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Abstract

We consider a mixed integer set which generalizes two well-known sets: the single node fixed-
charge network set and the single arc design set. Such set arises as a relaxation of feasible
sets of general mixed integer problems such as lot-sizing and network design problems.

We derive several families of valid inequalities that, in particular, generalize the arc resid-
ual capacity inequalities and the flow cover inequalities. For the constant capacitated case we
provide an extended compact formulation and give a partial description of the convex hull in
the original space which is exact under a certain condition. By lifting some basic inequalities
we provide some insight on the difficulty of obtaining such a full polyhedral description for
the constant capacitated case. Preliminary computational results are presented.
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1. Introduction

We consider a mixed integer set of the form

X =
{

(x, z, y) ∈ Rn
+ × Bn × Z+ |

∑
j∈N

xj ≤ dy, xj ≤ cjzj, zj ≤ y, j ∈ N, y ∈ {0, . . . , U}
}
,

where N = {1, . . . , n},
∑

j∈N cj > d, 0 < cj < d, j ∈ N, d, U and cj, j ∈ N, are integer, and

U ≤
⌈∑

j∈N cj

d

⌉
.

The set X is related to two well-known sets: the Single Node Fixed-Charge Network Set
(SNFCNS) [11]

Xy=a =
{

(x, z) ∈ Rn
+ × Bn |

∑
j∈N

xj ≤ d′, xj ≤ cjzj,
}
,

obtained from X by setting y to a constant and the Single Arc Design Set (SADS) [8]

Xz=1 =
{

(x, y) ∈ Rn
+ × Z+ |

∑
j∈N

xj ≤ dy, xj ≤ cj, y ∈ {0, . . . , U}
}
,
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obtained from X by setting zj = 1, j ∈ N . Therefore the set X can be regarded as an
extension of the SNFCNS and the SADS.

Notice that optimizing an arbitrary objective function over the set Xy=a, a ∈ {1, . . . , U}
is a NP-hard problem (see [11]) which implies that optimizing an objective function over the
set X is NP-hard as well.

The set X arises as a relaxation of the feasible set of several mixed integer problems such
as lot-sizing and network design problems. Next we provide a few examples. In the single-
item Lot-sizing with Supplier Selection Problem (LSSP) we are given a set N of suppliers.
In each time period one needs to decide lot-sizes and a subset of suppliers to use in order
to satisfy the demands while minimizing the costs. For each time period, the set X arises
as follows: y represents the integer variable indicating the number of batches to produce,
zj indicates whether the supplier j ∈ N is selected or not, xj is the amount supplied by
supplier j, d is the size of each batch and cj is the supplying capacity of supplier j, see [14].
Other examples occur in inventory-routing problems such as the Vendor-Managed Inventory-
Routing Problem (see [3]), where, for each time period t, y is an integer variable indicating
the number of vehicles used at time t, zj is a binary variable equal to 1 if the retailer j is
served at time t, and 0 otherwise, d is the capacity of each vehicle (assuming a homogenous
fleet), and cj is the maximum inventory level in retailer j. In [3] the model considers only a
single vehicle.

Next we introduce some notations used throughout the paper: for any S ⊆ N , µ(S) =⌈∑
j∈S cj

d

⌉
, and r(S) =

∑
j∈S cj − (µ(S)− 1)d. We denote by P, Py=a, Pz=1 the convex hull of

X,Xy=a, Xz=1, respectively. We use the notation (a)+ = max{a, 0}.
For the SNFCNS, Padberg et al. [11] introduced the flow cover inequalities that can be

stated as follows.

Proposition 1.1. Let S be a cover such that
∑

j∈S cj = d+λ, λ > 0 and c̄ = maxj∈S cj > λ.
Then the simple flow cover inequality∑

j∈S

xj −
∑
j∈S

(cj − λ)+zj ≤ d−
∑
j∈S

(cj − λ)+, (1)

defines a facet of Py=1.

It is well known that flow cover inequalities can be lifted. A particular case is the well-
known extended flow cover inequality [11]:∑

j∈S∪L

xj −
∑
j∈S

(cj − λ)+zj ≤ d−
∑
j∈S

(cj − λ)+ +
∑
j∈L

(cj − λ)zj,

where cj = max{cj, c}, c = max{cj|j ∈ S} and L ⊆ N \S. In order to define a facet we need
c− λ ≤ ck ≤ c for all k ∈ L.

For the SADS, Magnanti et al. [8] introduce the arc residual capacity inequalities.

Proposition 1.2. For each S ⊆ N the inequality∑
j∈S

xj − r(S)y ≤ (µ(S)− 1)(d− r(S)),
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is valid for Xz=1 and defines a facet of Pz=1 if S satisfies the following conditions: (i) if
µ(S) = 1, then |S| = 1; (ii) if r(S) = d, then S = N.

They show that the inequalities defining Xz=1 with the arc residual capacities inequalities
suffice to describe Pz=1.

In a companion paper, Agra and Doostmohammadi [2], discuss the polyhedral structure
of the set X when U = 1, and its relaxation obtained by removing constraints zj ≤ y, j ∈ N.
They introduce the set-up flow cover inequalities and provide a full polyhedral description for
the constant capacitated case. For the set X with U = 1, the set-up flow cover inequalities
are obtained from the flow-cover inequalities (1) multiplying the RHS by y :∑

j∈S

xj −
∑
j∈S

(cj − λ)+zj ≤ (d−
∑
j∈S

(
cj − λ)+

)
y. (2)

We now describe the contents of this paper. In Section 2 we establish basic properties
of P , derive families of facet-defining inequalities which generalize the residual capacity
inequalities and flow cover inequalities. In Section 3 we consider the constant capacitated
case, provide a compact extended formulation for P , and introduce several valid inequalities
in the original space of variables. In addition, we provide the complete characterization of
P when the capacities are constant and a particular condition is considered. In Section 4
we discuss the lifting of a class of valid inequalities derived in Section 3. In section 5 we
study the separation problem associated to those valid inequalities derived for the constant
capacitated case. Preliminary computational experiments are reported in Section 6.

2. Valid inequalities for P

In this section we investigate the polyhedral structure of P. The following propositions
establish basic properties of P and, since they can be easily checked we omit the proofs.

Proposition 2.1. P is a full-dimensional polyhedron.

Proposition 2.2. The extreme points of P are of one of the following forms:

(i) y = 0;xj = 0, j ∈ N ; zj = 0, j ∈ N ;

(ii) y = 1;xj = 0, j ∈ N ; zj = 1, j ∈ T ⊆ N, zj = 0, j ∈ N \ T ;

(iii) y = a;xj = cj, j ∈ S, xj = 0, j ∈ N \ S; zj = 1, j ∈ T, S ⊆ T ⊆ N, zj = 0, j ∈ N \ T ;
where a ∈ {µ(S), U};

(iv) y = a ∈ {1, . . . , U};xj = cj, j ∈ S ⊆ N, xt = ad−
∑

j∈S cj, xj = 0, j ∈ N \S ∪{t}; zj =
1, j ∈ T, S ∪ {t} ⊆ T, zj = 0, j ∈ N \ T ; where ad−

∑
j∈S cj < ct.

The following proposition states the trivial facets of P.

Proposition 2.3. 1. For every i ∈ N , xi ≥ 0 defines a facet of P .
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2. If U ≥ 2, then for every i ∈ N , zi ≤ 1 defines a facet of P .

3. For every i ∈ N , xi ≤ cizi defines a facet of P .

4. For every i ∈ N , zi ≤ y defines a facet of P .

5. y ≤ U defines a facet of P .

6. If
∑

j∈N cj > d+ ck,∀k ∈ N , then
∑

j∈N xj ≤ dy defines a facet of P .

Next we introduce a family of inequalities that generalizes the arc residual capacity
inequalities and the flow cover inequalities.

Proposition 2.4. Let S ⊆ N such that
∑

j∈S cj > d and cj < d, j ∈ S. Then∑
j∈S

xj −
∑
j∈S

(cj − r(S))+zj ≤ r(S)y + (µ(S)− 1)(d− r(S))−
∑
j∈S

(cj − r(S))+, (3)

is valid for X, and defines a facet of P if c = max{cj|j ∈ S} > r(S) and µ(S) ≤ U.

Proof. First we prove validity. Consider a point (x, z, y) ∈ X. We consider two cases.
Case 1: y ≥ µ(S). Since xj − (cj − r(S))+zj ≤ cj − (cj − r(S))+, j ∈ S, then∑
j∈S

xj −
∑
j∈S

(cj − r(S))+zj ≤
∑
j∈S

cj −
∑
j∈S

(cj − r(S))+ = r(S)µ(S) + (µ(S)− 1)(d− r(S))

−
∑
j∈S

(cj − r(S))+ ≤ r(S)y + (µ(S)− 1)(d− r(S))−
∑
j∈S

(cj − r(S))+.

Case 2: y ≤ µ(S) − 1. Let T = {j ∈ S|zj = 1} and k = |{j ∈ S \ T |cj > r(S)}|. If
k ≥ µ(S)− y, then∑

j∈S

xj −
∑
j∈S

(cj − r(S))+zj ≤
∑
j∈T

cj −
∑
j∈T

(cj − r(S))+ =
∑
j∈S

cj −
∑
j∈S

(cj − r(S))+

−
∑
j∈S\T

cj +
∑
j∈S\T

(cj − r(S))+ ≤ (µ(S)− 1)d+ r(S)− kr(S)−
∑
j∈S

(cj − r(S))+

≤ r(S)y + (µ(S)− 1)(d− r(S))−
∑
j∈S

(cj − r(S))+.
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If k < µ(S)− y, then∑
j∈S

xj −
∑
j∈S

(cj − r(S))+zj ≤ dy −
∑
j∈T

(cj − r(S))+ = r(S)y + (µ(S)− 1)(d− r(S))

− (µ(S)− 1− y)(d− r(S))−
∑
j∈T

(cj − r(S))+ ≤ r(S)y + (µ(S)− 1)(d− r(S))

− k(d− r(S))−
∑
j∈T

(cj − r(S))+ = r(S)y + (µ(S)− 1)(d− r(S))−
∑

j∈S\T |cj>r(S)

(d− r(S))

−
∑
j∈T

(cj − r(S))+ ≤ r(S)y + (µ(S)− 1)(d− r(S))−
∑
j∈S

(cj − r(S))+.

To prove that (3) defines a facet of P it suffices to notice that restricting the face defined
by (3) to the hyperplane defined by y = µ(S)− 1, we obtain a facet of Py=µ(S)−1 (see [11]).
Thus, this facet of Py=µ(S)−1 includes 2n affinely independent points (xt, zt), t ∈ {1, . . . , 2n}
which belong to Xy=µ(S)−1. Therefore, the points (xt, zt, µ(S)−1), t ∈ {1, . . . , 2n} are affinely
independent and belong to X. We can easily construct a new affinely independent point in
X satisfying (3) as equation, setting y = µ(S), xj = cj, j ∈ S, and zj = 1, j ∈ S.

Setting y = µ(S)− 1 in (3) we obtain the flow cover inequality presented in [11]. Setting
zj = 1,∀j ∈ S in (3) we obtain the arc residual capacity inequality. Hence, (3) generalizes
the flow cover inequalities and the residual inequalities for the set Xz=1.

Following the idea of extended flow cover inequalities, the following proposition extends
inequalities (3).

Proposition 2.5. Let S ⊆ N such that
∑

j∈S cj > d and cj < d, j ∈ S. If U ≤ µ(S) − 1,
then the following inequality is valid for X :∑
j∈S∪L

xj−
∑
j∈S

(cj−r(S))+zj ≤ r(S)y+(µ(S)−1)(d−r(S))−
∑
j∈S

(cj−r(S))++
∑
j∈L

(cj−r(S))zj,

(4)
where cj = max{cj, c}, c = max{cj|j ∈ S} and L ⊆ N \ S.

The proof is similar to the proof of validity of Proposition 2.4 so we omit it here. The
following example shows that inequality (4) may not be valid for X if U ≥ µ(S).

Example 2.1. Let N = {1, 2, 3, 4}, c = (8, 8, 8, 8), d = 10, U = 3, S = {1, 2, 3}, µ(S) =
3, r(S) = 4. Inequality (4) with L = {4} is

x1 + x2 + x3 + x4 − (8− 4)(z1 + z2 + z3) ≤ 4y + 2(10− 4)− 12 + (8− 4)z4.

The point (x, z, y) ∈ X with y = 3, x1 = x2 = x3 = 8, x4 = 6, z1 = z2 = z3 = z4 = 1 violates
the inequality.

Flow cover inequalities can be generalized in a different way leading to a different class
of facet-defining inequalities.
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Proposition 2.6. Let S ⊆ N such that
∑

j∈S cj > d and cj < d, j ∈ S. The inequality∑
j∈S

xj −
∑
j∈S

(cj − r(S))+zj ≤
(
d−

∑
j∈S(cj − r(S))+

µ(S)− 1

)
y, (5)

is valid for X if

L(k) ≤ kd−
k
∑

j∈S(cj − r(S))+

µ(S)− 1
, k = 1, . . . , µ(S)− 2, (6)

where

L(k) = max
{∑
j∈S

xj −
∑
j∈S

(cj − r(S))+zj|
∑
j∈S

xj ≤ dk,

0 ≤ xj ≤ cjzj, j ∈ S, zj ∈ {0, 1}, j ∈ S
}
,

and defines a facet of P if c = max{cj|j ∈ S} > r(S) and µ(S)− 1 ≤ U.

Proof. Condition (6) ensures validity of (5) for y = 1, . . . , µ(S)− 2. For y = µ(S)− 1, (5) is
a flow cover, so validity follows from validity of flow covers for Xy=µ(S)−1. Inequality (5) is
trivially valid for y = 0. Now assume y > µ(S) − 1. Let S+ = {j ∈ S|cj > r(S)}. If |S+| ≤
µ(S)−1, as cj ≤ d and r(S) < d, then (µ(S)−1)d ≥

∑
j∈S+ cj+(µ(S)−1−|S+|)r(S) and so

(µ(S)−1)d−
∑

j∈S+ cj + |S+| r(S) ≥ (µ(S)−1)r(S) which implies d−
∑

j∈S(cj−r(S))+

µ(S)−1 ≥ r(S).

If |S+| ≥ µ(S), then∑
j∈S

(cj − r(S))+ ≤
∑
j∈S

cj −
∣∣S+

∣∣ r(S) ≤ (µ(S)− 1)d+ r(S)− µ(S)r(S)

= (µ(S)− 1)(d− r(S)),

which implies d−
∑

j∈S(cj−r(S))+

µ(S)−1 ≥ r(S). Hence,(
d−

∑
j∈S(cj − r(S))+

µ(S)− 1

)
y = d(µ(S)− 1)−

∑
j∈S

(cj − r(S))+

+
(
d−

∑
j∈S(cj − r(S))+

µ(S)− 1

)
(y − µ(S) + 1) ≥ d(µ(S)− 1)−

∑
j∈S

(cj − r(S))+

+ r(S)(y − µ(S) + 1) ≥
∑
j∈S

xj −
∑
j∈S

(cj − r(S))+zj,

where the last inequality is a flow cover inequality (3).
To prove that (5) defines a facet it suffices to notice that since (5) is a flow cover for the

restricted set obtained by setting y = µ(S) − 1. Hence, there are 2n affinely independent
points satisfying y = µ(S)− 1. Another affinely independent point can be given by the null
vector y = 0, zj = xj = 0, j ∈ N.

When µ(S) = 2, Proposition 2.6 states that the set-up flow cover inequalities (2) are
valid for X.
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3. The constant case cj = c, j ∈ N

In this section we consider the constant capacitated case, that is, we assume cj = c, j ∈ N.
In Section 3.1 we provide a compact linear extended formulation for P . From the theoretical
point of view this formulation proves that optimizing a linear function over X can be done
in polynomial time. In Section 3.2 we introduce several facet-defining inequalities in the
original space of variables.

We assume nc > d > c > 0; d, c are integer; d is not a multiple of c, and U ≤ d nc
d
e. For

u ∈ {1, . . . , U}, we define ru = ud mod c.

3.1. A compact formulation

In this section we explain how to derive a compact linear formulation for P . First we
consider an extended formulation for the set Xy=u =

{
(x, z) ∈ Rn

+×Bn |
∑

j∈N xj ≤ du, xj ≤
czj
}

obtained by restricting y to u, for u = 1, . . . , U. Set Xy=u is the single node flow set
with constant bounds. Padberg et al. [11] showed that adding to the defining inequalities of
Xy=u, the flow cover inequalities∑

j∈S

(xj − ruzj) ≤
⌊du
c

⌋
(c− ru), ∀S ⊆ N, |S| ≥

⌊du
c

⌋
+ 1, (7)

completely describes Py=u.
Since the family of flow cover inequalities has an exponential number of inequalities,

in order to derive a compact formulation, we follow Martin [9] to derive an compact ex-
tended formulation for Py=u. Consider the following linear formulation with the additional
nonnegative variables δj = (xj − ruzj)+, j ∈ N.

∑
j∈N

xj ≤ du, (8)

δj ≥ xj − ruzj, j ∈ N, (9)∑
j∈N

δj ≤
⌊du
c

⌋
(c− ru), (10)

xj ≤ czj, j ∈ N, (11)

zj ≤ 1, j ∈ N, (12)

xj ≥ 0, j ∈ N, (13)

δj ≥ 0, j ∈ N. (14)

This formulation has O(n) variables and O(n) constraints. Let Qu be the set of those points
(x, z, δ) that satisfy (8)–(14). The following result is shown in [1].

Theorem 3.1. Proj(x,z)Qu = Py=u.

We can now write P as the union of polyhedra Py=u for each u ∈ {0, . . . , U}, where
Py=0 = {0}.
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Theorem 3.2. P = conv(
⋃
u=0,...,U Py=u).

Proof. Since Py=u ⊆ P and Py=u is bounded for all u ∈ {0, . . . , U}, then conv(
⋃
u=0,...,U Py=u) ⊆

P. Conversely, since each extreme point (x∗, z∗, y∗) of P belongs to X and satisfies y∗ = u
for some u ∈ {0, . . . , U}, then (x∗, z∗, y∗) ∈ Py=u. Therefore P ⊆ conv(

⋃
u=0,...,U Py=u).

As a compact formulation for Pu is known for each u ∈ {0, . . . , U}, and since U is bounded
by n, using a result from Balas [4] on the union of polyhedra we can easily derive a compact
formulation for P = conv(

⋃
u=0,...,U Py=u) with O(nU) variables and O(nU) constraints. This

formulation can be found in [5].

3.2. Valid inequalities for the constant capacitated case

Here we establish several valid inequalities for P. First we rewrite (3) in the case cj =
c, j ∈ N .

Proposition 3.1. Let S ⊆ N such that S 6= ∅. The inequality∑
j∈S

xj ≤ r(S)y + (µ(S)− 1)(d− r(S)), (15)

defines a non-trivial facet of P if r(S) > c, and the inequality∑
j∈S

xj − r̄(S)
∑
j∈S

zj ≤ r(S)y + (µ(S)− 1)(d− r(S))− r̄(S) |S| , (16)

where r̄(S) = (µ(S)− 1)d mod c, defines a non-trivial facet of P if r(S) < c.

As stated above, inequalities (15) and (16) generalize the facet-defining inequalities pro-
posed and studied by Magnanti et al. [8]. When µ(S) = 2, then r̄(S) = r1, inequalities (15)
and (16) can be written, respectively, as follows:∑

j∈S

xj ≤ d+ r(S)(y − 1),

∑
j∈S

(xj − r1zj) ≤
⌊d
c

⌋
(c− r1) + (c− r1)(y − 1). (17)

by using the fact that r(S) < c implies r(S) + r̄(S) = c.
Now we rewrite inequality (5) when cj = c. First observe that condition c = max{cj|j ∈

S} > r(S) implies r(S) < c. By restricting inequality (5) to this case (r(S) < c) it follows
that rµ(S)−1 = c− r(S). In this case (5) can be written as follows.
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Proposition 3.2. Let S ⊆ N such that r(S) < c and µ(S)− 1 ≤ U. The inequality∑
j∈S

xj −
∑
j∈S

rµ(S)−1zj ≤
| S | −1

µ(S)− 1
r(S)y, (18)

is a valid facet-defining inequality of P, if

rk − c+ r(S)
⌈ kd

c

⌉
≤ k(| S | −1)

µ(S)− 1
r(S), k = 1, . . . , µ(S)− 2.

When rµ(S)−1 = (µ(S)− 1)r1 < c, inequality (18) can be written as:∑
j∈S

xj −
∑
j∈S

rµ(S)−1zj ≤
⌊d
c

⌋
(c− rµ(S)−1)y

which in case of µ(S) = 2 leads to the inequality∑
j∈S

xj −
∑
j∈S

r1zj ≤
⌊d
c

⌋
(c− r1)y. (19)

The following proposition extends inequalities (17) and (19).

Proposition 3.3. Let d > c > 0, d is not a multiple of c, and S ⊆ N . Then for k ∈
{1, . . . , bd

c
c}, the inequality∑

j∈S

(xj − r1zj) ≤ k(c− r1)y +
(⌊d
c

⌋
− k
)

(c− r1) , (20)

is valid facet-defining inequality of P , when
(i) |S| ∈

{
bd
c
c+ 1, . . . ,min

{
2bd

c
c, n
}}

if k = bd
c
c,

(ii) |S| = bd
c
c+ k, if k ∈

{
1, 2, . . . ,min{bd

c
c − 1, n− bd

c
c}
}
.

We omit the proof here since this is similar to the proof of a more general case given in
Proposition 3.4.

Notice that by setting k = 1 in (ii), the inequality (20) becomes (17).

The following theorem establishes that the described inequalities are enough to charac-
terize P when n ≤ 2bd

c
c.

Theorem 3.3. Assume d > c > 0, d is not a multiple of c, and n ≤ 2bd
c
c. Then the trivial

facet-defining inequalities of Proposition 2.3 in addition to the inequalities (15) and (20),
give the complete description of P .

The proof is given in the Appendix.
It is easy to verify that for the general case n > 2bd

c
c the inequalities presented above

only provide a partial description of P. Next we generalize inequalities (20).
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Proposition 3.4. Assume d > c > 0, d is not a multiple of c, and 2bd
c
c < n. If ra = ar1 < c,

for some a ∈ {2, . . . , U − 1}, and S ⊆ N , where |S| ≤ (a+ 1)bd
c
c, then∑

j∈S

(xj − razj) ≤ k(c− ra)y + a
(⌊d
c

⌋
− k
)

(c− ra) , k = 1, . . . ,
⌊d
c

⌋
, (21)

is valid facet-defining inequality of P, when
(i) |S| ≥ abd

c
c+ 1, if k = bd

c
c;

(ii) |S| = abd
c
c+ k, if k ∈

{
1, 2, . . . ,min{bd

c
c − 1, n− bad

c
c}
}
.

The proof of Proposition 3.4 is given in the Appendix.
At the end of this section, we derive other classes of valid inequalities. The proof is

omitted because it is similar to the proof of Proposition 3.4.

Proposition 3.5. Assume d > c > 0, d is not a multiple of c, and 2bd
c
c < n. Then

(i) If r2 = 2r1, then for S1 ⊂ N such that |S1| = 2bd
c
c and S2 ⊆ N \ S1, the inequality∑

j∈S1

(xj − r1zj) +
∑
j∈S2

(xj − r2zj) ≤
⌊d
c

⌋
(c− r1)y, (22)

is valid for X and defines a facet of P .

(ii) If r2 = 2r1 − c, for S ⊆ N and for some i ∈ S, the inequality∑
j∈S\{i}

(xj − r1zj) + (xi − r2zi) ≤
⌈d
c

⌉
(c− r1)y, (23)

is valid for X. Moreover, it defines a facet of P if |S| ≥ 2bd
c
c+ 1.

4. Lifted inequalities

In this section we discuss the lifting of set-up inequalities given in Proposition 3.3. We
still assume cj = c, j ∈ N. In Section 4.1 we discuss simultaneous lifting of such inequalities
while in Section 4.2 we study superadditive lifting. With this discussion we aim to derive new
facet-defining inequalities for P and to provide some insight on the difficulty of providing
the full polyhedral description of P in the original space of variables.

4.1. Simultaneous lifting

In this section we generate some facet-defining valid inequalities for P using simultaneous
lifting, following [6].

We select C1 ⊂ N such that |C1| = ddce and C2 ⊆ N \ C1. By setting xj = 0, zj = 0, for
j ∈ N \ C1, we obtain the following restricted set.

Y =
{

(x, z, y) ∈ R|C1|
+ ×B|C1|×Z+ |

∑
j∈C1

xj ≤ dy, xj ≤ czj, zj ≤ y, j ∈ C1, y ∈ {0, 1, . . . , U}
}
.

10



Proposition 3.3, case k = bd
c
c, states that the set-up flow cover inequality∑

j∈C1

(xj − r1zj) ≤
⌊d
c

⌋
(c− r1)y, (24)

defines a facet of the convex hull of Y.
Then, the lifting function φ associated with valid inequality (24) is the following.

φ(u) = min
⌊d
c

⌋
(c− r1)y −

∑
j∈C1

(xj − r1zj) (25)

s.t.
∑
j∈C1

xj ≤ dy − u, (26)

0 ≤ xj ≤ czj, j ∈ C1, (27)

zj ∈ {0, 1}, j ∈ C1, (28)

y ∈ {1, . . . , U}, (29)

where u ∈ [0, Ud]. Notice that we have replaced condition {0, . . . , U} by (29) and removed
constraints zj ≤ y, j ∈ C1 from the above-mentioned program because y can be zero only
for u = 0 (otherwise the program becomes infeasible). As φ(0) can be computed by setting
y = 0, xj = zj = 0, j ∈ C1 or alternatively y = 1, xj = c, j ∈ S ⊂ C1 such that |S| =
bd
c
c, xj = 0, j ∈ C1 \ S, zj = 1, j ∈ S, zj = 0, j ∈ C1 \ S. Hence, we can exclude the solution

with y = 0 from the foregoing mixed integer program.

Proposition 4.1. The lifting function φ can be written on [0, Ud] as follows (see Figure 1).

φ(u) =



kbdc c(c− r1), k(bdc cc+ r1) ≤ u < kbdc cc+ (k + 1)r1,

u− (kbdc c+ k + p+ 1)r1, (kbdc c+ p)c+ (k + 1)r1 ≤ u < (kbdc c+ p+ 1)c+ kr1,

(kbdc c+m)(c− r1), (kbdc c+m)c+ kr1 ≤ u < (kbdc c+m)c+ (k + 1)r1,(
(k + 1)bdc c − 1

)
(c− r1),

(
(k + 1)bdc c − 1

)
c+ kr1 ≤ u <

(
(k + 1)bdc c − 1

)
c+ (k + 2)r1,

u− (k + 1)ddc er1,
(
(k + 1)bdc c − 1

)
c+ (k + 2)r1 ≤ u ≤ (k + 1)(bdc cc+ r1),

where k ∈ {0, . . . , U − 1}, p ∈ {0, . . . , bd
c
c − 2}, and m ∈ {1, . . . , bd

c
c − 2}.

Proof. To compute the lifting function, for each u, we set y = y0 where y0 ∈ {dude, . . . , U}
and then minimize bd

c
c(c− r1)y0−

∑
j∈C1

(xj − r1zj) under constraints (26)–(28). To achieve
the minimum value in (25), xj must be equal to czj for as many j as possible. First, notice
that φ(u+ kd) = φ(u) + kbd

c
c(c− r1). Hence, we need to provide the lifting function only on

[0, d] as follows. The greatest value of u such that φ(u) = 0 is r1 where φ(r1) is obtained by
taking y = 1, xj = c, j ∈ S ⊂ C1 such that |S| = bd

c
c, xj = 0, j ∈ C1 \ S, zj = 1, j ∈ S, zj =

0, j ∈ C1 \S. The function φ increases for u ∈ [r, c] and φ(c) = c−r1 which can be computed
by setting y = 1, xj = c, j ∈ S ⊂ C1 such that |S| = bd

c
c − 1, xj = 0, j ∈ C1 \ S, zj = 1, j ∈

S, zj = 0, j ∈ C1\S. Other cases can be obtained similarly for u ∈ [c, (bd
c
c−1)c] with φ(u) =

11



(bd
c
c−1)(c−r1). In order to find φ(bd

c
c−1)c+2r1, one can check that the minimum is found

by setting y = 2, xj = c, j ∈ S ⊂ C1 such that |S| = bd
c
c + 1, xj = 0, j ∈ C1 \ S, zj = 1, j ∈

S, zj = 0, j ∈ C1 \S and so φ(u) = (bd
c
c−1)(c−r1). Thus, the lifting function is constant on

[(bd
c
c − 1)c, (bd

c
c − 1)c+ 2r1]. Function φ is increasing on interval [(bd

c
c − 1)c+ 2r1, d] where

φ(d) = bd
c
c(c−r1) obtained by taking y = 1, xj = zj = 0, j ∈ C1 or y = 2, xj = c, j ∈ S ⊂ C1

such that |S| = bd
c
c, xj = 0, j ∈ C1 \ S, zj = 1, j ∈ S, zj = 0, j ∈ C1 \ S.

An important particular case is where y is binary, that is U = 1. This case was considered
in [2]. In this case, the lifting function φ has the same pattern as the integer case with U > 1
for u ≤ (bd

c
c − 1)c + r1, but differs for u greater than that value. The lifting function φ on

[0, d] is shown in Figure 1. The dark line represents the case U > 1 while the case U = 1,
that differs from the general case only for u ∈ [(bd

c
c − 1)c+ r1, d] is shown by dotted lines.

φ(u)

u
0 r1 c

c− r1

c+ r1 2c

2(c− r1)

(b d
c
c − 2)c A

(b d
c
c − 2)(c− r1)

B C D

(b d
c
c − 1)(c− r1)

E d

b d
c
c(c− r1)

Figure 1: The lifting function φ on [0, d] where A = (bdc c − 2)c + r1, B = (bdc c − 1)c, C = (bdc c − 1)c + r1,

D = bdc cc, and E = (bdc c − 1)c+ 2r1.

Next we explain the simultaneous lifting of (24) in detail. We lift variable pairs (xj, zj), j ∈
C2. We attribute coefficients (λj, µj) to (xj, zj), j ∈ C2 in such a way that the inequality∑

j∈C1

(xj − r1zj) +
∑
j∈C2

(λjxj + µjzj) ≤
⌊d
c

⌋
(c− r1)y, (30)

is valid for X restricted to xj = zj = 0, j ∈ N \ (C1 ∪ C2), which we denote by XC1∪C2 . Let

Xfeasible =
{

(x, z) ∈ R|C2|
+ × B|C2| | 0 ≤ xj ≤ czj, j ∈ C2, zj ∈ {0, 1}, j ∈ C2

}
,
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and

Π =
{

(λ, µ) ∈ R|C2|+|C2| |
∑
j∈C2

λjxj +
∑
j∈C2

µjzj ≤ φ(
∑
j∈C2

xj) : (x, z) ∈ Xfeasible
}
.

Then each coefficient vector (λ, µ) ∈ Π gives a valid inequality (30) for XC1∪C2 . Note that
the constraints zj ≤ y, j ∈ C2 are omitted in the description of Π because y ∈ {1, . . . , U}.

Since for all j ∈ N , xj and zj are bounded, then Xfeasible is bounded as well. Note that

for any u ∈ R+, there exists (x, z, y) ∈ R|C1| × B|C1|
+ × Z+ satisfying (26)–(29), so φ(u) is

finite for all u ∈ R+. It follows from this result that Π is bounded.
Next we construct Π by splitting the interval [0, Ud] into smaller intervals as follows.

Definition 4.1. Let

X[u1,u2] = conv
{
Xfeasible

⋂ {
(x, z) ∈ R|C2|

+ × B|C2| | u1 ≤
∑
j∈C2

xj ≤ u2
}}

= conv
{

(x1, z1), . . . , (xq, zq)
}
,

where (xi, zi), i ∈ {1, . . . , q}, are the extreme points of the polyhedron X[u1,u2] and define

Π[u1,u2] =
{

(λ, µ) ∈ R|C2|+|C2| |
∑
j∈C2

λjxj +
∑
j∈C2

µjzj ≤ φ(
∑
j∈C2

xj) , (x, z) ∈ X[u1,u2]

}
.

Lemma 4.1. Under Definition 4.1,

Π[u1,u2] =
{

(λ, µ) ∈ R|C2|+|C2| |
∑
j∈C2

λjxj +
∑
j∈C2

µjzj ≤ φ(
∑
j∈C2

xj), (x, z) vertex of X[u1,u2]

}
.

The proof of Lemma 4.1 is given in the Appendix.

Observation 4.1. Π = Π[0,r]

⋂
Π[r,c]

⋂
· · ·
⋂

Π[(Ub d
c
c−1)c+(U+1)r1,Ud]

.

Observation 4.2. Π is a polyhedron.

The following Lemma will be used to characterize Π.

Lemma 4.2. If (λ, µ) is a vertex of Π, then λj ≥ 0, j ∈ C2.

The proof is left to the Appendix.
Our approach to find the lifting coefficients is to apply Observation 4.1, Lemma 4.1, and

Lemma 4.2 to find the characterization of the polyhedron Π. Then we compute the vertices of
Π which are the lifting coefficients. In addition, since the set Y is full-dimensional, the initial
inequality (24) is facet-defining, exact lifting function φ is used to define Π, and extreme
points of Π are used as the lifting coefficients, then the lifted inequality is facet-defining for
P (see [6]).

13



Below we discuss theoretically how to find valid inequalities which are required to describe
Π in interval [0, d]. Note that the calculations to obtain the required valid inequalities to
describe Π in other intervals can be done similarly.

Firstly, take interval [0, r1] and compute the extreme points of X[0,r1] which are (i) xj =
0, j ∈ C2; zj ∈ {0, 1}, j ∈ C2, and (ii) xj = r1, for some j ∈ C2;xi = 0, i ∈ C2 \ {j}; zj =
1; zi ∈ {0, 1}, i ∈ C2 \ {j}. From Lemma 4.1, the following inequalities are valid for Π[0,r1].∑

i∈S

µj ≤ 0, S ⊆ C2,

r1λj + µj +
∑
i∈S

µj ≤ 0, j ∈ C2, S ⊆ C2 \ {j}.

Lemma 4.2 implies that the non-dominated inequalities are of the following format.

µj ≤ 0, j ∈ C2, (31)

r1λj + µj ≤ 0, j ∈ C2. (32)

Secondly, we consider interval [r1, c] and compute Π[r1,c] similarly. Then

cλj + µj ≤ c− r1, ∀j ∈ C2, (33)

is the only non-dominated inequality. Then it can be readily checked that for Π[kc,kc+r1]

and Π[kc+r1,(k+1)c] where 1 ≤ k ≤ bd
c
c − 2, and Π[(b d

c
c−1)c+2r1,d]

there does not exist any

non-dominated inequality.
Lastly, we consider the interval [(bd

c
c − 1)c, (bd

c
c − 1)c + 2r1]. In order to describe

Π[(b d
c
c−1)c,(b d

c
c−1)c+2r1]

, we consider two cases as follows.

Case 1. If 2r1 < c. Then one can check that the only non-dominated inequality is the
following.∑

j∈S

(cλj + µj) + 2r1λk + µk ≤
(⌊d
c

⌋
− 1
)

(c− r1), S ⊆ C2, |S| =
⌊d
c

⌋
− 1, k ∈ C2 \ S.

Case 2. If 2r1 ≥ c. Then it can be checked easily that the following inequality is non-
dominated. ∑

j∈S

(cλj + µj) ≤
(⌊d
c

⌋
− 1
)

(c− r1), S ⊆ C2, |S| =
⌊d
c

⌋
. (34)

Note that concerning interval [d, 2d], we need to consider cases (i) 3r1 < c, (ii) c ≤
3r1 < 2c, and (iii) 2c ≤ 3r1 < 3c to describe Π[(2b d

c
c−1)c,(2b d

c
c−1)c+3r1]

which can be continued

similarly for intervals [kd, (k+ 1)d], 2 ≤ k ≤ U − 1. Following this pattern, we obtain a wide
range of inequalities which cannot be aggregated into a common family.

In the following, we consider a particular case where all required inequalities to describe
Π are provided. Then we compute the corresponding lifting coefficients and finally give the
lifted inequalities which are facet-defining for P .
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We define the set A as follows.

A =
{
k ∈ Z+ | k ≥ 1 ∧ |C2|c ≥

(
k
⌊d
c

⌋
− 1
)
c+ (k + 1)r1

}
.

Proposition 4.2. Assume |C2| > bdcc ≥ 2. If kc ≤ (k + 1)r1, for k ∈ A, then inequalities
(31)–(34) suffice to describe Π.

In the next proposition, we express the extreme points of Π defined by Proposition 4.2.

Proposition 4.3. The extreme points of Π described by inequalities (31)–(34) are of one of
the following types.

(i) λj = 0, µj = 0, j ∈ C2;

(ii) λj = 1, µj = −r1, j ∈ S ⊆ C2, 1 ≤ |S| ≤ bdcc − 1, λj = µj = 0, j ∈ C2 \ S;

(iii) λj =
b d
c
c−1
b d
c
c , µj = −r1

b d
c
c−1
b d
c
c , j ∈ S ⊆ C2, ddce ≤ |S| ≤ |C2|, λj = µj = 0, j ∈ C2 \ S;

(iv) λj = 1, µj = −r1, j ∈ S1 ⊂ C2, λj =
b d
c
c−|S1|−1
b d
c
c−|S1|

, µj = −r1
b d
c
c−|S1|−1
b d
c
c−|S1|

, j ∈ S ⊆ C2 \
S1, ddce − |S1| ≤ |S| ≤ |C2| − |S1| , λj = 0, µj = 0, j ∈ C2 \ (S ∪ S1).

In the following proposition we state the lifted inequalities obtained by applying the
lifting coefficients of Proposition 4.3 in inequality (30).

Proposition 4.4. Under the conditions of Proposition 4.2, the following inequalities define
a facet of P .

(i)
∑

j∈C1∪S

(xj − r1zj) ≤
⌊d
c

⌋
(c− r1)y,

where S ⊆ C2 and 0 ≤ |S| ≤ bd
c
c − 1.

(ii)
∑
j∈C1

(xj − r1zj) +
∑
j∈S

(bd
c
c − 1

bd
c
c

)
(xj − r1zj) ≤

⌊d
c

⌋
(c− r1)y, (35)

where S ⊆ C2 and dd
c
e ≤ |S| ≤ |C2|.

(iii)
∑

j∈C1∪S1

(xj − r1zj) +
∑
j∈S

(bd
c
c − |S1| − 1

bd
c
c − |S1|

)
(xj − r1zj) ≤

⌊d
c

⌋
(c− r1)y,

where S1 ⊂ C2, S ⊆ C2 \ S1, and dd
c
e − |S1| ≤ |S| ≤ |C2| − |S1|.

Since describing Π completely is outside of the scope of this paper, we express some of
the lifted inequalities corresponding to some specific cases in Table 1.
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+
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4.2. Superadditive Lifting

In this section, we underestimate the lifting function φ by a superadditive function.

Definition 4.2. A function f : A ⊆ R −→ R is superadditive on A if f(x1) + f(x2) ≤
f(x1 + x2) for all x1, x2, x1 + x2 ∈ A.

Definition 4.3. A function ψ is said to be a superadditive valid lifting function if ψ is
superadditive and ψ(u) ≤ φ(u) for all u ∈ [0, Ud].

As φ, in general, is not superadditive, we aim to construct a superadditive valid lifting
function. The use of a superadditive lifting function makes the lifting coefficients sequence-
independent which allows to reduce the computational effort to compute these coefficients.

The following proposition states that the lifting function φ is superadditive if bd
c
c = 1.

Proposition 4.5. Assume bd
c
c = 1. Then the lifting function φ is superadditive on [0, Ud].

Proof. First, note that φ can be written as follows.

φ(u) =

{
k(c− r1), kd ≤ u < kd+ 2r1,
u− 2(k + 1)r1, kd+ 2r1 ≤ u < (k + 1)d,

where k ∈ {0, . . . , U − 1}. Then let u1, u2 ∈ [0, Ud]. We consider the following case:
Let k1d ≤ u1 ≤ k1d + 2r1 and k2d + 2r1 ≤ u2 ≤ (k2 + 1)d where k1 ≤ k2 and k1, k2 ∈

{0, . . . , U − 1}. So u1 = k1d + δ1 such that 0 ≤ δ1 ≤ 2r1 and u2 = k2d + 2r1 + δ2 where
0 ≤ δ2 ≤ c − r1. It follows that u1 + u2 = (k1 + k2)d + 2r1 + δ1 + δ2 which implies
(k1 + k2)d+ 2r1 ≤ u1 + u2 ≤ (k1 + k2 + 1)d. Thus, d = c+ r1 and δ1 ≥ 0 imply

φ(u1 + u2) = (k1 + k2)d+ 2r1 + δ1 + δ2 − 2(k1 + k2 + 1)r1 = (k1 + k2)(c− r1) + δ1 + δ2

≥ (k1 + k2)(c− r1) + δ2 = φ(u1) + φ(u2).

We omit the proof of other cases because their proof is similar.

Note that the lifted inequalities where bd
c
c = 1 are presented in Table 1. Let bd

c
c ≥ 2

and consider the following function f where u ∈ [kd, (k + 1)d], k ∈ {0, . . . , U − 1}.

f(u) =



kbd
c
c(c− r1), kd ≤ u < kd+ r1,

(c−r1)(u−(k+1)r1)
c

, kd+ r1 ≤ u <
(
(k + 1)bd

c
c − 1

)
c+ (k + 1)r1;(

(k + 1)bd
c
c − 1

)
(c− r1),(

(k + 1)bd
c
c − 1

)
c+ (k + 1)r1 ≤ u <

(
(k + 1)bd

c
c − 1

)
c+ (k + 2)r1

u− (k + 1)r1ddce,
(
(k + 1)bd

c
c − 1

)
c+ (k + 2)r1 ≤ u ≤ (k + 1)d.

Proposition 4.6. The function f is a superadditive valid lifting function.
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The proof is given in the Appendix.
Now replacing the lifting function φ (see Section 4.1) by the superadditive function f in

the description of Π, one can show that the following inequalities suffice to describe Π.
µj ≤ 0, j ∈ C2,
r1λj + µj ≤ 0, j ∈ C2,

cλj + µj ≤ (c−r1)2
c

, j ∈ C2.

In addition, points λj = c−r1
c
, µj = −r1 c−r1c , j ∈ S ⊆ C2, 0 ≤ |S| ≤ |C2|, λi = 0, µi =

0, i ∈ C2 \ S are the extreme points of Π which shows that the following inequality is valid
for X.

c
∑
j∈C1

(xj − r1zj) + (c− r1)
∑
j∈S

(xj − r1zj) ≤ c
⌊d
c

⌋
(c− r1)y, (36)

where S ⊆ C2 and 0 ≤ |S| ≤ |C2|. Notice that this inequality is the unique inequality
obtained by lifting of (30).

5. Separation

In this section we study the separation problems associated with the families of valid
inequalities we derived for X in the constant case. Consider a point (x, z, y) ∈ R2n+1

+ . For
each family V of valid inequalities the separation problem is to find an inequality in V that
is violated by point (x, z, y) or show that there is no such inequality.

At first, we study the separation problem associated with inequality (15). In fact, we
intend to find subset S ⊆ N such that

∑
j∈S xj > r(S)y + (µ(S) − 1)(d − r(S)), or prove

that such S does not exist.
Assume that µ(S)− 1 is fixed, namely, µ(S)− 1 = p where p is constant. Define binary

variables αj, j ∈ N where αj = 1 if j ∈ S, and αj = 0 otherwise. Under these assumptions,

r(S) can be represented as c
∑

j∈N αj − pd where bpd
c
c + 1 ≤

∑
j∈N αj ≤ b

(p+1)d
c
c. In order

to separate inequality (15) we define binary variables αj, j ∈ N such that∑
j∈N

αjxj >
(
c
∑
j∈N

αj − pd
)
y + p

(
d− c

∑
j∈N

αj + pd
)
.

Therefore, the separation problem of (15) amounts to solve the following binary integer
program

max
∑
j∈N

(xj + pc− cy)αj

s.t.
⌊pd
c

⌋
+ 1 ≤

∑
j∈N

αj ≤
⌊(p+ 1)d

c

⌋
, (37)

αj ∈ {0, 1}, j ∈ N.
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Then for a fixed p, inequality (15) is violated if the optimal value of the foregoing maxi-
mization problem is strictly greater than pd(p − y + 1). In order to solve program (37),
without loss of generality, assume that x1 ≥ · · · ≥ xn. Then it follows from the structure
of the optimal solution of problem (37) that subset S ⊆ N can be generated as follows.
Set S1 = {1, . . . , bpd

c
c + 1}. Two cases can be considered: (i) xb pd

c
c+2 + pc − cy ≤ 0, and

(ii) xb pd
c
c+2 + pc− cy > 0. Let case (i) occurs. Then we set S = S1. Next, assume case (ii)

happens. Then S = S1 ∪
{
j ∈ {bpd

c
c + 2, . . . , b (p+1)d

c
c} : xj + pc − cy > 0

}
. Thus, for the

given set S, if
∑

j∈S(xj + pc− cy) > pd(p− y + 1), then a violated inequality (15) is found.
Otherwise, no such violated inequality exists.

Note that since 0 ≤ p ≤ bnc
d
c and the separation problem corresponding to each p can

be solved in polynomial time, therefore the separation problem associated to inequality (15)
can be solved in polynomial time.

The separation problem of inequality (16) can be solved similarly to the separation of
inequality (15).

Next we explain the separation problem corresponding to inequality (21) which is the
generalization of inequality (20). We consider two cases.

Case 1. Assume k ∈ {1, . . . , la} where la = min{bd
c
c − 1, n− bad

c
c}. Then inequality (21)

can be written as ∑
j∈S

(xj − razj)− k(c− ra)(y − a) ≤ a
⌊d
c

⌋
(c− ra),

where |S| = abd
c
c+ k. Then the separation problem amounts to solve

max
S⊆N,|S|=ab d

c
c+k,1≤k≤la

∑
j∈S

(xj − razj)− k(c− ra)(y − a), (38)

and so violation occurs if the optimal value of this maximization problem is strictly greater
than abd

c
c(c−ra). Otherwise, there is no such a violated inequality. Notice that maximization

problem (38) is equivalent to the following integer program.

max
∑
j∈N

(xj − razj)αj − k(c− ra)(y − a)

s.t.
∑
j∈N

αj − k = a
⌊d
c

⌋
, (39)

1 ≤ k ≤ la,

αj ∈ {0, 1}, j ∈ N, k ∈ Z+,

where αj = 1 if j ∈ S, and αj = 0 otherwise.
It can be seen readily that the coefficient matrix corresponding to program (39) is totally

unimodular and so the separation problem can be solved by solving the linear relaxation of
program (39) which provides an optimal integer solution (see [10]).

19



Case 2. Let k = bd
c
c. Then inequality (21) can be represented as∑

j∈S

(xj − razj) ≤
⌊d
c

⌋
(c− ra)y,

where |S| ≤ (a+ 1)bd
c
c. Then a violated inequality is found if maxS⊆N,|S|≤(a+1)b d

c
c(xj − razj)

is strictly greater than bd
c
c(c − ra)y. The latter maximization problem corresponds to the

following binary integer program.

max
∑
j∈N

(xj − razj)αj

s.t.
∑
j∈N

αj ≤ (a+ 1)
⌊d
c

⌋
,

αj ∈ {0, 1}, j ∈ N,

where αj = 1 if j ∈ S, and αj = 0 otherwise. In order to solve the above-mentioned binary
integer program, without loss of generality, assume x1 − raz1 ≥ · · · ≥ xn − razn. Then we
set S =

{
j ∈ {1, . . . , (a + 1)bd

c
c} : xj − razj > 0

}
. Thus, the separation problem associated

with inequality (21) can be solved in polynomial time.
Notice that the separation problem associated with inequalities (22) and (23) can be

solved similarly to the separation of (21).

6. Computational Results

In this section we report some computational experiments to test the effectiveness of the
inclusion of the inequalities introduced in Section 3 in solving randomly generated instances
of the lot-sizing with supplier selection problem assuming constant supplying capacities.
In this experiment we compare these inequalities with default Xpress-Optimizer cuts. We
consider instances of the following LSSP

min
∑
t∈T

htst +
∑
t∈T

∑
j∈N

(pt + qjt)wjt +
∑
t∈T

ftyt +
∑
t∈T

∑
j∈N

gjtzjt

s.t. st−1 + xt = dt + st, t ∈ T,
xt ≤ dyt, t ∈ T,
xt =

∑
j∈N

wjt, t ∈ T,

wjt ≤ czjt, j ∈ N, t ∈ T,
s0 = s|T | = 0,

xt, st ≥ 0, t ∈ T,
wjt ≥ 0, j ∈ N, t ∈ T,
yt ∈ {0, 1, . . . , U}, t ∈ T,
zjt ∈ {0, 1}, j ∈ N, t ∈ T,
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where T is the set of production periods, and N is the set of suppliers. dt > 0 is the demand
in period t ∈ T , ht is the unit holding cost, ft and pt represent the production set-up
cost and variable production cost in period t, respectively, and qjt and gjt are variable and
fixed sourcing set-up costs for supplier j in period t. d and c are production and supplying
capacities. In addition, several types of decision variables are defined. Let xt be the quantity
produced in period t; st be the stock level at the end of period t ∈ T ; wjt be the quantity
sourced from supplier j ∈ N in period t ∈ T ; yt is an integer variable indicating the number
of batches produced in period t, and zjt takes value 1 if and only if supplier j is selected in
period t.

All computations are performed using the optimization software Xpress-Optimizer Ver-
sion 23.01.03 with Xpress Mosel Version 3.4.0 [13], on a computer with processor Intel Core
2, 2.2 GHz and with 2 GB RAM.

We consider instances with |T | = 20 and |N | = 10. The test instances were generated
randomly on the basis of the following data: d ∈ {40, 60, 80, 100}; c ∈ {9, 14, 19, 24}; dt is
randomly generated as an integer number in the intervals [10, 20], [10, 40], and [10, 100]; ht
is randomly generated in the interval [0, 0.1); pt + qjt is randomly selected in {0.5, 1.5}; ft
takes value in {100, 300}; gjt is randomly generated as an integer number in the intervals
[100, 105] and [300, 305].

The computational results are shown in Tables 2–6 where we provide average results for
the LSSP on 12 instances generated for each pair (d, c).

Let C denote the set of inequalities containing (15), (16), (20), (21) with k = bd
c
c, (22),

(23), and (36) which are added to the LP relaxation as cutting planes. After solving the
LP relaxation of an instance, the most violated inequality of each class is added to the
formulation and finally the LP relaxation is solved again. The process is repeated until no
new cuts are found. In Table 2, we present the integrality gap closed by Xpress cuts (GCX),
integrality gap closed by cuts C (GCC), and integrality gap closed by cuts C in addition to
Xpress cuts (GCCX). Closed gaps are calculated as ILR−LR

OPT−LR × 100 where LR indicates the
linear relaxation value, OPT denotes the optimal value of the problem, and ILR denotes
the LP relaxation with default Xpress cuts for GCX, with inequalities belong to C for GCC,
and with inequalities belong to C in addition to Xpress cuts for GCCX. It can be observed
in Table 2 that for all instances the new cuts C in addition to Xpress cuts are more efficient
in closing the integrality gap than Xpress cuts.

As a next step, we ran the branch-and-cut algorithm during the time limit of 30 minutes
with the default Xpress-Optimizer options. The results are reported in Table 3 where the
second column (IG) is the initial integrality gap computed by running the branch-and-cut
algorithm for 30 minutes and the third column (GC) gives the integrality gap calculated by
adding cuts C at the root node to the formulation, and then running the branch-and-cut
algorithm. The integrality gaps are calculated as OPT−LR∗

OPT
× 100 where LR∗ indicates the

best lower bound obtained corresponding to those two cases. It can be concluded from Table
3 that adding our cuts to the formulation a priori is effective in decreasing the integrality
gap.

Let SMALL, MEDIUM, and LARGE denote the sets of all instances whose bd
c
c belongs
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Table 2: Average closed gaps on 192 randomly generated instances.

(d,c) GCX GCC GCCX
(40,9) 33.3 47.20 54.44
(40,14) 22.78 29.99 40.29
(40,19) 50.66 24.63 63.68
(40,24) 22.12 5.39 23.12
(60,9) 28.1 46.27 57.11
(60,14) 42.87 45.76 55.09
(60,19) 46.88 32.00 66.59
(60,24) 33.51 7.71 35.45
(80,9) 48.47 55.37 65.83
(80,14) 30.67 36.66 53.64
(80,19) 61.99 44.95 68.52
(80,24) 37.92 17.49 48.09
(100,9) 52.39 43.66 53.95
(100,14) 48.58 27.01 51.63
(100,19) 57.6 40.05 71.40
(100,24) 56.37 28.11 59.25
Average 42.14 33.27 54.26

to {1, 2, 3}, {4, 5, 6}, and {7, 8, 11} respectively. Then the average closed gaps are classified
in term of the value bd

c
c in Table 4. It can be concluded from Table 4 that as bd

c
c rises, the

average gaps closed by Xpress cuts and closed by cuts C increase. Note that this property
roughly holds for the average gaps closed by cuts C in addition to Xpress cuts. In addition,
the average integrality gaps classified in term of the value bd

c
c are shown in Table 5. This

table shows that the best improvement of integrality gap is seen for those instances belonging
to the set MEDIUM.

Finally we present the impact of simultaneous lifted inequalities (35) in Table 6. In this
case, only the pair (d, c) = (40, 14) from the above-mentioned instances satisfies the condition
of proposition 4.2. So we add a new pair (d, c) = (60, 16) which satisfies those conditions
to run the tests over more instances. Thus, 24 instances are generated as explained before.
We report the integrality gap closed by the cuts C, denoted by (GCC), and the integrality
gap closed by cuts C in addition to the inequalities (35), denoted by (GCC+), in Table 6.
It can be concluded that simultaneous lifted inequalities (35) have only a slight impact on
improving the gap.

7. Conclusions and future research

We considered a set X that generalizes the single node fixed-charge network set and the
single arc design set. For this set we obtained new inequalities that generalize the well-
known flow cover inequalities and the arc residual capacity inequalities. For the constant

22



Table 3: Comparison of average integrality gaps.

(d,c) IG GC
(40,9) 1.69 1.13
(40,14) 3.16 2.30
(40,19) 1.30 1.02
(40,24) 2.82 2.94
(60,9) 2.10 1.25
(60,14) 1.64 1.01
(60,19) 0.74 0.17
(60,24) 1.57 1.63
(80,9) 0.71 0.48
(80,14) 2.37 1.62
(80,19) 0.27 0.20
(80,24) 1.41 1.07
(100,9) 0.95 0.86
(100,14) 1.14 1.16
(100,19) 0.62 0.40
(100,24) 0.62 0.61
Average 1.44 1.11

Table 4: Classified average closed gaps in term of the value bdc c.

(d,c) GCX GCC GCCX
SMALL 35.65 19.54 46.2

MEDIUM 44.41 41.29 59.92
LARGE 49.81 42.01 57.14

Table 5: Classified average integrality gaps in term of the value bdc c.

(d,c) IG GC
SMALL 1.83 1.52

MEDIUM 1.33 0.89
LARGE 0.93 0.83
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Table 6: Impact of Simultaneous Lifted Inequalities (35).

(d,c) GCC GCC+
(40,14) 29.99 30.37
(60,16) 28.99 29.82

Average 29.49 30.10

capacitated case we derived an exact compact extended formulation, and some families of
facet-defining inequalities in the original space of variables which give a partial description
of the convex hull of X. A preliminary computational study showed that these inequalities
are effective in reducing the integrality gap of instances of the single-item lot-sizing with
supplier selection problem.

As a future line of research it would be interesting to investigate separation heuristics
for inequalities derived for the general case. Another line of research is to investigate the
polyhedral structure of P in the case where constraints zj ≤ y, j ∈ N are excluded from
the definition of the set X. Our preliminary research shows that many new facet-defining
inequalities appear for this case.
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Appendix

Proof. of Theorem 3.3.
We prove this theorem using a technique introduced by Lovasz [7]. Assume (x, z, y) ∈ X

and (α, β, γ) ∈ Rn × Rn × R such that (α, β, γ) 6= (0,0, 0). Let M(α, β, γ) be the set
of optimal solutions to the problem max{ h(x, z, y) | (x, z, y) ∈ X }, where h(x, z, y) =∑

j∈N αjxj +
∑

j∈N βjzj + γy. Let R be a polyhedron defined by inequalities of Proposition
2.3, inequalities (15), and (20). So we show that if M(α, β, γ) 6= ∅ and M(α, β, γ) 6= X, then
M(α, β, γ) is contained in one of the hyperplanes defining R. Alternatively, one can consider
the subset of points in M(α, β, γ) that are extreme in P instead of the set M(α, β, γ).

If αj < 0, for some j ∈ N , then M(α, β, γ) ⊆ {(x, z, y) | xj = 0}. If cαj+βj < 0, for some
j ∈ N , then M(α, β, γ) ⊆ {(x, z, y) | zj = 0}. If γ > 0, then M(α, β, γ) ⊆ {(x, z, y) | y = 2}.
If βj + γ > 0, for some j ∈ N , then M(α, β, γ) ⊆ {(x, z, y) | zj = 1}. Thus, we assume
αj ≥ 0, cαj + βj ≥ 0, βj + γ ≤ 0, j ∈ N , and γ ≤ 0.
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We define the following value function defined for λ ∈ {0, 1, 2} :

f(λ) = max
{∑
j∈N

αjxj +
∑
j∈N

βjzj |
∑
j∈N

xj ≤ dλ, xj ≤ czj, j ∈ N

zj ≤ λ, j ∈ N, zj ∈ {0, 1}, xj ≥ 0, j ∈ N
}
.

If f(1)+γ < 0 and f(2)+2γ < 0, then M(α, β, γ) ⊆ {(x, z, y) | y = 0}. Thus, we assume
max{f(1) + γ, f(2) + 2γ} ≥ 0, and consider the following cases.

Case 1: f(2) + 2γ > f(1) + γ. Then if f(1) + γ ≥ 0, so f(2) + 2γ > f(1) + γ ≥ 0 implies
M(α, β, γ) ⊆ {(x, z, y) | y = 2}. Now consider f(1) + γ < 0. As f(2) + 2γ ≥ 0, we show it
cannot happen f(2) + 2γ = 0. Assume f(2) + 2γ = 0. We claim that f(2) ≤ 2f(1). In order
to prove the claim, assume without loss of generality that cα1 + β1 ≥ · · · ≥ cαn + βn. Then

f(1) ≥
∑b d

c
c

j=1(cαj +βj)
+ and it can be concluded from n ≤ 2bd

c
c that

∑n
j=b d

c
c+1(cαj +βj)

+ ≤∑b d
c
c

j=1(cαj + βj)
+. Thus, using these inequalities gives

f(2) =

b d
c
c∑

j=1

(cαj + βj)
+ +

n∑
j=b d

c
c+1

(cαj + βj)
+ ≤

b d
c
c∑

j=1

(cαj + βj)
+ +

b d
c
c∑

j=1

(cαj + βj)
+ ≤ 2f(1),

(40)

which proves the claim. Now the following contradiction −γ ≤ f(2) − f(1) ≤ f(1) < −γ
holds, where the first inequality follows from f(2)+2γ > f(1)+γ, the second inequality comes
from f(2) ≤ 2f(1), and the last one follows from f(1) + γ < 0. Hence, from f(2) + 2γ > 0
follows M(α, β, γ) ⊆ {(x, z, y) | y = 2}.

Case 2: f(2) + 2γ < f(1) + γ. This implies y ≤ 1 for every (x, z, y) ∈ M(α, β, γ). The
case y ≤ 1 was studied in [2] where it was shown that in addition to the defining inequalities
the facet defining inequalities are of type (20) with k = bd

c
c.

Case 3: f(2) + 2γ = f(1) + γ ≥ 0. Hence, there are extreme points maximizing function
h with y = 1, y = 2, and the null vector (with y = 0) if f(2) + 2γ = f(1) + γ = 0. Let
S = {j ∈ N |cαj + βj > 0}. Since n ≤ 2bd

c
c, then f(2) is obtained by setting xj = c, zj = 1

for all j ∈ S. Thus, all extreme points with y = 2 maximizing function h satisfy (a)
xj = c, zj = 1, j ∈ S and

∑
j∈S xj = c|S| = d + r(S). The extreme points with y = 1

maximizing function h belong to one of the following two types: (b.1) y = 1,
∑

j∈S xj = d;

(b.2) y = 1,
∑

j∈S xj = cbd
c
c,
∑

j∈S zj = bd
c
c. We consider three subcases accordingly to the

extreme points maximizing function h, where extreme points of type (a) are considered in
all subcases.

Subcase 3.a: If all extreme points maximizing function h with y = 1 are of type (b.2),
then M(α, β, γ) ⊆ {(x, z, y) | xj = czj}, j ∈ S whether the null vector belongs to M(α, β, γ)
or not.

Subcase 3.b: If all the extreme points maximizing h with y = 1 are of type (b.1), then
M(α, β, γ) ⊆ {(x, z, y) |

∑
j∈S xj = d + r(S)(y − 1)}. In this case we must show the null

vector cannot be optimal. Assume to the contrary that f(2) + 2γ = f(1) + γ = 0. Then
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f(1) = −γ, and f(2) = 2f(1). So considering inequality (40), the condition f(2) = 2f(1)

implies cαj+βj = σ, where σ is constant, ∀j ∈ S, |S| = n = 2bd
c
c, and f(1) =

∑b d
c
c

j=1(cαj+βj).
The last equality ensures that there is at least one extreme point with y = 1 of type (b.2)
maximizing h, which is a contradiction.

Subcase 3.c: Assume there are extreme points maximizing function h with y = 1 of both
types (b.1) and (b.2). Then M(α, β, γ) ⊆ {(x, z, y) |

∑
j∈S(xj − r1zj) = k(c− r1)y + (bd

c
c −

k)(c − r1)}, where k = |S| − bd
c
c. Notice that, as in the proof of the subcase 3.b, if null

vector is optimal, then |S| = n = 2bd
c
c. Hence, the null vector belongs to M(α, β, γ) because

k = bd
c
c.

In the following we will use the remark presented next.

Remark 7.1. One can check that for j = 2, . . . , U , if jr1 < c then rj = jr1 and b jd
c
c = jbd

c
c,

and if jr1 ≥ c, we have rj = jr1 − b jr1c cc and b jd
c
c = jbd

c
c+ b jr1

c
c.

Proof. of Proposition 3.4. We prove only (i), since the proof of (ii) is similar. First we prove
validity by considering the following cases.

1. Case y ≥ a+ 1 : If
∑

j∈S zj ≤ b
ad
c
c, then

∑
j∈S

(xj − razj) ≤
∑
j∈S

czj −
∑
j∈S

razj ≤ (c− ra)
∑
j∈S

zj ≤
⌊ad
c

⌋
(c− ra) = a

⌊d
c

⌋
(c− ra)

≤ (a+ 1)
⌊d
c

⌋
(c− ra) ≤

⌊d
c

⌋
(c− ra)y.

If
∑

j∈S zj ≥ d
ad
c
e, then

∑
j∈S

(xj − razj) ≤ (c− ra)
∑
j∈S

zj ≤ |S| (c− ra) ≤ (a+ 1)
⌊d
c

⌋
(c− ra) ≤

⌊d
c

⌋
(c− ra)y.

2. Case y = a : If
∑

j∈S zj ≤ b
ad
c
c, then

∑
j∈S

(xj − razj) ≤
⌊ad
c

⌋
(c− ra) = a

⌊d
c

⌋
(c− ra) =

⌊d
c

⌋
(c− ra)y.

If
∑

j∈S zj ≥ d
ad
c
e, then

∑
j∈S

(xj − razj) ≤ ad−
(⌊ad

c

⌋
+1

)
ra = a

⌊d
c

⌋
(c− ra) =

⌊d
c

⌋
(c− ra)y.

3. Case y = b < a : If
∑

j∈S zj ≤ b
bd
c
c, then

∑
j∈S

(xj − razj) ≤
⌊bd
c

⌋
(c− ra) = b

⌊d
c

⌋
(c− ra) =

⌊d
c

⌋
(c− ra)y.
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If
∑

j∈S zj ≥ d
bd
c
e, then

∑
j∈S

(xj−razj) ≤ bd−
(⌊bd

c

⌋
+ 1

)
ra = b

⌊d
c

⌋
(c−ra)+rb−ra < b

⌊d
c

⌋
(c−ra) =

⌊d
c

⌋
(c−ra)y.

where the last inequality follows from rb < ra.
Next, we prove that inequality (21) defines a facet of P . Consider the following points

satisfying (21) as equation:

(1) y = 0, xj = 0, zj = 0, j ∈ N,

(2) ∀S1 ⊂ S, |S1| = a
⌊d
c

⌋
, y = a, xj =

{
c , j ∈ S1,
0 , otherwise,

, zj =

{
1 , j ∈ S1,
0 , otherwise,

(3) ∀S1 ⊂ S, |S1| = a
⌊d
c

⌋
,∀k ∈ S\S1, y = a, xj =


c , j ∈ S1,
ra , for k,
0 , otherwise,

, zj =


1 , j ∈ S1,
1 , for k,
0 , otherwise,

(4) ∀S1 ⊂ S, |S1| = a
⌊d
c

⌋
, ∀k ∈ N\S, y = a, xj =


c , j ∈ S1,
ra , for k,
0 , otherwise,

, zj =


1 , j ∈ S1,
1 , for k,
0 , otherwise,

(5) ∀S1 ⊂ S, |S1| = a
⌊d
c

⌋
,∀k ∈ N\S, y = a, xj =

{
c , j ∈ S1,
0 , otherwise,

, zj =


1 , j ∈ S1,
1 , for k,
0 , otherwise,

(6) ∀S1 ⊂ S, |S1| =
⌊d
c

⌋
, y = 1, xj =

{
c , j ∈ S1,
0 , otherwise,

, zj =

{
1 , j ∈ S1,
0 , otherwise.

Now consider the following inequality which defines a face of P .∑
j∈N

αjxj +
∑
j∈N

βjzj + γy ≤ γ0.

Then we show that the following equality∑
j∈N

αjxj +
∑
j∈N

βjzj + γy = γ0, (41)

is a multiple of (21) as equality where points (1)–(6) satisfy equation (41).
It follows by replacing solution (1) in equation (41) that γ0 = 0. Then substituting

solutions (2) and (4) in equation (41) and subtracting the resultant equalities imply raαk +
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βk = 0, k ∈ N \S. In addition, substituting points (2) and (5) in (41) and subtracting them
give βk = 0, k ∈ N \ S. Combining these equations giving αk = βk = 0, k ∈ N \ S.

Now let i1, i2 ∈ S. We consider solution (3) with xi1 = c and xi2 = ra. Considering this
point, we construct a new point by decreasing the flow of xi1 by 1 and increasing the flow
of xi2 by the same value. This new point satisfies (21) as equation. Substituting these two
solutions in equation (41) and subtracting the equalities imply αj = α, j ∈ S.

Next, for i1, i2 ∈ S, we consider solution (2) where xi1 = c, zi1 = 1 and xi2 = zi2 = 0.
Then we create a new solution by setting xi1 = zi1 = 0 and xi2 = c, zi2 = 1 which is of type
(2) as well. Substituting these points in equation (41) and subtracting the resultant equalities
give βj = β, j ∈ S. Substituting solutions (2) and (3) in equality (41) and subtracting them
imply β = −αra. Finally, substituting points (6) in (41) gives γ = −αbd

c
c(c − ra) which

completes the proof of part (i).

Proof. of Lemma 4.1. Since φ is piecewise linear, then for u ∈ [u1, u2], we have φ(u) = au+b,
where a and b are constant. Now suppose that (x̃, z̃) be an arbitrary point in X[u1,u2] and
(xi, zi), i ∈ {1, . . . , q} are the extreme points of this polyhedron. Then (x̃, z̃) =

∑q
i=1 νi(x

i, zi)
such that νi ≥ 0,∀i ∈ {1, . . . , q} and

∑q
i=1 νi = 1. Let (λ, µ) ∈ Π[u1,u2]. So∑

j∈C2

λjx
i
j +

∑
j∈C2

µjz
i
j ≤ φ(

∑
j∈C2

xij) = a(
∑
j∈C2

xij) + b, i = 1, . . . , q. (42)

Multiplying inequalities (42) by corresponding νi for all i = 1, . . . , q and then summing them
imply

q∑
i=1

∑
j∈C2

νiλjx
i
j +

q∑
i=1

∑
j∈C2

νiµjz
i
j ≤

q∑
i=1

∑
j∈C2

aνix
i
j +

q∑
i=1

νib =

q∑
i=1

∑
j∈C2

aνix
i
j + b,

and so ∑
j∈C2

λjx̃j +
∑
j∈C2

µj z̃j ≤ a(
∑
j∈C2

x̃j) + b = φ(
∑
j∈C2

x̃j),

which shows that the inequality is satisfied for (x̃, z̃).

Proof. of Lemma 4.2. Let (λ, µ) be an extreme point of Π. Suppose to the contrary that
λk < 0, for some k ∈ C2. First, we show that xk = 0, for all (x, z) ∈ Xfeasible . So let
(x, z) ∈ Xfeasible and assume to the contrary that xk > 0. Since (λ, µ) is an extreme point
of Π, so there exist defining inequalities of Π such that∑

j∈C2

λjxj +
∑
j∈C2

µjzj = φ(
∑
j∈C2

xj). (43)

Now consider a small enough ε > 0 such that xk − ε > 0. Then we generate a new point
(x∗, z∗) ∈ Xfeasible where x∗j = xj, j ∈ C2 \ {k}, x∗k = xk − ε, z∗j = zj, j ∈ C2. Thus we have∑

j∈C2

λjxj − ελk +
∑
j∈C2

µjzj ≤ φ(
∑
j∈C2

xj − ε).
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Substituting equality (43) in the latter inequality gives

ελk ≥ φ(
∑
j∈C2

xj)− φ(
∑
j∈C2

xj − ε),

which is a contradiction, since ελk < 0 and φ(
∑

j∈C2
xj) − φ(

∑
j∈C2

xj − ε) ≥ 0. Therefore

xk = 0, k ∈ C2, for all (x, z) ∈ Xfeasible such that equality (43) holds.
Now we define two points (λ1, µ) and (λ2, µ) as follows.

λ1i = λ2i = λi , i 6= k, λ1k = λk + ε, λ2k = λk − ε.

This definition implies if equality (43) is satisfied at extreme point (λ, µ) , then it is satisfied
at (λ1, µ) and (λ2, µ) as well. It can be seen as a consequence of xk = 0 that remaining
defining inequalities of Π such that∑

j∈C2

λjxj +
∑
j∈C2

µjzj < φ(
∑
j∈C2

xj),

are valid for (λ1, µ) and (λ2, µ). Therefore, (λ, µ) can be written as a convex combination of
two points of Π which is a contradiction with the fact that (λ, µ) is a vertex of Π.

Proof. of Proposition 4.6. Clearly f(u) ≤ φ(u), for u ∈ [0, Ud]. Next, we show that function
f is superadditive. We start by proving that f has the following property. If x = kd+ v, 0 ≤
v < d such that k ∈ Z+ and v ≥ 0, then f(x) = kbd

c
c(c − r1) + f(v). It is clear that this

equality holds true for k = 0. Assume k ≥ 1. Then we have the following cases.
Case 1: If kd ≤ kd + v ≤ kd + r1. It implies 0 ≤ v ≤ r1 and so f(v) = 0. Thus,

f(kd+ v) = kbd
c
c(c− r1) = kbd

c
c(c− r1) + f(v).

Case 2: If kd + r1 < kd + v ≤
(
(k + 1)bd

c
c − 1

)
c + (k + 1)r1. Then we get r1 < v ≤

(bd
c
c − 1)c+ r1 and so f(v) = (c−r1)(v−r1)

c
. Therefore

f(kd+ v) =
(c− r1)(kd+ v − (k + 1)r1)

c
=

(c− r1)(kbdccc+ v − r1)
c

= k
⌊d
c

⌋
(c− r1)

+
(c− r1)(v − r1)

c
= k
⌊d
c

⌋
(c− r1) + f(v).

The two remaining cases can be proved similarly.
Now we assume that x1 = k1d + v1, x2 = k2d + v2 such that 0 ≤ v1, v2 < d. Then using

the foregoing property implies

f(x1) + f(x2) = k1

⌊d
c

⌋
(c− r1) + f(v1) + k2

⌊d
c

⌋
(c− r1) + f(v2),

and

f(x1 + x2) = (k1 + k2)
⌊d
c

⌋
(c− r1) + f(v1 + v2).
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Therefore, we have f(x1)+f(x2) ≤ f(x1 +x2) if and only if f(v1)+f(v2) ≤ f(v1 +v2) where
0 ≤ v1, v2 < d. So in order to prove superadditivity of f in [0, Ud], it suffices to prove f is
superadditive on [0, d].

Now we prove superadditivity on [0, d]. So consider the following cases.
Case i : If 0 ≤ x1 ≤ r1 and 0 ≤ x2 ≤ d. Then f(x1) = 0. Since x1 + x2 ≥ x2 and f is

non-decreasing so f(x1 + x2) ≥ f(x2) = f(x1) + f(x2).

Case ii : If r1 ≤ x1 ≤ (bd
c
c−1)c+r1 and r1 ≤ x2 ≤ (bd

c
c−1)c+r1. So f(x1) = (c−r1)(x1−r1)

c

and f(x2) = (c−r1)(x2−r1)
c

. We have the following subcases. If x1 + x2 ≤ (bd
c
c − 1)c+ r1 then

f(x1 + x2) = (c−r1)(x1+x2−r1)
c

. Thus

f(x1 + x2) =
(c− r1)(x1 + x2 − r1)

c
=

(c− r1)(x1 − r1) + (c− r1)x2
c

≥ (c− r1)(x1 − r1)
c

+
(c− r1)(x2 − r1)

c
= f(x1) + f(x2).

If (bd
c
c−1)c+r1 < x1 +x2 ≤ (bd

c
c−1)c+2r1, then f(x1 +x2) = (bd

c
c−1)(c−r1). Moreover,

x1 + x2 ≤ (bd
c
c − 1)c+ 2r1 implies bd

c
c − 1 ≥ x1+x2−2r1

c
. Thus

f(x1 + x2) =
(⌊d
c

⌋
− 1
)

(c− r1) ≥
x1 + x2 − 2r1

c
(c− r1) = f(x1) + f(x2).

If (bd
c
c−1)c+2r1 < x1+x2 ≤ d, so f(x1+x2) = x1+x2−r1ddce. Then multiplying inequality

x1 + x2 > (bd
c
c − 1)c+ 2r1 = cdd

c
e − 2(c− r1) by r1

c
= 1− c−r1

c
implies (x1 + x2)(1− c−r1

c
) ≥

r1ddce − 2r1
c−r1
c

which finally gives f(x1 + x2) ≥ f(x1) + f(x2).
We omit the other cases because they can be done similarly.
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