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Abstract

In this note we apply a substantial improvement of a result of S. Ferenczi on S-adic subshifts to give Bratteli-
Vershik representations of these subshifts.

Résumé

Dans cette note nous utilisons une amélioration conséquente d’un résultat de S. Ferenczi, concernant les sous-shifts
S-adiques, afin d’en trouver des représentations de Bratteli-Vershik.

Version française abrégée

Il est désormais bien connu que si un sous-shift (X,T ) minimal est de complexité sous-affine (i.e.,
(pX(n)/n)n est bornée, où pX(n) est le nombre de mots de longueur n apparaissant dans les suites de
X), alors X est obtenu par un produit infini de morphismes appartenant à un ensemble fini S. C’est
un résultat prouvé par S. Ferenczi dans [6]. On dit alors que (X,T ) est S-adique. Préalablement à ce
résultat B. Host a conjecturé qu’il existait une notion de S-adicité forte équivalente à la sous-affinité
de la complexité. La preuve de Ferenczi (plus précisément, sa présentation) ne permet pas d’en extraire
sans peine une telle notion. Dans un travail récent ([9]) le second auteur a retravaillé cette preuve afin
d’y parvenir. Ceci a été réalisé dans [10] pour un cas particulier : il existe une notion de forte S-adicité
équivalente à être minimal et tel que (pX(n+1)−pX(n))n est bornée par 2. Cette notion est relative à un
ensemble S constitué de 5 morphismes propre à cette classe de complexité. Lorsque (pX(n+ 1)−pX(n))n
est bornée par 2 à partir de k (propriété notée Π(2, k)), alors un morphisme supplémentaire est nécessaire.
Ferenczi avait obtenu ce type de résultat avec un ensemble S de cardinal borné par 327.

Dans cette note nous présentons une application de ce résultat à la représentation des sous-shifts S-
adiques par des diagrammes de Bratteli. Rappelons que ces diagrammes, introduits dans le contexte des
systèmes dynamiques par A. Vershik [15], sont au coeur de la caractérisation algébrique (par les groupes de
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dimension) de l’équivalence orbitale des actions minimales de Z sur des Cantor [8,7]. Ces représentations
sont très utiles dans les problèmes liés aux phénomèmes de récurrence. Mais, étant donnée une action
de Z, il est en général difficile d’en trouver une représentation de Bratteli-Vershik ”canonique” (voir [4]
pour des exemples). C’est ce que nous présentons ici pour les sous-shifts minimaux vérifiant Π(2, k).
Pour cela nous mettons en place quelques résultats de combinatoires sur les mots, les morphismes et les
diagrammes de Bratteli qui ont un spectre d’applications plus large que celui présenté ici. Ils permettent,
étant donnés des morphismes bien choisis représentant le sous-shift, d’en donner, sans plus de travail, une
représentation de Bratteli-Vershik.

Pour bien saisir le cas S-adique, nous illustrons ces remarques combinatoires au cas des sous-shifts
substitutifs [5]. En conséquence, nous obtenons un résultat de représentation des sous-shifts, Corollary
2.3. A l’aide d’un théorème de T. Downarowicz et A. Maass [3], énonçant que les actions minimales de Z
sur des Cantor de rang topologique fini sont des sous-shifts ou des odomètres, nous déduisons le Corollary
2.5 que nous appliquons aux sous-shifts S-adiques. Dans la Section 3 nous énonçons le résultat de Leroy
[10] par lequel nous obtenons des représentations de Bratteli-Vershik pour les sous-shifts minimaux (X,T )
satisfaisant à Π(2, k).

1. Introduction

In their seminal papers [12,13] G. A. Hedlund and M. Morse proved that a sequence x ∈ AN is ultimately
periodic if and only if px(n) = n for some n where px(n) is the word complexity of x, that is the number
of distinct words of length n in x. Moreover they showed that sequences satisfying px(n) = n + 1 for
all n exist, are uniformly recurrent, intimately related to the rotations on the torus and S-adic, i.e.,
produced by an infinite product of finitely many morphisms (3 in fact). Then, certainly induced by the
(sub-affine complexity) examples in [1] and the complexity of substitutions ([14]), B. Host conjectured
that there exists a strong notion of S-adicity which is equivalent to sub-affine complexity. With the help
of the nice result of J. Cassaigne [2] showing that a sequence x has sub-affine complexity if and only if
(px(n+ 1)− px(n))n is bounded, Ferenczi proved in [6] that minimal subshift with sub-affine complexity
(i.e., (pX(n)/n)n is bounded, where pX(n) is the number of words of length n appearing in sequences of
X) are S-adic (i.e., obtained by an infinite product of finitely many morphisms). And, in the case it is
ultimately bounded by 2, he showed that less than 327 morphisms are needed. The technicality of the proof
did not allow to imagine and define the ”strong notion of S-adicity” that is looked for. In [9] the second
author presented a more detailed proof of Ferenczi’s result that leaded to some improvements (see also
[11]). Following Ferenczi’s approach he showed that there exists a set S consisting of 5 morphisms (to be
compared to 327) such that when (pX(n+1)−pX(n))n is bounded by 2 then X is described by an infinite
product of morphisms belonging to S. This provides a ”strong notion of S-adicity” which is equivalent
to this property. When (X,T ) satisfies the property Π(2, k) to have (pX(n + 1) − pX(n))n is bounded
by 2 from n = k, then an other morphism is needed. We present this result in this note (Theorem 3.1)
with a statement that applies to Bratteli-Vershik representation of such subshifts. We recall that Bratteli-
Vershik representations of minimal Z-actions on Cantor sets are powerful tools that were used to solve
the topological orbit equivalence relation [7] and that are very useful to solve problems where recurrence
properties are involved. Observe that it is usually not so easy to find such a representation and difficult to
find the ”canonical” representation. Nevertheless it has been done for various classical family of dynamical
systems such that substitutive subshifts, Toeplitz subshifts, interval exchange transformations, sturmian
subshifts, odometers and linearly recurrent subshifts. In this note we present such representations for
subshifts satisfying Π(2, k).

In Section 2 we recall the definition of Bratteli diagram and Bratteli-Vershik representation. Then we
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present some combinatorics on words and morphisms that notably helps to obtain such representations
of subshifts (Corollary 2.5). In Section 3, we present one of the main result of Leroy in [10] and, as an
application of this result, we deduce BV-representations of S-adic subshifts (X,T ) satisfying Π(2, k).

2. Bratteli-Vershik representation of S-adic subshifts

2.1. Bratteli-Vershik representations and subshifts

Consider a minimal Cantor dynamical system (X,T ) (MCDS, also called minimal Z-action on a Cantor
set), i.e., a homeomorphism T on a compact metric zero-dimensional space X with no isolated points,
such that the orbit {Tnx;n ∈ Z} of every point x ∈ X is dense in X. We assume familiarity of the reader
with the Bratteli-Vershik diagram representation of such systems, yet we recall it briefly in order to
establish the notation. For more details see [8,4]. The vertices of the Bratteli-Vershik diagram B = (V,E)
are organized into countably many finite subsets of vertices Vi, i ≥ 0 (where V0 is a singleton {v0}) and
subsets of edges Ei, i ≥ 1. Thus, V = ∪i≥0Vi and E = ∪i≥1Ei. Every edge e ∈ Ei+1 connects a vertex
s = s(e) ∈ Vi+1 for some i ≥ 0 with some vertex t = t(e) ∈ Vi. At least one edge goes upward and
at least one goes downward from each vertex in Vi+1. Multiple arrows connecting the same vertices are
admitted. We assume that the diagram is simple, i.e., that there is a subsequence (ik)k≥0 such that from
every vertex in Vik+1

there is an upward path (going upward at each level) to every vertex in Vik . For
each vertex v ∈ Vi (except v0) the set of all edges {e1, . . . , el} going upward (to Vi−1) from v is ordered
linearly: let say e1 < . . . < el. It will be convenient to consider the morphisms σBi : V ∗i → V ∗i−1 defined by
σBi (v) = t(e1) · · · t(el). We will say it is the morphism we read at level i on B. In the sequel we will always
suppose that B is such that σB1 (v) = v0 for all v ∈ V1. This ordering induces a lexicographical order on
all upward paths from v to v0, and a partial order on all infinite upward paths arriving to v0. We denote
by XB the set of all such infinite paths. We assume that this partial order has a unique minimal element
xm (i.e., such that all its edges are minimal for the local order) and a unique maximal one xM (whose all
edges are maximal for the local order). This defines a map VB sending every element x to its successor in
the partial order and sending xM to xm.
Theorem 2.1 ([8]) Let (X,T ) be a minimal Cantor dynamical system. Then, there exists a simple
Bratteli diagram B such that (X,T ) is topologically conjugate to (XB, VB).

This representation theorem has been used in [7] to characterize the orbit equivalence relation of MCDS.
We say that (XB, VB) is a BV-representation of (X,T ).

In the sequel (X,T ) will exclusively be a subshift: X is a T -invariant closed subset of AZ (endowed with
the product topology) where A is a finite alphabet and T is the shift map (T ((xn)n) = (xn+1)n). Note
that the shift map will always be denoted by T : we will specify neither X nor A. We say that (X,T ) is
generated by x ∈ AZ when X is the set of sequences y such that for any i and j the word yiyi+1yi+j
occurs in x. We set [u.v]X = {x ∈ X|x−|u| · · ·x|v|−1 = uv} and we call such sets cylinder sets. They are
clopen sets and form a base of the topology of X. When u is the empty word we write [v]X .

2.2. Proper morphisms, substitutions and BV-representations

In the sequel A, B, An, . . . are finite alphabets and A∗ denote the free monoid generated by A.
A morphism σ : A∗ → B∗ is left proper (resp. right proper) if there exists a letter l ∈ B (resp. r ∈ B)

such that for all a ∈ A, σ(a) = lu(a) (resp. σ(a) = u(a)r) for some u(a) ∈ B∗. It is proper when it is both
left and right proper. Let σ be left proper. The morphism τ : A∗ → B∗ defined by τ(a) = u(a)l is the left
conjugate of σ and it is right proper. In the same way we define the right conjugate of σ (it is left proper).
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Lemma 2.2 Let σ : A∗ → B∗ be a left proper (resp. right proper) morphism with first letter l (resp. last
letter r) and τ be its left (resp. right) conjugate then for all a ∈ A and n

σn(a)l = lτn(a) (resp. rσn(a) = τn(a)r).

A substitution is an endomorphism σ : A∗ → A∗ such that there exists a letter a with σ(a) = au
where u is not the empty word. The subshift (Xσ, T ) it generates consists of x ∈ AZ such that all words
xixi+1 · · ·xj of x have an occurrence in some σn(a). We refer to [14] for more details.

To obtain a BV-representation of (Xσ, T ), an idea (first developed in [15]) is to consider the Bratteli
diagram B where the morphism we read at each level on B is σ. When (Xσ, T ) is minimal this provides a
measure-theoretical representation which is not necessarily topological. The problem with this construc-
tion is that minimal paths correspond to right fixed points and maximal paths to left fixed points of σ.
Thus, to obtain such a topological representation, we need to have a unique fixed point in AZ.

In [5] is shown that to have a stationary BV-representation of (Xσ, T ) (i.e., where the substitutions
read on the Ei are equal up to some bijective changes of the alphabets), it suffices to find a proper
substitution ζ such that (Xζ , T ) is isomorphic to (Xσ, T ). Then the stationary BV-representation is given
by the Bratteli diagram where at each level i ≥ 2 we read ζ. Moreover an algorithm is given to find such
ζ. Consequently to Lemma 2.2 the following proposition claims it is enough to have ζ left or right proper.
Proposition 2.1 Let σ be a left or right proper primitive substitution and τ be a conjugate. Then,

(i) στ and τσ are proper primitive substitutions;

(ii) (Xσ, T ), (Xτ , T ), (Xτσ, T ), (Xστ , T ), (XB1
, VB1

) and (XB2
, VB2

) are pairwise conjugate where B1
(resp. B2) is the stationary ordered Bratteli diagram we read στ (resp. τσ) on from level 2.

The algorithm used in [5] to find BV-representations of substitution subshifts has a simplified version
that can be used to find a left (or right) proper substitution. This leads to BV-representations with less
edges and vertices. In the sequel we develop the idea of Lemma 2.2 to a more general framework.

2.3. Combinatorics on words and BV-representations

Let S be a (possibly infinite) set of morphisms. An S-adic representation of a subshift (X,T ) is a
sequence (σn, an)n≥2 where, for all n, σn : A∗n → A∗n−1 belongs to S, an belongs to An and X is the
set of sequences x ∈ AZ

1 such that all words xixi+1 · · ·xj appear in some σ2σ3 · · ·σn(an). We start the
representation with n = 2 in order to fit with the Bratteli diagram notation: σn will correspond to En
from n = 2. When such a sequence is fixed, we denote by (Xn, T ) the subshift generated by (σk, ak)k≥n.
Observe that Xn is included in AZ

n−1.
Proposition 2.2 Let (X,T ) be the minimal S-adic subshift defined by (σn : A∗n → A∗n−1, an)n where the
σn are proper. Suppose that for all n the morphisms σn extend by concatenation to a one-to-one map
from Xn to Xn−1. Then, (X,T ) is isomorphic to (XB, VB) where B is the Bratteli diagram such that for
all n ≥ 2 the substitution read on B at level n is σn.

Proof. We can suppose that all the images of σn starts with the letter a and ends with b. Define, for all
n, τn = σ2 · · ·σn and (Xn, T ) the subshift generated by (σl : A∗l → A∗l−1, al)l≥n. Notice that τn(Xn+1) is
included in X and consider

P(n) =
{
T jτn([c]Xn+1

) | c ∈ An, 0 ≤ j < |τn(c)|
}
.

From [8], to conclude, it suffices to prove (P(n))n is a nested sequence of partitions generating the
topology of X satisfying # ∩n ∪c∈An

τn([c]Xn+1
) = 1. Let prove it is a partition. Let x ∈ X. The maps

σn : Xn → Xn−1 being one-to-one, there exists a unique couple (y, j), y = (yl)l∈Z ∈ Xn and j ∈
{0, 1, . . . , |τn(y0)| − 1}, such that x = T jτn(y). Then, x belongs to T jτn([y0]Xn) and P(n) is a partition.
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Now, let prove it is nested. Let Ω = T jτn+1([c]Xn+2
) be an atom of P(n+ 1). Let σn+1(c) = c1 · · · cl and

i such that |τn(c1 · · · ci)| ≤ j < |τn(c1 · · · ci+1)|. Then, Ω ⊂ T j−|τn(c1···ci)|τn([ci+1]Xn+1
) and (P(n))n is

nested. We let as an exercise to prove it generates the topology of X.
As τn+1([c]Xn+2) ⊂ τn([b.a]Xn+1), from the assumptions, we deduce ∩n ∪c∈An τn([c]Xn+1) = 1. 2

Observe that in Proposition 2.2, it is important to suppose that σn is one-to-one. For examples, if the
σn were equal to σ, where σ(a) = ab and σ(b) = ab, then (X,T ) would be a two-point periodic subshift
and (XB, VB) would be the 2-odometer. Using Lemma 2.2 we obtain the following corollary.
Corollary 2.3 Let (X,T ) be the minimal S-adic subshift defined by (σn, an)n≥2 where the σn are left or
right proper. Suppose that for all n the morphisms σn extend by concatenation to one-to-one maps from
Xn to Xn−1. Then (X,T ) is isomorphic to (XB, VB) where B is the Bratteli diagram where for all n ≥ 2:

(i) the substitution read on E2n is left proper and equal to σ2n or its conjugate;

(ii) the substitution read on E2n+1 is right proper and equal to σ2n+1 or its conjugate.

More can be said about these subshifts but we need the following theorem proved in [3]. We say that a
MCDS (X,T ) has topological rank k if k is the smallest integer such that (X,T ) has a BV-representation
(XB, VB) with (|V (n)|)n bounded by k. When such a k does not exist we say that it has infinite topological
rank. Examples of such systems are the odometers (k = 1), all primitive substitutive subshifts, all sturmian
subshifts (k = 2), all linearly recurrent subshifts, some toeplitz subshifts (see [4] for a survey).
Theorem 2.4 ([3]) Let (X,S) be a minimal Cantor dynamical system with topological rank k. Then
(X,S) is expansive if, and only if, k ≥ 2. Otherwise it is equicontinuous.

In fact, we can be more precise. Let (XB, VB) be a Bratteli-Vershik representation of (X,S) whose set
of vertices of B is bounded by k. Now let (Xn, T ) be the subshift generated by (σBk , ak)k≥n, where ak
belongs to Vk. Then, if there exists n such that (Xn, T ) is not periodic then (X,S) is a subshift, otherwise
it is equicontinuous. From this theorem and Corollary 2.3 we deduce the following corollary that enables
us to give a BV-representation of a subshift once we have a ”nice” S-adic representation.
Corollary 2.5 Let (X,T ) be a MCDS with and (σn : A∗n → A∗n−1, an)n be such that (|An|)n is bounded
by k. The following are equivalent.

(i) (X,T ) is the non-periodic subshift defined by the sequence (σn, an)n satisfying: For all n the map
σn : Xn → Xn−1 is well-defined, one-to-one and left or right proper.

(ii) (X,T ) is isomorphic to (XB, VB) where B is the Bratteli diagram verifying:

(a) for all n, the substitution read on E2n is left proper and equal to σ2n or its conjugate;

(b) for all n, the substitution read on E2n+1 is right proper and equal to σ2n+1 or its conjugate;

(c) (X2, T ), defined by (σk, ak)k≥2, is not periodic.

Moreover, in these situations the topological rank of (X,T ) is bounded by k.
In the next section we apply this corollary to the subshift having a first difference of block complexity

less or equal to 2 in order to obtain their Bratteli-Vershik representations.

3. Applications to sub-affine complexity

The following result was proven in [9]. We adapt the statement to our context. The original statement
gives a complete answer to the S-adic conjecture (see [6]) in a restricted context.
Theorem 3.1 Let (X,T ) be an aperiodic minimal subshift satisfying Π(2, k), then (X,T ) is an S-adic
subshift defined by (σn, an)n≥2 where for all n ≥ 3, σn belongs to S = {D,G,Eab, Ebc,M} with
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D : a 7→ ab, G : a 7→ ba, Eab : a 7→ b, Ebc : a 7→ a, M : a 7→ a

b 7→ b b 7→ b b 7→ a b 7→ c b 7→ b

c 7→ c c 7→ c c 7→ c c 7→ b c 7→ b.

Moreover, σn : Xn → Xn−1 is one-to-one and there exists an increasing sequence (ni)i such that for
all i, σni

σni+1 · · ·σni+1
is proper and all letters in {a, b, c} occur in all images σni

σni+1 · · ·σni+1
(y),

y ∈ {a, b, c}. Furthermore, σ2 can be algorithmically determined
Theorem 3.1 is weaker than the one in [9]. Indeed, the complete result states that there is an effective

and non trivial labelled directed graph G such that any sequence of morphisms (σn)n (in Theorem 3.1)
labels an infinite path in G. Some (computable) additional conditions also allow to characterize all possible
sequences (σn)n. The Bratteli-Vershik version of this result is the following.
Corollary 3.2 With the assumptions and notations of Theorem 3.1, the topological rank of (X,T ) is at
most 3. More precisely, (X,T ) is isomorphic to (XB, VB) where B is the Bratteli diagram such that, for
all n ≤ 2, the substitution read on En is σn.
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