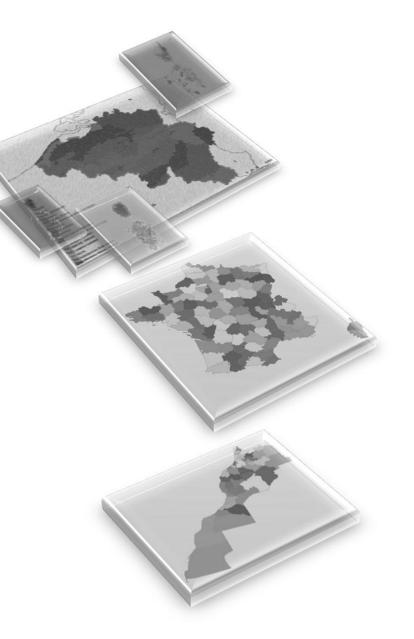


34th EARSeL Symposium, Warsaw


Improving Remote Sensing Derived Dry Matter Productivity By Reformulating The Efficiency Factors: Case Studies For Wheat And Maize

Yetkin Özüm Durgun (VITO-TAP & ULg), Sven Gilliams (VITO-TAP), Bernard Tychon (ULg), Bakary Djaby (CGIAR), Gregory Duveiller (JRC)

Outline

- » Introduction
- » Research Questions
- » Methodology
- » Results
- » Conclusions, Limitations and Future Work

Introduction

- » DMP
 - » overall growth rate or dry biomass increase of the vegetation
 - » kgDM/ha/day
 - » directly related to NPP (Net Primary Productivity, in gC/m²/day)
- » DMP/NPP is a fundamental ecological variable because
 - » it measures the energy input to the biosphere and terrestrial carbon dioxide assimilation.
 - » it indicates the condition of the land surface area and status of a wide range of ecological processes.
 - » it is a unique integrator of climatic, ecological, geochemical and human influences.

Introduction

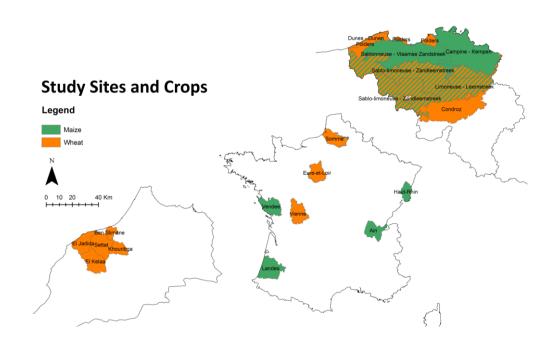
- The Remote Sensing research unit of VITO has started to produce Dry Matter Productivity (DMP) estimate images on a regular basis since 2000.
- The DMP¹ product of VITO is based on the Light Use Efficiency (LUE) approach first formulated by Monteith.

» DMP = R *
$$\varepsilon_p$$
 * fAPAR * ε_{ACT} * ε_{AR}

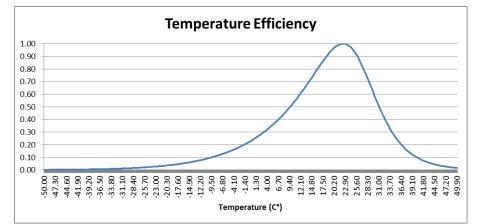
$$\varepsilon_{ACT} = \varepsilon_{RUE} * \varepsilon_{T} * \varepsilon_{CO2} * \varepsilon_{H2O}$$

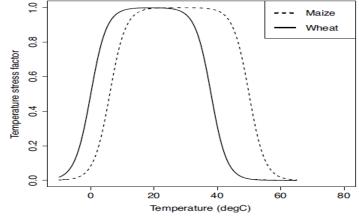
(¹Veroustraete, F., Sabbe, H. & Eerens, H. (2002) Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data. Remote Sensing of Environment, 83, 376–399.)

Research Questions


- » In terms of crop yield estimations,
 - » can adding water stress factor (ϵ_{H2O})
 - » can reformulating stress factors for C₃ and C₄ plants

make any improvements?




- » Study sites and crops
 - » Belgium and France winter wheat (C₃) and forage maize(C₄)
 - » Morocco soft wheat (C₃)
- » Data (1999 2012)
 - » fAPAR SPOT VGT
 - » Radiation, temperature ALTERRA
 - » Precipitation and potential evapotranspiration ECMWF

» ϵ_{T} – Temperature Effect

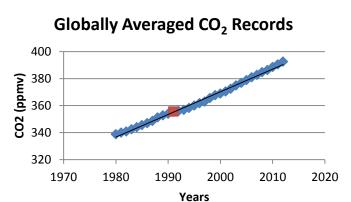
Source: (Deryng et al. 2011)

Table 1. Response of total and plant-component dry matter of an old hybrid (Pride 5) and a new hybrid (Pioneer 3902) at the 10-leaf stage to three temperature regimes

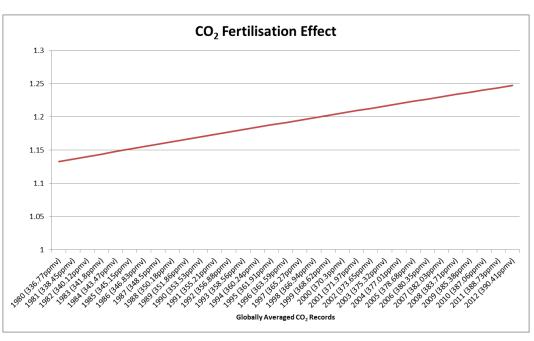
Temperature (°C)	Thebaild	Deete	C		T
(()	Hybrid	Roots	Stems	Leaves	Total
			(g 1	m ⁻²) —	
16/7	Pride 5	28.9	26.1	25.2	80.3
	Pioneer 3902	31.0	20.8	21.2	73.0
23/14	Pride 5	25.6	31.0	29.9	86.4
	Pioneer 3902	24.8	25.1	28.4	78.3
33/24	Pride 5	15.5	21.3	23.6	60.4
	Pioneer 3902	15.9	16.3	23.0	55.3
Mean	Pride 5	23.3	26.1	26.2	75.7
	Pioneer 3902	23.9	20.7	24.2	68.8
LSD (0.05)		NS ^z	2.0	1.7	5.5

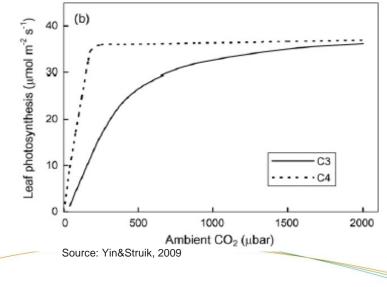
Source: Maize plants, Canada (Tollenaar et al. 1990)

CO_2 (µmol mol ⁻¹)	Temperature (°C)	Aboveground dry matter (g plan
370	19/13	149.1 ± 4.81
	25/19	112.2 ± 3.02
	31/25	116.0 ± 3.19
	35/29	102.2 ± 3.36
	38.5/32.5	75.1 ± 3.46
750	19/13	159.2 ± 2.85
	25/19	108.0 ± 3.02
	31/25	104.3 ± 3.35
	35/29	107.7 ± 7.63
	38.5/32.5	75.6 ± 4.85


Source: Maize plants, the USA (Kim et al. 2007)

16/06/2014

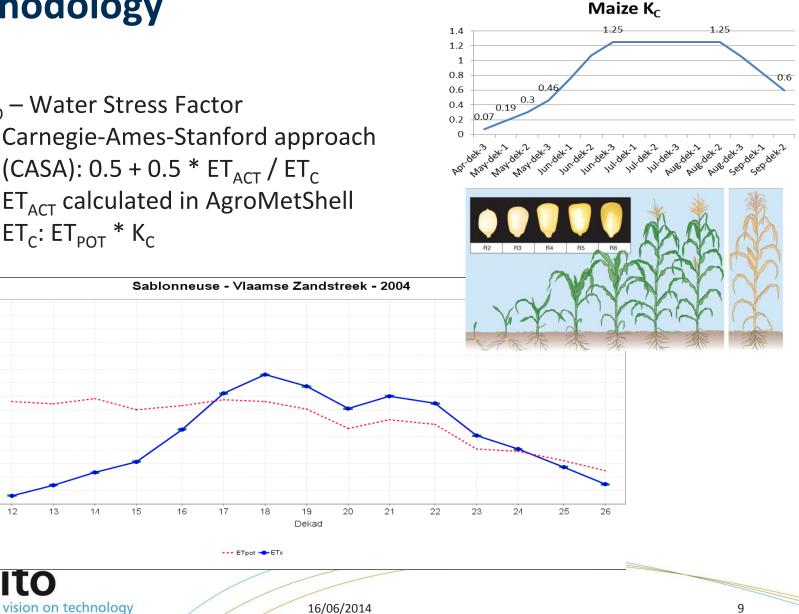

© 2014, VITO NV


7

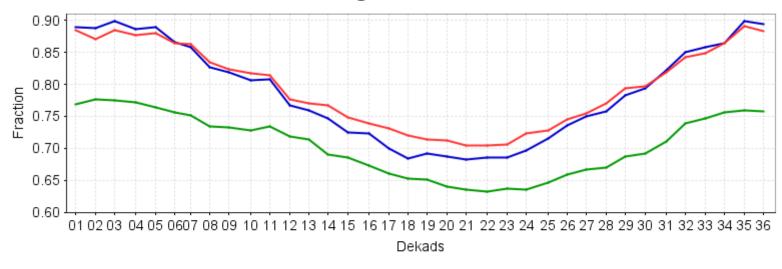
» $\varepsilon_{CO2} - CO_2$ Fertilization Effect

Source: http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html

- » ε_{H2O} Water Stress Factor
 - » Carnegie-Ames-Stanford approach (CASA): $0.5 + 0.5 * ET_{ACT} / ET_{C}$
 - » ET_{ACT} calculated in AgroMetShell


» $ET_c: ET_{POT} * K_c$

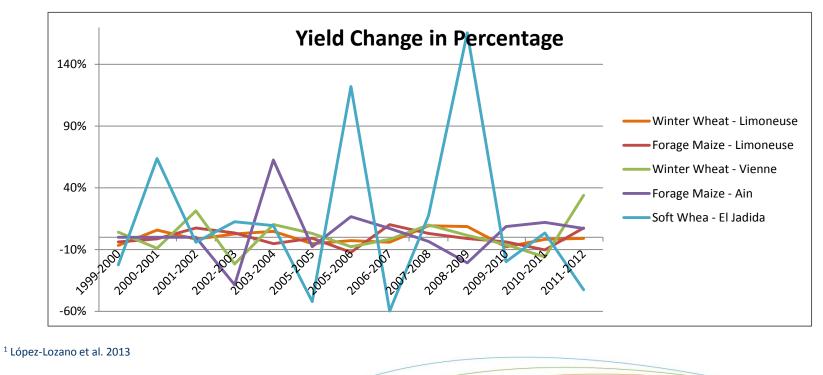
7.5 7.0 6.5 6.0 5.5 5.0 4.5 Ē 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0


12

13

14

» ϵ_{AR} – The fraction kept after autotrophic respiration (1-AR)


Average 1999-2012

— Limoneuse — Ain — El Jadida

Results

» A single linear regression between DMP (cumulated over an optimal temporal window¹) and actual yield statistics on a long term period (1999-2012) for forage maize and winter wheat.

Results

		Coefficient of Determination R ²			RRMSE				
Regions	Crop	Original DMP	New DMP	fapar	NDVI	Original DMP	New DMP	fapar	NDVI
Limoneuse (BE)	Winter wheat	0.52	0.61	0.36	0.40	2.94	2.67	3.36	3.28
Vienne (FR)	Winter wheat	0.33	0.53	0.41	0.35	5.88	5.47	6.13	6.44
El Jadida (MA)	Soft Wheat	0.64	0.75	0.57	0.54	20.05	16.56	22.03	22.38
Limoneuse (BE)	Forage maize	0.37	0.55	0.35	0.32	4.50	3.78	4.54	4.68
Ain (FR)	Forage maize	0.40	0.85	0.78	0.84	5.33	5.13	6.14	5.22

Results

» Sensitivity Analysis: to understand which stress factor is more important

		Stress Factors				
Regions	Crop	CO2	Тетр	H2O		
Limoneuse (BE)	Winter wheat	Х		x		
Vienne (FR)	Winter wheat	х		x		
El Jadida (MA)	Soft Wheat	Х	х	x		
Limoneuse (BE)	Forage maize		Х	x		
Ain (FR)	Forage maize		Х	x		

Conclusions, Limitations and Future Work

- » Conclusions:
 - » Adding water stress factor improved single linear relation
 - » For wheat, CO_2 and H_2O are the limiting factors for BE and FR; CO_2 , Temp and H_2O are the limiting factors for MA
 - » For maize, Temp and H₂O are the limiting factors for BE and FR
- » Limitations:
 - » Low interannual yield variability in Belgium & France
- » Further work:
 - » Validation with flux-net data

THANK YOU

16/06/2014 © 2014, VITO NV

15