.

(grad vs,2i+2, grad v
′)Ωl

− (grad v2i+1, grad v
′)Ωl

= 0, ∀v′ ∈ F (Ωl). (10)

A perturbation electric scalar potential problem is definedin Ω as

(−ε grad v2i+2, grad v
′)Ω − 〈n · d2i+2, v

′〉Γd
= 0, ∀v′ ∈ F (Ω), (11)

with non-homogeneous Dirichlet BCv2i+2 = −vs,2i+2 |Γc
and Neumann BCn · d2i+2 |Γd

= −n · d2i+1 |Γd
. The latter

is not known in a strong sense. The associated surface integral term in (11) can be evaluated rather via the weak

formulation of problem2i+ 1 now applied toΩl, as

〈n · d2i+2, v
′〉Γd

= −〈n · d2i+1, v
′〉Γd

= −(−ε grad vs,2i+2, grad v
′)Ωl

∀v′ ∈ F (Ωl), (12)

benefiting from the projectionvs,2i+2 of v2i+1 already done by (10).

This iterative process is repeated until convergence for a given tolerance.

D. Electrostatic charges

A suitable treatment of the surface integral term in (9) consists in naturally defining a global electric charge in the

weak sense [5]. A test functionv′ is chosen as equal to one onΓc,p and as continuously varying towards0 in the layer

Ωl,p of FEs touchingΓc,p in Ωp\Ωc,p. The electric charge can be naturally calculated at the post-processing stage as

the volume integral in (9) limited toΩl,p as

Qp = Qu +Q, (13)

with Qu = −(−ε grad vs, grad v
′)Ωl,p

,

and Q = −(−ε grad v, grad v′)Ωl,p
.

The calculation ofQu needs to use the unperturbed potentialvu expressed in the mesh ofΩl,p, which is actually

the projected potentialvs. This justifies the interest of projectingvu in Ωl,p.

In case of iterative sequence of perturbation problems, thetotal charge onΓc,p is given by the summation of

elementary charges obtained at each iterationi.

E. Electrostatic forces

As previously mentioned, the perturbed electric fieldep can be computed in the layerΩl,p of FEs touchingΓc,p

in Ωp\Ωc,p. The electric force distribution is calculated thus by locally applying the virtual work principle [7] in this

transition layer. At the discrete level, the force at each node ofΓc,p is obtained by deriving the electric energy in the

considered layer of FEs with respect to a virtual displacement. The contribution of a reference element∆ to the force

in a given direction is

Fr =

∫
∆

ε

2
(−2 ep J

−1 ∂J

∂u
ep + ep ep

∂|J |

∂u
) d∆, (14)

for a virtual displacementr in this direction.J is the geometrical Jacobian matrix with determinant|J |.

Given the non-linearity of the force, a direct summation of the forces at each iteration is not possible. The total

electric fieldep has to be updated at each iteration before computing the total force by (14).
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4. Application

In order to illustrate and validate the iterative perturbation method for electrostatic field distortions, we considera

parallel-plate capacitor (plate length and plate separation 200µm). The conductive partsΩc of the capacitor are two

electrodes between which the electric potential difference is ∆V = 1 V (upper electrode fixed to1 V). A square

conductor (side = 20 µm, at fixed potential0.7 V) is considered as a perturbing regionΩc,p inside the capacitor. The

geometry of this conductor accounts for fringing field effects. Its distance from the upper electrode is denotedd.

Fig. 1 shows examples of meshes for the unperturbed and perturbation problems. An adapted mesh, specially fine

in the vicinity of the corners of the perturbing conductor, is used. Note that any intersection of perturbation problem

boundaries with the unperturbed problem material regions is allowed.

Fig. 2 illustrates the sequence of associated solutions to be considered with the developed perturbation method, i.e.

the unperturbed fieldsvu andeu, the perturbation fieldsv ande, and the perturbed fieldsvp andep.

For the positiond = 20 µm, a sequence of perturbation problems has been carried out. The relative error ofvp and

the y-component ofep computed near the conductor at some iterations is depicted in Fig. 3.

The relative error forvp andep is below1% at iteration15 and23, respectively. Note thatvp converges faster than

ep (Fig. 3). Applying the Aitken acceleration to the iterativeprocedure speeds up the convergence. In that case, only

5 iterations are required for bothvp andep (Fig. 4).

At odd iterations, the electric chargeQp and the electric forces on the outer surface of the conductorare computed.

In order to compare with the FE solution, we consider the summation Fp of the values of they-component of the

electric forces at each node of half the sides of the conductor from one corner facing electrode at1 V. Fig. 5 shows

the convergence ofQp andFp as a function of iterationi.

The relative error forQp and Fp is below 1% at iteration25 and 27, respectively. Note thatQp and Fp have

converged nearly at the same time asep. When the Aitken acceleration is used, the number of iterations is reduced to

5 and7, respectively.

Several relative positionsd of the conductor are listed in Table I. For each of them, the perturbation problem is

solved and an iterative process is carried out till convergence (i.e. the relative error ofvp, ep, Qp andFp below 1%).

The number of iterations to achieve convergence without andwith Aitken acceleration is shown as well.

As expected, more iterations are needed when the conductor is close to an electrode. It can be seen thatep, Qp

andFp need nearly the same number of iterations to achieve convergence at each considered positiond. Furthermore,

Aitken acceleration has proven to be very efficient.

TABLE I

NUMBER OF ITERATIONS TO ACHIEVE CONVERGENCE WITHOUT AND WITHA ITKEN ACCELERATION (BETWEEN PARENTHESES) FOR SEVERAL

DISTANCES (CONDUCTOR AT0.7 V AND ELECTRODE AT1 V ).

d(µm) vp(V) ep(V/m) Fp(N) Qp(C)

5 39(7) 61(7) 69(9) 61(9)

10 25(5) 37(7) 43(9) 39(9)

20 15(3) 23(5) 27(7) 25(7)

50 1(-) 5(5) 7(7) 19(7)
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5. Conclusion

An iterative finite element perturbation method has been developed for efficiently computing electrostatic field

distortions and forces on moving conductors. First, an unperturbed problem (in the absence of some perturbing regions)

is solved with the conventional FE method in the complete domain. Second, a perturbation problem is solved in a

reduced region with an additional conductor using the solution of the unperturbed problem as a source. Benefits of the

projections in reduced supports around some boundaries arepointed out. This way, charges and forces are computed.

This approach uses independent meshes which are adapted foreach associated problem. A projection from one mesh

to another is used to feed a given problem with its sources. For close relative positions where the coupling between

the source and perturbing regions is significant, an accurate solution can be obtained via an iterative procedure. The

application of Aitken acceleration to the iterative process has been proven to be very efficient.
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Fig. 1. Mesh ofΩ (left) and adapted mesh ofΩp (right).
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Fig. 2. The unperturbed fieldsvu (a) andeu (c); the perturbation fieldsv (b1) ande (d1); the perturbed fieldsvp (b2) andep (d2).
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Fig. 3. Relative error ofvp (top) andep (y-component) (bottom) computed along the conductor top surface for some iterations.
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