

Figure S1. Biological replicates of H3K27me3 and H3K4me3 ChIP experiments. A, H3K27me3 relative abundance (± SE of 3 qPCR technical replicates) at different positions of the *FLC* locus for non vernalized seedlings (NV) and after 6 weeks of vernalization (V) followed by 3 weeks of warm (20°C), or 1 week of heat (30°C) given before (30-20°C) or after (20-30°C) 2 weeks of warm. H3K27me3 quantifications are relative to constitutive marks at *AGAMOUS* and *SHOOT MERISTEMLESS* genes. Data are from 2 independent experiments. B, H3K4me3 quantifications (± SE of 3 qPCR technical replicates) relative to constitutive marks at *ACTIN7* and *UBIQUITIN10* genes. Primers used are listed in tables S1 and S2.

	Targeted region	Locus	Name in figure 1A	Primer	Primer binding (relative to the transcription start site)	Amplicon size	Tm (°C)	Sequence	Calculated efficiency	Hydridization temperature	Refs.
c		<i>FLC</i> (AT5G10140)	-	FOR REV	157 333	177	58.17 56.09	CGACAAGTCACCTTCTCCAAA AGGGGGAACAAATGAAAACC	112,9 % (R ² =0,990).	60	1
.ocus	Nucleation region	<i>FLC</i> (AT5G10140)	=	FOR REV	235 333	66	60.25 56.09	GTCGCTCTTCTCGTCGTCTC AGGGGGGAACAAATGAAAACC	93,5% (R ² =0,995)	60	2
RING L		<i>FLC</i> (AT5G10140)	≡	FOR REV	936 1106	181	59.09 56.24	TTCCTATCTTTGCTGTGGACCT GAATCGCAATCGATAACCAGA	125 % (R ² =0,99).	60	1
OWEF	Nucleation distal region	<i>FLC</i> (AT5G10140)	VI	FOR REV	3710 3793	84	56.73 59.54	GTTTCCAGTGGCCTTTTCAA GACCAGGCTGGAGAGATGAC	97,4 % (R ² =0,995)	60	з
FL	ואמכופמנוסון מוזנמו ו פצוסוו	<i>FLC</i> (AT5G10140)	<	FOR REV	4008 4197	190	55,98 56,31	CTTTTTCATGGGCAGGATCA TGACATTTGATCCCACAAGC	99,8 (R ² =0,988)	60	1
H3K27me3	First exon	<i>STM</i> (AT1G62360)	NA	FOR REV	92 195	104	56.63 59.38	GCCCATCATGACATCACATC GGGAACTACTTTGTTGGTGGTG	112 % (R ² =0,996)	60	1
controls	Coding region	<i>AGAMOUS</i> (AT4G18960)	NA	FOR REV	1112 1240	129	55.86 57.76	TGGGAGAGGAAAGATCGAAA GCGACTTCAGCATCACAAAG	101,3 % (R ² = 0,996)	60	4
Table S2. Lis	t of primers used for H3K	(4me3 analysis.									
	Targeted region	Amplfied locus	Name in figure 1B	Primer	Primer binding (relative to the transcription start site)	Amplicon size	Tm	Sequence	Calculated efficiency	Hydridization temperature	Refs.
		<i>FLC</i> (AT5G10140)	٧I	FOR REV	-34 23	80	56.44 52.86	GTAGATAGGCACAAAAAATAGAAAGAA GAGATACTAAGCGTTTTCTCT	113,8 % (R ² =0,992).	60	1
FLOWERING LOCUS C	Promoter & beginning of the transcribed region	<i>FLC</i> (AT5G10140)	۲I	FOR REV	157 333	177	58.17 56.09	CGACAAGTCACCTTCTCCAAA AGGGGGAACAAATGAAAACC	112,9 % (R ² =0,990).	60	1
		<i>FLC</i> (AT5G10140)	VIII	FOR REV	235 333	66	60.25 56.09	GTCGCTCTTCTCGTCGTCTC AGGGGGGAACAAATGAAAACC	93,5% (R ² =0,995)	60	2
H3K4me3	First exon	<i>UBQ10</i> (AT4G05320)	NA	FOR REV	1934 1895	62	63.5 60.74	GGGCCTTGTATAATCCCTGATGAATAAGTG AAAGAGATAACAGGAACGGAAACATAGT	100,5 % (R ² =0,996)	60	5
controls	Coding region	<i>ACT7</i> (AT5G09810)	NA	FOR REV	728 835	108	57.13 56.23	GATATICAGCCACTTGTCTGTG CTTACACATGTACAACAAAGAAGG	107,5% (R2=0,991)	60	6
References 1. Angel A, Son	g J, Dean C, Howard M. A Poly	/comb-based switch un	ıderlying quantii	tative epigene	etic memory. Nature 201	11; 476:105-8.					

Table S1. List of primers used for H3K27me3 marks quantification.

2. Hohenstatt, M. Functional analysis of SCI1 - A PWWP domain protein involved in Polycomb group mediated gene regulation in Arabidopsis. PhD thesis, 2012. [http://d-nb.info/1023946963/34]

3. Schatlowski N, Stahl Y, Hohenstatt ML, Goodrich J, Schubert D. The CURLY LEAF interacting protein BuISTER controls expression of polycomb-group target genes and cellular differentiation of Arabidopsis thaliana. Plant Cell 2010; 22:2291-305.

4. Schmitz RJ, Tamada V, Doyle MR, Zhang X, Amasino RM. Histone H2B deubiquitination is required for transcriptional activation of FLOWERING LOCUS C and for proper control of flowering in Arabidopsis. Plant Physiol 2009; 149:1196-204.

5. Kim DH, Sung S. The Plant Homeo Domain finger protein, VIN3-LIKE 2, is necessary for photoperiod-mediated epigenetic regulation of the floral repressor, MAFS. PNAS 2010; 107:17029-34.

6. Yang H, Howard M, Dean C. Antagonistic Roles for H3K36me3 and H3K27me3 in the Cold-Induced Epigenetic Switch at Arabidopsis FLC. Curr Biol 2014; 24:1793-7.