Explaining the CMS Higgs flavor violating decay excess
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Direct searches for lepton flavor violating Higgs boson decays in the 71 channel have been recently
reported by the CMS collaboration. The results display a slight excess of signal events with a
significance of 2.50, which translates into a branching ratio of about 1%. By interpreting these
findings as a hint for beyond the standard model physics, we show that the Type-III 2HDM is
capable of reproducing such signal while at the same time satisfying boundedness from below of the
scalar potential, perturbativity, electroweak precision data, measured Higgs standard decay modes
and low-energy lepton flavor violating constraints. We have found that the allowed signal strength
ranges for the bb, WIWW* and ZZ* standard channels shrink as soon as BR(h — 7u) ~ 1% is enforced.
Thus, we point out that if the excess persists, improved measurements of these channels may be
used to test our Type-III 2HDM scenario.
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I. INTRODUCTION

Since the discovery of the Higgs boson [1} 2] special effort has been made to determine its properties. The motivation
for such an effort resides on understanding the mechanism for electroweak symmetry breaking. At present, several
aspects of the Higgs boson are to some extent well known, in particular those related with some of its expected
“standard” decay modes, namely: WW*, ZZ*, 4+, bb and 77 . Currently, measurements of these decay modes have
shown compatibility with the standard model (SM) expectations, although with large associated uncertainties [3].
Indeed, it is due to these large uncertainties that there is still room for nonstandard decay properties, something
that has encouraged such searches at the LHC as well. Searches for invisible Higgs decays have been published in
[4, 5], while direct searches for lepton flavor violating Higgs decays (h — 7u) have been recently reported by the CMS
collaboration in [6]. In this letter we focus on the latter, for which the CMS collaboration, using the 2012 dataset
taken at /s = 8 TeV with an integrated luminosity of 19.7 fb—!, has found a 2.50 excess in the h — 7y channel,
which translates into BR(h — 7p) = (0.897039)%.

Indirect bounds on Higgs lepton flavor violating decay modes arise from low-energy data. Muon and tau rare decays
(e.g. u— ey, p— 3e, 7 — ey and 7 — 3u)—induced by Higgs lepton flavor breaking couplings—place upper bounds
on the Higgs flavor violating modes: h — 7u, h — 7e, h — pe. Since muon decays have the most tight limits, it is
for the pe mode for which consistency with low-energy data demands a branching fraction well below the LHC reach
(< 1078). Constraints on tau rare processes, being less stringent, allow larger 7e and 7y branching ratios [7}, 8], hence
stimulating these searches at the LHC [[]

Although these bounds follow from a fairly model-independent analysis (see [8] and references therein), one may
also wonder what type of frameworks are capable of producing sizeable lepton flavor violating Higgs decays. Efforts
in such direction have been done in different contexts, with pioneer works in Refs. [11} 12]. More recenty, Ref. [13]
studied the problem in the MSSM, while [I4] in the R-parity violating MSSM. Flavor violating decays have been
considered as well in the inverse seesaw model in [I5]. Possible effects due to vectorlike leptons have been investigated
in [16]. Extended scalar sectors involving several Higgs doublets and flavor symmetries (Yukawa textures) have been
examined too [17H20] El Finally, the Type-III Two Higgs Doublet Model (2HDM) has been considered in Refs. [24] 25].
Basically, the bottom line of all these analyses is that unless one deals with extra Higgs doublets, lepton flavor violating
Higgs decays are below the LHC reach.

In this paper, we study the viability of producing the CMS excess signal in the Type-III 2HDM. For simplicity,
we assume flavor violation only in the lepton sector E| and adopt a pure phenomenological approach, that is to say
all the parameters of the model are treated as free parameters subject only to phenomenological constraints. The
phenomenological restrictions we consider are the following. First of all, the new degrees of freedom are constrained
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I The impact of lepton flavor violating couplings in the Higgs sector on several low-energy processes was recently studied in [9} [10].

2 Minimal flavor violating and Froggatt-Nielsen frameworks [21} [22] have been investigated using an effective approach in Ref. [23]. Tt
has been pointed out that in their most simple versions either schemes lead to nonobservable effects.

3 For flavor violating effects in the quark sector see e.g. Refs. [26] 27].
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by electroweak precision data. Thus, in our analysis we calculate the contributions to the 7" parameter (contributions
to the S and U parameters in the 2HDM are small [28]). Since the couplings that induce h — 7p induce as well tau
rare processes, we consider the restrictions arising from 7 — pv (for which we include Barr-Zee diagrams contributions
[29] as done in [24]), 7 — 3p and 7 — nu. We also study whether our scenario can explain the (g — 2),, discrepancy.
In contrast to previous studies in the 2HDM, we also verify that the Higgs standard properties deviate only within
the allowed measured ranges [3]. These include the following Higgs decay channels: 77, bb, WW* and ZZ*. We check
as well for theoretical constraints, namely that the scalar potential is bounded from below and contains perturbative
parameters.

The rest of the paper is organized as follows. In sec. [T we discuss basic aspects of the Type-III 2HDM and introduce
the formulas employed in our numerical calculation. In sec. [[II] we describe the strategy followed in our numerical
analysis and present our results. Finally, in sec. [[V]we summarize and present our conclusions.

II. TYPE-III 2HDM

We consider a 2HDM [30} B1] of Type-III. Contrary to other versions of the 2HDM, the Type-III 2HDM does not
include any discrete symmetry that serves to distinguish between Higgs doublets. Therefore, both Higgs doublets are
allowed to couple to all fermion species.

It is common to present the 2HDM in an arbitrary basis in Higgs space. Instead, following [24], we prefer to
introduce the model in the so-called Higgs basis. In this basis, only one Higgs doublet acquires a vacuum expectation
value (VEV) and the scalar potential of the model (assuming CP conservation) is given by E|

V =M HIHy + MZ,H}H, — (M122H1TH2 + h.c.)
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are the Higgs doublets in the Higgs basis, such that (HY) = v/v/2 and (HY) = 0. Here ¢} and ¢9 are CP-even
neutral Higgs fields, A is a CP-odd neutral Higgs field, H* is a charged Higgs field and G* and G° are Goldstone
bosons. Since we assume CP conservation, A is the physical pseudoscalar Higgs and does not mix with ¢} and 9.
The relation between ¢} and ¢ and the scalar mass eigenstates h and H (with mj; < mpg) is

h = sin(B — a) ¢ + cos(f — a) ¢, 3)
H = cos( — o) ¢ —sin(B — @) 5. (4)

Here we have introduced § — «a, the physical mixing angle that relates the Higgs basis and the mass basis for the
CP-even scalar states. The potential parameters are related to the physical Higgs masses as

miy = M+ s, &)
my —mip = —g (A5 — A4) (6)
mi +mi —m? =v? (A +As) , (7
(m% —m3)? = [mi + (A5 — Ay) 112]2 +4 A", (8)
2
s [2(8 — )] = — 2 ©)

4 We follow the conventions of |24} 132] and denote the potential parameters in the Higgs basis in upper case.



We now turn to the Yukawa interactions of the model. In the Higgs basis for the Higgs doublets and the mass basis
for the fermions, the Yukawa Lagrangian of the model can be written as
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Here we denote ﬁa = o9 H}, the fermions (ur,dy,er,ur,dr,er) are mass eigenstates, K is the CKM matrix and

i,j = 1,2,3 are generation indices. mY miD and mF are the up-type quark, down-type quark and charged lepton

7
masses, respectively, and pU, p? and p¥ are general 3 x 3 complex matrices in flavor space. For simplicity, in the
following we will assume that the p matrices are hermitian. Now, using Egs. , and we can rewrite the

leptonic part of Ly as
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where U is the PMNS matrix, Pr = (1 + 75)/2 is the usual right-handed chirality projector, sg_, = sin(8 — «) and
cp—a = cos(B — a). From Eq. we can extract the Higgs couplings to fermions

mf pff/
= —=85_ a0 Cl—q s 12
ghff L S8—alff + NG B—a (12)

mf pff/
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where gafp = + 175 L\f/g for down-type quarks and charged leptons and gars = —ivs L\f/g for up-type quarks. Finally,

we will consider a specific structure for the p matrices inspired in the Cheng-Sher ansatz [33]. First, we normalize p*
as

2m;m;
pg = _K/ij tanﬁr U2 J 5 (15)

where m; = m¥ and B, is the physical mixing angle defined by the ratio
—Prr

Vem, v’

Note that, by definition, ., = 1. However, the other x;;’s, and in particular, K., = &
the quark p matrices we assume the following Type-II values

tan 8, = (16)

*

,.-» are free parameters. For

D TmVU
This parameterization of the p matrices is not the most general one but, as we will see, it leads to results in good
agreement with the experimental constraints. Furthermore, this ansatz can be understood as a minimal correction
beyond the Type-II 2HDM, with the only departure in the 7u coupling [34].

Finally, the Higgs couplings to gauge bosons are fully dictated by the gauge symmetry. One has Chywyw =
$5—a O5¥s, Coww = cp_a CiM and Caww = 0. The couplings to a pair of Z-bosons follow the same pro-
portionality.

5 In the Type-TTT 2HDM there is no unique definition of tan 8 since one can always apply rotations in Higgs space, acting also on the
Higgs VEVs, v and va. Therefore, a specific (physical) definition is required [32]. Since we are interested in tau flavor violation, we
choose to define tan 3, as the relative size of the tau Yukawa coupling and v/2m. /v, in analogy to the usual definition of tan 8 in the
Type-11 2HDM.



III. PHENOMENOLOGICAL ANALYSIS

We now proceed to describe our phenomenological analysis. Our results are based on a random scan of the parameter
space, with the following ranges for the relevant input parameters:

my C [200,1000] GeV ,  ma C [400,1000] GV |, (18)

Myt =ma +dm with om C [-5,5] GeV , (19)
sin(8—a) € [0.7,1.0],  tanf, C [0.1,40] , (20)
liry| € [0.1,3] . (21)

In addition, we assume m; = 126 GeV. Since we are driven by phenomenological considerations, we use as input the
scalar masses (my, mpg, ma and my+) rather than the parameters in the scalar potential. Our choice of a small
mass difference between the pseudoscalar and charged Higgses is motivated by the reduction of the T’ parameterﬁ ,
whereas the lower limits on sin(8 — «) and mg+ (as induced by the lower limit on m 4) are motivated by experimental
constraints: smaller values of sin(3—a) would be excluded by current measurements of the Higgs couplings to fermions
and gauge bosons while lower my+ would lead to certain tension with flavor physics bounds (mainly B physics, see
[27] for a review). We emphasize that the mass ranges selected for our numerical scan are quite conservative since
lower values for my, m4 and my=+ are allowed by LHC data, see e.g. [35].
After choosing input parameters three checks are performed:

e We determine Ay, A4, A5 and Ag by means of Egs. —@D and only allow those parameter points where the
resulting values are below 47. The exact value of this perturbativity constraint is somehow arbitrary (see
for example the discussion in [37H39]). However, we have checked that it has no impact on our numerical
results ﬂ Furthermore, we also ensure boundedness from below [37, [41] 42] by properly choosing the remaining
A parameters.

e We explicitly compute the T parameter and discard parameter points outside the current 1 ¢ region, given by
T € [-0.03,0.19] [43].

e Finally, we check whether the Higgs couplings agree with the current CMS measurements [3]. More precisely, we
determine the signal strengths for h — 77,bb, WW*, ZZ*, defined as p = (o x BR) / (6 x BR)gy, and compare
them to the CMS 1 o ranges [3]. We assume that Higgs production is given by gluon fusion (neglecting other
production mechanisms, a fairly good approximation) and compute the signal strengths as

2 2
o () ()
Ihtt Ihxx
Here gnyt and gpxx are the Higgs boson couplings to a pair of top quarks and X = 7,b, W, Z, respectively. The
superscript SM indicates standard model values.
These constraints impose severe restrictions on the allowed parameter space of the model (most parameter points
are actually excluded) and their consideration is required to properly address the Type-III 2HDM as responsible for

the CMS h — 7pu signal excess. After these checks are passed, the observables are computed using the analytical
expressions of [24]. In particular, we compute the branching ratio for h — 7y as

mp,

BR(h — Tu) = 8T,

(‘gh7u|2 + |ghu7|2) ) (23)
where T'j, is the Higgs boson total decay width ﬂ For the analytical expressions required for the computation of
BR(7 — py) we refer the reader to Appendix

Fig. [1| shows our results for BR(h — 7p) as a function of BR(7 — py). The horizontal lines define the 1 o
interval around the observed BR(h — 7u) at CMS [6]. The vertical lines show the current experimental limit set
by BaBar, BR(7 — u7y) < 4.4 x 107® [44], and an expected sensitivity at Belle-II of about ~ 107 [45]. As can be

clearly seen, there is a correlation between BR(h — 71) and BR(7 — py). However, cancellations among the different
contributions to BR(7 — p7v) preclude any definitive prediction for this observable. We find that the dominant

6 An alternative choice is given by m g+ = myo + ém, see [36] for details.
7 We point out that a more rigorous check based on tree-level unitarity was introduced in [40].
8 Given the constraints on the Higgs boson couplings, the computed T}, turns out to be close to the SM value, F%M ~ 4.1 MeV.
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FIG. 1. BR(h — 7u) as a function of BR(7 — pv) for the relevant parameters fixed according to Egs. —. The
horizontal lines show the 1 ¢ interval around the best-fit value for BR(h — 7p), as observed by CMS [6]. The right vertical
line corresponds to the current experimental limit BR(T — py) < 4.4 x 107% [44], whereas the left vertical line represents an
expected sensitivity at Belle-II of about ~ 10~ [45].

contribution is typically given by 2-loop Barr-Zee diagrams [29, [46] with internal W bosons, although the other
contributions considered in our numerical evaluation H may have similar sizes (and even become dominant in some
cases). We conclude that it is possible to explain the CMS excess in h — 7u, while being compatible with the current
bound on BR(7 — uy) as well as the abovementioned constraints on the scalar potential, the Higgs couplings and the
T parameter. This is the main result of this paper.

Regarding the required values for the model parameters, a sizable ., ~ 0.5 — 0.8 is necessary. This is the key
parameter in the determination of BR(h — 7). In contrast, we find little dependence with the other parameters
(when taken individually), although specific ranges are favored by the experimental constraints. In what concerns
tan B;, a value tan 3, 2 2 is necessary to be compatible with the constraints on the Higgs boson couplings. The
B — « angle should departure from 7/2 (which would correspond to the decoupling limit) and have values in the
sin(8 — a) ~ 0.9 ballpark. Finally, we find a preference for large A parameters, required to generate a hierarchy in

the scalar spectrum.

In Fig. [2| we present our results for the allowed signal strengths in the bb, WW* and ZZ* channels E As usual,
they are normalized to their SM values and thus the vertical line at puxx = 1 represents the SM prediction. The
purple bars cover the complete 1 o ranges compatible with measurements by CMS [3], with the black dots at the
best-fit values. The orange bars represent the allowed signal strengths in the Type-III 2HDM as required to obtain
BR(h — Tu) = (0.89f8:§9)%. We do not show the results for the 77 channel because they do not provide any
information, as the purple and orange bars extend over the same range. The most interesting results are those for
the WW* and ZZ* channels, pww, pzz € [0.71,0.99]. For both, a measurement implying p > 1 would rule out our
scenario. In contrast, for the bb channel both gy, < 1 and gy, > 1 are compatible with the CMS measurement of
BR(h — 7u), although the allowed bar shrinks to a narrower range, uy, € [0.64,1.18]. Nevertheless, we note that the
results for this channel are related to the ansatz assumed in Eq. .

Finally, we have also considered the LFV processes 7 — nu and 7 — 3 u. However, we have found that the
constraints on the model derived from their experimental bounds are weaker than those obtained from the radiative
T — . Furthermore, our numerical results show that the (g —2), anomaly cannot be explained within our scenario,
in agreement with [24].

9 Following [47], these are 1-loop diagrams with a Higgs boson in the loop and 2-loop Barr-Zee diagrams with internal t- and b-quarks,
see Appendix
10" A recent global fit of the Higgs couplings in the Type-I and Type-I1 2HDM was presented in [48].
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FIG. 2. Allowed signal strengths in the Type-III 2HDM as required to produce BR(h — 7u) in agreement with the signal
found at CMS (within 1 o) while at the time satisfying electroweak precision data (7 parameter constraints) as well as
low-energy data. The purple (thin) bars cover the 1 ¢ uncertainties obtained by CMS (with the black dots at the best-fit
values), whereas the orange (thick) bars represent the allowed signal strengths in the Type-III 2HDM as required to obtain
BR(h — ) = (0.8975:39) %.

IV. CONCLUSIONS

The excess of signal events in the 7y Higgs boson decay channel reported by the CMS collaboration poses a challenge
for beyond SM physics models. Basically, apart from models involving extra Higgs doublets, no models capable of
producing Higgs lepton flavor violating measurable at LHC have been put forward. Certainly, the 2HDM is the
simplest of such extensions, and in its Type-III “incarnation” combines the elements that—in principle—can yield an
explanation to CMS data.

Driven by this motivation, in this paper, we have done a detailed study of the Type-IIT 2HDM. In our analysis, we
have payed special attention to all relevant constraints, which include: (i) boundedness from below and perturbativity
of the scalar potential; (ii) electroweak precision data; (iii) low-energy 7 lepton flavor violating decay constraints; (iv)
standard Higgs decay channels. Our findings show that generating a large h — 7 branching fraction, as required
by CMS data, turns out to be possible while satisfying criteria (i)-(iv). Conditions in (i) do not lead to significant
contraints due to large parameter freedom. Conditions in (ii) and (iii) do not represent either any unavoidable
restriction. We have found that the most stringent constraints arise from requiring the Higgs boson to obey current
limits on its standard decay channels: bb, 77,WW*, ZZ*, although never threatening the production of the CMS
signal.

In summary, in this paper we have demonstrated that the Type-III 2HDM with a Cheng-Sher ansatz-inspired flavor
structure naturally accounts for the CMS excess signal. Of course, if this excess persist pinning down its origin will
require an extensive experimental effort. However, we stress that it might be the first indication of a more complex
scalar structure. Moreover, since Cheng-Sher flavor structures emerge from flavor symmetries, these data might even
reveal the presence of a fundamental flavor symmetry [49].
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Appendix A: Analytical expressions for 7 — uvy

In this appendix we give the required analytical expressions for the computation of the 7 — p~y rate. This radiative
process is induced by the dipole operator

Cg;o® PrejFap +h.c., (A1)

where 4, j are the flavors of the external leptons, F,,3 is the electromagnetic strength tensor and oP = 5 [’ya,’yﬁ].
The coefficients C* can be related to the form factors Ay and Ag,

T T
o em;Ap e em; A} ’ (A2)
2 2
which appear in the 7 — py branching ratio as
48m3a
BR(T — p7) :BR(T%/LUE)GT (JAL|* + |AR[?) . (A3)
F

In the model under consideration |gnr,| = |ghur|, which leads to |AL| = |Ar| = |A|. As in [24], we will consider

three contributions to the form factor A: 1-loop diagrams with neutral Higgs bosons and charged leptons in the loop,
2-loop Barr-Zee diagrams with an internal photon and a third generation quark, and 2-loop Barr-Zee diagrams with
an internal photon and a W-boson [47]. Therefore, we write

b
1672 (A1 4 +A¥V) ' (A4)
The different contributions are [24]
2
9our9err qu 3
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Here ¢ = h, H, A, f = t,b, the coupling gy of the internal loop fermion to the ¢ scalar is given in Egs. (12)-(14) and
the couplings Cyww are given in the last paragraph of Sec. [IIl In Eqs. (A5)-(A7) lepton masses have been neglected
whenever possible. Finally, the loop functions in the previous expressions are [47]

faz) =g(z) = g/o dxx(l _lx)_zln x(lz—x) , (A8)

Fro(z) = g /0 . (195(—12?(331)—_2)) I x(lz— 2) (A9)
_z ! dx 3 z 0 z(1—x)

=3 s et (A1)
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