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Abstract 

This work is a part of a project aiming at developing a renewable fuel for gasification 

purposes, through convective drying of sludge/wood mixtures. The first step consists of 

characterizing the behavior of sawdust/sludge mixtures during the application of 

convective drying. The influence of the mixing step (no mixing against 30 s at 40 rpm), 

as well as the sawdust/sludge ratio (1/9, 2/8, 3/7 and 4/6 on a dry basis) and the effect of 

the drying temperature (50 °C, 80 °C and 110 °C) have been investigated. In this study, 

X-ray tomography, a non-invasive imaging technique, is used to assess changes in the 

volume, void and exchange surface at the beginning and the end of the drying process. 

Results first confirm the importance of the mixing step on the drying behavior: the drying 

rate of the mixed sludge is lower than that of the original sludge. Nevertheless the 

addition of sawdust is shown to have a positive impact on the drying process from a mass 

ratio of 2/8, with drying rates higher than that of the original sludge. With increasing 

amount of sawdust, the initial and final bed volumes, initial and final total exchange 
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surfaces, and initial void fraction increase linearly, but the bed volume shrinkage and 

final void fraction decrease linearly. 

 

KEYWORDS: Sewage sludge; Sawdust; Convective drying; Mixing; Shrinkage; X-ray 

tomography 

 

INTRODUCTION 

Because of the increased water demand of the world’s population, together with stringent 

requirements for discharge into the natural environment, the quantity of sludge generated 

from wastewater treatment plants (WWTPs) is continuously increasing [1, 2]. Hence, the 

valorization of sludge has become a critical issue. In the past years, many technologies 

have been used for sludge valorization, such as land application, composting and 

incineration. However, the high moisture content of sludge is still considered as a critical 

parameter that governs the feasibility of various final disposal routes [3]. It is now well 

established that thermal drying operation, after mechanical dewatering, is an essential 

step prior to current sludge valorization options. Léonard et al. [4–7] investigated the 

convective drying of wastewater sludge dried in a rig. Moreover, they also studied the 

influence of air temperature, superficial velocity, and humidity on the drying kinetics and 

on shrinkage and cracks formation using X-ray microtomoraphy. This technique has also 

been used by other teams for similar types of studies. Tao et al. [8–10] investigated the 

volume shrinkage and crack development by X-ray microtomography in thermal drying 

of wastewater sludge. It was found that the volume shrinkage decreased the drying area 

but the crack development increased the drying area. Arlabosse et al. [11] developed an 
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experimental methodology to improve the design of paddle dryers. A good agreement 

was obtained between the experimental and modeling results. Simulation works 

regarding sludge drying were also developed by researchers [12–16]. The water diffusion 

coefficient during wastewater sludge drying was determined by comparing experimental 

data with the analytical solution of the diffusion equation [12, 13]. Furthermore, the 

shrinkage effect was introduced to the modeling and simulation of heat and mass transfer 

during convective drying of wastewater sludge [14, 15]. An advanced finite-element 

simulation with three-dimensional volumetric grids was studied and the heat and mass 

transfer processes in the drying of wastewater sludge cake were simulated [16]. 

Nevertheless there are still some attempts to find new valorization routes for sludge. 

 

In this work, it is proposed to generate an original renewable fuel that could enter a 

gasification process, by drying a mixture of sludge with sawdust. Adding sawdust is 

expected to be a way of reinforcing the texture of soft and pasty sludge which is difficult 

to dry. Reinforcing the texture of sludge can increase the drying rate and decrease the 

drying time, and then the heat energy supply may be reduced significantly. Based on the 

previous study dealing with back mixing [17], where it was found that expansion of the 

sludge bed enhanced heat and mass transfer, we expect positive results using the 

approach of mixing sludge with sawdust. Furthermore, sawdust brings organic matter 

which is useful for gasification. This material is produced in large amount by the forest 

industry and also needs safe disposal solutions [18]. Usually, sawdust is applied in the 

manufacture of compressed biofuels or for making compressed wood boards [19], but 

new applications should be explored. A mixing machine can be added to the typical 
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industrial sludge drying setup which consists of a belt dryer and sludge extruder. 

Sawdust/sludge mixtures are extruded and then dried in the belt dryer. The investment 

cost will slightly increase because of the addition of the mixing machine. However, as 

mentioned above the operation cost may be reduced significantly in the ideal condition 

because the reduction of the drying time. Altogether, the overall cost is speculated to be 

reduced. Finally, the removal of water during drying is essential prior to gasification, in 

order to reach a calorific value adapted to such thermochemical conversion process [20]. 

 

The present work aims to determine the effect of sawdust addition operation on the 

convective drying kinetics of wastewater sludge. X-ray tomography, a non-destructive 

imaging technique, is used to follow the 3D characteristics, in particular volume [21–24], 

exchange surface [17, 21–23, 25], and void fraction [17, 26, 27]. 

 

MATERIALS AND METHODS 

Materials  

Sludge was collected after mechanical dewatering step in a WWTP located near the 

University of Liège (Grosses Battes, Belgium). The initial moisture content was 

determined according to standard methods [28] with a value around 85.5% (wet basis). 

Before drying, the sludge was stored at a temperature of 4 °C, to keep the same properties 

during storage [29]. Table 1 provides physical and chemical characteristics of the sludge 

used.  
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    Pine sawdust was collected from a wood pellet factory (‘Industrie du bois’, Vielsalm, 

Belgium) and the initial moisture content (wet basis) was around 30%. Table 2 gives the 

size distribution of the sawdust used. 

 

    In this study, the drying behavior of several samples was tested: the original sludge, the 

mixed sludge (the original sludge after mixing without sawdust), and mixtures (the 

original sludge after mixing with sawdust). A kitchen machine (KM1000, PROline) with 

a beater was used to prepare the mixed sludge and sawdust/sludge mixtures. The mass 

ratios (expressed on a dry matter basis for both sludge and sawdust) of sawdust/sludge 

were 1/9, 2/8, 3/7, and 4/6. The addition of sawdust changed the structure and property of 

the sample bed submitted to drying [30]. In previous studies [17, 31], it was found that 

back mixing and liming changed the rheological property of sludge, in relation with the 

structure of the bed. In particular, the cohesion of sludge decreased with longer mixing 

time and higher mixing velocity. Consequently, the rigidity of sludge extrudates 

decreased, producing fixed beds of the product with smaller exchange areas, and leading 

to the decrease of the drying rate. In our study, a low mixing rate (40 rpm) and a short 

mixing time (30 s) were chosen for a compromise. The same protocol was used to mix 

the original sludge without any sawdust addition for preparing the mixed sludge. Before 

drying, these samples were extruded through a disk with circular dies of 12 mm, forming 

a bed of extrudates on the dryer perforated grid. The initial mass of the extrudates bed 

was fixed at 500 g in all experiments. By doing it this way, it is assessed that the 

corresponding industrial belt dryer would operate at constant feeding rate, on a global 

mass basis. The results will be interpreted consequently.  
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Pilot-Scale Dryer 

Drying experiments were carried out in a discontinuous pilot-scale dryer reproducing 

most of operating conditions prevailing in a full-scale continuous belt dryer, as shown in 

Fig. 1. A fan (a) draws in ambient air and then the air is heated up to the required 

temperature by a set of electrical resistances (b). If needed, the air is humidified after 

heating by adding vapor from a vapor generator. The hot air flows through the sludge 

extrudates (c), which lies on a perforated grid (d) linked to a scale (e). The inner diameter 

of the sample holder is 160 mm. The sludge sample forms a packed bed with an initial 

height ranging from ~40 to ~60 mm with increasing amount of sawdust. Three operating 

parameters can be controlled: air temperature, superficial velocity, and humidity. In this 

study, three temperatures were used: 50 °C, 80 °C and 110 °C, with air velocity fixed at 2 

m/s and no additional air humidification. During the entire study, the ambient air 

humidity was close to 0.004 kgwater/kgdry air. The sample remained in the same vessel and 

was continuously weighed during the entire drying test. The mass was recorded every 10 

s.  

 

X-Ray Tomography 

X-ray tomography was used to determine the influence of sawdust addition on the 

structure of the extrudates bed. This non-invasive technique, originally developed for 

medical applications, allows for obtaining 2D cross-sections and 3D images of the bed. 

The volume, void fraction and total exchange surface available for heat and mass transfer 

were determined by image analysis of the tomographic images. 
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    The X-ray tomographic device used in this study is a high-energy X-ray tomograph, 

first presented by Toye et al. [32]. The generator is a Baltograph CS450A (Balteau NDT, 

Belgium), which can operate between 30 and 420 kV. The X-ray source is an oil-cooled, 

bipolar TSD420/0 tube (Comet and Balteau NDT). The intensity can be varied between 2 

and 8 mA depending on the voltage used. A lead collimator produces a 1 mm thick fan 

beam. The detector is an X-Scan 0.4f2-512-HE manufactured by Detection Technology 

(Finland). This detector consists of a linear array of 1280 photodiodes each coupled with 

a CdWO4 scintillator. The mechanical rig designed by Pro Actis, Belgium, consists of 

two parts, a source–detector arm and a rotating table on which the object to be scanned is 

fixed. This arm is embedded in a carriage that slides on two vertical high precision 

machined rails. The rig allows vertical movement up to 3780 mm, keeping vertical and 

horizontal errors within 1 mm. The maximum diameter of the sample that can be tested is 

0.45 m. 

 

The extrudates bed to be scanned is placed on the rotating table whose rotation is 

obtained by a synchronous motor equipped with a frequency validator which is 

supervised by the data acquisition system. Once the extrudates bed is put on the rotating 

table, 1D X-ray acquisitions of the bed are recorded around 360°. Tomographic 

reconstruction of the cross-sections was obtained by a classical linear back-projection 

algorithm adapted to the fan beam geometry and implemented in the Fourier domain. 

When the 2D reconstructed cross-sections are stacked, they provide a 3D X-ray 

attenuation map of the bed. 
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    In our experiments, the energy of the source was fixed at 420 kV and 3.5 mA, the pixel 

size of the image was 0.36 mm, and the height interval was 2.2 mm.  

 

Image Analysis 

Gray-level images provided by X-ray tomography are formed by two phases: the void 

space at low gray levels (dark pixels) and sludge extrudates at high gray levels (bright 

pixels). A circular mask corresponding to the inner diameter of the drying chamber was 

first constructed to isolate the sludge bed from the background. Then binarization, i.e. 

assigning the value 1 to pixels belonging to the sludge and the value 0 to pixels belonging 

to the void, was performed following Otsu’s method [33]. The calculation methods of the 

bed volume, void fraction and total exchange surface are as follows [17, 25, 30]:  

 

The bed volume was the total volume of solid and void in the volume-of-interest (VOI). 

The calculation method was the total number of voxels of solid and void space in the VOI 

timed the volume of a voxel. 

 

The void fraction was determined by dividing the number of pixels corresponding to the 

void space by the total number of pixels of VOI (void +solid). 

 

The total exchange surface was calculated by the total perimeter of the air/solid interface 

in 2D cross-sections, i.e. the pixel edges shared by void and solid pixels, timed the 

distance between two slices.  
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All these operations were implemented in Matlab (Matworks), using the image analysis 

toolbox version 6.0. 

 

RESULTS AND DISCUSSION 

Drying Behavior 

The influence of the mixing step (no mixing against 30 s at 40 rpm), as well as the 

sawdust/sludge ratio (1/9, 2/8, 3/7 and 4/6 on a dry basis) and the effect of the drying 

temperature (50 °C, 80 °C and 110 °C) have been investigated. Fig. 2 shows the drying 

rate vs. moisture content of sludge. As can be seen, regular patterns of the drying rate 

curves are almost the same at different drying temperatures. However, it is clear that 

higher drying rates are obtained with higher temperature. Moreover, this figure shows 

that for the three temperatures the drying rate is lower for the sludge after mixing. 

Nevertheless, with the addition of sawdust the drying rate recovers and even increases.  

 

In order to compare the drying kinetics of different samples, drying characteristics 

including the total amount of sludge, normalized amount of sludge, sludge flow rate, total 

amount of evaporated water, normalized amount of water, drying time, normalized drying 

time, average drying rate, and normalized drying rate are shown in Table 3. The average 

drying rate during the drying process was calculated by dividing the total amount of 

evaporated water by the drying time. The normalized values were calculated using the 

value of the original sludge as a reference. The total amount of sludge and the total 

amount of evaporated water of the original sludge and mixed sludge are the same. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ew
 B

ru
ns

w
ic

k]
 a

t 1
4:

44
 2

6 
N

ov
em

be
r 

20
14

 



 

 10 

However, the drying time significantly increases after the mixing step and then the 

average drying rate of the mixed sludge is significant lower than that of the original 

sludge. This result confirms the negative effect of the mixing step on the sludge drying 

behavior [34]. As mentioned above, the initial mass of the bed of extrudates was fixed at 

500 g in all experiments, so the total amount of sludge decreases with increasing amount 

of sawdust (from 500 to 439 g). Furthermore, because the moisture content of sawdust is 

far lower than that of sludge, the total amount of evaporated water presented in the 

mixture also decreases (from 425 to 390 g at 50 °C) with increasing amount of sawdust. 

However, the drying time decreases more uncommonly with increasing amount of 

sawdust resulting in higher average drying rate (up to a factor 1.622 at 50°C). This means 

that the addition of sawdust changes the structure of the sample bed and has a positive 

impact on the drying process from a mass ratio of 2/8, with observed drying rates higher 

than those of the original sludge. Indeed, because for the mixtures the amount of sludge 

decreases with increasing amount of sawdust, if the same amount of sludge is treated, the 

sludge flow rate should be increased. For example, for the mass ratio of 2/8, the sludge 

flow rate should be increased by a factor of 1.053, but at the same time the average 

drying rate increases by a factor 1.121 (at 50°C) which is higher, so the drying is clearly 

enhanced. Altogether, the positive effect of the addition of sawdust is clearly observed: 

for different drying temperatures, the drying rate generally increases with increasing 

amount of sawdust, while the initial water content as well as the total amount of water to 

be removed both decrease. Indeed the same initial mass of the bed of extrudates is 

introduced for each experiment. 
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    Typically, during convective drying of wastewater sludge, three periods are observed, 

as presented in the experimental works completed by Léonard et al. [4, 6], Vaxelaire and 

Puiggali [35], Reyes et al. [12], and Bennamoun et al. [14, 15].   

 

    1. First drying period, also called the preheating period: It is a short lapse of time 

reflecting the adaptation of the product to the new, applied process conditions 

characterized by a high increase in the evaporation flux, as shown in Fig. 2. 

    2. Second drying period, called the constant drying rate period: It is obvious that this 

period is very short in the drying experiments, as shown in Fig. 2. During this constant 

rate period the evaporation takes place at the surface of the wet solid, and the solid 

assumes a constant equilibrium temperature, just as a free liquid surface is maintained at 

the wet-bulb temperature of the air [36]. In most published papers, the surface change 

related to shrinkage is not taken in consideration in this period.  

    3. Third drying period, known as the falling drying rate period: It is a long period, as 

illustrated in Fig. 2. The water removed in this period is interstitial water at first, followed 

by surface water, and then bound water [37]. Sherwood [36] has divided the falling rate 

period into two zones: zone of decreasing wetted surface and zone of controlling internal 

liquid diffusion.  

 

 Altogether, the drying kinetics of sludges and sawdust/sludge mixtures are similar, 

which have a short preheating period, a short constant drying rate period, and a long 

falling drying rate period. More research of drying behavior is shown in one previous 

work [38]. 
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Bed Volume and Shrinkage 

As mentioned above, X-ray tomography is used to assess changes in the volume, void, 

and exchange surface. Fig. 3 shows an example of the image of the 2D cross-section and 

3D reconstruction image of the bed of the original sludge before drying.  

 

    The apparent volumes occupied by the sample bed before and after drying vs. ratio of 

sawdust/sludge at different drying temperatures are shown in Fig. 4. The regular patterns 

of bed volumes are almost the same for the three drying temperatures. When performing 

a mixing step, the initial bed volume slightly decreases. This is because the mixing step 

presses the sludge and then the density of sludge increases. Moreover, the initial and final 

volumes both increase linearly with increasing amount of sawdust. This is because 

sawdust reinforces the texture of sludge. The linear fitting method was used for the 

results of the mixed sludge and sawdust/sludge mixtures. The fitting results including the 

linear correlation coefficients and linear fitting equations are shown in Table 4. The linear 

correlation coefficients are good and close to 1.  

 

    It is worth mentioning that the results of the initial bed volume (void fraction and total 

exchange surface) for the three drying temperatures should be the same in theory, but it 

was difficult to generate reproducible beds. For this reason, it was not possible to get 

exactly the same results. However, the difference of the results of the initial bed volume 

is small (see in Fig. 4) and the relative deviation of the three bed volumes for the three 
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drying temperatures is 4.79%. This means the results of the X-ray tomography are 

repeatable and reliable.  

 

    By comparing the bed volume before and after drying, it is obvious that a high 

shrinkage occurs for each sample. Shrinkage can be quantified as the ratio between the 

initial and final volumes, noted  and defined as: 

1

21

V

VV      (1) 

In Eq. (1), V1 and V2 are the initial and final bed volumes, respectively. 

 

Fig. 5 shows the bed volume shrinkage vs. ratio of sawdust/sludge at different drying 

temperatures. First of all, with the mixing step the bed volume shrinkage slightly 

decreases. Second, the bed volume shrinkage decreases linearly with increasing amount 

of sawdust. This means that sawdust braces the structure of the sample bed during drying. 

The linear fitting results of the bed volume shrinkage of the mixed sludge and 

sawdust/sludge mixtures are shown in Table 5 and the linear correlation coefficients are 

good and close to 1. 

 

By comparing the results at different drying temperatures, the bed volume shrinkage 

obtained for the same mass ratio of sawdust/sludge is smaller when the drying 

temperature is higher. This can be easily explained by a ‘crust formation’ phenomenon 

[39, 40]. 
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More results and deeper discussion about shrinkage phenomenon occurring during this 

sawdust/sludge drying process have already shown in previous works [30, 38]. 

 

Void and Total Exchange Surface 

The variations of the void fraction and total exchange surface before and after drying 

were also investigated. Fig. 6 shows the results of the void fraction before and after 

drying vs. ratio of sawdust/sludge at different drying temperatures. For the three drying 

temperatures, the regular patterns are almost the same. The difference of the initial and 

final void fractions between the original sludge and mixed sludge is not significant. 

However, the initial void fraction significantly increases and the final void fraction 

slightly decreases with increasing amount of sawdust. The linear fitting results of the void 

fraction of the mixed sludge and sawdust/sludge mixtures are shown in Table 6. Most of 

the linear correlation coefficients are good and close to 1. 

 

It is worth mentioning that the void fraction was determined by dividing the void volume 

by the bed volume (void volume + solid volume) and it is a relative value. Since the final 

bed volume and final void fraction were both obtained, the final void volume can be 

calculated and the results are shown in Table 7. It is shown that the final void volume 

increases with increasing amount of sawdust for the three drying temperatures.  

 

Fig. 7 shows the results of the total exchange surface before and after drying vs. ratio of 

sawdust/sludge at different drying temperatures. When performing the mixing step, the 

initial total exchange surface significantly decreases. Moreover, the initial and final total 
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exchange surfaces for the three drying temperatures both increase linearly with increasing 

amount of sawdust. The linear fitting results of the total exchange surface of the mixed 

sludge and sawdust/sludge mixtures are shown in Table 8. The linear correlation 

coefficients are good and close to 1. 

 

CONCLUSIONS 

This work investigated the influence of sawdust addition on convective drying of sewage 

sludge. The mixing step has a negative impact on the drying process. Nevertheless, 

sawdust addition is shown to have a positive impact on the drying process from a mass 

ratio of 2/8. Moreover, the drying rate generally increases with increasing amount of 

sawdust.  

 

    After the mixing step, the initial bed volume and shrinkage both slightly decrease, but 

the total exchange surface significantly decreases. With increasing amount of sawdust, 

the initial and final bed volumes, initial and final total exchange surfaces, and initial void 

fraction increase linearly, but the bed volume shrinkage and final void fraction decrease 

linearly. Sawdust reinforces the texture of sludge.  

 

    Further work will be done in order to characterize pore textures of the single extrudate 

of different samples. The behavior of these samples during pyrolysis using thermo 

gravimetric analysis will also be investigated.     
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Table 1: Characteristics of the sludge used. 

Product Sludge origin Initial moisture 

content  

Volatile 

solids 

Sludge WWTP of Grosses 

Battes, Liège, Belgium 

5.90 kg/kg of 

dry matter 

63.79% in 

total solid 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ew
 B

ru
ns

w
ic

k]
 a

t 1
4:

44
 2

6 
N

ov
em

be
r 

20
14

 



 

 23 

Table 2: Size distribution of the sawdust used. 

Diameter  <0.6 mm 0.6–1.7 mm 1.7–5 mm 

Mass percent (%)  20.14% 45.03% 34.83% 
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Table 3: Drying characteristics of sludges and sawdust/sludge mixtures. 

Drying 

temper

ature 

(°C) 

Sam

ple 

Tot

al 

amo

unt 

of 

slud

ge 

(g) 

Norma

lized 

amoun

t of 

sludge 

*Slu

dge 

flow 

rate 

Total 

amou

nt of 

evapo

rated 

water 

(g) 

Norma

lized 

amoun

t of 

water 

**Dr

ying 

time 

95%

DS 

(s) 

Norma

lized 

drying 

time 

Aver

age 

dryi

ng 

rate 

(g/s) 

Norma

lized 

drying 

rate 

50 Origi

nal 

sludg

e 

500 1.000 1.00

0 

425 1.000 1491

0 

1.000 0.02

9 

1.000 

Mixe

d 

sludg

e 

500 1.000 1.00

0 

426 1.003 1997

0 

1.339 0.02

1 

0.749 

Mass 

ratio

=1/9 

489 0.978 1.02

2 

420 0.989 1747

0 

1.172 0.02

4 

0.844 

Mass 

ratio

=2/8 

475 0.950 1.05

3 

414 0.973 1295

0 

0.869 0.03

2 

1.121 
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Mass 

ratio

=3/7 

459 0.918 1.08

9 

404 0.950 1145

0 

0.768 0.03

5 

1.237 

Mass 

ratio

=4/6 

439 0.878 1.13

9 

390 0.917 8430 0.565 0.04

6 

1.622 

80 Origi

nal 

sludg

e 

500 1.000 1.00

0 

424 1.000 5370 1.000 0.07

9 

1.000 

Mixe

d 

sludg

e 

500 1.000 1.00

0 

426 1.005 7130 1.328 0.06

0 

0.759 

Mass 

ratio

=1/9 

489 0.978 1.02

2 

422 0.995 5970 1.112 0.07

1 

0.899 

Mass 

ratio

=2/8 

475 0.950 1.05

3 

411 0.969 4770 0.888 0.08

6 

1.089 

Mass 

ratio

=3/7 

459 0.918 1.08

9 

407 0.960 4280 0.797 0.09

5 

1.203 
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Mass 

ratio

=4/6 

439 0.878 1.13

9 

395 0.932 3720 0.693 0.10

6 

1.342 

110 Origi

nal 

sludg

e 

500 1.000 1.00

0 

429 1.000 4510 1.000 0.09

5 

1.000 

Mixe

d 

sludg

e 

500 1.000 1.00

0 

429 0.999 5870 1.302 0.07

3 

0.768 

Mass 

ratio

=1/9 

489 0.978 1.02

2 

423 0.985 4880 1.082 0.08

7 

0.911 

Mass 

ratio

=2/8 

475 0.950 1.05

3 

416 0.970 4010 0.889 0.10

4 

1.091 

Mass 

ratio

=3/7 

459 0.918 1.08

9 

400 0.932 3070 0.681 0.13

0 

1.369 

Mass 

ratio

=4/6 

439 0.878 1.13

9 

392 0.913 2650 0.588 0.14

8 

1.553 
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* Sludge flow rate: The inverse value of the normalized amount of sludge. For the 

mixtures, if the same amount of sludge is treated, the sludge flow rate should be 

increased. 

**Drying time 95%DS: The drying time that the dry solid content (DS) reaches 95%. 
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Table 4: Linear fitting results of the bed volume. 

Condition Drying temperature (°C) R
2
 Equation 

Wet 50 0.9396 y = 0.458x + 0.919 

80 0.8982 y = 0.400x + 0.916 

110 0.8973 y = 0.404x + 0.964 

Dry 50 0.9835 y = 0.590x + 0.416 

80 0.9849 y = 0.575x + 0.438 

110 0.9910 y = 0.602x + 0.472 
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Table 5: Linear fitting results of the bed volume shrinkage. 

Drying temperature (°C) R
2
 Equation 

50 0.9689 y = -31.129x + 54.030 

80 0.9891 y = -32.942x + 51.648 

110 0.9561 y = -32.998x + 50.410 
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Table 6: Linear fitting results of the void fraction. 

Condition Drying temperature (°C) R
2
 Equation 

Wet 50 0.9313 y = 18.858x + 36.446 

80 0.8897 y = 24.419x + 33.212 

110 0.9292 y = 27.399x + 34.490 

Dry 50 0.8570 y = -13.218x + 68.474 

80 0.9942 y = -6.8451x + 62.819 

110 0.6180 y = -4.2638x + 60.614 
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Table 7: Final void volumes (×10
-4

 m
3
) of sludges and sawdust/sludge mixtures. 

Sample 50 °C 80 °C 110 °C 

Original sludge 2.87 2.89 3.51 

Mixed sludge 3.03 2.95 3.31 

Mass ratio=1/9 3.72 3.36 3.62 

Mass ratio=2/8 3.90 4.05 3.87 

Mass ratio=3/7 4.14 4.50 4.87 

Mass ratio=4/6 5.40 5.10 5.21 
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Table 8: Linear fitting results of the total exchange surface. 

Condition Drying temperature (°C) R
2
 Equation 

Wet 50 0.9738 y = 0.232x + 0.158 

80 0.9351 y = 0.203x + 0.159 

110 0.9927 y = 0.252x + 0.165 

Dry 50 0.9900 y = 0.184x + 0.110 

80 0.9856 y = 0.125x + 0.146 

110 0.9472 y = 0.161x + 0.152 
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Figure 1: Convective pilot-scale dryer. 
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Figure 2: Drying rate vs. moisture content of sludge. 
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Figure 3: The 2D cross-section (a) and 3D reconstruction image (b) of the bed of the 

original sludge before drying. 
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Figure 4: Bed volume before and after drying vs. ratio of sawdust/sludge. 50 °C, wet; 

50 °C, dry; 80 °C, wet; 80 °C, dry; 110 °C, wet; 110 °C, dry. The solid 

symbols are the original sludge and the hollow symbols are the mixed sludge and 

sawdust/sludge mixtures. 
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Figure 5: Bed volume shrinkage after drying vs. ratio of sawdust/sludge. 50 °C; 

80 °C; 110 °C. The solid symbols are the original sludge and the hollow symbols are 

the mixed sludge and sawdust/sludge mixtures. 
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Figure 6: Void fraction before and after drying vs. ratio of sawdust/sludge. 50 °C, wet; 

50 °C, dry; 80 °C, wet; 80 °C, dry; 110 °C, wet; 110 °C, dry. The solid 

symbols are the original sludge and the hollow symbols are the mixed sludge and 

sawdust/sludge mixtures. 
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Figure 7: Total exchange surface before and after drying vs. ratio of sawdust/sludge. 

50 °C, wet; 50 °C, dry; 80 °C, wet; 80 °C, dry; 110 °C, wet; 110 °C, dry. The 

solid symbols are the original sludge and the hollow symbols are the mixed sludge and 

sawdust/sludge mixtures. 
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