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4 Abstract

5 Given a set F' of words, one associates to each word w in F' an undi-
6 rected graph, called its extension graph, and which describes the possible
7 extensions of w in F' on the left and on the right. We investigate the
8 family of sets of words defined by the property of the extension graph of
9 each word in the set to be acyclic or connected or a tree. We prove that

10 in a uniformly recurrent tree set, the sets of first return words are bases
11 of the free group on the alphabet. Concerning acyclic sets, we prove as a
12 main result that a set F' is acyclic if and only if any bifix code included
13 in F' is a basis of the subgroup that it generates.
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1 Introduction

This paper studies properties of classes of sets which occur as the set of factors of
infinite words of linear factor complexity. It is part of a series of papers devoted
to this subject initiated in [H] These classes of sets, called acyclic, connected
or tree sets, are defined by a limitation to the possible two-sided extensions of
a word of the set. We will see that Sturmian sets are tree sets (by Sturmian we
mean the sets of factors of strict episturmian words, also called Arnoux-Rauzy
words). Moreover, the sets obtained by coding a regular interval exchange set
are also tree sets (see [ﬂ]) Any word w in a tree set is neutral in the sense that
the number of pairs (a,b) of letters such that awb € F' is equal to the number
of letters a such that aw € F plus the number of letters b such that wb € F
minus 1. We express this property saying that it is a neutral set.

We study sets of first return words in a tree set F'. For this, we use Rauzy
graphs, which are restrictions of a de Bruijn graph to the set of vertices formed
by the words of given length in a set F'. We first show that if F' is a recurrent
connected set, the group described by any Rauzy graph of F containin theositiona
alphabet A, with respect to some vertex is the free group on A (T heoremg@ﬁi
Next, we prove that in a uniformly recurrent connected set containing A, the
set of ﬁ%srte Tetprn words to any word in F' generates the free group on A (Theo-
rem . Next, we prove that if F'is a uniformly recurrent tree set containing
A, the set of Ersglrgcru%l\lz\g%rds to any word of F' is a basis of the free group on
A (Corollary . e proof uses the fact that in a uniformly recurrent neutral
set F' containing the alphabet A, the number of first return words to any word
of F is equal to Card(A), a result obtained in [fl].

Our main result is that a set F is acyclic if and only if any bi{is)%hgglde%
contained in F is a basis of the subgroup that it generates (Theorem ﬁm
to as the Freeness Theorem). This is related to the main result of [{], referred to
as the Finite Index Basis Theorem, proving that, in a Sturmian set F', a finite
bifix code is F-maximal of F-degree d if and only if it is a basis of a subgroup
of index d. This result is generalized in [ﬂ] to uniformly recurrent treq ggtﬁﬁljl.“e}%le
proof uses the results of this paper and, in particular Corollaryn@.—ln_ﬁme
of an acyclic set, the subgroup generated by a bifix code need not be of finite
index, even if the bifix cod% f’gBa}lg - u}filglllal (and even if the set F' is uniformly
recurrent, see Example @I)n
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We also prove a more technical result. We say that a submonoid M of the
free monoid is saturated in a set F' if the subgroup H of the free group generated
by M satisfies M N F = H N F. We prove that if F' is acyclic, the s 11)1{%%1% coren
generated by a bifix code contained in F is saturated in F' (Theorem 6% referred
to as the Saturation Theorem). This property plays an important role in the
proof of the Finite Index Basis Theorem.

Our paper ig organizad a3 follows. , , ,

In Sect1f)n we present the definitions and basic properties used in the paper.

In Section B, we infroduce strong, weak and neutral sets. We prove a re-

. . oremCardReturn
sult on the cardinality of sets of first return words (Theorem Etai which 15 a
generalization of a result. from (.
K ctionAcyclic . X

In Section ﬁ, we define the extension graph of a word with respect to a set F'.
We define acyclic, connected and tree sets by the corresponding property of the
extension graph of each word in the set to be acyclic, connected or a tree. We
also introduce more general extension graphs where left (resp. right) extensions
are relative to a finite sufﬁx (resp. prefix) code. We prove tl.la%t 1%%;&1%%&%%60% dition
these more ge%%%é%llgﬁgtrlllsrlnolr% e%]é%PshS are also acyclic .(Proposnlon B.1).

In Section [, we study sefs of Tirst return words in tree sets. We first show
that if F' is a recurrent connected set, the group described by any Rauzy graph
of F' containing the oaég)éll%lggt A, with respect to some vertex is the free group
on A (Theorem . Next, we prove that in a uniformly recurrent connected

set F' containing A, the set of first refurn words to wor %]EF generates

oremJulien oremCardReétu . .
the free group on A (Theorem . We use Theorem E:é to prove that if F is
additionally acyclic, then &uery set e%f first return words is a basis of the free
group on A (Corollar cult

K ionMat . isTheorem
IE %ect on [ we state and prove our main results (Theorem an eo-
uration=neorem

rem ; e proof uses the notion of incidence graph of a bifix code (already
introduced in [f)).

Acyclic, connected
and tree sets

N

Bifix codes and The finite Maximal bifix
Sturmian words [f] index basis property [H] decoding [f]

\ AN

Two-sided Rauzy Natural coding
induction [f of linear involutions(f]

Some results used in this paper are proved in our first paper [E] In turn, the
results of this paper are used in other papers in preparation on similar objects.
We include for clarity the logical dependency between these papers.
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2 Preliminaries

In this section, we first recall some definitions concerning words, codes and
automata (see [@] for a more complete presentation). We give the definition of
recurrent and uniformly recurrent sets of words. We also give the definitions
and basic properties of bifix codes (see [J] for a more detailed presentation).
We define basic notions concerning automata. We present the class of reversible
automata and its connection with the Stallings automaton of a subgroup of a
free group.

2.1 Recurrent sets

Let A be a finite nonempty alphabet. All words considered below, unless stated
explicitly, are supposed to be on the alphabet A. We denote by A* the set of
all words on A. We denote by 1 or by e the empty word. We denote by ||
the length of a word z. A set of words is said to be factorial if it contains the
factors of its elements.

For a set X of words and a word u, we denote

u X ={ve A" |uv e X}.

the right residual of X with respect to w.
Let F' be a set of words on the alphabet A. For w € F', we denote

Lw) = {a€A]aweF}
Rw) = {a€A|lwacF}
E(w) = {(a,b)e AxA|awbe F}

and further
l(w) = Card(L(w)), r(w) = Card(R(w)), e(w)= Card(E(w)).

A word w is right-extendable if r(w) > 0, left-extendable if ¢(w) > 0 and biez-
tendable if e(w) > 0. A factorial set F is called right-essential (vesp. left-
essential, resp. biessential) if every word in F' is right-extendable (resp. left-
extendable, resp. biextendable).

A word w is called right-special if r(w) > 2. Tt is called left-special if £(w) >
2. It is called bispecial if it is both right and left-special.

A set of words F' is recurrent if it is factorial and if for every u,w € F' there
is a v € F such that wvw € F. A recurrent set F # {1} is biessential.

A set of words F' is said to be uniformly recurrent if it is right-essential and
if, for any word u € F, there exists an integer n > 1 such that u is a factor of
every word of F' of length n. A uniformly recurrent set is recurrent.
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A morphism f: A* — B* is a monoid morphism from A* into B*. If a € A
is such that the word f(a) begins with a and if |f™(a)| tends to infinity with
n, there is a unique infinite word denoted f“(a) which has all words f"(a) as
prefixes. It is called a fizpoint of the morphism f.

A morphism f : A* — A* is called primitive if there is an integer k such
that for all a,b € A, the letter b appears in f*(a). If f is a primitive morphism,
the set of factors of any fixpoint of f is uniformly recurrent (see [@] Proposition
1.2.3 for example).

An infinite word is episturmian if the set of its factors is closed under reversal
and contains for each n at most one word of length n which is right-special
(see [E] for more references). It is a strict episturmian word if it has exactly
one right-special word of each length and moreover each right-special factor u
is such that r(u) = Card(A).

A Sturmian set is a set of words which is the set of factors of a strict epis-
turmian word. Any Sturmian set is uniformly recurrent (see [{]).

Example 2.1 Let A = {a,b}. The Fibonacci morphism is the morphism f :
A* — A* defined by f(a) = ab and f(b) = a. The Fibonacci word

x = abaababaabaababaababa . . .

is the fixpoint x = f“(a) of the Fibonacci morphism. It is a Sturmian word
(see [(7]). The set F(x) of factors of = is the Fibonacci set.

Example 2.2 Let A = {a,b,c}. The Tribonacci word
x = abacabaabacababacabaabacaba - - -

is the fixpoint = f¥(a) of the morphism f : A* — A* defined by f(a) = ab,
f(b) = ac, f(c) =a. It is a strict episturmian word (see [@]) The set F(x) of
factors of x is the Tribonacci set.

2.2 Free groups

In this section, we fix our notation concerning free groups (see [@] for example).

We denote by A° the free group on the alphabet A. It is the set of all
words on the alphabet A U A~! which are reduced, in the sense that they do
not have any factor aa~! or a~'a for a € A. Note that the exponent —1 used
here should not be confused with the one used to define the residual of a set
of words. We extend the bijection a + a~! to an involution on A U A~! by
defining (a=1)~! = a.

For any word w on A U A~ there is a unique reduced word equivalent to
w modulo the relations aa~! = a~'a = 1 for a € A. If u is the reduced
word equivalent to w, we say that w reduces to u and we denote w = u. We
also denote u = p(w). The product of two elements u,v € A° is the reduced
word w equivalent to uv, namely p(uv). If w = aj---a, with a; € AU A1
is a reduced word, its inverse is the reduced word denoted w~' and defined by
wlt=a,! - al_l. It is easy to verify that indeed ww ™! = w™tw = 1.

For a set X of reduced words, we denote X ' = {z7! |z € X}.
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2.3 Bifix codes

A prefiz code is a set of nonempty words which does not contain any proper
prefix of its elements. A suffix code is defined symmetrically. A bifix code is a
set which is both a prefix code and a suffix code.

We denote by X* the submonoid generated by a set X of words. The
submonoid M generated by a prefix code satisfies the following property: if
u,uv € M, then v € M. Such a submonoid is said to be right unitary. The
definition of a left unitary submonoid is symmetric and the submonoid generated
by a suffix code is left unitary. Conversely, any right unitary (resp. left unitary)
submonoid of A* is generated by a prefix code (resp. a suffix code) (see [f]]).

A coding morphism for a prefix code X C A" is a morphism f : B* — A*
which maps bijectively B onto X (Note that in this paper we use C to denote
the inclusion allowing equality).

Let F' be a set of words. A prefix code X C F is F-maximal if it is not
properly contained in any prefix code Y C F.

A set X C F is right F-complete if any word of F is a prefix of a word in
X*.

For a factorial set F', a prefix code is F-maximal if and only if it is right
F-complete (Proposition 3.3.2 in [f]).

Similarly a bifix code X C F is F-maximal if it is not properly contained in
a bifix code Y C F. For a recurrent set F', a finite bifix code is F-maximal as a
bifix code if and only if it is an F-maximal prefix code (see [[], Theorem 4.2.2).
For a uniformly recurrent set F', any finite bifix code X C F' is contained in a
finite F-maximal bifix code (Theorem 4.4.3 in [B]).

A parse of a word w with respect to a bifix code X is a triple (v, z,u) such
that w = vzu where v has no suffix in X, v has no prefix in X and z € X*.
We denote by dx (w) the number of parses of w. By definition, the F-degree of
X, denoted dp(X), is the maximal number of parses of a word in F. It can be
finite or infinite.

Let X be a bifix code. The number of parses of a word w is also equal to
the number of suffixes of w which have no prefix in X and to the number of
prefixes of w which have no suffix in X (see Proposition 6.1.6 in [[f]).

The set of internal factors of a set of words X, denoted I(X) is the set of
words w such that there exist nonempty words u, v with wwv € X.

Let F' be a recurrent set and let X be a finite bifix code. By Theorem 4.2.8
in [E], X is F-maximal if and only if its F-degree d is finite. Moreover, in this
case, a word w € F is such that dx (w) < d if and only if it is an internal factor
of X, that is

I(X)={we F|ox(w) <d}.

In particular, any word of X of maximal length has d parses.

Example 2.3 Let F' be a recurrent set. For any integer n > 1, the set FF N A™
is an F-maximal bifix code of F-degree n.
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2.4 Automata and groups

We denote A = (Q, 4, T) a deterministic automaton with a set @ of states, i € Q
as initial state and T' C @ as set of terminal states. For p € Q and w € A*, we
denote p - w = q if there is a path labeled w from p to the state ¢ and p-w = 0
otherwise. The automaton is finite when @ is finite.

The set recognized by the automaton is the set of words w € A* such that
1rweT.

All automata considered in this paper are deterministic and we simply call
them ‘automata’ to mean ‘deterministic automata’.

The automaton A is trim if for any ¢ € @, there is a path from i to g and a
path from ¢ to some t € T'.

An automaton is called simple if it is trim and if it has a unique terminal
state which coincides with the initial state. The set recognized by a simple
automaton is a right unitary submonoid. Thus it is generated by a prefix code.

An automaton A = (Q,i,T) is complete if for any state p € @ and any letter
a € A, one has p-a # (.

For a nonempty set L C A*, we denote by A(L) the minimal automaton of
L. The states of A(L) are the nonempty residuals =1L for u € A*. For u € A*
and a € A, one defines (u~'L)-a = (ua) ' L. The initial state is the set L itself
and the terminal states are the sets v~ 'L for v € L.

Let X be a prefix code and let P be the set of proper prefixes of X. The
literal automaton of X* is the simple automaton A = (P, 1,1) with transitions
defined for p € P and a € A by

pa ifpae P,
pra=<1 ifpae X,

®  otherwise.

One verifies that this automaton recognizes X*. Thus for any prefix code X C
A*, there is a simple automaton A = (@, 1,1) which recognizes X*. Moreover,
the minimal automaton of X* is Tmﬁl_e[alggcreafhat the literal automaton is not

minimal in general (see Example .

Example 2.4 Let X = {aa, abaé.b%@bbl Jhe literal and the minimal automata

. ) eralMinima AR . .
of X* are represented in Figure P 1 (the inifial state is indicated by an incoming
arrow and the terminal states by an outgoing one).

Figure 2.1: The literal and the minimal automata of X*.

figlLiteralMinimal
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A simple automaton A = (Q, 1,1) is said to be reversible if for any a € A, the
partial map ¢ 4(a) : p — p-a is injective. This condition allows to construct
the reversal of the automaton as follows: whenever ¢-a = p in A, then p-a =g
in the reversal automaton. The state 1 is the initial and the unique terminal
state of this automaton. Any reversible automaton is minimal ] The set
recognized by a reversible automaton is a submonoid generated by a bifix code.

A simple automaton A = (Q,1,1) is a group automaton if for any a € A
the map p4(a) : p — p-ais a permutation of Q. Thus in particular, a group
automaton is reversible. A finite reversible automaton which is complete is a
group automaton.

The following result is from [RJ] (see also Exercise 6.1.2 in [[]). We denote
by (X) the subgroup of the free group A° generated by X.

Proposition 2.5 Let X C AT be a bifix code. The following conditions are
equivalent.

(i) X* = (X) N A*;

(i) the minimal automaton of X* is reversible.

The following example shows that for a bifix code X, the minimal automaton
of X* is not reversible in general.

Example 2.6 Let X = {aa, ab, ba, bbb}. R s a hifix code. The minimal
automaton of X* is represented in Figure .4 It is not reversible since 2 - a =

Figure 2.2: The minimal automaton of X*

L. . L. aExercise612 .
3-a = 1. Condition (i) of Proposition Eig 1S N0t either true since bb = ba(aa) tab
is in (X) N A* but not in X*.

Let A = (Q,7,T) be a deterministic automaton. A generalized path is a
sequence (po, 1,P1,a2, ..., Pn_1,0n,Pn) With a; € AU A~! and p; € Q, such
that for 1 <i <n,onehasp;_1-a; =p;ifa; € A andpi-afl =p;_1ifa; € AL
The label of the generalized path is the reduced word equivalent to aias - - - a,.
It is an element of the free group A°. The set described by the automaton is
the set of labels of generalized paths from i to a state in T'. Since a path is a
particular case of a generalized path, the set recognized by an automaton A is
a subset of the set described by A.

The set described by a simple automaton is a subgroup of A°. It is called
the subgroup described by A.

| figNonReversible
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Figure 2.3: A simple automaton describing the free group on {a,b}.

igDescribed
exGroupRecognized# Example 2.7 Let A = (Q,1,1) be the automaton represented in Figure E]‘g
25 The submonoid recognized by A is {a, ba}*. Since {a,ba} is a basis of the free
a6 group on A, the subgroup described by A is the free group on A.

on The following result is Proposition 6.1.3 in [f].

propGeneratedGroupﬁ; Proposition 2.8 Let A be a simple automaton and let X be the prefiz code

a9 gemerating the submonoid recognized by A. The subgroup described by A is
w0 generated by X. If moreover A is reversible, then X* = (X) N A*.

281 For any subgroup H of A°, the submonoid H N A* is right and left unitary
22 and thus it is generated by a bifix code (see [@], Example 2.2.6). A subgroup
23 H of the free group on A is positively generated if there is a subset of A* which
¢ generates H. In this case, the set H N A* generates the subgroup H. Let X be
s the bifix code which generates the submonoid H N A*. Then X generates the
2 subgroup H. This shows that, for a positively generated subgroup H, there is
27 a bifix code which generates H.

288 A subgroup of finite index of the free group is positively generated. This is
20 well-known (see e.g. Proposition 6.1.6 in [B]) but it can be verified directly as
200 follows.

201 Indeed let H be a subgroup of finite index of the free group. Let ¢ be the
22 morphism from A° onto the finite group G which is the representation of A°
23 on the cosets of H. Let ¢ be the restriction of 1) to A*. Since G is finite, and
204 since any submonoid of a finite group is a subgroup, ¢ is surjective. Let us show
25 that H is generated by the set X = H N A*. Consider a reduced word w € H.
s If w contains no occurrence of a letter in A~!, then w is in X. Otherwise,
207 set w = ua~'v for a € A and u,v reduced words. Since ¢ is surjective, there
s exist words r,s € A* such that p(r) = 1 (u)~! and p(s) = 1(v)~. Arguing by
20 induction on the number of occurrences of letters in A=!, we may assume that
w ur,sv € (X). But sar = svw lur and w = ur(sar)"lsv. The first equality
sn  shows that sar € H and consequently sar € X. The second one thus implies
32 W E <X>

303 The following result is contained in Proposition 6.1.4 and 6.1.5 in [H]

Proposition 2.9 For any positively generated subgroup H of the free group

s on A, there is a unique reversible automaton A such that H is the subgroup
ws  described by A. The subgroup is of finite index if and only if this automaton is
w7 a finite group automaton.

308 The reversible automaton A such that H is the subgroup described by A is
a0 called the Stallings automaton of the subgroup H. It can also be defined for a



a0 subgroup which is not positively generated (see [@] or [L7)).

31 The Stallings automaton of the subgroup H generated by a bifix code X C
sz A* can be obtained as follows. Start with the minimal automaton A = (@, 1,1)
a3 of X*. Then, if there are distinct states p,q € Q and a € A such that p-a = ¢q-a,
se  merge p,q (such a merge is called a Stallings folding). Iterating this operation
a5 leads to a reversible automaton which is the Stallings automaton of H (see [@])
316 A subgroup H of the free group has finite index if and og%gﬂfi its Stallings
s automaton is a finite group automaton (see Proposition%‘?ﬁn_fﬂ% case, the
sis  index of H is the number of states of the Stallings automaton.

s0  Example 2.10 Le XRezve isal%lgb, ba}. The minimal automaton of X* is rep-
E’ﬁ on the 1

20 resented in Figure e left. It is not reversible because 2 -a =_3 . 2 %orsible
21 Merging the states 2 and 3, we obtain the reversible automaton of Figure ﬁon—
s2  the right. It is actually a group automaton, which is the Stallings automaton

of the subgroup H = . Since the automaton describes the group Z/2Z, we

@C@@@

Figure 2.4: A Stallings folding.
323

a4 conclude that the subgroup generated by X is of index 2 in the free group on
325 A.

» 3 Strong, weak and neutral sets

sectionNeutrality ‘

3 In this section, we introduce strong, weak and neutral sets. We first prove some

w8 results concerning the factor complexity of acyclic, connected and tree sets. We
oremCardReturn

20 prove a result on the cardinality of sets of first return words (Theorem
a0 which is a generalization of a result from [m]

a 3.1 Strong, weak and neutral words

s Let F be a factorial set. For a word w € F', let

m(w) = e(w) — l(w) — r(w) + 1.

13 We say that, with respect to F, w is strong if m(w) > 0, weak if m(w) < 0 and
s neutral if m(w) = 0.

335 A biextendable word w is called ordinary if E(w) C a x AU A x b for some
= (a,b) € E(w) (see [[l, Chapter 4). If F is biessential any ordinary word is
s neutral. Indeed, one has E(w) = (a X (R(w) \ b)) U ((L(w) \ @) x b) U (a,b) and
s thus e(w) = d(w) + r(w) — 1.

10
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Example 3.1 In a Sturmian set, any word is ordinary. Indeed, for any bispecial
word w, there is a unique letter a such that aw is right-special and a unique
letter b such that wb is left-special. Then awb € F and E(w) =a x AU A x b.

We say that a set F' is strong (resp. weak, resp. neutral) if it is factorial and
every word w € F is strong or neutral (resp. weak or neutral, resp. neutral).

The sequence (py,)n>0 with p, = Card(FNA™) is called the factor complexity
(or complexity) of F. Set k = Card(FNA) — 1.

Proposition 3.2 The factor complexity of a strong (resp. weak, resp. neutral)
set F' is at least (resp. at most, resp. exactly) equal to kn + 1.

Given a factorial set F' with complexity p,, we denote s,, = pp+1 — P the
first difference of the sequence p,, and b,, = s,+1 — s, its second difference. The
following is from [[L]] (it is also part of Theorem 4.5.4 in [, Chapter 4]).

Lemma 3.3 We have
by, = Z m(w) and s, = Z (r(w) = 1)
weANNF weEAPNF

for alln > 0.

Proof. Since F' is factorial, we have for all n
Z e(w) = pny2, Z t(w) = Z r(w) = pni1.-
weAMNF wEAPNF wEAPNF
Thus
Yoo omw) = > (e(w) — Lw) —r(w) + 1)

wEAMNF wEAMNF
= Pnt2 — Pntl — Pntl +DPn = Snt1 — S = by,

giving the first formula. Next
Z (r(w)-1) = Z (Card(wANF)—1) = Card(FNA™ ) —Card(FNA™)
weATNF weArNF

giving the second formula. [

L. prgpComplexityNeutral .
Proposition .4 follows easily from the following lemma.

Lemma 3.4 If F is strong (resp. weak, resp. neutral), then s, > k (resp.
sn <k, resp. s, =k) for alln > 0.

Proof. Assume that F' is strong. Then m(w) > 0 for all w € F and thus, by
Lemma B.3, The sequence s,, is nondecreasing. Since so = k, this implies s,, > k
for all n. The proof of the other cases is similar. n

We now give an example of a set of complexity 2n 4+ 1 on an alphabet with
three letters which is not neutral.

11
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Example 3.5 Let A = {a,b,c}. The Chacon word on three letters is the
fixpoint = f“(a) of the morphism f from A* into itself defined by f(a) = aabe,
f(b) = bc and f(c) = abc. Thus & = aabcaabcbeabe - --. The Chacon set is the
set F of factors of @. It is of complexity 2n + 1 (see [[J] Section 5.5.2).

It contains strong, neutral and weak words. Indeed, FNA% = {aa, ab, b, ca, cb}
and thus m(e) = 0 showing that the empty word is neutral. Next E(abc) =
{(a,a),(c,a),(a,b),(c,b)} shows that m(abc) = 1 and thus abc is strong. Fi-
nally, E(bca) = {(a,a), (c,b)} and thus m(bca) = —1 showing that bca is weak.

3.2 Return words

Let F be a set of words. For w € F', let
Ip(w)={r € Flwre FNATw} and Tp(w)={r€F|zwe FNwA"}

be respectively the set of right return words and of left return words to w. If F
is recurrent, the sets I'p(w) and I'(w) are nonempty. Let

Rp(w) =Tp(w)\Tr(w)A" and Rp(w) =Tk(w) \ ATy (w)

be respectively the set of first right return words and the set of first left return
words to w. Note that wRp(w) = Rp(w)w.

Note that a recurrent set F' is uniformly recurrent if and only if the set
Rr(w) is finite for any w € F. Indeed, if N is the maximal length of the words
in Rp(w) for a word w of length n, then two successive occurrences of w in a
word of F' are separated by a word of length at most N — n. Thus any word in
F of length N + n contains an occurrence of w. The converse is obvious.

The following result has been proved for neutral sets in ]

Theorem 3.6 Let F' be a uniformly recurrent set containing the alphabet A. If
F is strong (resp. weak, resp. neutral), then for every w € F, the set Rp(w)
has at least (resp. at most, resp. exactly) Card(A) elements.

We will consider rooted trees with the usual notions of root, node, child and
parent. The following lemma is well-known as a lemma on trees relating the
number of its leaves to the sum of the degrees of its internal nodes.

Lemma 3.7 Let F' be a prefiz-closed set. Let X be a finite F-mazimal prefix
code and let P be the set of its proper prefizes. Then Card(X) =143 p(r(p)—

1).

The following lemma is also well known.

Lemma 3.8 Let T be a finite tree with root r and a set P of leaves, let m be a
function assigning to each node an integer such that for each internal node n,
m(n) <> m(m) where the sum runs over the children of n. Then ) .pm(n)>

7(r).

12
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A symmetric statement holds if 7 is such that 7(n) > > 7(m) for each in-
ternal node n with the conclusion that ) _p,7(n) < (r).

oremCardReturn
Proof of Theorem Ea For a word z, we denote 7(x) = r(z) — 1 and for a set X
of words, m(X) = .y 7(x).

Assume first that I is strong. Let w € F' and let n = |w|. Set S = F N A"
By Lemmas Ea and E%, and since F' contains A, we have 7(S) > Card(A4) — 1.
For s € S, let Ps be the set of proper prefixes of wRp(w) ending with s.

For each s € S, the set P; is a suffix code. Indeed, since a word of P is a
proper prefix of wR p(w) of length at least equal to the length of w, the word w
occurs in a word of Ps exactly once and as a prefix. Let p,q € Py with p suffix

of ¢, we have ¢ = tp. Then p = wv and thus ¢ = twv. Since the only occurrence
of w in ¢ is as a prefix, we have t = 1. Thus P; is a suffix code.

X N . A R aCombinat
Since F' is uniformly recurrent, the set Ps is finite. We apply Lemma %g to

the tree T, formed of the suffixes of Ps; ending with s, considering each word
z € Ty as the father of az for a € A. The root of the tree is s. Since each t € T
is strong or neutral, we have

Z m(at) = Z (r(at) — 1) = e(t) — £(t) > = (¢).

a€L(t) a€L(t)

Combi
Thus we have 7(Ps) > 7(s) by Lemma @w

Let P = UgesPs. Since the sets Ps are pairwise disjoint, we have 7(P) =
> scs T(Ps). Thus w(P) > 7(S).

Let @Q be the set of proper prefixes of Rp(w) and set G = w™'F. Since F
is recurrent. the set Rp(w) is a G-maximal prefix code. Thus we may apply
Lemma %ﬂmﬁé prefix-closed set G and the G-maximal prefix code Rp(w).
Since for any letter a, za € G if and only if wza € F, we obtain Card(Rp(w)) =
1+ 7(wQ).

Next, P = w@. Indeed, if ¢ € Q then wq € P, hence wQ C P. Conversely,
each word in P has the form wq with ¢ € @, so P C wQ.

We conclude that

Card(Rp(w)) — 1 =7(P) > n(S) > Card(A) — 1.

Combi
If F is weak, then by Lemma @%S) < Card(A) — 1. The dual of Lemma Eig stonbinat

gives m(Ps) < w(s) and thus 7(P) < 7(S). Thus
Card(Rp(w)) — 1 =7n(P) < 7(S) < Card(A) — 1.

The following example shows that in a set of complexity kn + 1 the number
of first right return words need not be equal to k + 1.

1eCh
Example 3.9 Let F be the Chacon set (see Example Eba; We Tave Rp(a) =
{a, bea, bebea} but Rp(ab) = {caab, cbcab}.
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4 Acyclic, connected and tree sets

We introduce in this section the notion of extension graph of a word. We de-
fine acyclic (resp. connected, resp. tree) sets by the fact that all the extension
graphs of its elements are acyclic (resp. connected, resp. trees). We give ex-
amples showing t} t a un]formly recurrent acyclic set may not be a tree set

examp ulienAc

1.1) an ulﬁlﬁe%ﬁ a uniformly recurrent neutral set may not be acyclic
(Example [L.5). We mtroduce a generalization of the extension graphs called
generalized extension graphs. We give ¢o E (Ettlong; under d“ﬁhl%h generalized ex-

tension graphs are acyclic (Proposition

4.1 Extension graphs

Let F be a set of words. For a word w € F', we consider an undirected graph
G(w) called its extension graph in F and defined as follows. The set of vertices
is the disjoint union of L(w) and R(w) and its edges are the pairs (a,b) € E(w).

. leTribonacci
Example 4.1 Let F be the TrlbonaE? set&ggng%%mple ﬁjai The graphs G(e

and G(ab) are represented in Figure

.

Figure 4.1: The extension graphs G(g) and G(ab) in the Tribonacci set.

We say that F is an acyclic (resp. a connected, resp. a tree) set if it
is biessential and if for every word w € F, the graph G(w) is acyclic (resp.
connected, resp. a tree). Obviously, a tree set is acyclic and connected.

Note that a biessential set F is acyclic (resp. connected) if and only if the
graph G(w) is acyclic (resp. connected) for every bispecial word w. Indeed, if
w is not bispecial, then G(w) C a x A or G(w) C A X a, thus it is always acyclic
and connected.

If the extension graph G(w) of w is acyclic, then m(w) < 0. Thus w is weak
or neutral. More precisely, one has in this case, m(w) = —c¢ 4+ 1 where ¢ is the
number of connected components of the graph G(w).

Similarly, if G(w) is connected, then w is strong or neutral. Thus, if F' is
an acyclic (resp. a connected, resp. a tree) set, then F' is a weak (resp. strong,
resp. neutral) set.

Example 4.2 A SWMH aSetodids 2 tree set. Indeed, any word w € F' is
ordinary (Example B.1]), which 1mp11es that G(w) is a tree.

|figureExtension

IprgpComplexityNeutral

prgp!
Since a tree set is neutral, we deduce from Proposition .7 the following
statement, where k = Card(F' N A) — 1.
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Proposition 4.3 The factor complexity of a tree set is kn + 1.

One may wonder whether the notion of a tree set is of a topological or of
a measure-theoretic nature for the associated symbolic dynamical system. In
particular, one may wonder if uniformly recurrent tree sets have the property
of unique ergodicity, which means that they have a unique invariant probability
measure (see [f or [ff] for the definition of these notions). An element of answer
is provided by interval exchange sets. Regular interval exchange sets form a
special case of uniformly recurrent tree sets (see [{]).

It is well-known since that there exist regular interval exchange sets
that are not uniquely ergodic. This shows that the tree property does not imply
unique ergodicity. However having complexity p, = kn + 1, which is a priori
of a topological nature, implies information on invariant measures. Indeed,
according to [E], a minimal symbolic dynamical system for which liminf p,, /n <
k is such that there exist at most k ergodic invariant measures. The bound can
even be refined to k—2 @] by a careful inspection of the evolution of the Rauzy
graphs. For k < 2, that is for an alphabet of size at most 3 in our case, one
gets the following [E] a minimal symbolic system such that limsup p,/n < 3
is uniquely ergodic. We thus conclude that any uniformly recurrent word whose
set of factors is a tree set on an alphabet of size at most 3 is uniquely ergodic.

4.2 Two examples

We present two examples, due to Julien Cassaigne [@] The first one is a
uniformly recurrent acyclic set which is not a tree set.

Example 4.4 Let A = {a,b, ¢,d} and let o be the morphism from A* into itself
defined by
o(a) = ab, o(b) = cda, o(c) = cd, o(d) = abe.

igureCassaigne
Let F be the set of factors of the infinite word 0“ (a) (see Figure E]‘g on the Tett).
Since g, 11s pripitive, F'is uniformly recurrent. The graph G(e) is represented in

. psi
Figure .. Tt 1S acyclic with two connected components (and thus m(e) = —1).

Figure 4.2: The graph G(e).

We will show that for any nonempty word w € F, the graph G(w) is a tree. This
will prove that F' is acyclic. We will use some properties of the set X = o(A).
Observe first that X is a suffix code. It has even the stronger property that
distinct words of X end with distinct letters. The set X is not a prefix code
but satisfies the following weaker property. If x,2’,y € X and y’ € X* are such
that xy is a prefix of 2'y’, then z = 2’ (the set X said to be weakly prefiz).

15
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Figure 4.3: The words of length at most 4 of the sets F' and G.

As a third property, the set X has synchronizing pairs. A pair u,v of words is
synchronizing if for all words p, g, if puvqg € X*, then pu,vq € X*. For example
(¢,a) is a synchronizing pair.

Note that if (r,s) and (u,v) are synchronizing pairs, then grstuvw € X*
implies stu € X*.

We first show the following properties.

1. If a left-special word of length at least 5 begins with a (resp. ¢), it begins

with abeda (resp. cdabe).

2. If a right-special word of length at least 5 ends with a (resp. ¢), it ends

with abeda (resp. cdabe).

Indeed, the left-special words of length at most 5 beginning with a are the
prefixes of abeda. This implies that any left-special word of length at least 5
beginning with a begins with abcda.

The three other assertions can be proved in an analogous way.

Let us now show that for any nonempty bispecial word w € F' the graph
G(w) is a tree. We use an induction on the length of the word to prove that
the graph of a nonempty bispecial word is, cclg)r%(éirréll to its first and last letter,
equal to one of the eight graphs of Figure ﬁ._”r’@%sertion is true for words
of length at most 4 since a, ¢, abc and cda are the bispecial words of length at
most 4.

@O o @ @ 0o 0o - O
(ava) (avc) (Cva) (C,C)
Figure 4.4: The graphs of bispecial words, according to their first and last letter.

Assume that v is a bispecial word of length at least 5. Assume first that v
begins and ends with a. As seen previously, v begins and ends with abcda.

16

figureCassaigne

figureGraphs



521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537

538

539

540

exampleJuliens

542
543
544
545
546

547

548

549

e[ w To[e] @ w_Je[d]

| cd | ab | lab] cda |cd] | abe | ab | labled] abe ]
U U

Figure 4.5: A bispecial word beginning and ending with a.

Set v = ucda. Since (d, ab) and (b, cd) are synchronizing and since cducda €
F, we have u € X*. Since X is a suffix code, elql(—jf; ;2 (_}](.;I%g ue w € F such
that v = o(w) and moreover cw € F (see Figure ﬁ&a on the Ief% ). Since cv € F,
ar.ld singce gé]:@s is_synchronizing, we have also abcv € F. Thus dw € F (see
Figure Ela on the right).

Next, we have vlile E o Since a(ld, a) is synchronizing, we have wed € F and
vbe € F (see Figure 0 erléJBgist)ab 1Sailmilaurly, since vc € F', we have wbc € F
and ved € F (see Figurer%fﬁ%ﬁfﬁ). Thus w is a bispecial word shorter

than v which begins and ends with a. By inducti hy&g‘ghgssis, the graph of
w is equal to one of the two first graphs of Figure Elg In both cases, we have

cwb, dwe € F and thus dvc, cvb € F. Next dwb € F if and only if cvc € F'. Thus
G(w) is one of the graphs if and only if G(v) is the other one. This proves the
property in this case.

The other cases are treated similarly.

We have thus shown that all extension graphs in F' are acyclic and more
precisely that G(e) is a ion of two trees and all other graphs are trees. This
shows, in view of Lemma]%ﬂ)o = —1land b, = 0foralln > 1. Accordingly,
the complexity p, of F is given by po =1 and p, =2n+ 2 forn > 1.

The second example is a uniformly recurrent set which is neutral but is not
a tree set (it is actually not even acyclic).

Example 4.5 Let B = {1,2,3} and let 7 : A* — B* be defined by

T(a) =12, 7(b)=2, 7(c)=3, 7(d)=13.

loxampleJulienAcyjéljjureCassai
Let G = 7(F') where F is the set of Example {1.4 Fseeeub ;ge{llrg@uég %flseaﬁlglflt)

Thus G is also the set of factors of the infinite word 7(c%(a)).

The set Y = 7(A) is a prefix code. It is not a suffix code but it is weakly
suffiz in the sense that if x,y,y’ € X and 2’ € X* are such that zy is a suffix
of 2y, then y = y/.

Let g : {a,c}A* N A*{a,c} — B* be the map defined by

3T(w if w begins and ends with a

(
g(w) = 3TE
(

w)l if w begins with a and ends with ¢

27 (w if w begins with ¢ and ends with a

)
)
)
27(w)l  if w begins with ¢ and ends with ¢

It can be verified, using the fact that Y is a prefix and weakly suffix code, that
the set of nonempty bispecial words of GG is the union of 2, 31 and of the set

17
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g(S) where S is the set of nonempty bispecial words of F'. One may verify that
the words of g(S) are neutral. Since the words 2, 31 are also neutral, the set G
is neutral.

It is uniformly recurrent since F' is uniformly recurrent and 7 is a nontrivial

morphism. The set G is not a. fre set since the graph G(e) is neither acyclic
nor connected (see Figure Ea)

Figure 4.6: The graph G(¢) for the set G.

4.3 Generalized extension graphs

Let F be a set. For w € F, and U,V C F,let U(w) ={{ € U | fw € F} and
let V(w) = {r € V | wr € F}. The generalized extension graph of w relative
to U,V is the following undirected graph Gy,y (w). The set of vertices is made
of two disjoint copies of U(w) and V(w). The edges are the pairs (¢,r) for
£ € U(w) and r € V(w) such that fwr € F. The extension graph G(w) defined
previously corresponds to the case where U,V = A.

Example 4.6 Let F' be the Fibonacci set. Let w = a, U = {aa l!)eqs,t%na?lge Q}et
V = {aa,ab,b}. The graph Gy v (w) is represented in Figure ..

Figure 4.7: The graph Gy,v(w).

The following property shows that in an acyclic set, not only the extension
graphs but, under appropriate hypotheses, all generalized extension graphs are
acyclic.

Proposition 4.7 Let F be an acyclic set. For any w € F, any finite suffix
code U and any finite prefiz code V', the generalized extension graph Gu,v (w) is
acyclic.

The proof uses the following lemma.
Lemma 4.8 Let F' be a biessential set. Let w € F and let U, V,T C F. Let

L e F\U be such that tw € F. Set U' = (U \ T¢) U L. If the graphs Gy v (w)
and Gr,v (w) are acyclic then Gy,v(w) is acyclic.

18
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Proof. Assume that Gy,y(w) contains a cycle C. If the cycle does not use a
vertex in U’, it defines a cycle in the graph G,y (fw) obtained by replacing each
vertex t¢ for t € T by a vertex t. Since G,y (fw) is acyclic, this is impossible.
If it uses a vertex of U’ it defines a cycle of the graph Gy v(w) obtained
by replacing each possible vertex ¢ by ¢ (and suppressing the possible identical
successive edges created by the identification). This is impossible since Gy v (w)
is acyclic. Thus Gy,v(w) is acyclic. L]
PxgpStrongTreeCondition

Proof of Proposition [L.1. We show by induction on the sum of the lengths of
the words in U,V that for any w € F, the graph Gy, (w) is acyclic.

Let w € F. We may assume that U = U(w) and V = V(w) and also that
UV #£(. If U,V C A, the property is true since F is acyclic.

Otherwise, assume for example that U contains words of length at least 2.
Let u € U be of maximal length. Set u = afl witha € A. Let T={bec A| bl €
U}. Then U' = (U \ T¥¢)UZ is a suffix code and fw € F since U = U(w).

By induction hypothesis, the graphs Gy, v (w) and Gr,v (fw) are acyclic. By
lemma%,&ﬂﬂraph Gu,v(w) is acyclic. L]

We prove now a similar statement concerning tree sets.

Proposition 4.9 Let F' be a tree set. For any w € F, any finite F-mazimal
suffix code U C F and any finite F-mazimal prefix code V- C F, the generalized
extension graph Gy v (w) is a tree.

T
The proof uses the following lemma, analogous to Lemma %g s

Lemma 4.10 Let F be a biessential set. Let w € F and let UV C F. Let
L e F\U be such that bw € F and ALNF CU. Set U = (U \ Al) U L. If the
graphs Gy v(w) and Ga,v (fw) are connected then Gu,y (w) is connected.

Proof. Since F is left essential, there is a letter a such that afw € F and thus
al € U(w). We proceed by steps.

Step 1. As a preliminary step, let us show that for each b € A such that
blw € F, and each v € V(fw), there is a path from b¢ to v in Gy,y(w). Indeed,
since the graph G4,y (fw) is connected there is a path from b to v in this graph.
Thus, since bf € U(w), there is a path from b to v in Gy,v (w).

Step 2. As a second step, let us show that for any m € U'(w) \ £ and
v € V(w), there is a path from m to v in Gy,y(w). Indeed there is a path from
m to v in Gy v(w). For each edge of this path of the form (¢, s), s is also in
V(fw) and thus, by Step 1, there is a path from af to s in the graph Gy, v (w).
Thus there is a path from m to v in Gy,v(w).

Step 3. For each b € A such that b € U(w), for each v € V(w), there is
a path from b¢ to v in Gy,v(w). Indeed, since G4 v (¢w) is connected, there is
a path from b to a in G4 v (fw), thus a path from b¢ to af in Gy,y(w). Then
there is a path from ¢ to v in Gy v (w) and, in the same way as in Step 2, there
is a path from af to v in Gy v (w).
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Consider now m € U(w) and v € V(w). If m ¢ A¢, then m € U'(w) \ £ and
thus, by Step 2, there is a path from m to v in Gy,y (w). Next, assume that
m = bl with b € A. By Step 3, there is a path from m to v in Gy v (w). This
shows that the graph Gy v (w) is connected. "

propStrongTreeConditionBis
P:oof Pgo Ooni %Q&Eﬂitlhe fact that G,y (w) is acyclic follows from Propo-
sition

We show by induction on the sum of the lengths of the words in U,V that
for any w € F, the graph Gy, v (w) is connected.

Assume first that U(w), V(w) C A. Since U is an F-maximal suffix code, we
have U(w) = L(w). Similarly, V(w) = R(w). Thus the property is true since F'
is a tree set.

Otherwise, assume for example that U(w) contains words of length at least
2. Let u € U(w) be of maximal length. Set u = af with a € A. Then
U = (U\ A0) U/ is an F-maximal suffix code and fw € F since af € U(w).
Moreover, we have Al N F C U sipce q‘riesel?i% F-maximal suffix code. Thus ¢
satisfies the hypotheses of Lemma @6‘7

By induEtion Rypothesis, the graphs Gy v (w) and G a,v (fw) are connected.

By Lemma , the graph Gy v (w) is connected. n

Let F be a factorial set and let f be a coding morphism for a finite bifix
code X C F. The set f~1(F) is called a bifiz decoding of F. When X is an
F-maximal bifix code, it is called a mazimal bifiz decoding of F'.

Theorem 4.11 Any biessential set which is the bifix decoding of an acyclic set
1s acyclic.

Proof. Let F be an acyclic set and let f : B* — A* be a coding morphism
for a finite bifix code X C F such that f~!(F) is biessential. Let u € f~1(F)
and let v = f(u). Since X is a finite bifix code, it is both a suffix code and
a prefix co%g?g& he eencralized extension graph Gx x(v) is acyclic by
Proposition Since G(u) 18 isomorphic with Gx x (v), it is also acyclic. Thus

f7L(F) is acyclic. "

The previous statement is not satisfactory because of the assumption that
f7L(F) is biessential which is added to obtain the conclusion. The following
example shows that the condition is necessary.

Example 4.12 Let F be the Fibonacci set and let f be the coding morphism
for X = {aa,ab} defined by f(u) = aa, f(v) = ab. Then f~(F) is the fi-
nite set {u, v, vu,vv,vvu} and thus not biessential. Note however that for any
biextendable w € f~1(F), the graph G(w) is acyclic.

One may verify that a sufficient condition for f~(F) to be biessential is that

X is an F-maximal prefix code and an F-maximal suffi CO(%%
rongTreeConditionBis
The following result is a consequence of Proposition
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InverseImageTreesé} Theorem 4.13 Any mazximal bifix decoding of a recurrent tree set is a tree set.

es Proof. Let f : B — X be a coding morphism for a finite F-maximal bifix
sss code X. Since F is recurrent, it is biessential. It implies that f~1(F) is also
o7 biessential. Indeed, let u € f~1(F) and let v = f(u). Let r, s be words of F
ess longer than all words of X such that rvs € F. Let r’ (resp. s') be the suffix
eso of r (resp. the prefix of s) which is in X. Then f~1(r)uf~1(s') is in f=1(F).
s This shows that f~1(F) is biessential.

661 Let u %t’fo_nlg;(l'?e)eggxlgi]tq% 4= f(u). Since F is a tree set, it satisfies Propo-
2 sition f.Y. Since F 1s recurrent and X is a finite F-maximal bifix code, X is
63 both an F-maximal suffix code and an F-maximal prefix code. Thus the graph
e Gx x(v) is a tree. Since G(u) is isomorphic with Gx x(v), it is also a tree.
s Thus f~1(F) is a tree set. "

es  We have no example of a maximal bifix decoding of a recurrent tree set which
67 1S not recurrent.

Example 4.14 Let F be the Fibonacci set and let X = A2N F = {aa, ab, ba}.
oo Let B ={u,v,w} and let f be the coding morphism for X defined by f(u) = aa,

e f(v) = ab and f(w) = ba. Then the set f~(F) is a recurrent tree set which
o is actually a regular iEter¥%ée%§change set (see [{]). Part of the set f~'(F) is

represented in Figure f.§

Figure 4.8: The set of words of f~!(F) of length at most 4.

672

« D Return words in tree sets

sectionReturnTreeSets |

ea  We study sets of first return words in tree sets. We first show that if F'is a
ers  recurrent connected set, the group described by any Rauzy graph of F' con-

ers  taining the al thbl%gsA’ with respect to some vertex is the free group on A
s (Theorem %[2 i Next, we prove that in a uniformly recurrent tree set containing

as A, the set of first return words to any word of F' is a basis of the free group on
oremJullen
s9 A (Theorem .
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e 9.1 Stallings foldings of Rauzy graphs

sectionRauzyGraphs

s We first introduce the notion of a Rauzy graph (for a more detailed exposition,
e sece [[f]). Let F be a factorial set. The Rauzy graph of F of order n > 0 is the
s following labeled graph G, (F). Its vertices are the words in the set F'n A™.
s« Its edges are the triples (x,a,y) for all z,y € F N A™ and a € A such that
s xa € F'N Ay.

propositionRauzysf* Proposition 5.1 Let u € FF'NA™. For any word w such that uw € F, there is
v a path labeled w in G, (F) from u to the suffiz of length n of uw.
688 Conversely, the label of any path of length at most n+ 1 in G, (F) is in F.

e Proof. We prove the first assertion by induction on the length of w. It is true if
o0 w is empty. Next, set w = w'a with a € A and let v’ be the suffix of length n
s of uw’. By induction hypothesis, there is a path labeled v’ in G, (F') from u to
s the suffix v'. By definition, there is an edge from v’ to the suffix of length n of
o3 v'a, whence the conclusion.

694 Next, let w be the label of a path of length n+ 1 from z to y in G,,(F). Set
os w = ua with a € A. Then we have a path from x to u labeled v and an edge
s from u to y labeled a. Thus ua € F by definition of G,,(F). L]

sv  When F is recurrent, all Rauzy graph G, (F) are strongly connected. Indeed,

ws let u,w € F N A™. Since F is recurrent, there is a v € F such that uyw EoslfﬁionRauz
0o Then there is a path in G, (F) from u to w labeled vw by Proposition%’?;l
700 The Rauzy graph G, (F) of a recurrent set F with a distinguished vertex

o v can be considered as g simple automaton A = (Q,v,v) with set of states

e Q=FnNA" (see Sectionaﬁ).i

703 Let G be a labeled graph on a set ) of vertices. The group described by G

s with respect to a vertex v is the subgroup described by the simple automaton
s (Q,v,v). We will prove the following statement.

Theorem 5.2 Let F' be a recurrent connected set containing the alphabet A.

77 The group described by a Rauzy graph of F' with respect to any vertex is the free
08 group on A.

709 A morphism ¢ from a labeled graph G onto a labeled graph H is a map
70 from the set of vertices of G onto the set of vertices of H such that (u,a,v) is
m  an edge of H if and only if there is an edge (p, a, q) of G such that ¢(p) = u and
n @(q) = v. An isomorphism of labeled graphs is a bijective morphism.

73 The quotient of a labeled graph G by an equivalence 0, denoted G/6, is the
na  graph with vertices the set of equivalence classes of 6 and an edge from the class
75 of u to the class of v labeled a if there is an edge labeled a from a vertex u’
76 equivalent to u to a vertex v’ equivalent to v. The map from a vertex of G to
77 its equivalence class is a morphism from G onto G/6.

718 We consider on a Rauzy graph G,,(F) the equivalence 6,, formed by the pairs
ne  (u,v) with v = az, v = bx, a,b € L(z) such that there is a path from a to b
70 in the extension graph G(z) (and more precisely from the vertex corresponding
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= to a to the vertex corresponding to b in the copy corresponding to L(x) in the
7 bipartite graph G(z)).

propRauzyGraphsz* Proposition 5.3 If F' is connected, for each n > 1, the quotient of G, (F) by

e the equivalence 0, is isomorphic to Gp_1(F).

75 Proof. The map ¢ : FN A" — F N A" ! mapping a word of F of length n
76 to its suffix of length n — 1 is clearly a morphism from G, (F) onto G,_1(F).
= If u,v € FNA™ are equivalent modulo 6, then ¢(u) = ¢(v). Thus there
7s is a morphism ¢ from G,(F)/6, onto G,_1(F). It is defined for any word
2 u € FNA™ by () = ¢(u) where @ denotes the class of u modulo 6,,. But since
70 F is connected, the class modulo 8, of a word az of length n has ¢(z) elements,
7 which is the same as the number of elements of ¢ ~!(z). This shows that ¢ is a
2 surjective map from a finite set onto a set of the same cardinality and thus that
733 it is one-to-one. Thus v is an isomorphism. L]

tionAutomata
74 Let G be a strongly connected labeled graph. Recall from Section ﬁw
735 Stallings folding at vertex v relative to letter a of G' consists in identifying the
16 edges coming into v labeled @ and identifying their origins. A Stallings folding
77 does not modify the group described by the graph with respect to some vertex.

7 Indeed, if p = v, p 2 and g % v are three edges of G, then adding the edge

3 q 2, 1 does not change the group described since the path ¢ = v a—1> P 2 7 has
uo  the same label. Thus merging p and ¢ does not add new labels of generalized
741 paths.

742 P

u3  Proof of Theorem ﬁ%otient G, (F) /0, can be obtained by a sequence of
e Stallings foldings from the graph G,,(F'). Indeed, a Stallings folding at vertex v
s identifies vertices which are equivalent modulo 6,,. Conversely, consider u = ax
ns and v = bz, with u,v € F N A™ and a,b € A such that a and b (considered as
77 elements of L(z)), are connected by a path in G(x). Let ag,...ar and by, --- by
us  with a = ap and b = ay be such that (a;,b;41) for 0 <14 < k—1and (a4, b;) for 1 <
1o 1 < k are in E(x). The successive Stallings foldings at xby, xbs, ..., xby identify
o the vertices u = agx,a1x,...,axx = v. Indeed, since a;xb;+1,a;41xb;iy1 €
w1 F, there are two edges labeled b; 11 going out of a;xz and a;+12 which end at
2 xb;11. The Stallings folding identifies a;x and a;412. The conclusion follows by
73 induction.

754 Since the Sta%f%af&)zldép %Sdo not modify the group described, we deduce
s from Proposition p. That the group described by the Rauzy graph G,,(F) is the
76 same as the group described by the Rauzy graph Go(F). Since Go(F) is the
7 graph with one vertex and with loops labeled by each of the letters, it describes
s the free group on A. n

0 Example 5.4 Let F' be the tree set olig%ned by decoding the Fibonacci set into
70 blocks of length 2 (see Example @%S’et S 49,0 5.ab, w = ba. The graph
w1 Go(F) is represented on the left of Figure %] i] The classes of 05 are {wv,vv}

e {vu} and {ww,uw}. The graph G1(F') is represented on the right.
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Figure 5.1: The Rauzy graphs G2(F) and G1(F) for the decoding of the Fi-
bonacci set into blocks of length 2.

. L RauzyGraphs .
The following example shows that Proposition Elg 1S false for sets which are not
connected.

leChacon
Example 5.5 Consider again the Chacon set (see Example @%pi
The Ranzy eraph G1(F) corresponding to the Chacon set is represented in
Figure on the left. The graph G (F)/0; is represented on the right. It is
not isomorphic to Go(F) since it has two vertices instead of one.

.

Figure 5.2: The graphs G1(F) and G1(F /6‘1

5.2 Return words and bases of free groups

We will prove the following result.

Theorem 5.6 Let F' be a uniformly recurrent connected set containing the al-
phabet A. For any w € F, the set Rp(w) generates the free group on A.

Proof. Since F is uniformly recurrent, the set Rp(w) is finite. Let n be the

figFiboBlocks

figChacon2

maximal length of the words in wRp(w). In this way, any word in F' N A™ ositionRauz
beginning with w has a prefix in wRp(w). Moreover, recall from Proposition

that the label of any path of length n + 1 in the Rauzy graph G, (F) is in F.
Let x € F be a word of length n ending with w. Let A be the simple
automaton defined by G, (F) with initial and terminal state . Let X be the
prefix code generating themlql mono id d&ecogmzed by A. Since the automaton A4
is simple, by Proposition P.§, the sef X generates the group described by A.
We show that X C Rp(w)*. Indeed, let y € X. Since y is the label of a
path starting at  and ending in z, the word xy ends with x and thus the word
wy ends with w. Let T' = {z € AT | wz € A*w} and let R =T \TA*". Then R
is a prefix code and ' U1 = R*, as one may verify easily. Since y € I', we can
write y = ujus - - - U, where each word u; is in R. Since F' is recurrent and since
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1 x € F, there is v € FFN A™ such that vy € F atnd Rhus there is a path labeled
osltlonnauz
El il Thus th

w2 ending at the vertex x by Proposition b.1]. ere is a path labeled zy in
788 Gy (F). This implies that for 1 < i < m, there is a path in G,,(F) labeled wu;.
789 Assume that some w; is such that [wu;| > n. Then the prefix p of lensth n of
70 wu; is the label of a path in G, (F'). This implies, by Proposition%%ﬁﬁpwx
1 in F and thus that p has a prefix in wRp(w). But then wu; has a proper prefix
2 in wRp(w), a contradiction. Thus we havi wgggéoﬁagozr alls = 1,2,...,m.
73 But then the wu; are in F' by Proposition an us the wu; are in Rp(w).
794 This shows that y € Rp(w)*.

795 Thus the group generated by Rp(w) contains the group generated by X.
76 But, by Theorem %Lfmup described by A is the free group on A. Thus
7 Rp(w) generates the free group on A. n

s We illustrate the proof in the following example.

e Example 5.7 Let F' be the Fibonacci set. We have Rr(ga) = {baa,babaa}.
. i X ureRatizyGraphG_Y |

so The Rauzy graph G7(F) is represented in Figure p.J- e set recognized by the

s automaton obtained using z = aababaa as initial and terminal state is X * with

J
52 X = {babaa, baababaa}. In agreement with the proof of Theorem Eia, We have
X C Rr(aa)*.
b

(abaabaMaababMababa@—b@babaa@—aﬂ)abaaba)

baabaab

Figure 5.3: The Rauzy graph G7(F) | figureRauzyGraphG_7

803

oremJulien
804 Note that Theorem Eia&% lies, that Card(Rp(w)) > Card(ék}éoggésari&g so_

g5 a consequence of Theorem .. When F'is a tree set, Theorem B.f implies that
ws Card(Rp(w)) = Card(A). Thus we have the following corollary.

corollaryJuliem* Corollary 5.8 Let F' be a uniformly recurrent tree set containing the alphabet

ws  A. Then for any w € F, the set Rp(w) is a basis of the free group on A.

so  We show an eﬁamyl(f.of a neutral set which is not a tree set and for which
0 ar ien

s Corollary Eg does not hold
leJuli
su  Example 5.9 Consider the set F of ExampleE?a. leﬁé% lR::(gi zgé;.rﬁe{t%%%l’ 31,231}.

sz This set has 3 elements, in agreement with Theorem ut 1t is not a basis of
a3 the free group on {1, 2, 3} since it generates the same group as {2,31}.
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= 6 Bifix codes in acyclic sets

sectionMainResult |
s We prove in this section our main results. Bifix cq%@geior%e%cychc sets are bases
a5 of the subgroup that they generate (Theorem If_;i l|7 referred to as the Freeness

sz Theorem). Moreover, the submonoid generated by a finite bifix co € 2 ne gglglem

as in an acyclic set F' is such that X* N F = (X) N F (Theorem E%, referred to

a0 as the Saturation Theorem). As a preliminary to the proof, we first define the

20 incidence graph of a finite bifix code (already used in [{]). We prove a 1rEsu!teImmG33
en  concerning this graph, implying in particular that it is acyclic (Proposition .

s22  We then define the coset automaton whose states are connected components of

s the incidence graph. We prove that thiﬁig&tomaton is the Stallings automaton

22¢  of the subgroup (X) (Proposition%._}_’ﬁally, we prove the Freeness and the

225 Saturation Theorems.

2 6.1 Freeness and Saturation Theorems

sz Let X be a subset of the free group. We say that X is free if it is a basis of the
28 subgroup (X) generated by X. This means that if x1,z2,...,7, € XUX ! are
w290 such that xzixs---x, is equivalent to 1, then x;x;41 is equivalent to 1 for some
s 1 <i<n.

o1 We will prove the following result (Freeness Theorem).

Theorem 6.1 A set F' is acyclic if and only if any bifiz code X C F is a free
s3  subset of the free group A°.

834 Let M be a submonoid of A* and let H be the subgroup of A° generated by
ss M. Given a set of words F', the submonoid M is said to be saturated in F if
s MNF=HNF.If M is generated by X, then M is saturated in F if and only
837 ifX*ﬁF=<X>ﬂF.

838 Thus, for example, the sutgmo oid rec%gnized by a reversible automaton is
. L eneratedGroup

o saturated in A* (Proposition P.g).

840 We will prove the following result (Saturation Theorem).

saturationTheoremzxi Theorem 6.2 Let F' be an acyclic set. The submonoid generated by a bifiz code
sz included in F' is saturated in F'.

843 We note the following corollary, which shows that bifix codes in acyclic sets
s satisfy a property which is stronger than being bifix (or more precisely that the
a5 submonoid X* satisfies a property stronger than being right and left unitary).

corollaryChristophes Corollary 6.3 Let F be an acyclic set, let X C F be a bifix code and let

sr H=(X). For any u,v € F,
848 (i) fu,uve HNF, thenv € X*.
so (i) ifv,uv € HNF, then u € X*.
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g0 Proof. Assume that u,uv € HNF. Si ce = u _hl ygﬂ?, we have v € H. But
1 v € HNF implies v € X* by Theorem Ei This proves (i). The proof of (ii) is
sz symmetric. L]

lcarollaryChristophe
ss3 We can express Corollary p.31n a different way. Let F' be an acyclic set and let
s« X C F be a bifix code. Then no nonempty word of (X) can be a proper prefix
ess  (or suffix) of a word of X. Indeed, assume that u € (X) is a prefix of a word
s of X. Then u is in (X) N F and thus in X* since X* is saturated in F. This

g7 implies u =1 or u € X. i sTheorem
858 We illustrate Theorem El il in the following example.

lexsampleJulienAcyclic

exampleBasisJuliens* Example 6.4 Let F be as in Example .4 and let X = I N A%2. We have

X ={ab, ac, be, ca, cd, da}

so The set X is an F-maximal bifix code. It is a basis of a subgroup of i&f?ﬁaite )
R . . $ ; tureGroupJulien
s index. Indeed, the minimal automaton of X* is represented in Figure p.I on
862 th.e left. The S.talhngs.automaton of. the subg.roup H genera.ted by X Ii‘;1_15_“1(1);%-(;1?Oup Julien
83 tained by merging 3 with 4 and 2 with 5. It is represented in Figure .l on
ss  the right. Since 1’t is Juof. a group automaton, the subgroup has inﬁn}ﬁe index
tallin isTheorem

(see Proposition . e set X is a basis of H by Theorem [B.1I. 1S can

a,d a,b

)

c,d b, c

Figure 6.1: The minimal automaton of X* and the Stallings automaton of (X). ‘ figureGroupJulien

865
ss also be seen by performing Nielsen transformations on the set X (see [E] for

s7 example). Indeed, replacing bc and da by be(ac)™! and da(ca)™t, we obtain
ss X' = {ab,ac,ba™!, ca,cd,dc™'} which is Nielsen reduced. Thus X’ is a basis of
so  H and thus also X.

. . urationTheorem .
870 Note that, in agreement with Theorem Elj, the two words of length 2 which
sn are in H but not in X*, namely bb and dd, are not in F'.

isTheorem . . . .
872 Theorem E' i' is false if X is prefix but not bifix, as shown in the following
g3 example.

s Example 6.5 Let F' be the Fibonacci set and let X C F be the prefix code
ss X = {aa,ab,b}. Then a = (ab)b™! is in (X) and thus X generates the free
ers  group on A. Thus X is not a basis and X* N F is strictly included in (X) N F
e (for example a ¢ X*).
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6.2 Incidence graph

Let X be a set, let P be the set of its proper prefixes and S be the set of its
proper suffixes. Set P/ = P\ {1} and S’ = S\ {1}. Recall from [f] that the
incidence graph of X is the undirected graph G defined as follows. The set of
vertices is the disjoint union of P’ and S’. The edges of G are the pairs (p, s) for
p € P and s € S’ such that ps € X. As in any undirected graph, a connected
component of GG is a maximal set of vertices connected by paths.

The following result is proved in [ in the case of a Sturmian set (Lemma
6.3.3). We give here a proof in the more general case of an acyclic set. We call
a path reduced if it does not use equal consecutive edges.

Proposition 6.6 Let F be an acyclic set, let X C F be a bifix code and let G
be the incidence graph of X. Then the following assertions hold.
(i) The graph G is acyclic.
(ii) The intersection of P’ (resp. S’) with each connected component of G is
a suffic (resp. prefix) code.

(iii) For every reduced path (vi,ui,...,Un,Vnt1) in G with uy,...,u, € P’
and v1,...,v,41 0 S’, the longest common prefix of v, vna1 1S a proper
prefiz of all v1, ..., Uy, Vpy1-

(iv) Symmetrically, for every reduced path (u1,v1, ..., U, Uns1) in G withuq, . ..
Upt1 € P and vy, ... v, € 5, the longest common suffix of u1,uny1 s a
proper suffiz of uy,ug, ..., Upt1.

Proof.  Assertions (iii) and (iv) implies assertions (i) and (ii). Indeed, as-
sume that (iii) holds. Consider a reduced path (vi,u1,...,Un, Vpt1) in G with
Uty ooy Up € Phand vy,... 0541 in S’. If v1 = v,41, then the longest common
prefix of v1, vp41 is not a proper prefix of them. Thus G is acyclic and (i) holds.
Next, if v1, v,4+1 are comparable for the prefix order, their longest common
prefix is one of them, a contradiction with (iii) again. The assertion on P’ is
proved in an analogous way using assertion (iv).

We prove (iii) and (iv) by induction on n > 1.

The assertions holds for n = 1. Indeed, if ujvy,uives € X and if v; €
S’ is a prefix of v, € S’, then wjv; is a prefix of ujvs, a contradiction with
the hypothesis that X is a prefix code. The same holds symmetrically for
u1v1, usv1 € X since X is a suffix code.

Let n > 2 and assume that the assertions hold for any path of length at most
2n — 2. We treat the case of a path (v1,u1,...,Un, Vp11) in G with ug, ..., u, €
P’ and vy,...,v,41 in S’. The other case is symmetric.

Let p be the longest common prefix of v; and v,4+1. We may assume that p
is nonempty since otherwise the statement is obviously true. Any two elements
of the set U = {uy,...,u,} are connected by a path of length at most 2n — 2
(using elements of {va,...v,}). Thus, by induction hypothesis, U is a suffix
code. Similarly, any two elements of the set V' = {v1,...,v,} are connected by
a path of length at most 2n — 2 (using elements of {uy,...u,—1}). Thus V is a
prefix code. We cannot have v; = p since otherwise, using the fact that u,p is a
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prefix of u,v,+1 and thus in F, the generalized extension graph Gy,y (¢) would
have t}.le. cyﬁ,_lgg 1@13 NIRRT ﬁ&’f{iggv a contradiction since G,y () is acyclic by
proposition {I.7. Similarly, we cannot have v, 11 = p.

Set W =p~ 1tV and V' = (V\pW)Up. Since V is a prefix code and since p is
a proper prefix of V, the set V' is a prefix code. Suppose that p is not a proper
prefix of all va, ..., v,. Then there exist ¢, j with 1 < i < j < n+1 such that pis
a proper prefix of v;, v; but not of any vi41,...,vj-1. Then viyq,...,v,1 € V'
anc.l t.he@ is the cy.clej (p, Ui Vit 1, Uit 1, - ’ﬂﬂ@ét%ﬁg‘ﬁggé&ggﬁﬁmph Guv(e).
This is in contradiction with Proposition I.] because, V' being a prefix code,
Gu,v () is acyclic. Thus p is a proper prefix of all vs, ..., vy,. n

Let X be a bifix code and let P be the set of proper prefixes of X. Consider
the equivalence x on P which is the transitive closure of the relation formed
by the pairs p,q € P such that ps,gs € X for some s € AT. Such a pair
corresponds, when p,q # 1, to a path p — s — ¢ in the incidence graph of X.
Thus a class of fx is either reduced to the empty word or it is the intersection
of P\ 1 with a connected component of the incidence graph of X.

The following property relates the equivalence x with the right cosets of
H = (X). Tt is Proposition 6.3.5 in [f.

Proposition 6.7 Let X be a bifix code, let P be the set of proper prefizes of
X and let H be the subgroup generated by X. For any p,q € P, p = q mod fx
implies Hp = Hgq.

Let A = (P,1,1) be the literal automaton of X*. We show that the equiva-
lence fx is compatible with the transitions of the automaton A in the following
sense.

The following is proved in [[] (Lemma 6.3.6 and Lemma 6.4.2) in the case
of a Sturmian set F.

Proposition 6.8 Let ' be an acyclic set. Let X C F be a bifix code and let
P be the set of proper prefizes of X. Let p,q € P and a € A be such that
pa,qa € PUX. Then in the literal automaton of X*, one has p = q mod Ox if
and only if p-a = q-amod fx.

Proof.

Assume first that p = ¢ mod 0x. We may assume that p, ¢ are nonempty.
Let (ug,v1,u1,- .., Vn, uy,) be areduced path in the incidence graph G of X with
p = ug, Uy, = q. The corresponding words in X are uguy, u1v1, U1v2, . . ., UpUp.
We may assume that the words u; are pairwise distinct, and that the v; are
pairwise distinct. Moreover, since pa,qa € P U X there exist words v, w such
that pav, qaw € X. SeEe%a%3gv and v,41 = aw.

By Proposition Emproper prefix of v, v1,...,Unt1. Set v; = av) for
0<i<n+1.

If pa,qa € P, then (uga,vi,uia,...,v,,uya) is a path from pa to ga in G.
This shows that pa = ga mod 0x.
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Lemma633
962 Next, suppose that pa € X and thus that vyp = a. By Proposition Ea, we
s3 have w = € since otherwise vy = a is a proper prefix of v, 1. Thus ga € X and
%4 P-a=4dqg-a.

965 Conversely, if p-a = ¢ - a mod 0x, assume first that pa,qa € P. Then
% pa = gamod fx and thus there is a reduced pagh (ug,v1, ..., Un,uy) in G with
w7 ug = pa and u, = ga. By Proposition Ea, a 1s a proper suffix of uy,...,u,. Set

s u; = uia. Thus (p,avy,ul,...,q) is a path in G, showing that p = ¢ mod 0x.
969 Finally, if pa, ga € X, then (p,a,q) is a path in G and thus p = ¢ mod 6x.

970 |

o 6.3 Coset automaton

a2 Let I be an acyclic set and let X C F be a bifix code. We introduce a new

o3 automaton denoted Bx and called the coset automaton of X. Let R be the set

ora  Of classes of Ox with the class of 1 still denoted 1. The coset automaton of X

o5 is the automaton Bx = (R,1,1) with set of states R and transitions induced

o by the transitions of the literal automaton A = (P,1,1) of X*. Formally, for

o7 7,8 € Rand a € A, one has 7 - a = s in the automaton By if there exist p in

ars  the class r and ¢ in the class s such that p-a = ¢ in the automaton é aCompatible
079 Observe first that the definition is consistent since, by Proposition .§,if p-a

0 and p’-a are nonempty and p,p’ are in the same class r, then p-a and p’ - a are

os1 in the same class.

082 Observe next that if there is a path from p to p’ in the automaton A labeled
w3 w, then there is a path from the class r of p to the class r’ of p’ labeled w in
e Bx.
A
a b
b a

Figure 6.2: The automaton Bx.

s Example 6.9 Let F' be the Fibonacci set and let
X = {a, baab, babaabab, babaabaabab}.

% The set X is an F-maximal bifix code of F-degree 3 (see [f, Example 6.3.1).
ez The automaton By has three states. It is a group automaton. State 2 is the class
ss containing b, and state 3 is the class containing ba. The bifix code generating
s the submonoid recognized by this automaton is Z = a U b(ab*a)*b.

990 The following result shows that the coset automaton of X is the Stallings
o1 automaton of the subgroup generated by X.

Proposition 6.10 Let F' be an acyclic set, and let X C F be a bifiz code. The

ws coset automaton Bx is reversible and describes the subgroup generated by X.
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wi  Moreover X C Z, where Z is the bifix code generating the submonoid recognized
995 by BX.

ws Proof. Let A= ?Pi 1.1) be the literal automaton of X* and set Bx = (R, 1,1).

o7 By Proposition (.8, the automaton Bx is reversible.

998 Let Z be the bifix code generating the submonoid recognized by Bx. To
oo show the inclusion X C Z, consider a word x € X. There is a path from 1 to 1
wo labeled x in A, hence also in Bx. Since the path in A does not pass by 1 except
wn  at its ends and since the class of 1 modulo fx is reduced to 1, the path in By
w2 does not pass by 1 except at its ends. Thus z is in Z.

1003 Let us ﬁnaﬂg;%%8§£etr}%%£ d@gu%oset automaton describes the group H = (X).
wi By Proposition P.§; the subgroup described by Bx is equal to (Z). Set K = (Z).
ws  Since X C Z, we have H C K. To show the converse inclusion, let us show
ws by induction on the length of w € A* that if, for p,q € P, there is a path
wr  from the class oﬁ.ﬁ%gg the class of ¢ in Bx with label w then Hpw = Hq. By
w08 Proposition %{j—ﬂﬁholds for w = 1. Next, assume that it is true for w and
w0 consider wa with a € A. Assume that there are states p, ¢, € P such that there
w0 is a path from the class of p to the class of ¢ in Bx with label w, and an edge from
wn  the class of ¢ to the class of r in Bx with the label a. By induction hypothesis,
w2 we have Hpw = Hq. Next, by definition of Bx, there is an s = ¢ mod § syeh,
w3 that s-a =rmodfx. If sa € P, then s-a = sa, and by Proposition %I:W
we have Hs = Hq and Hsa = Hr. Otherwise, sa € X C H and s-a=7r =1
s because the class of 1 is a singleton and thus Hga = Hsa = H = Hr. In both
ws  cases, Hpwa = Hqa = Hsa = Hr. This property shows that if z € Z, then
wr Hz= H, that is z € H. Thus Z C H and finally H = K. L]

ws 6.4 Proof of the main results

isTheorem . Lemma633
w9 We can now prove Theorem [B.1]. e proof uses Proposition b.4. We will also

w0 use the elementary fact that if X is a bifix code, and z,y € X with x # y, then
w1 @ cannot cancel completely with y~!, which means that p(xy~!) cannot be a
w2 prefix of  or a suffix of y~!. Indeed, if zy~! is equivalent to a prefix of z, then
s 9 is a suffix of x and if zy~! is equivalent to a suffix of y =1 then x is a suffix of
w2 4. A symmetric argument holds for =1 and y.

1025

isTheorem X .
ws  Proof of Theorem E l| [0 prove the necessity of the condition, assume that for

vz some w € F the graph G(w) contains a cycle (ai,b1,...,ap,bp,a1) with p > 2,
ws  a; € L(w) and b; € R(w) for 1 <4 < p. Consider the bifix code X = AwANF.
w2 Then ajwbi, aswdy, ..., apwby, aqwb, € X. But

ai1wbq (agwbl)flagwbz ce apwbp(alwbp)71 =1,

w0 contradicting the fact that X is free.

1031 Let us now show the converse. Assume that F' is acyclic and let X C F be
w2 a bifix code. Set Y = X U X~ Let y1,...,y, € Y. We intend to show that
w3 provided y;y;+1 #Z 1 for 1 < i < n, we have y; - - -y, # 1. We may assume n > 3.
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We say that a sequence (u;, v;, w;)1<i<n Of elements of the free group on A
is admissiblg with respect to y1,...,yn if the following conditions are satisfied

(see Figure Elgi

(i) y; = uv;w; for 1 <4 < n.

)

(ii) w1 = wy, =1 and vy, v, # 1.
)
)

iil) wjujpp =1lfor1 <i<n-—1.

(
k

iv) For1<i<j<n,ifv;,v;#land v, =1fori+1 <k <j—1, then vv;
is reduced.
Note that if (u;, v;, wi)1<i<n is an admissible sequence with respect to yi, . . ., Yn,

then yq - - -y, is equivalent to the word vy - - - v, which is a reduced nonempty
word. Thus, in particular y; - - -y, Z 1.

! ﬂ m\ Vi Mvi+lﬂ Un Un
® O O @ O C @ O O @ 03)—.

. "
O gt OO Yi O Yi+ O Yn

Figure 6.3: The word yy - - - yn,.

Let us show by induction on n that for any yi,...,y, such that y,y;41 #Z 1
for 1 <4 < n—1, there exists an admissible sequence with respect to y1 ..., yn.

The property is true for n = 1. Indeed, we take u; = w; = 1.

Assume that the property is true for n. Among the possible admissible
sequences with respect to the y1, . . ., y,, we choose one such that |v, | is maximal.

Set v, = v, w), and Yp41 = Up41Vp41 With |w),| = |up41| maximal such that
whun+1 = 1. Note that v,41 # 1 since otherwise y,4+1 would cancel completely
with y,.

If v/, # 1, the sequence

(17 V1, wl)v R (unfla Un—1, U]nfl), (U’na U;” w;z)v (unJrla Un+1, 1)
is admissible with respect to yi1,...,Yn+1-
Otherwise, let ¢ with 1 < i < n be the largest integer such that v; # 1.
Observe that w;, wiy1,...,Wn—1,w, are nonempty. Indeed, if w; = 1 with

i <j <n-—1,then u;1; =1 and thus y;41 cancels completely with y;42. Next,
if v, = w], = 1, then y, cancels completely with y,_1.

Assume that y; € X (the other case is symmetric).

If yo+1 € X (and thus n — i is odd), then v;v,11 is reduced because they
are both in A* and v,+1 # 1 as we have already seen. Thus the sequence

(1,’[}1,’[1}1), ey (un—lavn—lawn—l)a (Un, 17w:1)7 (un-l-luvn—i-lu 1)

is admissible with respect to y1,...,Yn+1-
Otherwise, let s be the longest common suffix of u;v; and v, ;.
. . . L 1 ‘o
Thelrree s a path 1n the 11{0(9%%%%5 graph G(X) from uzvilto v, _Hi(lsee Fig
ure . By Proposition .6, s 15 a proper suffix of w;v;, w; 'y, ..., w, 1,0, 1.
This implies that s~! is a proper prefix of w;y1,...,W,_1,Vny1.
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Figure 6.4: The graph G(X).

It is not possible that v; is a suffix of s. Indeed, this would imply that
vi_l is a proper prefix of wjy1,...,Wp—1,Vp+1. But then we could change
the n — 4 + 1 last terms of the sequence (uj,v;,w;)i1<j<n Into (u;,1,v;w;),
(uit1v; ' 1, p(viwit1))s - -+, (p(unv; ), vivn, 1) resulting in an admissible se-
quence with a longer v,,.

Thus s is a proper suffix of v;. Since s is a proper suffix of v; and U,;l_l,
there are nonempty words p,q € A* such that v; = ps and v;}rl = ¢s. More-
over, the word pg~' is reduced since s is the longest common suffix of v; and
v;}rl. Thus we can change the last n — i 4+ 2 terms of the sequence formed by
(uj,vj,w;)1<j<n—1 followed by (un,1,vn), (Unt1, Unt1,1) into

(uiapu S’U}i), (ui+18_17 17 p(swi-i-l))u sy (p(un8_1)7 17 S’Un), (un+18_17 q_17 1)
(see Figure ). Stce the word pg~! is reduced, the new sequence is admissible.

U; Vi N Ui i1 Ui Wit2 Unp, n _UnP_ Unt1
@ O C @ @ @ O @ @ G @ O

Figure 6.5: The word y; - - - Yn+1-

This shows that y; -+ -y, #Z 1 for any sequence y1,...,y, € X U X! such

that y;y;+1 Z 1 for 1 <i < n. Thus X is free. ]
urationTheorem aBidet
We now give a proof of Theorem Elz [t uses Proposition Ei HI

lsaturationTheorem

Proof of Theorem [5.4. Let F be an acyclic set and let X C F' be a bifix code.
We have to prove that X*NF = (X)N F. Since X*NF C (X)NF, we only
need to prove the reverse inclusion.

Consider the bifix code Z generating the submonoid recogni ecl1 ?ﬁl ;cgll% coset
automaton Bx associated to X. Set Y = ZN F. By Theorem E l|7 Y is a basis

of (Y).
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Bidet

By Proposition ﬁ%ﬁave X CZ and thus X CY.

Since any reversible a tomaton is minimal and since the automaton By is
reversible by Proposition , 18 1s equal to the minjmal JAautomaton of Z*. Let

xercisebl

K be the subgroup generated by Z. By Proposition Ea, we have K N A* = Z*.

This shows that

(X)NFCKNF=KNA*NF=Z"NF=Y"NFCY".

The first inclusion holds because X C Z implies (X) C K. The last equality
follows from the fact that if z;---2, € F with z1,...,2, € Z, then each z; is
in F' (because F is factorial) and hence in ZNF =Y. Thus (X)NF C Y™
Consider # € (X)NF. Then x = z1---x, with 2; € X U X~1. But since
(X)NF CY* we have also = y; - -y, with y; € Y. Since X C Y and since
Y is free, this forces n = m and z; = y;. Thus all x; are in X and z is in X*.
This shows that (X) N F C X* which was to be proved. "

The proof of Theorem Hlsggeﬁot only that bifix codes in acyclic sets are
free, but also that, in a sense made more precise below, the associated reductions
are of low complexity.

We first define the heigth of w on AUA™! equivalent to 1 as the least integer
h such that w is a concatenation of words of the form w = uvu~! where u is a
word on AU A~! and v is a word of heigth h — 1 equivalent to 1. The empty
word is the only word equivalent to 1 of heigth 0.

We then define the height of an arbitrary word w on AU A~! as the least
integer h such that w = zgv121 - - - V2, With zg, ..., z, equivalent to 1 of height
at most h and vq - - - v,, reduced.

In this way, any word on AU A~! has finite height. For example, the word
aa~tcbb~! has heigth 1 and aaa='bb~ta~! has height 2. The words of height 0
are the reduced words.

Proposition 6.11 Let F' be an acyclic set and let X C F be a bifiz code. Any
word y = yy -+ Yo with y; € X UX ! for 1 < i < n such that y;y;11 £ 1 for
1 <i<n—1 has height at most 1.

isTheorem
Proof. The proof of Theorem ﬁmat Y = ZQU121 * * * Zn—1VUnZn Where
(i) zo,...,2n have height at most 1,
(ii) vy --- vy, is reduced.
Thus y has height at most 1. L]

leBasisJulien
Example 6.12 Let X be as in Example Eba The word be(ac)™tab, which
reduces to bb, has height 1.
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