

Improving Remote Sensing Derived Dry Matter Productivity by Adding A Water Limitation Factor: A Case Study of Belgium

Yetkin Özüm Durgun^{1*}, Sven Gilliams^{1**}, Bernard Tychon^{2**}, Bakary Djaby^{3**}, Gregory Duveiller^{4**}

¹ Flemish Institute for Technological Research (VITO), Centre for Remote Sensing and Earth Observation Processes, Belgium ² University of Liège, Department of Environmental Sciences and Management, Belgium

³ CGIAR, Research Center of ICRISAT, Niger

⁴ European Commission - Joint Research Centre, Institute for Environment and Sustainability, Italy

*Corresponding author: ozuem.durgun@vito.be

**Thesis supervisors

Introduction

Based on the Monteith approach, the Remote Sensing research unit of VITO has started to produce Dry Matter Productivity (DMP) estimates on a regular basis since 2000. The current DMP products are potential products since there is no water limitation factor. This study presents the improvement of remote sensing derived DMP by adding a water stress factor relate to improve the relation between DMP and official crop yield time series for fodder maize and winter wheat over agroecological regions of Belgium for a long-term period (1999-2012).

Data and Methods

Remote Sensing Data

Monteith formulated a radiation use efficiency (RUE) model to estimate Net Primary Production (NPP), a variation of DMP. According to the model, the biomass accumulation of the plant is correlated with the amount of absorbed radiation (APAR) and the actual efficiency of converting atmospheric CO₂ into plant tissue (ϵ_{ACT}) as

Yield Statistics

Official yield statistics of forage maize winter wheat were and collected from national statistical service at agro-ecological regions level in Belgium.

Linear Regression

A single linear regression between water-limited DMP cumulated over an optimal temporal window and actual/detrended yield statistics was calculated for the 1999-2012

period. Temporal window was defined by an initial and final dekad within the season as 3rd dekad of April-2nd dekad of September for fodder maize and 1st dekad of November-2nd dekad of July for winter wheat. Coefficient of determination (R²) and relative root mean square error (RRMSE) were computed at agro-ecological level.

TERM DMP		MEANING	VALUE	UNIT	SENSOR	
		Dry Matter Productivity	0-320	kgDM/ha/day	SPOT VGT	
R		Total shortwave incoming radiation (0.2 – 3.0μm)	0-320	GJ/ha/day	ALTERRA	
	ε _p	Fraction of PAR (0.4 – 0.7 μ m) in total shortwave	0.48	۲/۱	-	
fapar	smoothed fAPAR PAR-fraction absorbed by green vege		0-1	ו/ו	SPOT VGT	
ε _{rue}	E _{RUEC3}	Radiation use efficiency for C3 crops at optimum	3.11	kgC/GJ	-	
	ε _{rue c4}	Radiation use efficiency for C4 crops at optimum	4.44	-		
	ε _τ	Normalized temperature effect 0-1 -		-	ALTERRA	
ε _{co2}		Normalized CO2 fertilization effect	0-1	-	ALTERRA	
	ε _{AR}	Fraction kept after autotrophic respiration	0-1	-	ALTERRA	
ε _{H2O}		Water stress factor (WSF)	0-1	-	METEO	

DMP is the increase in dry matter biomass on a daily base and is affected by several environmental factors. Three of these factors used in the algorithm were changed in the new version:

- Crop species \rightarrow We used C₃ and C₄ specific maximum RUE values.
- Leaf CO₂ assimilation rate \rightarrow We used yearly variable CO₂ value.

- Drought stress \rightarrow We added ϵ_{H2O} as a water stress factor. There are two versions: 1. ET_{ACT} / ET_{C}
 - 2. $0.5 + 0.5 * ET_{ACT} / ET_{C}$ (described as in CASA model)
 - ET_{ACT} was calculated in AgroMetShell (FAO Water Balance Model) •
 - $ET_{C} = K_{C} \times ET_{POT}$

 ET_{POT} is the evapotranspiration rate from a hypothetical grass reference crop.

Results

The following results were drawn based on four agro-ecological regions where maize and wheat are the dominant crops:

- As theoretical analyses indicate that increases in CO₂ concentrations had beneficial physiological effect on plant growth especially for wheat as a C_3 plant. Maize as a C_{4} plant did not demonstrate a benefit to CO_{2} enrichment.
- No significant effect was found between using C_3 and C_4 specific RUE values compared to the original RUE value used in the algorithm.
- Analysis conducted with detrended yield performed better than real yield for maize which is the opposite case for wheat.

Adding a water stress factor made a significant improvement for maize for all agro-ecological regions. Its effect on wheat was significant only in Loamy and Condroz regions.

Maize	For Most Critical Period	R ²	RRMSE (%)	Wheat	For Most Critical Period	R ²	RRMSE (%)
	Dunes + Polders	0.25 ightarrow 0.31	$6.65 \rightarrow 6.30$		Dunes + Polders	0.63 → 0.64	4.49 → 4.43
	Sandy	0.14 ightarrow 0.26	5.94 ightarrow 5.70		Sandy-loamy	0.60 → 0.68	3.85 → 3.47
	Kempen	0.27 → 0.44	$6.13 \rightarrow 5.02$		Loamy	0.52 → 0.58	2.94 → 2.97
	Sandy-loamy	0.28 → 0.45	$3.92 \rightarrow 3.42$		Condroz	0.22 → 0.22	4.13 → 4.13

Conclusions and Limitations

- Adding water stress factor to DMP has a strong potential to improve the crop yield estimates. However, in general, Belgium does not suffer from water-stress. Thus, this study will be conducted also in water-stressed regions in France and Morocco.
- The inter-annual variability of the official yield is low in Belgium.
- Crop specific map was not available.

Acknowledgements

This thesis is realised in the framework of **VEGETATION** project Collaboration and support of VITO.

VITO NV

Boeretang 200 – 2400 MOL – BELGIUM – Tel. + 32 14 33 55 11 – Fax + 32 14 33 55 99 – vito@vito.be – www.vito.be