Novel treatments for disorders of consciousness ?

THIBAUT Aurore PhD Candidate Coma Science Group Cyclotron Research Centre University of Liège, Belgium

JSMF meeting, 2014

James S. McDonnell Foundation

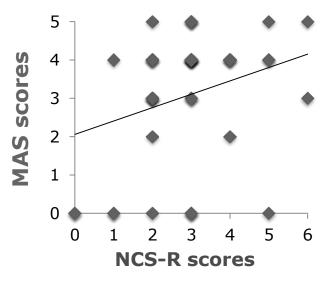
Motor disorder: spasticity

Exageration of myotatic reflex leading to an unvoluntary muscle contraction after muscle stretching or a permanant muscle contraction

Aggravating factors: Velocity of stretching Fatigue and stress

Side effects: Muscle retraction (> sarcomeres) Irreversible stiffness of joints Vicious positions and pain

Physiopathology is complicated No clear treatment guidelines yet



Spasticity in DOC

Assess spasticity (MAS*) in VS/UWS and MCS (n= 65)

- 88% (n=57) showed spasticity
 60% (n=39) had severe spasticity (MAS≥3)
- **Time since insult**: positively correlated with MAS scores
- **Pain** (*Nociception Coma Scale Revised*) : positive correlation

* MAS=Modified Ashworth Scale

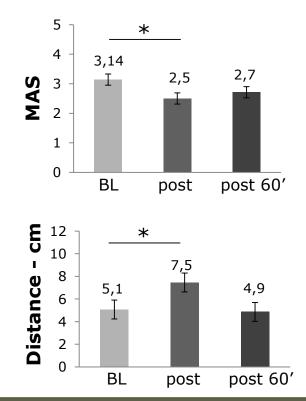
www.comascience.org

Thibaut et al, *submitted*

Soft splints

- **AIM:** Test the efficacy of soft splints on spastic upper limb to reduce spasticity in chronic VS/UWS & MCS
- Avantages:
 - Easy to apply
 - Patient can be alone
 - Soft and confortable
 - Several hours/day

Soft splints


 AIM: Test the efficacy of soft splints on spastic upper limb to reduce spasticity in chronic VS/UWS & MCS (n=17)

Avantages:

- Easy to apply
- Patient can be alone
- Soft and confortable
- Several hours/day

Clinical benefits:

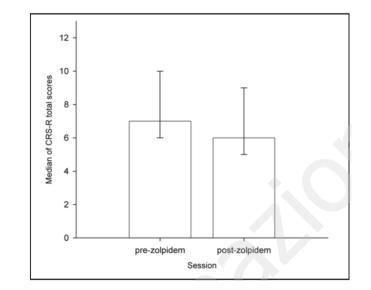
- Spasticity decrease on fingers flexors
- Increase of hand opening

Current treatments

Drugs Dopaminergic	Study (first author, year)	Number of patients and etiology	Diagnosis	Placebo control	Reported functional outcome	Deep Brain	
Amantadine		184 TBI	MCS/VS	Yes	Positive	Stimulation (DBS)	
Amantaoine	Giacino (2012) Schnakers (2008)	184 TBI	MCS/VS	No	Positive	Intralaminar nuclei stimulation induces "recovery" from MCS	
	Patrick (2006)	10 TBI	Low responsive level	No	No effect		
	Hughes (2005)	123 TBI	Coma	NA	No effect		
	Saniova (2004)	41 TBI	'Persistent unconsciousness'	NA	Positive		
	Meythaler (2002)	35 TBI	MCS	Yes	Positive		
Bromocriptine	Brahmi (2004)	4 intoxication	Coma	No	Positive		
Levodopa	Matsuda (2003)	3 TBI	VS	N			
Nonbenzodiazepine sedative							
Zolpidem	Cohen (2008)	1 anoxic	Lethargic	N			
	Shames (2008)	1 anoxic	MCS	N			
	Singh (2008)	1 TBI	MCS	N			
	Brefel-Courbon (2007)	1 hypoxic	Akinetic mutism	Y	de -		
	Clauss (2006)	2 TBI, 1 anoxic	VS	N	a straight		
	Clauss (2000)	1 TBI	Semi-comatose	N	- 10		
GABA agonist						A CLEAR MANNER OF COM	
Baclofen	Sarà (2007)	1 non-TBI	VS	No	Positive		

Adapted from Demertzi et al, Expert Rev Neurotherapeutics, 2008 Giacino et al, NEJM, 2012 Schiff et al, Nature, 2007

www.comascience.org


Zolpidem

Effect of Zolpidem in chronic disorders of consciousness: a propective open label study

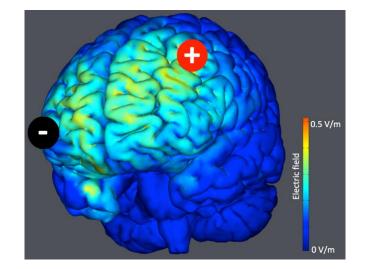
60 patients (32 MCS, $35\pm15y$, 18 wo, 37 TBI, 4 ± 5.5 y post insult)

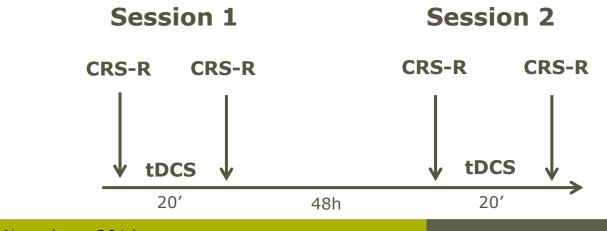
Open label study

- 12 patients improved but no diagnostic change
- 1 patient : MCS → EXIT
 Placebo control: no effect anymore
- At the group level: no effect

Thonnard et al., Functional Neurology, 2014

Spasticity | Drugs | tDCS studies | Conclusion Pilot study | tDCS & metabolism | motor tDCS | Chronic stimulations Why direct current?

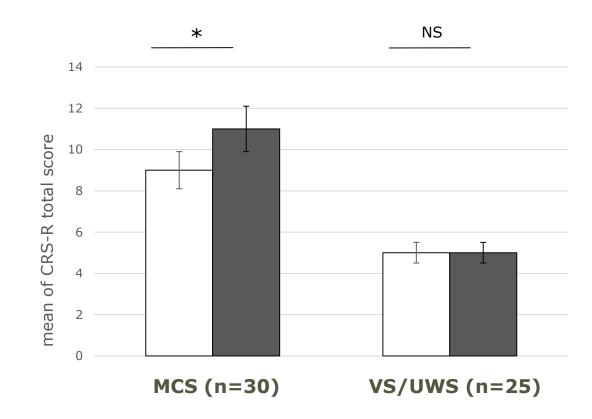

Stimulation	Population	Effects	Authors
Motor cortex	Healthy subjects	Dexterity	Boggio et al. Neurosci Lett, 2006
	Hemiplegic patients	Dexterity and strength	Hummel et al. Lancet, 2006
	Spastic patients	Spasticity & ADL (activity of daily life)	Wu et al., Arch Phys Med Rehabil 2012
Prefrontal cortex	Healthy subjects	Memory	Marshall et al. J Neurosci, 2004
	Alzheimer's patients	Memory	Ferrucci et al. Neurology, 2008
	Stroke patients	Attention	Jo et al. Am J Phys Med Rehabil, 2009
	Aphasic patients	Language	Baker et al. Stroke, 2010


➔ Cheap & easy to use

Thibaut et al, Rev Neurol, 2013

Spasticity | Drugs | tDCS studies | Conclusion Pilot study | tDCS & metabolism | motor tDCS | Chronic stimulations Methods

- Direct current
- 2 mA; 20 minutes
- Anode: PFDL (F3)
- Randomised, double blind, sham controlled



Thibaut et al, Neurology, 2014

Spasticity | Drugs | tDCS studies | Conclusion Pilot study | tDCS & metabolism | motor tDCS | Chronic stimulations Results

- 55 patients (16f, 43±18y)
- 25 VS/UWS,
 30 MCS
- 25 TBI, 30 NTBI
- 20 subacute,
 35 chronic (>3m)

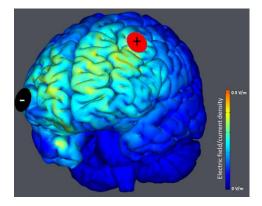
* p<0.001

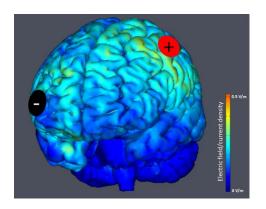
Spasticity | Drugs | tDCS studies | Conclusion Pilot study | tDCS & metabolism | motor tDCS | Chronic stimulations Results

15 responders

Patient who showed new signs of consciousness after tDCS and not before tDCS or before and after sham

- 2 UWS; acute
- 13 MCS (5>1y post insult) → 43% of MCS
- 2 UWS → MCS (acute)
- 2 MCS → EXIT (acute)

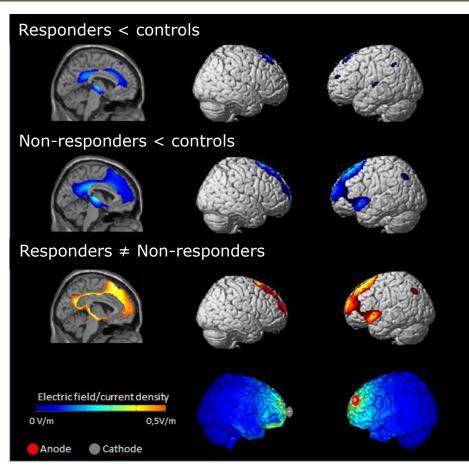

Spasticity | Drugs | tDCS studies | Conclusion Pilot study | tDCS & metabolism | motor tDCS | Chronic stimulations Neurophysiology


Prefrontal stimulation

- / of DMN connectivity (rsfMRI)
- \checkmark of α rhythm (EEG)

Motor stimulation

- rCBF increase in the left M1, right prefrontal cortex, right S1 (PET-scan)
- Functional connectivity increased within premotor, motor and sensorimotor areas (EEG)



Keeser et al., J Neurosci, 2011 Lang et al., Eur J Neurosci, 2005 Polania, Nitsche and Paulus, HBM, 2010

Spasticity | Drugs | tDCS studies | Conclusion Pilot study | tDCS & metabolism | motor tDCS | Chronic stimulations Responders vs Non-responders : PET

Responders (n=8) vs non-responders (n=17)

→ Left prefrontal cortex (stimulated area) and thalamus were more preserved in responders as compare to non responders

FWE corrected

www.comascience.org

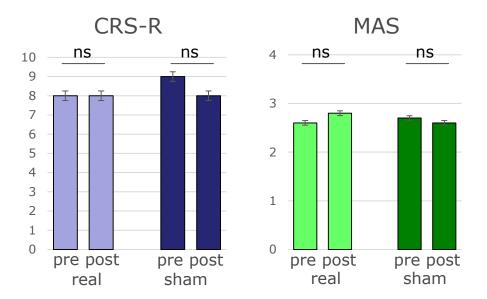
Thibaut et al, in prep

$\label{eq:spasticity} \begin{array}{c} Spasticity \mid Drugs \mid tDCS \ studies \mid Conclusion \\ Pilot \ study \mid tDCS \ & metabolism \mid motor \ tDCS \mid Chronic \ stimulations \\ \hline Motor \ tDCS \\ \end{array}$

88% of patients with DOC are spastic Spasticity (MAS) correlates with NCS-r (Thibaut et al, *submitted*)

→ How to decrease spasticity?

- Cathodal tDCS: C3/C4
- 1 mA 20 minutes
- 2 sessions (real/sham)
- MAS and CRS-R before and after
- tDCS coupled with 8 electrodes EEG
- Record cortical activity before and after


neuroelectrics ®

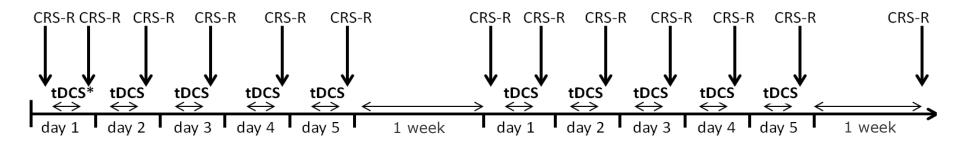
$\label{eq:spasticity} \begin{array}{l} Spasticity \mid Drugs \mid tDCS \ studies \mid Conclusion \\ \ Pilot \ study \mid tDCS \ & metabolism \mid motor \ tDCS \mid Chronic \ stimulations \\ \hline Motor \ tDCS \\ \end{array}$

15 chronic patients (7 MCS, $40 \pm 15y$, 8wo, 7 TBI)

Results

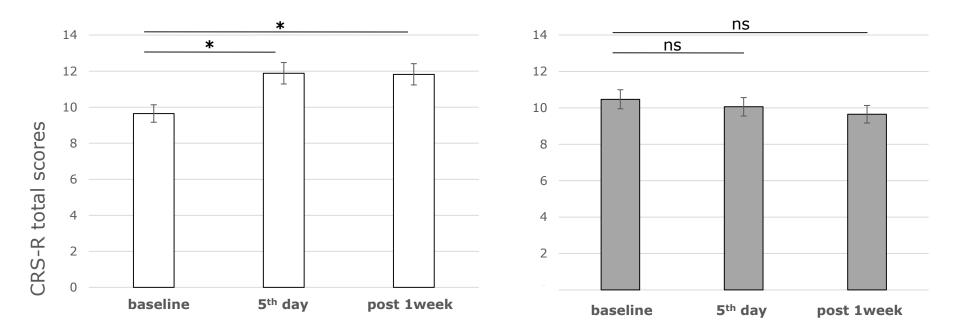
- no significant differences
 = Spasticity (MAS)
- = CRS-R
- EEG: analyses in progress

Cathodal tDCS decrease motor response? Chronic patients with fixed joints?


$\label{eq:spasticity} \begin{array}{c} \mbox{Spasticity} \mid \mbox{Drugs} \mid \mbox{tDCS studies} \mid \mbox{Conclusion} \\ \mbox{Pilot study} \mid \mbox{tDCS & metabolism} \mid \mbox{motor tDCS} \mid \mbox{Chronic stimulations} \\ \hline Repeated tDCS \\ \end{array}$

Effects last ± 90 minutes (Hummel et al., Lancet, 2006)
→ Short improvement, back to initial state

Daily stimulations (5days) (Fregni et al., Pain, 2006) Improvement and extension of benefits Randomized sham controlled double blind study

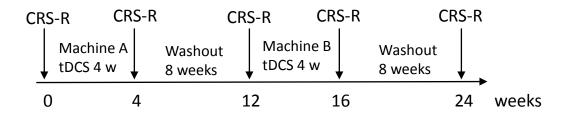

session 2

^{*}tDCS = 20minutes

$\label{eq:spasticity} $$ Spasticity | Drugs | tDCS studies | Conclusion \\ Pilot study | tDCS & metabolism | motor tDCS | Chronic stimulations \\ Repeated tDCS \\ \end{tabular}$

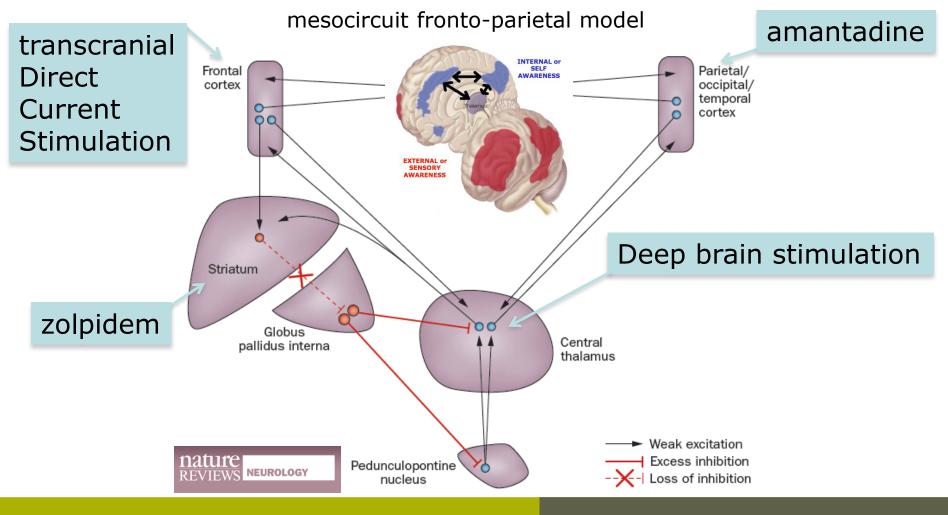
Chronic MCS – N=21 (4 excluded)

➔ 10 responders (out of 17 patients)


* < 0.025

Spasticity | Drugs | tDCS studies | Conclusion Pilot study | tDCS & metabolism | motor tDCS | Chronic stimulations **rtDCS in chronic patients**

Repeated tDCS in chronic patients at home or nursing home (multicentric study)


Protocol:

- tDCS over the prefrontal dorsolateral cortex, 2 mA, 20 min
- 5 days per week during 4 weeks (2 tDCS sessions real & sham)
- Stimulations made by the family (video)
- Assessment: CRS-R before after 4 weeks two month later
- Double blind randomized study (2 months of washout)
- Chronic MCS patients (> 1y post insult) at home/nursing home



Consciousness \approx connectivity

Giacino, Fins, Laureys, Schiff, Nature Rev Neurol 2014

THANK YOU

