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Abstract4

Given a set F of words, one associates to each word w in F an undi-5

rected graph, called its extension graph, and which describes the possible6

extensions of w in F on the left and on the right. We investigate the7

family of sets of words defined by the property of the extension graph of8

each word in the set to be acyclic or connected or a tree. We prove that9

in a uniformly recurrent tree set, the sets of first return words are bases10

of the free group on the alphabet. Concerning acyclic sets, we prove as a11

main result that a set F is acyclic if and only if any bifix code included12

in F is a basis of the subgroup that it generates.13
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1 Introduction36

This paper studies properties of classes of sets which occur as the set of factors of37

infinite words of linear factor complexity. It is part of a series of papers devoted38

to this subject initiated in [3]. These classes of sets, called acyclic, connected39

or tree sets, are defined by a limitation to the possible two-sided extensions of40

a word of the set. We will see that Sturmian sets are tree sets (by Sturmian we41

mean the sets of factors of strict episturmian words, also called Arnoux-Rauzy42

words). Moreover, the sets obtained by coding a regular interval exchange set43

are also tree sets (see [5]). Any word w in a tree set is neutral in the sense that44

the number of pairs (a, b) of letters such that awb ∈ F is equal to the number45

of letters a such that aw ∈ F plus the number of letters b such that wb ∈ F46

minus 1. We express this property saying that it is a neutral set.47

We study sets of first return words in a tree set F . For this, we use Rauzy48

graphs, which are restrictions of a de Bruijn graph to the set of vertices formed49

by the words of given length in a set F . We first show that if F is a recurrent50

connected set, the group described by any Rauzy graph of F containing the51

alphabet A, with respect to some vertex is the free group on A (Theorem
proposition3
5.2).52

Next, we prove that in a uniformly recurrent connected set containing A, the53

set of first return words to any word in F generates the free group on A (Theo-54

rem
theoremJulien
5.6). Next, we prove that if F is a uniformly recurrent tree set containing55

A, the set of first return words to any word of F is a basis of the free group on56

A (Corollary
corollaryJulien
5.8). The proof uses the fact that in a uniformly recurrent neutral57

set F containing the alphabet A, the number of first return words to any word58

of F is equal to Card(A), a result obtained in [1].59

Our main result is that a set F is acyclic if and only if any bifix code60

contained in F is a basis of the subgroup that it generates (Theorem
basisTheorem
6.1 referred61

to as the Freeness Theorem). This is related to the main result of [3], referred to62

as the Finite Index Basis Theorem, proving that, in a Sturmian set F , a finite63

bifix code is F -maximal of F -degree d if and only if it is a basis of a subgroup64

of index d. This result is generalized in [5] to uniformly recurrent tree sets. The65

proof uses the results of this paper and, in particular Corollary
corollaryJulien
5.8. In the case66

of an acyclic set, the subgroup generated by a bifix code need not be of finite67

index, even if the bifix code is F -maximal (and even if the set F is uniformly68

recurrent, see Example
exampleBasisJulien
6.4).69
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We also prove a more technical result. We say that a submonoid M of the70

free monoid is saturated in a set F if the subgroupH of the free group generated71

by M satisfies M ∩ F = H ∩ F . We prove that if F is acyclic, the submonoid72

generated by a bifix code contained in F is saturated in F (Theorem
saturationTheorem
6.2 referred73

to as the Saturation Theorem). This property plays an important role in the74

proof of the Finite Index Basis Theorem.75

Our paper is organized as follows.76

In Section
sectionPreliminaries
2 we present the definitions and basic properties used in the paper.77

In Section
sectionNeutrality
3, we introduce strong, weak and neutral sets. We prove a re-78

sult on the cardinality of sets of first return words (Theorem
theoremCardReturn
3.6) which is a79

generalization of a result from [1].80

In Section
sectionAcyclic
4, we define the extension graph of a word with respect to a set F .81

We define acyclic, connected and tree sets by the corresponding property of the82

extension graph of each word in the set to be acyclic, connected or a tree. We83

also introduce more general extension graphs where left (resp. right) extensions84

are relative to a finite suffix (resp. prefix) code. We prove that in acyclic sets,85

these more general extension graphs are also acyclic (Proposition
PropStrongTreeCondition
4.7).86

In Section
sectionReturnTreeSets
5, we study sets of first return words in tree sets. We first show87

that if F is a recurrent connected set, the group described by any Rauzy graph88

of F containing the alphabet A, with respect to some vertex is the free group89

on A (Theorem
proposition3
5.2). Next, we prove that in a uniformly recurrent connected90

set F containing A, the set of first return words to any word of F generates91

the free group on A (Theorem
theoremJulien
5.6). We use Theorem

theoremCardReturn
3.6 to prove that if F is92

additionally acyclic, then every set of first return words is a basis of the free93

group on A (Corollary
corollaryJulien
5.8).94

In Section
sectionMainResult
6 we state and prove our main results (Theorem

basisTheorem
6.1 and Theo-95

rem
saturationTheorem
6.2). The proof uses the notion of incidence graph of a bifix code (already96

introduced in [3]).97

Bifix codes and
Sturmian words [3]

Acyclic, connected
and tree sets

Two-sided Rauzy
induction [8]

The finite
index basis property [5]

Maximal bifix
decoding [6]

Natural coding
of linear involutions[7]

Some results used in this paper are proved in our first paper [3]. In turn, the98

results of this paper are used in other papers in preparation on similar objects.99

We include for clarity the logical dependency between these papers.100
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2 Preliminaries103

sectionPreliminaries

In this section, we first recall some definitions concerning words, codes and104

automata (see [4] for a more complete presentation). We give the definition of105

recurrent and uniformly recurrent sets of words. We also give the definitions106

and basic properties of bifix codes (see [3] for a more detailed presentation).107

We define basic notions concerning automata. We present the class of reversible108

automata and its connection with the Stallings automaton of a subgroup of a109

free group.110

2.1 Recurrent sets111

Let A be a finite nonempty alphabet. All words considered below, unless stated112

explicitly, are supposed to be on the alphabet A. We denote by A∗ the set of113

all words on A. We denote by 1 or by ε the empty word. We denote by |x|114

the length of a word x. A set of words is said to be factorial if it contains the115

factors of its elements.116

For a set X of words and a word u, we denote117

u−1X = {v ∈ A∗ | uv ∈ X}.

the right residual of X with respect to u.118

Let F be a set of words on the alphabet A. For w ∈ F , we denote119

L(w) = {a ∈ A | aw ∈ F}

R(w) = {a ∈ A | wa ∈ F}

E(w) = {(a, b) ∈ A×A | awb ∈ F}

and further120

ℓ(w) = Card(L(w)), r(w) = Card(R(w)), e(w) = Card(E(w)).

A word w is right-extendable if r(w) > 0, left-extendable if ℓ(w) > 0 and biex-121

tendable if e(w) > 0. A factorial set F is called right-essential (resp. left-122

essential, resp. biessential) if every word in F is right-extendable (resp. left-123

extendable, resp. biextendable).124

A word w is called right-special if r(w) ≥ 2. It is called left-special if ℓ(w) ≥125

2. It is called bispecial if it is both right and left-special.126

A set of words F is recurrent if it is factorial and if for every u,w ∈ F there127

is a v ∈ F such that uvw ∈ F . A recurrent set F 6= {1} is biessential.128

A set of words F is said to be uniformly recurrent if it is right-essential and129

if, for any word u ∈ F , there exists an integer n ≥ 1 such that u is a factor of130

every word of F of length n. A uniformly recurrent set is recurrent.131
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A morphism f : A∗ → B∗ is a monoid morphism from A∗ into B∗. If a ∈ A132

is such that the word f(a) begins with a and if |fn(a)| tends to infinity with133

n, there is a unique infinite word denoted fω(a) which has all words fn(a) as134

prefixes. It is called a fixpoint of the morphism f .135

A morphism f : A∗ → A∗ is called primitive if there is an integer k such136

that for all a, b ∈ A, the letter b appears in fk(a). If f is a primitive morphism,137

the set of factors of any fixpoint of f is uniformly recurrent (see [13] Proposition138

1.2.3 for example).139

An infinite word is episturmian if the set of its factors is closed under reversal140

and contains for each n at most one word of length n which is right-special141

(see [3] for more references). It is a strict episturmian word if it has exactly142

one right-special word of each length and moreover each right-special factor u143

is such that r(u) = Card(A).144

A Sturmian set is a set of words which is the set of factors of a strict epis-145

turmian word. Any Sturmian set is uniformly recurrent (see [3]).146

exampleFibonacci Example 2.1 Let A = {a, b}. The Fibonacci morphism is the morphism f :147

A∗ → A∗ defined by f(a) = ab and f(b) = a. The Fibonacci word148

x = abaababaabaababaababa . . .

is the fixpoint x = fω(a) of the Fibonacci morphism. It is a Sturmian word149

(see [17]). The set F (x) of factors of x is the Fibonacci set.150

exampleTribonacci Example 2.2 Let A = {a, b, c}. The Tribonacci word151

x = abacabaabacababacabaabacaba · · ·

is the fixpoint x = fω(a) of the morphism f : A∗ → A∗ defined by f(a) = ab,152

f(b) = ac, f(c) = a. It is a strict episturmian word (see [14]). The set F (x) of153

factors of x is the Tribonacci set.154

2.2 Free groups155

In this section, we fix our notation concerning free groups (see [18] for example).156

We denote by A◦ the free group on the alphabet A. It is the set of all157

words on the alphabet A ∪ A−1 which are reduced, in the sense that they do158

not have any factor aa−1 or a−1a for a ∈ A. Note that the exponent −1 used159

here should not be confused with the one used to define the residual of a set160

of words. We extend the bijection a 7→ a−1 to an involution on A ∪ A−1 by161

defining (a−1)−1 = a.162

For any word w on A ∪ A−1 there is a unique reduced word equivalent to163

w modulo the relations aa−1 ≡ a−1a ≡ 1 for a ∈ A. If u is the reduced164

word equivalent to w, we say that w reduces to u and we denote w ≡ u. We165

also denote u = ρ(w). The product of two elements u, v ∈ A◦ is the reduced166

word w equivalent to uv, namely ρ(uv). If w = a1 · · ·an with ai ∈ A ∪ A−1
167

is a reduced word, its inverse is the reduced word denoted w−1 and defined by168

w−1 = a−1
n · · · a−1

1 . It is easy to verify that indeed ww−1 ≡ w−1w ≡ 1.169

For a set X of reduced words, we denote X−1 = {x−1 | x ∈ X}.170
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2.3 Bifix codes171

A prefix code is a set of nonempty words which does not contain any proper172

prefix of its elements. A suffix code is defined symmetrically. A bifix code is a173

set which is both a prefix code and a suffix code.174

We denote by X∗ the submonoid generated by a set X of words. The175

submonoid M generated by a prefix code satisfies the following property: if176

u, uv ∈ M , then v ∈ M . Such a submonoid is said to be right unitary. The177

definition of a left unitary submonoid is symmetric and the submonoid generated178

by a suffix code is left unitary. Conversely, any right unitary (resp. left unitary)179

submonoid of A∗ is generated by a prefix code (resp. a suffix code) (see [4]).180

A coding morphism for a prefix code X ⊂ A+ is a morphism f : B∗ → A∗
181

which maps bijectively B onto X (Note that in this paper we use ⊂ to denote182

the inclusion allowing equality).183

Let F be a set of words. A prefix code X ⊂ F is F -maximal if it is not184

properly contained in any prefix code Y ⊂ F .185

A set X ⊂ F is right F -complete if any word of F is a prefix of a word in186

X∗.187

For a factorial set F , a prefix code is F -maximal if and only if it is right188

F -complete (Proposition 3.3.2 in [3]).189

Similarly a bifix code X ⊂ F is F -maximal if it is not properly contained in190

a bifix code Y ⊂ F . For a recurrent set F , a finite bifix code is F -maximal as a191

bifix code if and only if it is an F -maximal prefix code (see [3], Theorem 4.2.2).192

For a uniformly recurrent set F , any finite bifix code X ⊂ F is contained in a193

finite F -maximal bifix code (Theorem 4.4.3 in [3]).194

A parse of a word w with respect to a bifix code X is a triple (v, x, u) such195

that w = vxu where v has no suffix in X , u has no prefix in X and x ∈ X∗.196

We denote by δX(w) the number of parses of w. By definition, the F -degree of197

X , denoted dF (X), is the maximal number of parses of a word in F . It can be198

finite or infinite.199

Let X be a bifix code. The number of parses of a word w is also equal to200

the number of suffixes of w which have no prefix in X and to the number of201

prefixes of w which have no suffix in X (see Proposition 6.1.6 in [4]).202

The set of internal factors of a set of words X , denoted I(X) is the set of203

words w such that there exist nonempty words u, v with uwv ∈ X .204

Let F be a recurrent set and let X be a finite bifix code. By Theorem 4.2.8205

in [3], X is F -maximal if and only if its F -degree d is finite. Moreover, in this206

case, a word w ∈ F is such that δX(w) < d if and only if it is an internal factor207

of X , that is208

I(X) = {w ∈ F | δX(w) < d}.

In particular, any word of X of maximal length has d parses.209

exampleUniform Example 2.3 Let F be a recurrent set. For any integer n ≥ 1, the set F ∩An
210

is an F -maximal bifix code of F -degree n.211

6



2.4 Automata and groups212

sectionAutomata

We denote A = (Q, i, T ) a deterministic automaton with a set Q of states, i ∈ Q213

as initial state and T ⊂ Q as set of terminal states. For p ∈ Q and w ∈ A∗, we214

denote p · w = q if there is a path labeled w from p to the state q and p ·w = ∅215

otherwise. The automaton is finite when Q is finite.216

The set recognized by the automaton is the set of words w ∈ A∗ such that217

i · w ∈ T .218

All automata considered in this paper are deterministic and we simply call219

them ‘automata’ to mean ‘deterministic automata’.220

The automaton A is trim if for any q ∈ Q, there is a path from i to q and a221

path from q to some t ∈ T .222

An automaton is called simple if it is trim and if it has a unique terminal223

state which coincides with the initial state. The set recognized by a simple224

automaton is a right unitary submonoid. Thus it is generated by a prefix code.225

An automaton A = (Q, i, T ) is complete if for any state p ∈ Q and any letter226

a ∈ A, one has p · a 6= ∅.227

For a nonempty set L ⊂ A∗, we denote by A(L) the minimal automaton of228

L. The states of A(L) are the nonempty residuals u−1L for u ∈ A∗. For u ∈ A∗
229

and a ∈ A, one defines (u−1L) ·a = (ua)−1L. The initial state is the set L itself230

and the terminal states are the sets u−1L for u ∈ L.231

Let X be a prefix code and let P be the set of proper prefixes of X . The232

literal automaton of X∗ is the simple automaton A = (P, 1, 1) with transitions233

defined for p ∈ P and a ∈ A by234

p · a =











pa if pa ∈ P ,

1 if pa ∈ X ,

∅ otherwise.

One verifies that this automaton recognizes X∗. Thus for any prefix code X ⊂235

A∗, there is a simple automaton A = (Q, 1, 1) which recognizes X∗. Moreover,236

the minimal automaton of X∗ is simple. Note that the literal automaton is not237

minimal in general (see Example
exampleLiteral
2.4).238

exampleLiteral Example 2.4 LetX = {aa, ab, bba, bbb}. The literal and the minimal automata239

of X∗ are represented in Figure
figLiteralMinimal
2.1 (the initial state is indicated by an incoming240

arrow and the terminal states by an outgoing one).

a 1 b

bb

a

a, b b

ba, b

2 1

3

a

a, b

bb

Figure 2.1: The literal and the minimal automata of X∗. figLiteralMinimal

241
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A simple automaton A = (Q, 1, 1) is said to be reversible if for any a ∈ A, the242

partial map ϕA(a) : p 7→ p · a is injective. This condition allows to construct243

the reversal of the automaton as follows: whenever q · a = p in A, then p · a = q244

in the reversal automaton. The state 1 is the initial and the unique terminal245

state of this automaton. Any reversible automaton is minimal [20]. The set246

recognized by a reversible automaton is a submonoid generated by a bifix code.247

A simple automaton A = (Q, 1, 1) is a group automaton if for any a ∈ A248

the map ϕA(a) : p 7→ p · a is a permutation of Q. Thus in particular, a group249

automaton is reversible. A finite reversible automaton which is complete is a250

group automaton.251

The following result is from [20] (see also Exercise 6.1.2 in [4]). We denote252

by 〈X〉 the subgroup of the free group A◦ generated by X .253

lemmaExercise612 Proposition 2.5 Let X ⊂ A+ be a bifix code. The following conditions are254

equivalent.255

(i) X∗ = 〈X〉 ∩ A∗;256

(ii) the minimal automaton of X∗ is reversible.257

The following example shows that for a bifix codeX , the minimal automaton258

of X∗ is not reversible in general.259

Example 2.6 Let X = {aa, ab, ba, bbb}. Then X is a bifix code. The minimal260

automaton of X∗ is represented in Figure
figNonReversible
2.2. It is not reversible since 2 · a =

2 1 3

4

a

a, b b

a

bb

Figure 2.2: The minimal automaton of X∗ figNonReversible

261

3·a = 1. Condition (i) of Proposition
lemmaExercise612
2.5 is not either true since bb = ba(aa)−1ab262

is in 〈X〉 ∩ A∗ but not in X∗.263

Let A = (Q, i, T ) be a deterministic automaton. A generalized path is a264

sequence (p0, a1, p1, a2, . . . , pn−1, an, pn) with ai ∈ A ∪ A−1 and pi ∈ Q, such265

that for 1 ≤ i ≤ n, one has pi−1 ·ai = pi if ai ∈ A and pi ·a
−1
i = pi−1 if ai ∈ A−1.266

The label of the generalized path is the reduced word equivalent to a1a2 · · · an.267

It is an element of the free group A◦. The set described by the automaton is268

the set of labels of generalized paths from i to a state in T . Since a path is a269

particular case of a generalized path, the set recognized by an automaton A is270

a subset of the set described by A.271

The set described by a simple automaton is a subgroup of A◦. It is called272

the subgroup described by A.273

8



1 2a

b

a

Figure 2.3: A simple automaton describing the free group on {a, b}. figDescribed

exGroupRecognized Example 2.7 Let A = (Q, 1, 1) be the automaton represented in Figure
figDescribed
2.3.274

The submonoid recognized by A is {a, ba}∗. Since {a, ba} is a basis of the free275

group on A, the subgroup described by A is the free group on A.276

The following result is Proposition 6.1.3 in [3].277

propGeneratedGroup Proposition 2.8 Let A be a simple automaton and let X be the prefix code278

generating the submonoid recognized by A. The subgroup described by A is279

generated by X. If moreover A is reversible, then X∗ = 〈X〉 ∩ A∗.280

For any subgroup H of A◦, the submonoid H ∩ A∗ is right and left unitary281

and thus it is generated by a bifix code (see [4], Example 2.2.6). A subgroup282

H of the free group on A is positively generated if there is a subset of A∗ which283

generates H . In this case, the set H ∩A∗ generates the subgroup H . Let X be284

the bifix code which generates the submonoid H ∩ A∗. Then X generates the285

subgroup H . This shows that, for a positively generated subgroup H , there is286

a bifix code which generates H .287

A subgroup of finite index of the free group is positively generated. This is288

well-known (see e.g. Proposition 6.1.6 in [3]) but it can be verified directly as289

follows.290

Indeed let H be a subgroup of finite index of the free group. Let ψ be the291

morphism from A◦ onto the finite group G which is the representation of A◦
292

on the cosets of H . Let ϕ be the restriction of ψ to A∗. Since G is finite, and293

since any submonoid of a finite group is a subgroup, ϕ is surjective. Let us show294

that H is generated by the set X = H ∩ A∗. Consider a reduced word w ∈ H .295

If w contains no occurrence of a letter in A−1, then w is in X . Otherwise,296

set w = ua−1v for a ∈ A and u, v reduced words. Since ϕ is surjective, there297

exist words r, s ∈ A∗ such that ϕ(r) = ψ(u)−1 and ϕ(s) = ψ(v)−1. Arguing by298

induction on the number of occurrences of letters in A−1, we may assume that299

ur, sv ∈ 〈X〉. But sar = svw−1ur and w = ur(sar)−1sv. The first equality300

shows that sar ∈ H and consequently sar ∈ X . The second one thus implies301

w ∈ 〈X〉.302

The following result is contained in Proposition 6.1.4 and 6.1.5 in [3].303

propStallings Proposition 2.9 For any positively generated subgroup H of the free group304

on A, there is a unique reversible automaton A such that H is the subgroup305

described by A. The subgroup is of finite index if and only if this automaton is306

a finite group automaton.307

The reversible automaton A such that H is the subgroup described by A is308

called the Stallings automaton of the subgroup H . It can also be defined for a309

9



subgroup which is not positively generated (see [2] or [15]).310

The Stallings automaton of the subgroup H generated by a bifix code X ⊂311

A∗ can be obtained as follows. Start with the minimal automaton A = (Q, 1, 1)312

of X∗. Then, if there are distinct states p, q ∈ Q and a ∈ A such that p ·a = q ·a,313

merge p, q (such a merge is called a Stallings folding). Iterating this operation314

leads to a reversible automaton which is the Stallings automaton of H (see [15]).315

A subgroup H of the free group has finite index if and only if its Stallings316

automaton is a finite group automaton (see Proposition
propStallings
2.9). In this case, the317

index of H is the number of states of the Stallings automaton.318

Example 2.10 Let X = {aa, ab, ba}. The minimal automaton of X∗ is rep-319

resented in Figure
figReversible
2.4 on the left. It is not reversible because 2 · a = 3 · a.320

Merging the states 2 and 3, we obtain the reversible automaton of Figure
figReversible
2.4 on321

the right. It is actually a group automaton, which is the Stallings automaton322

of the subgroup H = 〈X〉. Since the automaton describes the group Z/2Z, we

2 1 3

a

a, b b

a

1 2

a, b

a, b

Figure 2.4: A Stallings folding. figReversible

323

conclude that the subgroup generated by X is of index 2 in the free group on324

A.325

3 Strong, weak and neutral sets326

sectionNeutrality
In this section, we introduce strong, weak and neutral sets. We first prove some327

results concerning the factor complexity of acyclic, connected and tree sets. We328

prove a result on the cardinality of sets of first return words (Theorem
theoremCardReturn
3.6)329

which is a generalization of a result from [1].330

3.1 Strong, weak and neutral words331

Let F be a factorial set. For a word w ∈ F , let332

m(w) = e(w) − ℓ(w)− r(w) + 1.

We say that, with respect to F , w is strong if m(w) > 0, weak if m(w) < 0 and333

neutral if m(w) = 0.334

A biextendable word w is called ordinary if E(w) ⊂ a×A ∪ A× b for some335

(a, b) ∈ E(w) (see [9], Chapter 4). If F is biessential any ordinary word is336

neutral. Indeed, one has E(w) = (a× (R(w) \ b)) ∪ ((L(w) \ a)× b) ∪ (a, b) and337

thus e(w) = ℓ(w) + r(w) − 1.338
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exSturmianIsOrdinary Example 3.1 In a Sturmian set, any word is ordinary. Indeed, for any bispecial339

word w, there is a unique letter a such that aw is right-special and a unique340

letter b such that wb is left-special. Then awb ∈ F and E(w) = a×A ∪A× b.341

We say that a set F is strong (resp. weak, resp. neutral) if it is factorial and342

every word w ∈ F is strong or neutral (resp. weak or neutral, resp. neutral).343

The sequence (pn)n≥0 with pn = Card(F∩An) is called the factor complexity344

(or complexity) of F . Set k = Card(F ∩ A)− 1.345

propComplexityNeutral Proposition 3.2 The factor complexity of a strong (resp. weak, resp. neutral)346

set F is at least (resp. at most, resp. exactly) equal to kn+ 1.347

Given a factorial set F with complexity pn, we denote sn = pn+1 − pn the348

first difference of the sequence pn and bn = sn+1− sn its second difference. The349

following is from [11] (it is also part of Theorem 4.5.4 in [9, Chapter 4]).350

lemmaEnum Lemma 3.3 We have351

bn =
∑

w∈An∩F

m(w) and sn =
∑

w∈An∩F

(r(w) − 1)

for all n ≥ 0.352

Proof. Since F is factorial, we have for all n353

∑

w∈An∩F

e(w) = pn+2,
∑

w∈An∩F

ℓ(w) =
∑

w∈An∩F

r(w) = pn+1.

Thus354

∑

w∈An∩F

m(w) =
∑

w∈An∩F

(e(w) − ℓ(w)− r(w) + 1)

= pn+2 − pn+1 − pn+1 + pn = sn+1 − sn = bn,

giving the first formula. Next355

∑

w∈An∩F

(r(w)−1) =
∑

w∈An∩F

(Card(wA∩F )−1) = Card(F∩An+1)−Card(F∩An)

giving the second formula.356

Proposition
propComplexityNeutral
3.2 follows easily from the following lemma.357

lemmasn Lemma 3.4 If F is strong (resp. weak, resp. neutral), then sn ≥ k (resp.358

sn ≤ k, resp. sn = k) for all n ≥ 0.359

Proof. Assume that F is strong. Then m(w) ≥ 0 for all w ∈ F and thus, by360

Lemma
lemmaEnum
3.3, the sequence sn is nondecreasing. Since s0 = k, this implies sn ≥ k361

for all n. The proof of the other cases is similar.362

We now give an example of a set of complexity 2n+ 1 on an alphabet with363

three letters which is not neutral.364
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exampleChacon Example 3.5 Let A = {a, b, c}. The Chacon word on three letters is the365

fixpoint x = fω(a) of the morphism f from A∗ into itself defined by f(a) = aabc,366

f(b) = bc and f(c) = abc. Thus x = aabcaabcbcabc · · · . The Chacon set is the367

set F of factors of x. It is of complexity 2n+ 1 (see [13] Section 5.5.2).368

It contains strong, neutral and weak words. Indeed, F∩A2 = {aa, ab, bc, ca, cb}369

and thus m(ε) = 0 showing that the empty word is neutral. Next E(abc) =370

{(a, a), (c, a), (a, b), (c, b)} shows that m(abc) = 1 and thus abc is strong. Fi-371

nally, E(bca) = {(a, a), (c, b)} and thus m(bca) = −1 showing that bca is weak.372

3.2 Return words373

Let F be a set of words. For w ∈ F , let374

ΓF (w) = {x ∈ F | wx ∈ F ∩A+w} and Γ′
F (w) = {x ∈ F | xw ∈ F ∩ wA+}

be respectively the set of right return words and of left return words to w. If F375

is recurrent, the sets ΓF (w) and Γ′
F (w) are nonempty. Let376

RF (w) = ΓF (w) \ ΓF (w)A
+ and R′

F (w) = Γ′
F (w) \A

+Γ′
F (w)

be respectively the set of first right return words and the set of first left return377

words to w. Note that wRF (w) = R′
F (w)w.378

Note that a recurrent set F is uniformly recurrent if and only if the set379

RF (w) is finite for any w ∈ F . Indeed, if N is the maximal length of the words380

in RF (w) for a word w of length n, then two successive occurrences of w in a381

word of F are separated by a word of length at most N − n. Thus any word in382

F of length N + n contains an occurrence of w. The converse is obvious.383

The following result has been proved for neutral sets in [1].384

theoremCardReturn Theorem 3.6 Let F be a uniformly recurrent set containing the alphabet A. If385

F is strong (resp. weak, resp. neutral), then for every w ∈ F , the set RF (w)386

has at least (resp. at most, resp. exactly) Card(A) elements.387

We will consider rooted trees with the usual notions of root, node, child and388

parent. The following lemma is well-known as a lemma on trees relating the389

number of its leaves to the sum of the degrees of its internal nodes.390

lemmaArity Lemma 3.7 Let F be a prefix-closed set. Let X be a finite F -maximal prefix391

code and let P be the set of its proper prefixes. Then Card(X) = 1+
∑

p∈P (r(p)−392

1).393

The following lemma is also well known.394

lemmaCombinat Lemma 3.8 Let T be a finite tree with root r and a set P of leaves, let π be a395

function assigning to each node an integer such that for each internal node n,396

π(n) ≤
∑

π(m) where the sum runs over the children of n. Then
∑

n∈P π(n) ≥397

π(r).398
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A symmetric statement holds if π is such that π(n) ≥
∑

π(m) for each in-399

ternal node n with the conclusion that
∑

n∈P π(n) ≤ π(r).400

401

Proof of Theorem
theoremCardReturn
3.6. For a word x, we denote π(x) = r(x)− 1 and for a set X402

of words, π(X) =
∑

x∈X π(x).403

Assume first that F is strong. Let w ∈ F and let n = |w|. Set S = F ∩An.404

By Lemmas
lemmaEnum
3.3 and

lemmasn
3.4, and since F contains A, we have π(S) ≥ Card(A)− 1.405

For s ∈ S, let Ps be the set of proper prefixes of wRF (w) ending with s.406

For each s ∈ S, the set Ps is a suffix code. Indeed, since a word of Ps is a407

proper prefix of wRF (w) of length at least equal to the length of w, the word w408

occurs in a word of Ps exactly once and as a prefix. Let p, q ∈ Ps with p suffix409

of q, we have q = tp. Then p = wv and thus q = twv. Since the only occurrence410

of w in q is as a prefix, we have t = 1. Thus Ps is a suffix code.411

Since F is uniformly recurrent, the set Ps is finite. We apply Lemma
lemmaCombinat
3.8 to412

the tree Ts formed of the suffixes of Ps ending with s, considering each word413

z ∈ Ts as the father of az for a ∈ A. The root of the tree is s. Since each t ∈ Ts414

is strong or neutral, we have415

∑

a∈L(t)

π(at) =
∑

a∈L(t)

(r(at) − 1) = e(t)− ℓ(t) ≥ π(t).

Thus we have π(Ps) ≥ π(s) by Lemma
lemmaCombinat
3.8.416

Let P = ∪s∈SPs. Since the sets Ps are pairwise disjoint, we have π(P ) =417

∑

s∈S π(Ps). Thus π(P ) ≥ π(S).418

Let Q be the set of proper prefixes of RF (w) and set G = w−1F . Since F419

is recurrent, the set RF (w) is a G-maximal prefix code. Thus we may apply420

Lemma
lemmaArity
3.7 to the prefix-closed set G and the G-maximal prefix code RF (w).421

Since for any letter a, xa ∈ G if and only if wxa ∈ F , we obtain Card(RF (w)) =422

1 + π(wQ).423

Next, P = wQ. Indeed, if q ∈ Q then wq ∈ P , hence wQ ⊂ P . Conversely,424

each word in P has the form wq with q ∈ Q, so P ⊂ wQ.425

We conclude that426

Card(RF (w)) − 1 = π(P ) ≥ π(S) ≥ Card(A) − 1.

If F is weak, then by Lemma
lemmasn
3.4, π(S) ≤ Card(A)− 1. The dual of Lemma

lemmaCombinat
3.8427

gives π(Ps) ≤ π(s) and thus π(P ) ≤ π(S). Thus428

Card(RF (w)) − 1 = π(P ) ≤ π(S) ≤ Card(A) − 1.

429

The following example shows that in a set of complexity kn+ 1 the number430

of first right return words need not be equal to k + 1.431

Example 3.9 Let F be the Chacon set (see Example
exampleChacon
3.5). We have RF (a) =432

{a, bca, bcbca} but RF (ab) = {caab, cbcab}.433
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4 Acyclic, connected and tree sets434

sectionAcyclic
We introduce in this section the notion of extension graph of a word. We de-435

fine acyclic (resp. connected, resp. tree) sets by the fact that all the extension436

graphs of its elements are acyclic (resp. connected, resp. trees). We give ex-437

amples showing that a uniformly recurrent acyclic set may not be a tree set438

(Example
exampleJulienAcyclic
4.4) and that a uniformly recurrent neutral set may not be acyclic439

(Example
exampleJulien
4.5). We introduce a generalization of the extension graphs called440

generalized extension graphs. We give conditions under which generalized ex-441

tension graphs are acyclic (Proposition
PropStrongTreeCondition
4.7).442

4.1 Extension graphs443

Let F be a set of words. For a word w ∈ F , we consider an undirected graph444

G(w) called its extension graph in F and defined as follows. The set of vertices445

is the disjoint union of L(w) and R(w) and its edges are the pairs (a, b) ∈ E(w).446

Example 4.1 Let F be the Tribonacci set (see Example
exampleTribonacci
2.2). The graphs G(ε)447

and G(ab) are represented in Figure
figureExtension
4.1.448

a

b

c

a

b

c

a

b

c

a

Figure 4.1: The extension graphs G(ε) and G(ab) in the Tribonacci set. figureExtension

We say that F is an acyclic (resp. a connected, resp. a tree) set if it449

is biessential and if for every word w ∈ F , the graph G(w) is acyclic (resp.450

connected, resp. a tree). Obviously, a tree set is acyclic and connected.451

Note that a biessential set F is acyclic (resp. connected) if and only if the452

graph G(w) is acyclic (resp. connected) for every bispecial word w. Indeed, if453

w is not bispecial, then G(w) ⊂ a×A or G(w) ⊂ A×a, thus it is always acyclic454

and connected.455

If the extension graph G(w) of w is acyclic, then m(w) ≤ 0. Thus w is weak456

or neutral. More precisely, one has in this case, m(w) = −c+ 1 where c is the457

number of connected components of the graph G(w).458

Similarly, if G(w) is connected, then w is strong or neutral. Thus, if F is459

an acyclic (resp. a connected, resp. a tree) set, then F is a weak (resp. strong,460

resp. neutral) set.461

Example 4.2 A Sturmian set F is a tree set. Indeed, any word w ∈ F is462

ordinary (Example
exSturmianIsOrdinary
3.1), which implies that G(w) is a tree.463

Since a tree set is neutral, we deduce from Proposition
propComplexityNeutral
3.2 the following464

statement, where k = Card(F ∩ A)− 1.465
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Proposition 4.3 The factor complexity of a tree set is kn+ 1.466

One may wonder whether the notion of a tree set is of a topological or of467

a measure-theoretic nature for the associated symbolic dynamical system. In468

particular, one may wonder if uniformly recurrent tree sets have the property469

of unique ergodicity, which means that they have a unique invariant probability470

measure (see [3] or [9] for the definition of these notions). An element of answer471

is provided by interval exchange sets. Regular interval exchange sets form a472

special case of uniformly recurrent tree sets (see [5]).473

It is well-known since [16] that there exist regular interval exchange sets474

that are not uniquely ergodic. This shows that the tree property does not imply475

unique ergodicity. However having complexity pn = kn + 1, which is a priori476

of a topological nature, implies information on invariant measures. Indeed,477

according to [10], a minimal symbolic dynamical system for which lim inf pn/n ≤478

k is such that there exist at most k ergodic invariant measures. The bound can479

even be refined to k−2 [19] by a careful inspection of the evolution of the Rauzy480

graphs. For k ≤ 2, that is for an alphabet of size at most 3 in our case, one481

gets the following [10]: a minimal symbolic system such that lim sup pn/n < 3482

is uniquely ergodic. We thus conclude that any uniformly recurrent word whose483

set of factors is a tree set on an alphabet of size at most 3 is uniquely ergodic.484

4.2 Two examples485

sectionExamples

We present two examples, due to Julien Cassaigne [12]. The first one is a486

uniformly recurrent acyclic set which is not a tree set.487

exampleJulienAcyclic Example 4.4 Let A = {a, b, c, d} and let σ be the morphism from A∗ into itself488

defined by489

σ(a) = ab, σ(b) = cda, σ(c) = cd, σ(d) = abc.

Let F be the set of factors of the infinite word σω(a) (see Figure
figureCassaigne
4.3 on the left).490

Since σ is primitive, F is uniformly recurrent. The graph G(ε) is represented in491

Figure
figureGepsilonJulien
4.2. It is acyclic with two connected components (and thus m(ε) = −1).

a a

b b

c c

d d

Figure 4.2: The graph G(ε). figureGepsilonJulien

492

We will show that for any nonempty word w ∈ F , the graph G(w) is a tree. This493

will prove that F is acyclic. We will use some properties of the set X = σ(A).494

Observe first that X is a suffix code. It has even the stronger property that495

distinct words of X end with distinct letters. The set X is not a prefix code496

but satisfies the following weaker property. If x, x′, y ∈ X and y′ ∈ X∗ are such497

that xy is a prefix of x′y′, then x = x′ (the set X said to be weakly prefix ).498
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1
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1

Figure 4.3: The words of length at most 4 of the sets F and G. figureCassaigne

As a third property, the set X has synchronizing pairs. A pair u, v of words is499

synchronizing if for all words p, q, if puvq ∈ X∗, then pu, vq ∈ X∗. For example500

(c, a) is a synchronizing pair.501

Note that if (r, s) and (u, v) are synchronizing pairs, then qrstuvw ∈ X∗
502

implies stu ∈ X∗.503

We first show the following properties.504

1. If a left-special word of length at least 5 begins with a (resp. c), it begins505

with abcda (resp. cdabc).506

2. If a right-special word of length at least 5 ends with a (resp. c), it ends507

with abcda (resp. cdabc).508

Indeed, the left-special words of length at most 5 beginning with a are the509

prefixes of abcda. This implies that any left-special word of length at least 5510

beginning with a begins with abcda.511

The three other assertions can be proved in an analogous way.512

Let us now show that for any nonempty bispecial word w ∈ F the graph513

G(w) is a tree. We use an induction on the length of the word to prove that514

the graph of a nonempty bispecial word is, according to its first and last letter,515

equal to one of the eight graphs of Figure
figureGraphs
4.4. The assertion is true for words516

of length at most 4 since a, c, abc and cda are the bispecial words of length at517

most 4.518

(a, a)

c

d

b

c

c

d

b

c

(a, c)

c

d

d

a

c

d

d

a

(c, a)

a

b

b

c

a

b

b

c

(c, c)

a

b

d

a

a

b

d

a

Figure 4.4: The graphs of bispecial words, according to their first and last letter. figureGraphs

Assume that v is a bispecial word of length at least 5. Assume first that v519

begins and ends with a. As seen previously, v begins and ends with abcda.520
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c w b c

�� ❅❅❅❅
cd ab ab cda cd

u

d w c d

�� ❅❅
abc ab ab cd abc

u

Figure 4.5: A bispecial word beginning and ending with a. figureBispecial

Set v = ucda. Since (d, ab) and (b, cd) are synchronizing and since cducda ∈521

F , we have u ∈ X∗. Since X is a suffix code, there is a unique w ∈ F such522

that u = σ(w) and moreover cw ∈ F (see Figure
figureBispecial
4.5 on the left). Since cv ∈ F ,523

and since (c, a) is synchronizing, we have also abcv ∈ F . Thus dw ∈ F (see524

Figure
figureBispecial
4.5 on the right).525

Next, we have vb ∈ F . Since (d, a) is synchronizing, we have wcd ∈ F and526

vbc ∈ F (see Figure
figureBispecial
4.5 on the right). Similarly, since vc ∈ F , we have wbc ∈ F527

and vcd ∈ F (see Figure
figureBispecial
4.5 on the left). Thus w is a bispecial word shorter528

than v which begins and ends with a. By induction hypothesis, the graph of529

w is equal to one of the two first graphs of Figure
figureGraphs
4.4. In both cases, we have530

cwb, dwc ∈ F and thus dvc, cvb ∈ F . Next dwb ∈ F if and only if cvc ∈ F . Thus531

G(w) is one of the graphs if and only if G(v) is the other one. This proves the532

property in this case.533

The other cases are treated similarly.534

We have thus shown that all extension graphs in F are acyclic and more535

precisely that G(ε) is a union of two trees and all other graphs are trees. This536

shows, in view of Lemma
lemmaEnum
3.3 that b0 = −1 and bn = 0 for all n ≥ 1. Accordingly,537

the complexity pn of F is given by p0 = 1 and pn = 2n+ 2 for n ≥ 1.538

The second example is a uniformly recurrent set which is neutral but is not539

a tree set (it is actually not even acyclic).540

exampleJulien Example 4.5 Let B = {1, 2, 3} and let τ : A∗ → B∗ be defined by541

τ(a) = 12, τ(b) = 2, τ(c) = 3, τ(d) = 13.

Let G = τ(F ) where F is the set of Example
exampleJulienAcyclic
4.4 (see Figure

figureCassaigne
4.3 on the right).542

Thus G is also the set of factors of the infinite word τ(σω(a)).543

The set Y = τ(A) is a prefix code. It is not a suffix code but it is weakly544

suffix in the sense that if x, y, y′ ∈ X and x′ ∈ X∗ are such that xy is a suffix545

of x′y′, then y = y′.546

Let g : {a, c}A∗ ∩ A∗{a, c} → B∗ be the map defined by547

g(w) =



















3τ(w) if w begins and ends with a

3τ(w)1 if w begins with a and ends with c

2τ(w) if w begins with c and ends with a

2τ(w)1 if w begins with c and ends with c

It can be verified, using the fact that Y is a prefix and weakly suffix code, that548

the set of nonempty bispecial words of G is the union of 2, 31 and of the set549
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g(S) where S is the set of nonempty bispecial words of F . One may verify that550

the words of g(S) are neutral. Since the words 2, 31 are also neutral, the set G551

is neutral.552

It is uniformly recurrent since F is uniformly recurrent and τ is a nontrivial553

morphism. The set G is not a tree set since the graph G(ε) is neither acyclic554

nor connected (see Figure
GepsilonJC
4.6).

1

1

2

2

3

3

Figure 4.6: The graph G(ε) for the set G. GepsilonJC

555

4.3 Generalized extension graphs556

Let F be a set. For w ∈ F , and U, V ⊂ F , let U(w) = {ℓ ∈ U | ℓw ∈ F} and557

let V (w) = {r ∈ V | wr ∈ F}. The generalized extension graph of w relative558

to U, V is the following undirected graph GU,V (w). The set of vertices is made559

of two disjoint copies of U(w) and V (w). The edges are the pairs (ℓ, r) for560

ℓ ∈ U(w) and r ∈ V (w) such that ℓwr ∈ F . The extension graph G(w) defined561

previously corresponds to the case where U, V = A.562

Example 4.6 Let F be the Fibonacci set. Let w = a, U = {aa, ba, b} and let563

V = {aa, ab, b}. The graph GU,V (w) is represented in Figure
figureStrongTree
4.7.

b

ba

ab

b

Figure 4.7: The graph GU,V (w). figureStrongTree

564

The following property shows that in an acyclic set, not only the extension565

graphs but, under appropriate hypotheses, all generalized extension graphs are566

acyclic.567

PropStrongTreeCondition Proposition 4.7 Let F be an acyclic set. For any w ∈ F , any finite suffix568

code U and any finite prefix code V , the generalized extension graph GU,V (w) is569

acyclic.570

The proof uses the following lemma.571

lemmaTree Lemma 4.8 Let F be a biessential set. Let w ∈ F and let U, V, T ⊂ F . Let572

ℓ ∈ F \ U be such that ℓw ∈ F . Set U ′ = (U \ T ℓ) ∪ ℓ. If the graphs GU ′,V (w)573

and GT,V (ℓw) are acyclic then GU,V (w) is acyclic.574
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Proof. Assume that GU,V (w) contains a cycle C. If the cycle does not use a575

vertex in U ′, it defines a cycle in the graph GT,V (ℓw) obtained by replacing each576

vertex tℓ for t ∈ T by a vertex t. Since GT,V (ℓw) is acyclic, this is impossible.577

If it uses a vertex of U ′ it defines a cycle of the graph GU ′,V (w) obtained578

by replacing each possible vertex tℓ by ℓ (and suppressing the possible identical579

successive edges created by the identification). This is impossible sinceGU ′,V (w)580

is acyclic. Thus GU,V (w) is acyclic.581

Proof of Proposition
PropStrongTreeCondition
4.7. We show by induction on the sum of the lengths of582

the words in U, V that for any w ∈ F , the graph GU,V (w) is acyclic.583

Let w ∈ F . We may assume that U = U(w) and V = V (w) and also that584

U, V 6= ∅. If U, V ⊂ A, the property is true since F is acyclic.585

Otherwise, assume for example that U contains words of length at least 2.586

Let u ∈ U be of maximal length. Set u = aℓ with a ∈ A. Let T = {b ∈ A | bℓ ∈587

U}. Then U ′ = (U \ T ℓ) ∪ ℓ is a suffix code and ℓw ∈ F since U = U(w).588

By induction hypothesis, the graphs GU ′,V (w) and GT,V (ℓw) are acyclic. By589

lemma
lemmaTree
4.8, the graph GU,V (w) is acyclic.590

We prove now a similar statement concerning tree sets.591

propStrongTreeConditionBis Proposition 4.9 Let F be a tree set. For any w ∈ F , any finite F -maximal592

suffix code U ⊂ F and any finite F -maximal prefix code V ⊂ F , the generalized593

extension graph GU,V (w) is a tree.594

The proof uses the following lemma, analogous to Lemma
lemmaTree
4.8.595

lemmaTreeBis Lemma 4.10 Let F be a biessential set. Let w ∈ F and let U, V ⊂ F . Let596

ℓ ∈ F \ U be such that ℓw ∈ F and Aℓ ∩ F ⊂ U . Set U ′ = (U \ Aℓ) ∪ ℓ. If the597

graphs GU ′,V (w) and GA,V (ℓw) are connected then GU,V (w) is connected.598

Proof. Since F is left essential, there is a letter a such that aℓw ∈ F and thus599

aℓ ∈ U(w). We proceed by steps.600

Step 1. As a preliminary step, let us show that for each b ∈ A such that601

bℓw ∈ F , and each v ∈ V (ℓw), there is a path from bℓ to v in GU,V (w). Indeed,602

since the graph GA,V (ℓw) is connected there is a path from b to v in this graph.603

Thus, since bℓ ∈ U(w), there is a path from bℓ to v in GU,V (w).604

Step 2. As a second step, let us show that for any m ∈ U ′(w) \ ℓ and605

v ∈ V (w), there is a path from m to v in GU,V (w). Indeed there is a path from606

m to v in GU ′,V (w). For each edge of this path of the form (ℓ, s), s is also in607

V (ℓw) and thus, by Step 1, there is a path from aℓ to s in the graph GU,V (w).608

Thus there is a path from m to v in GU,V (w).609

Step 3. For each b ∈ A such that bℓ ∈ U(w), for each v ∈ V (w), there is610

a path from bℓ to v in GU,V (w). Indeed, since GA,V (ℓw) is connected, there is611

a path from b to a in GA,V (ℓw), thus a path from bℓ to aℓ in GU,V (w). Then612

there is a path from ℓ to v in GU ′,V (w) and, in the same way as in Step 2, there613

is a path from aℓ to v in GU,V (w).614
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Consider now m ∈ U(w) and v ∈ V (w). If m /∈ Aℓ, then m ∈ U ′(w) \ ℓ and615

thus, by Step 2, there is a path from m to v in GU,V (w). Next, assume that616

m = bℓ with b ∈ A. By Step 3, there is a path from m to v in GU,V (w). This617

shows that the graph GU,V (w) is connected.618

Proof of Proposition
propStrongTreeConditionBis
4.9. The fact that GU,V (w) is acyclic follows from Propo-619

sition
PropStrongTreeCondition
4.7.620

We show by induction on the sum of the lengths of the words in U, V that621

for any w ∈ F , the graph GU,V (w) is connected.622

Assume first that U(w), V (w) ⊂ A. Since U is an F -maximal suffix code, we623

have U(w) = L(w). Similarly, V (w) = R(w). Thus the property is true since F624

is a tree set.625

Otherwise, assume for example that U(w) contains words of length at least626

2. Let u ∈ U(w) be of maximal length. Set u = aℓ with a ∈ A. Then627

U ′ = (U \ Aℓ) ∪ ℓ is an F -maximal suffix code and ℓw ∈ F since aℓ ∈ U(w).628

Moreover, we have Aℓ ∩ F ⊂ U since U is an F -maximal suffix code. Thus ℓ629

satisfies the hypotheses of Lemma
lemmaTreeBis
4.10.630

By induction hypothesis, the graphs GU ′,V (w) and GA,V (ℓw) are connected.631

By Lemma
lemmaTreeBis
4.10, the graph GU,V (w) is connected.632

Let F be a factorial set and let f be a coding morphism for a finite bifix633

code X ⊂ F . The set f−1(F ) is called a bifix decoding of F . When X is an634

F -maximal bifix code, it is called a maximal bifix decoding of F .635

decodingAcyclic Theorem 4.11 Any biessential set which is the bifix decoding of an acyclic set636

is acyclic.637

Proof. Let F be an acyclic set and let f : B∗ → A∗ be a coding morphism638

for a finite bifix code X ⊂ F such that f−1(F ) is biessential. Let u ∈ f−1(F )639

and let v = f(u). Since X is a finite bifix code, it is both a suffix code and640

a prefix code. Thus the generalized extension graph GX,X(v) is acyclic by641

Proposition
PropStrongTreeCondition
4.7. Since G(u) is isomorphic with GX,X(v), it is also acyclic. Thus642

f−1(F ) is acyclic.643

The previous statement is not satisfactory because of the assumption that644

f−1(F ) is biessential which is added to obtain the conclusion. The following645

example shows that the condition is necessary.646

exampleNotEssential Example 4.12 Let F be the Fibonacci set and let f be the coding morphism647

for X = {aa, ab} defined by f(u) = aa, f(v) = ab. Then f−1(F ) is the fi-648

nite set {u, v, vu, vv, vvu} and thus not biessential. Note however that for any649

biextendable w ∈ f−1(F ), the graph G(w) is acyclic.650

One may verify that a sufficient condition for f−1(F ) to be biessential is that651

X is an F -maximal prefix code and an F -maximal suffix code.652

The following result is a consequence of Proposition
propStrongTreeConditionBis
4.9.653
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InverseImageTree Theorem 4.13 Any maximal bifix decoding of a recurrent tree set is a tree set.654

Proof. Let f : B → X be a coding morphism for a finite F -maximal bifix655

code X . Since F is recurrent, it is biessential. It implies that f−1(F ) is also656

biessential. Indeed, let u ∈ f−1(F ) and let v = f(u). Let r, s be words of F657

longer than all words of X such that rvs ∈ F . Let r′ (resp. s′) be the suffix658

of r (resp. the prefix of s) which is in X . Then f−1(r′)uf−1(s′) is in f−1(F ).659

This shows that f−1(F ) is biessential.660

Let u ∈ f−1(F ) and let v = f(u). Since F is a tree set, it satisfies Propo-661

sition
propStrongTreeConditionBis
4.9. Since F is recurrent and X is a finite F -maximal bifix code, X is662

both an F -maximal suffix code and an F -maximal prefix code. Thus the graph663

GX,X(v) is a tree. Since G(u) is isomorphic with GX,X(v), it is also a tree.664

Thus f−1(F ) is a tree set.665

We have no example of a maximal bifix decoding of a recurrent tree set which666

is not recurrent.667

exampleF2 Example 4.14 Let F be the Fibonacci set and let X = A2 ∩ F = {aa, ab, ba}.668

Let B = {u, v, w} and let f be the coding morphism forX defined by f(u) = aa,669

f(v) = ab and f(w) = ba. Then the set f−1(F ) is a recurrent tree set which670

is actually a regular interval exchange set (see [5]). Part of the set f−1(F ) is671

represented in Figure
figureSetF
4.8.
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Figure 4.8: The set of words of f−1(F ) of length at most 4. figureSetF

672

5 Return words in tree sets673

sectionReturnTreeSets

We study sets of first return words in tree sets. We first show that if F is a674

recurrent connected set, the group described by any Rauzy graph of F con-675

taining the alphabet A, with respect to some vertex is the free group on A676

(Theorem
proposition3
5.2). Next, we prove that in a uniformly recurrent tree set containing677

A, the set of first return words to any word of F is a basis of the free group on678

A (Theorem
theoremJulien
5.6).679

21



5.1 Stallings foldings of Rauzy graphs680

sectionRauzyGraphs

We first introduce the notion of a Rauzy graph (for a more detailed exposition,681

see [9]). Let F be a factorial set. The Rauzy graph of F of order n ≥ 0 is the682

following labeled graph Gn(F ). Its vertices are the words in the set F ∩ An.683

Its edges are the triples (x, a, y) for all x, y ∈ F ∩ An and a ∈ A such that684

xa ∈ F ∩ Ay.685

propositionRauzy Proposition 5.1 Let u ∈ F ∩ An. For any word w such that uw ∈ F , there is686

a path labeled w in Gn(F ) from u to the suffix of length n of uw.687

Conversely, the label of any path of length at most n+ 1 in Gn(F ) is in F .688

Proof. We prove the first assertion by induction on the length of w. It is true if689

w is empty. Next, set w = w′a with a ∈ A and let v′ be the suffix of length n690

of uw′. By induction hypothesis, there is a path labeled w′ in Gn(F ) from u to691

the suffix v′. By definition, there is an edge from v′ to the suffix of length n of692

v′a, whence the conclusion.693

Next, let w be the label of a path of length n+1 from x to y in Gn(F ). Set694

w = ua with a ∈ A. Then we have a path from x to u labeled u and an edge695

from u to y labeled a. Thus ua ∈ F by definition of Gn(F ).696

When F is recurrent, all Rauzy graph Gn(F ) are strongly connected. Indeed,697

let u,w ∈ F ∩ An. Since F is recurrent, there is a v ∈ F such that uvw ∈ F .698

Then there is a path in Gn(F ) from u to w labeled vw by Proposition
propositionRauzy
5.1.699

The Rauzy graph Gn(F ) of a recurrent set F with a distinguished vertex700

v can be considered as a simple automaton A = (Q, v, v) with set of states701

Q = F ∩ An (see Section
sectionAutomata
2.4).702

Let G be a labeled graph on a set Q of vertices. The group described by G703

with respect to a vertex v is the subgroup described by the simple automaton704

(Q, v, v). We will prove the following statement.705

proposition3 Theorem 5.2 Let F be a recurrent connected set containing the alphabet A.706

The group described by a Rauzy graph of F with respect to any vertex is the free707

group on A.708

A morphism ϕ from a labeled graph G onto a labeled graph H is a map709

from the set of vertices of G onto the set of vertices of H such that (u, a, v) is710

an edge of H if and only if there is an edge (p, a, q) of G such that ϕ(p) = u and711

ϕ(q) = v. An isomorphism of labeled graphs is a bijective morphism.712

The quotient of a labeled graph G by an equivalence θ, denoted G/θ, is the713

graph with vertices the set of equivalence classes of θ and an edge from the class714

of u to the class of v labeled a if there is an edge labeled a from a vertex u′715

equivalent to u to a vertex v′ equivalent to v. The map from a vertex of G to716

its equivalence class is a morphism from G onto G/θ.717

We consider on a Rauzy graph Gn(F ) the equivalence θn formed by the pairs718

(u, v) with u = ax, v = bx, a, b ∈ L(x) such that there is a path from a to b719

in the extension graph G(x) (and more precisely from the vertex corresponding720
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to a to the vertex corresponding to b in the copy corresponding to L(x) in the721

bipartite graph G(x)).722

propRauzyGraphs Proposition 5.3 If F is connected, for each n ≥ 1, the quotient of Gn(F ) by723

the equivalence θn is isomorphic to Gn−1(F ).724

Proof. The map ϕ : F ∩ An → F ∩ An−1 mapping a word of F of length n725

to its suffix of length n − 1 is clearly a morphism from Gn(F ) onto Gn−1(F ).726

If u, v ∈ F ∩ An are equivalent modulo θn, then ϕ(u) = ϕ(v). Thus there727

is a morphism ψ from Gn(F )/θn onto Gn−1(F ). It is defined for any word728

u ∈ F ∩An by ψ(ū) = ϕ(u) where ū denotes the class of u modulo θn. But since729

F is connected, the class modulo θn of a word ax of length n has ℓ(x) elements,730

which is the same as the number of elements of ϕ−1(x). This shows that ψ is a731

surjective map from a finite set onto a set of the same cardinality and thus that732

it is one-to-one. Thus ψ is an isomorphism.733

Let G be a strongly connected labeled graph. Recall from Section
sectionAutomata
2.4 that a734

Stallings folding at vertex v relative to letter a of G consists in identifying the735

edges coming into v labeled a and identifying their origins. A Stallings folding736

does not modify the group described by the graph with respect to some vertex.737

Indeed, if p
a
−→ v, p

b
−→ r and q

a
−→ v are three edges of G, then adding the edge738

q
b
−→ r does not change the group described since the path q

a
−→ v

a−1

−−→ p
b
−→ r has739

the same label. Thus merging p and q does not add new labels of generalized740

paths.741

742

Proof of Theorem
proposition3
5.2. The quotient Gn(F )/θn can be obtained by a sequence of743

Stallings foldings from the graph Gn(F ). Indeed, a Stallings folding at vertex v744

identifies vertices which are equivalent modulo θn. Conversely, consider u = ax745

and v = bx, with u, v ∈ F ∩ An and a, b ∈ A such that a and b (considered as746

elements of L(x)), are connected by a path in G(x). Let a0, . . . ak and b1, · · · bk747

with a = a0 and b = ak be such that (ai, bi+1) for 0 ≤ i ≤ k−1 and (ai, bi) for 1 ≤748

i ≤ k are in E(x). The successive Stallings foldings at xb1, xb2, . . . , xbk identify749

the vertices u = a0x, a1x, . . . , akx = v. Indeed, since aixbi+1, ai+1xbi+1 ∈750

F , there are two edges labeled bi+1 going out of aix and ai+1x which end at751

xbi+1. The Stallings folding identifies aix and ai+1x. The conclusion follows by752

induction.753

Since the Stallings foldings do not modify the group described, we deduce754

from Proposition
propRauzyGraphs
5.3 that the group described by the Rauzy graph Gn(F ) is the755

same as the group described by the Rauzy graph G0(F ). Since G0(F ) is the756

graph with one vertex and with loops labeled by each of the letters, it describes757

the free group on A.758

Example 5.4 Let F be the tree set obtained by decoding the Fibonacci set into759

blocks of length 2 (see Example
exampleF2
4.14). Set u = aa, v = ab, w = ba. The graph760

G2(F ) is represented on the left of Figure
figFiboBlocks
5.1. The classes of θ2 are {wv, vv}761

{vu} and {ww, uw}. The graph G1(F ) is represented on the right.762
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Figure 5.1: The Rauzy graphs G2(F ) and G1(F ) for the decoding of the Fi-
bonacci set into blocks of length 2. figFiboBlocks

The following example shows that Proposition
propRauzyGraphs
5.3 is false for sets which are not763

connected.764

Example 5.5 Consider again the Chacon set (see Example
exampleChacon
3.5).765

The Rauzy graph G1(F ) corresponding to the Chacon set is represented in766

Figure
figChacon2
5.2 on the left. The graph G1(F )/θ1 is represented on the right. It is767

not isomorphic to G0(F ) since it has two vertices instead of one.

a b ca b c

a

b

ba

b

c

Figure 5.2: The graphs G1(F ) and G1(F )/θ1. figChacon2

768

5.2 Return words and bases of free groups769

We will prove the following result.770

theoremJulien Theorem 5.6 Let F be a uniformly recurrent connected set containing the al-771

phabet A. For any w ∈ F , the set RF (w) generates the free group on A.772

Proof. Since F is uniformly recurrent, the set RF (w) is finite. Let n be the773

maximal length of the words in wRF (w). In this way, any word in F ∩ An
774

beginning with w has a prefix in wRF (w). Moreover, recall from Proposition
propositionRauzy
5.1775

that the label of any path of length n+ 1 in the Rauzy graph Gn(F ) is in F .776

Let x ∈ F be a word of length n ending with w. Let A be the simple777

automaton defined by Gn(F ) with initial and terminal state x. Let X be the778

prefix code generating the submonoid recognized by A. Since the automaton A779

is simple, by Proposition
propGeneratedGroup
2.8, the set X generates the group described by A.780

We show that X ⊂ RF (w)
∗. Indeed, let y ∈ X . Since y is the label of a781

path starting at x and ending in x, the word xy ends with x and thus the word782

wy ends with w. Let Γ = {z ∈ A+ | wz ∈ A∗w} and let R = Γ \ ΓA+. Then R783

is a prefix code and Γ ∪ 1 = R∗, as one may verify easily. Since y ∈ Γ, we can784

write y = u1u2 · · ·um where each word ui is in R. Since F is recurrent and since785
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x ∈ F , there is v ∈ F ∩ An such that vx ∈ F and thus there is a path labeled786

x ending at the vertex x by Proposition
propositionRauzy
5.1. Thus there is a path labeled xy in787

Gn(F ). This implies that for 1 ≤ i ≤ m, there is a path in Gn(F ) labeled wui.788

Assume that some ui is such that |wui| > n. Then the prefix p of length n of789

wui is the label of a path in Gn(F ). This implies, by Proposition
propositionRauzy
5.1, that p is790

in F and thus that p has a prefix in wRF (w). But then wui has a proper prefix791

in wRF (w), a contradiction. Thus we have |wui| ≤ n for all i = 1, 2, . . . ,m.792

But then the wui are in F by Proposition
propositionRauzy
5.1 and thus the ui are in RF (w).793

This shows that y ∈ RF (w)
∗.794

Thus the group generated by RF (w) contains the group generated by X .795

But, by Theorem
proposition3
5.2, the group described by A is the free group on A. Thus796

RF (w) generates the free group on A.797

We illustrate the proof in the following example.798

Example 5.7 Let F be the Fibonacci set. We have RF (aa) = {baa, babaa}.799

The Rauzy graph G7(F ) is represented in Figure
figureRauzyGraphG_7
5.3. The set recognized by the800

automaton obtained using x = aababaa as initial and terminal state is X∗ with801

X = {babaa, baababaa}. In agreement with the proof of Theorem
theoremJulien
5.6, we have802

X ⊂ RF (aa)
∗.

abaabab baababa aababaa ababaab babaaba

abaabaa

baabaab

aabaabab

a a b a

a

b

ba

Figure 5.3: The Rauzy graph G7(F ) figureRauzyGraphG_7

803

Note that Theorem
theoremJulien
5.6 implies that Card(RF (w)) ≥ Card(A). This is also804

a consequence of Theorem
theoremCardReturn
3.6. When F is a tree set, Theorem

theoremCardReturn
3.6 implies that805

Card(RF (w)) = Card(A). Thus we have the following corollary.806

corollaryJulien Corollary 5.8 Let F be a uniformly recurrent tree set containing the alphabet807

A. Then for any w ∈ F , the set RF (w) is a basis of the free group on A.808

We show an example of a neutral set which is not a tree set and for which809

Corollary
corollaryJulien
5.8 does not hold.810

Example 5.9 Consider the set F of Example
exampleJulien
4.5. ThenRF (1) = {2231, 31, 231}.811

This set has 3 elements, in agreement with Theorem
theoremCardReturn
3.6 but it is not a basis of812

the free group on {1, 2, 3} since it generates the same group as {2, 31}.813
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6 Bifix codes in acyclic sets814

sectionMainResult
We prove in this section our main results. Bifix codes in acyclic sets are bases815

of the subgroup that they generate (Theorem
basisTheorem
6.1, referred to as the Freeness816

Theorem). Moreover, the submonoid generated by a finite bifix code X included817

in an acyclic set F is such that X∗ ∩ F = 〈X〉 ∩ F (Theorem
saturationTheorem
6.2, referred to818

as the Saturation Theorem). As a preliminary to the proof, we first define the819

incidence graph of a finite bifix code (already used in [3]). We prove a result820

concerning this graph, implying in particular that it is acyclic (Proposition
newLemma633
6.6).821

We then define the coset automaton whose states are connected components of822

the incidence graph. We prove that this automaton is the Stallings automaton823

of the subgroup 〈X〉 (Proposition
lemmaBidet
6.10). Finally, we prove the Freeness and the824

Saturation Theorems.825

6.1 Freeness and Saturation Theorems826

Let X be a subset of the free group. We say that X is free if it is a basis of the827

subgroup 〈X〉 generated by X . This means that if x1, x2, . . . , xn ∈ X ∪X−1 are828

such that x1x2 · · ·xn is equivalent to 1, then xixi+1 is equivalent to 1 for some829

1 ≤ i < n.830

We will prove the following result (Freeness Theorem).831

basisTheorem Theorem 6.1 A set F is acyclic if and only if any bifix code X ⊂ F is a free832

subset of the free group A◦.833

Let M be a submonoid of A∗ and let H be the subgroup of A◦ generated by834

M . Given a set of words F , the submonoid M is said to be saturated in F if835

M ∩F = H ∩F . If M is generated by X , then M is saturated in F if and only836

if X∗ ∩ F = 〈X〉 ∩ F .837

Thus, for example, the submonoid recognized by a reversible automaton is838

saturated in A∗ (Proposition
propGeneratedGroup
2.8).839

We will prove the following result (Saturation Theorem).840

saturationTheorem Theorem 6.2 Let F be an acyclic set. The submonoid generated by a bifix code841

included in F is saturated in F .842

We note the following corollary, which shows that bifix codes in acyclic sets843

satisfy a property which is stronger than being bifix (or more precisely that the844

submonoid X∗ satisfies a property stronger than being right and left unitary).845

corollaryChristophe Corollary 6.3 Let F be an acyclic set, let X ⊂ F be a bifix code and let846

H = 〈X〉. For any u, v ∈ F ,847

(i) if u, uv ∈ H ∩ F , then v ∈ X∗.848

(ii) if v, uv ∈ H ∩ F , then u ∈ X∗.849
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Proof. Assume that u, uv ∈ H ∩ F . Since v ≡ u−1(uv), we have v ∈ H . But850

v ∈ H ∩ F implies v ∈ X∗ by Theorem
saturationTheorem
6.2. This proves (i). The proof of (ii) is851

symmetric.852

We can express Corollary
corollaryChristophe
6.3 in a different way. Let F be an acyclic set and let853

X ⊂ F be a bifix code. Then no nonempty word of 〈X〉 can be a proper prefix854

(or suffix) of a word of X . Indeed, assume that u ∈ 〈X〉 is a prefix of a word855

of X . Then u is in 〈X〉 ∩ F and thus in X∗ since X∗ is saturated in F . This856

implies u = 1 or u ∈ X .857

We illustrate Theorem
basisTheorem
6.1 in the following example.858

exampleBasisJulien Example 6.4 Let F be as in Example
exampleJulienAcyclic
4.4 and let X = F ∩ A2. We have859

X = {ab, ac, bc, ca, cd, da}

The set X is an F -maximal bifix code. It is a basis of a subgroup of infinite860

index. Indeed, the minimal automaton of X∗ is represented in Figure
figureGroupJulien
6.1 on861

the left. The Stallings automaton of the subgroup H generated by X is ob-862

tained by merging 3 with 4 and 2 with 5. It is represented in Figure
figureGroupJulien
6.1 on863

the right. Since it is not a group automaton, the subgroup has infinite index864

(see Proposition
propStallings
2.9). The set X is a basis of H by Theorem

basisTheorem
6.1. This can

2 1 3

4

5

c

a, d a

b, c

b c

da

2 1 3

c, d

a, d a, b

b, c

Figure 6.1: The minimal automaton of X∗ and the Stallings automaton of 〈X〉. figureGroupJulien

865

also be seen by performing Nielsen transformations on the set X (see [18] for866

example). Indeed, replacing bc and da by bc(ac)−1 and da(ca)−1, we obtain867

X ′ = {ab, ac, ba−1, ca, cd, dc−1} which is Nielsen reduced. Thus X ′ is a basis of868

H and thus also X .869

Note that, in agreement with Theorem
saturationTheorem
6.2, the two words of length 2 which870

are in H but not in X∗, namely bb and dd, are not in F .871

Theorem
basisTheorem
6.1 is false if X is prefix but not bifix, as shown in the following872

example.873

Example 6.5 Let F be the Fibonacci set and let X ⊂ F be the prefix code874

X = {aa, ab, b}. Then a = (ab)b−1 is in 〈X〉 and thus X generates the free875

group on A. Thus X is not a basis and X∗ ∩ F is strictly included in 〈X〉 ∩ F876

(for example a /∈ X∗).877
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6.2 Incidence graph878

Let X be a set, let P be the set of its proper prefixes and S be the set of its879

proper suffixes. Set P ′ = P \ {1} and S′ = S \ {1}. Recall from [3] that the880

incidence graph of X is the undirected graph G defined as follows. The set of881

vertices is the disjoint union of P ′ and S′. The edges of G are the pairs (p, s) for882

p ∈ P ′ and s ∈ S′ such that ps ∈ X . As in any undirected graph, a connected883

component of G is a maximal set of vertices connected by paths.884

The following result is proved in [3] in the case of a Sturmian set (Lemma885

6.3.3). We give here a proof in the more general case of an acyclic set. We call886

a path reduced if it does not use equal consecutive edges.887

newLemma633 Proposition 6.6 Let F be an acyclic set, let X ⊂ F be a bifix code and let G888

be the incidence graph of X. Then the following assertions hold.889

(i) The graph G is acyclic.890

(ii) The intersection of P ′ (resp. S′) with each connected component of G is891

a suffix (resp. prefix) code.892

(iii) For every reduced path (v1, u1, . . . , un, vn+1) in G with u1, . . . , un ∈ P ′
893

and v1, . . . , vn+1 in S′, the longest common prefix of v1, vn+1 is a proper894

prefix of all v1, . . . , vn, vn+1.895

(iv) Symmetrically, for every reduced path (u1, v1, . . . , vn, un+1) in G with u1, . . . ,896

un+1 ∈ P ′ and v1, . . . , vn ∈ S′, the longest common suffix of u1, un+1 is a897

proper suffix of u1, u2, . . . , un+1.898

Proof. Assertions (iii) and (iv) implies assertions (i) and (ii). Indeed, as-899

sume that (iii) holds. Consider a reduced path (v1, u1, . . . , un, vn+1) in G with900

u1, . . . , un ∈ P ′ and v1, . . . , vn+1 in S′. If v1 = vn+1, then the longest common901

prefix of v1, vn+1 is not a proper prefix of them. Thus G is acyclic and (i) holds.902

Next, if v1, vn+1 are comparable for the prefix order, their longest common903

prefix is one of them, a contradiction with (iii) again. The assertion on P ′ is904

proved in an analogous way using assertion (iv).905

We prove (iii) and (iv) by induction on n ≥ 1.906

The assertions holds for n = 1. Indeed, if u1v1, u1v2 ∈ X and if v1 ∈907

S′ is a prefix of v2 ∈ S′, then u1v1 is a prefix of u1v2, a contradiction with908

the hypothesis that X is a prefix code. The same holds symmetrically for909

u1v1, u2v1 ∈ X since X is a suffix code.910

Let n ≥ 2 and assume that the assertions hold for any path of length at most911

2n− 2. We treat the case of a path (v1, u1, . . . , un, vn+1) in G with u1, . . . , un ∈912

P ′ and v1, . . . , vn+1 in S′. The other case is symmetric.913

Let p be the longest common prefix of v1 and vn+1. We may assume that p914

is nonempty since otherwise the statement is obviously true. Any two elements915

of the set U = {u1, . . . , un} are connected by a path of length at most 2n − 2916

(using elements of {v2, . . . vn}). Thus, by induction hypothesis, U is a suffix917

code. Similarly, any two elements of the set V = {v1, . . . , vn} are connected by918

a path of length at most 2n− 2 (using elements of {u1, . . . un−1}). Thus V is a919

prefix code. We cannot have v1 = p since otherwise, using the fact that unp is a920
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prefix of unvn+1 and thus in F , the generalized extension graph GU,V (ε) would921

have the cycle (p, u1, v2, . . . , un, p), a contradiction since GU,V (ε) is acyclic by922

proposition
PropStrongTreeCondition
4.7. Similarly, we cannot have vn+1 = p.923

SetW = p−1V and V ′ = (V \pW )∪p. Since V is a prefix code and since p is924

a proper prefix of V , the set V ′ is a prefix code. Suppose that p is not a proper925

prefix of all v2, . . . , vn. Then there exist i, j with 1 ≤ i < j ≤ n+1 such that p is926

a proper prefix of vi, vj but not of any vi+1, . . . , vj−1. Then vi+1, . . . , vj−1 ∈ V ′
927

and there is the cycle (p, ui, vi+1, ui+1, . . . , vj−1, uj−1, p) in the graph GU,V ′(ε).928

This is in contradiction with Proposition
PropStrongTreeCondition
4.7 because, V ′ being a prefix code,929

GU,V ′(ε) is acyclic. Thus p is a proper prefix of all v2, . . . , vn.930

Let X be a bifix code and let P be the set of proper prefixes of X . Consider931

the equivalence θX on P which is the transitive closure of the relation formed932

by the pairs p, q ∈ P such that ps, qs ∈ X for some s ∈ A+. Such a pair933

corresponds, when p, q 6= 1, to a path p → s → q in the incidence graph of X .934

Thus a class of θX is either reduced to the empty word or it is the intersection935

of P \ 1 with a connected component of the incidence graph of X .936

The following property relates the equivalence θX with the right cosets of937

H = 〈X〉. It is Proposition 6.3.5 in [3].938

propTheta Proposition 6.7 Let X be a bifix code, let P be the set of proper prefixes of939

X and let H be the subgroup generated by X. For any p, q ∈ P , p ≡ q mod θX940

implies Hp = Hq.941

Let A = (P, 1, 1) be the literal automaton of X∗. We show that the equiva-942

lence θX is compatible with the transitions of the automaton A in the following943

sense.944

The following is proved in [3] (Lemma 6.3.6 and Lemma 6.4.2) in the case945

of a Sturmian set F .946

lemmaCompatible Proposition 6.8 Let F be an acyclic set. Let X ⊂ F be a bifix code and let947

P be the set of proper prefixes of X. Let p, q ∈ P and a ∈ A be such that948

pa, qa ∈ P ∪X. Then in the literal automaton of X∗, one has p ≡ q mod θX if949

and only if p · a ≡ q · a mod θX .950

Proof.951

Assume first that p ≡ q mod θX . We may assume that p, q are nonempty.952

Let (u0, v1, u1, . . . , vn, un) be a reduced path in the incidence graph G of X with953

p = u0, un = q. The corresponding words in X are u0v1, u1v1, u1v2, . . . , unvn.954

We may assume that the words ui are pairwise distinct, and that the vi are955

pairwise distinct. Moreover, since pa, qa ∈ P ∪ X there exist words v, w such956

that pav, qaw ∈ X . Set v0 = av and vn+1 = aw.957

By Proposition
newLemma633
6.6, a is a proper prefix of v0, v1, . . . , vn+1. Set vi = av′i for958

0 ≤ i ≤ n+ 1.959

If pa, qa ∈ P , then (u0a, v
′
1, u1a, . . . , v

′
n, una) is a path from pa to qa in G.960

This shows that pa ≡ qa mod θX .961
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Next, suppose that pa ∈ X and thus that v0 = a. By Proposition
newLemma633
6.6, we962

have w = ε since otherwise v0 = a is a proper prefix of vn+1. Thus qa ∈ X and963

p · a = q · a.964

Conversely, if p · a ≡ q · a mod θX , assume first that pa, qa ∈ P . Then965

pa ≡ qa mod θX and thus there is a reduced path (u0, v1, . . . , vn, un) in G with966

u0 = pa and un = qa. By Proposition
newLemma633
6.6, a is a proper suffix of u1, . . . , un. Set967

ui = u′ia. Thus (p, av1, u
′
1, . . . , q) is a path in G, showing that p ≡ q mod θX .968

Finally, if pa, qa ∈ X , then (p, a, q) is a path in G and thus p ≡ q mod θX .969

970

6.3 Coset automaton971

Let F be an acyclic set and let X ⊂ F be a bifix code. We introduce a new972

automaton denoted BX and called the coset automaton of X . Let R be the set973

of classes of θX with the class of 1 still denoted 1. The coset automaton of X974

is the automaton BX = (R, 1, 1) with set of states R and transitions induced975

by the transitions of the literal automaton A = (P, 1, 1) of X∗. Formally, for976

r, s ∈ R and a ∈ A, one has r · a = s in the automaton BX if there exist p in977

the class r and q in the class s such that p · a = q in the automaton A.978

Observe first that the definition is consistent since, by Proposition
lemmaCompatible
6.8, if p ·a979

and p′ · a are nonempty and p, p′ are in the same class r, then p · a and p′ · a are980

in the same class.981

Observe next that if there is a path from p to p′ in the automaton A labeled982

w, then there is a path from the class r of p to the class r′ of p′ labeled w in983

BX .984

figureBX

1 2 3

b

b

a

a

a b

Figure 6.2: The automaton BX .

Example 6.9 Let F be the Fibonacci set and let985

X = {a, baab, babaabab, babaabaabab}.

The set X is an F -maximal bifix code of F -degree 3 (see [3], Example 6.3.1).986

The automaton BX has three states. It is a group automaton. State 2 is the class987

containing b, and state 3 is the class containing ba. The bifix code generating988

the submonoid recognized by this automaton is Z = a ∪ b(ab∗a)∗b.989

The following result shows that the coset automaton of X is the Stallings990

automaton of the subgroup generated by X .991

lemmaBidet Proposition 6.10 Let F be an acyclic set, and let X ⊂ F be a bifix code. The992

coset automaton BX is reversible and describes the subgroup generated by X.993
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Moreover X ⊂ Z, where Z is the bifix code generating the submonoid recognized994

by BX .995

Proof. Let A = (P, 1, 1) be the literal automaton of X∗ and set BX = (R, 1, 1).996

By Proposition
lemmaCompatible
6.8, the automaton BX is reversible.997

Let Z be the bifix code generating the submonoid recognized by BX . To998

show the inclusion X ⊂ Z, consider a word x ∈ X . There is a path from 1 to 1999

labeled x in A, hence also in BX . Since the path in A does not pass by 1 except1000

at its ends and since the class of 1 modulo θX is reduced to 1, the path in BX1001

does not pass by 1 except at its ends. Thus x is in Z.1002

Let us finally show that the coset automaton describes the group H = 〈X〉.1003

By Proposition
propGeneratedGroup
2.8, the subgroup described by BX is equal to 〈Z〉. Set K = 〈Z〉.1004

Since X ⊂ Z, we have H ⊂ K. To show the converse inclusion, let us show1005

by induction on the length of w ∈ A∗ that if, for p, q ∈ P , there is a path1006

from the class of p to the class of q in BX with label w then Hpw = Hq. By1007

Proposition
propTheta
6.7, this holds for w = 1. Next, assume that it is true for w and1008

consider wa with a ∈ A. Assume that there are states p, q, r ∈ P such that there1009

is a path from the class of p to the class of q in BX with label w, and an edge from1010

the class of q to the class of r in BX with the label a. By induction hypothesis,1011

we have Hpw = Hq. Next, by definition of BX , there is an s ≡ q mod θX such1012

that s · a ≡ r mod θX . If sa ∈ P , then s · a = sa, and by Proposition
propTheta
6.7, we1013

have Hs = Hq and Hsa = Hr. Otherwise, sa ∈ X ⊂ H and s · a = r = 11014

because the class of 1 is a singleton and thus Hqa = Hsa = H = Hr. In both1015

cases, Hpwa = Hqa = Hsa = Hr. This property shows that if z ∈ Z, then1016

Hz = H , that is z ∈ H . Thus Z ⊂ H and finally H = K.1017

6.4 Proof of the main results1018

We can now prove Theorem
basisTheorem
6.1. The proof uses Proposition

newLemma633
6.6. We will also1019

use the elementary fact that if X is a bifix code, and x, y ∈ X with x 6= y, then1020

x cannot cancel completely with y−1, which means that ρ(xy−1) cannot be a1021

prefix of x or a suffix of y−1. Indeed, if xy−1 is equivalent to a prefix of x, then1022

y is a suffix of x and if xy−1 is equivalent to a suffix of y−1 then x is a suffix of1023

y. A symmetric argument holds for x−1 and y.1024

1025

Proof of Theorem
basisTheorem
6.1. To prove the necessity of the condition, assume that for1026

some w ∈ F the graph G(w) contains a cycle (a1, b1, . . . , ap, bp, a1) with p ≥ 2,1027

ai ∈ L(w) and bi ∈ R(w) for 1 ≤ i ≤ p. Consider the bifix code X = AwA ∩ F .1028

Then a1wb1, a2wb1, . . . , apwbp, a1wbp ∈ X . But1029

a1wb1(a2wb1)
−1a2wb2 · · · apwbp(a1wbp)

−1 ≡ 1,

contradicting the fact that X is free.1030

Let us now show the converse. Assume that F is acyclic and let X ⊂ F be1031

a bifix code. Set Y = X ∪ X−1. Let y1, . . . , yn ∈ Y . We intend to show that1032

provided yiyi+1 6≡ 1 for 1 ≤ i < n, we have y1 · · · yn 6≡ 1. We may assume n ≥ 3.1033
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We say that a sequence (ui, vi, wi)1≤i≤n of elements of the free group on A1034

is admissible with respect to y1, . . . , yn if the following conditions are satisfied1035

(see Figure
figurey_i
6.3).1036

(i) yi = uiviwi for 1 ≤ i ≤ n.1037

(ii) u1 = wn = 1 and v1, vn 6= 1.1038

(iii) wiui+1 ≡ 1 for 1 ≤ i ≤ n− 1.1039

(iv) For 1 ≤ i < j ≤ n, if vi, vj 6= 1 and vk = 1 for i+1 ≤ k ≤ j − 1, then vivj1040

is reduced.1041

Note that if (ui, vi, wi)1≤i≤n is an admissible sequence with respect to y1, . . . , yn,1042

then y1 · · · yn is equivalent to the word v1 · · · vn which is a reduced nonempty1043

word. Thus, in particular y1 · · · yn 6≡ 1.1044

v1 w1 ui vi wi ui+1 vi+1 wi+1 un vn

y1 yi yi+1 yn

Figure 6.3: The word y1 · · · yn. figurey_i

Let us show by induction on n that for any y1, . . . , yn such that yiyi+1 6≡ 11045

for 1 ≤ i ≤ n− 1, there exists an admissible sequence with respect to y1 . . . , yn.1046

The property is true for n = 1. Indeed, we take u1 = w1 = 1.1047

Assume that the property is true for n. Among the possible admissible1048

sequences with respect to the y1, . . . , yn, we choose one such that |vn| is maximal.1049

Set vn = v′nw
′
n and yn+1 = un+1vn+1 with |w′

n| = |un+1| maximal such that1050

w′
nun+1 ≡ 1. Note that vn+1 6= 1 since otherwise yn+1 would cancel completely1051

with yn.1052

If v′n 6= 1, the sequence1053

(1, v1, w1), . . . , (un−1, vn−1, wn−1), (un, v
′
n, w

′
n), (un+1, vn+1, 1)

is admissible with respect to y1, . . . , yn+1.1054

Otherwise, let i with 1 ≤ i < n be the largest integer such that vi 6= 1.1055

Observe that wi, wi+1, . . . , wn−1, w
′
n are nonempty. Indeed, if wj = 1 with1056

i ≤ j ≤ n− 1, then uj+1 = 1 and thus yj+1 cancels completely with yj+2. Next,1057

if vn = w′
n = 1, then yn cancels completely with yn−1.1058

Assume that yi ∈ X (the other case is symmetric).1059

If yn+1 ∈ X (and thus n − i is odd), then vivn+1 is reduced because they1060

are both in A∗ and vn+1 6= 1 as we have already seen. Thus the sequence1061

(1, v1, w1), . . . , (un−1, vn−1, wn−1), (un, 1, w
′
n), (un+1, vn+1, 1)

is admissible with respect to y1, . . . , yn+1.1062

Otherwise, let s be the longest common suffix of uivi and v
−1
n+1.1063

There is a path in the incidence graph G(X) from uivi to v−1
n+1 (see Fig-1064

ure
figureGX
6.4). By Proposition

newLemma633
6.6, s is a proper suffix of uivi, w

−1
i+1, . . . , w

−1
n−1, v

−1
n+1.1065

This implies that s−1 is a proper prefix of wi+1, . . . , wn−1, vn+1.1066
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uivi wi = u−1
i+1

ui+2 = w−1
i+1 wi+2 = u−1

i+3

un = w−1
n−1 vn = u−1

n+1

v−1
n+1

Figure 6.4: The graph G(X). figureGX

It is not possible that vi is a suffix of s. Indeed, this would imply that1067

v−1
i is a proper prefix of wi+1, . . . , wn−1, vn+1. But then we could change1068

the n − i + 1 last terms of the sequence (uj, vj , wj)1≤j≤n into (ui, 1, viwi),1069

(ui+1v
−1
i , 1, ρ(viwi+1)), . . . , (ρ(unv

−1
i ), vivn, 1) resulting in an admissible se-1070

quence with a longer vn.1071

Thus s is a proper suffix of vi. Since s is a proper suffix of vi and v−1
n+1,1072

there are nonempty words p, q ∈ A∗ such that vi = ps and v−1
n+1 = qs. More-1073

over, the word pq−1 is reduced since s is the longest common suffix of vi and1074

v−1
n+1. Thus we can change the last n − i + 2 terms of the sequence formed by1075

(uj , vj , wj)1≤j≤n−1 followed by (un, 1, vn), (un+1, vn+1, 1) into1076

(ui, p, swi), (ui+1s
−1, 1, ρ(swi+1)), . . . , (ρ(uns

−1), 1, svn), (un+1s
−1, q−1, 1)

(see Figure
figurey_is
6.5). Since the word pq−1 is reduced, the new sequence is admissible.

ui vi wi ui+1 wi+1 ui+2 wi+2 un vn un+1 vn+1

p s s−1 s s s−1q−1

Figure 6.5: The word yi · · · yn+1. figurey_is

1077

This shows that y1 · · · yn 6≡ 1 for any sequence y1, . . . , yn ∈ X ∪ X−1 such1078

that yiyi+1 6≡ 1 for 1 ≤ i < n. Thus X is free.1079

We now give a proof of Theorem
saturationTheorem
6.2. It uses Proposition

lemmaBidet
6.10.1080

1081

Proof of Theorem
saturationTheorem
6.2. Let F be an acyclic set and let X ⊂ F be a bifix code.1082

We have to prove that X∗ ∩ F = 〈X〉 ∩ F . Since X∗ ∩ F ⊂ 〈X〉 ∩ F , we only1083

need to prove the reverse inclusion.1084

Consider the bifix code Z generating the submonoid recognized by the coset1085

automaton BX associated to X . Set Y = Z ∩ F . By Theorem
basisTheorem
6.1, Y is a basis1086

of 〈Y 〉.1087
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By Proposition
lemmaBidet
6.10, we have X ⊂ Z and thus X ⊂ Y .1088

Since any reversible automaton is minimal and since the automaton BX is1089

reversible by Proposition
lemmaBidet
6.10, it is equal to the minimal automaton of Z∗. Let1090

K be the subgroup generated by Z. By Proposition
lemmaExercise612
2.5, we have K ∩A∗ = Z∗.1091

This shows that1092

〈X〉 ∩ F ⊂ K ∩ F = K ∩A∗ ∩ F = Z∗ ∩ F = Y ∗ ∩ F ⊂ Y ∗.

The first inclusion holds because X ⊂ Z implies 〈X〉 ⊂ K. The last equality1093

follows from the fact that if z1 · · · zn ∈ F with z1, . . . , zn ∈ Z, then each zi is1094

in F (because F is factorial) and hence in Z ∩ F = Y . Thus 〈X〉 ∩ F ⊂ Y ∗.1095

Consider x ∈ 〈X〉 ∩ F . Then x ≡ x1 · · ·xn with xi ∈ X ∪ X−1. But since1096

〈X〉 ∩ F ⊂ Y ∗, we have also x = y1 · · · ym with yi ∈ Y . Since X ⊂ Y and since1097

Y is free, this forces n = m and xi = yi. Thus all xi are in X and x is in X∗.1098

This shows that 〈X〉 ∩ F ⊂ X∗ which was to be proved.1099

The proof of Theorem
basisTheorem
6.1 proves not only that bifix codes in acyclic sets are1100

free, but also that, in a sense made more precise below, the associated reductions1101

are of low complexity.1102

We first define the heigth of w on A∪A−1 equivalent to 1 as the least integer1103

h such that w is a concatenation of words of the form w = uvu−1 where u is a1104

word on A ∪ A−1 and v is a word of heigth h − 1 equivalent to 1. The empty1105

word is the only word equivalent to 1 of heigth 0.1106

We then define the height of an arbitrary word w on A ∪ A−1 as the least1107

integer h such that w = z0v1z1 · · · vnzn with z0, . . . , zn equivalent to 1 of height1108

at most h and v1 · · · vn reduced.1109

In this way, any word on A ∪ A−1 has finite height. For example, the word1110

aa−1cbb−1 has heigth 1 and aaa−1bb−1a−1 has height 2. The words of height 01111

are the reduced words.1112

Proposition 6.11 Let F be an acyclic set and let X ⊂ F be a bifix code. Any1113

word y = y1 · · · yn with yi ∈ X ∪ X−1 for 1 ≤ i ≤ n such that yiyi+1 6≡ 1 for1114

1 ≤ i ≤ n− 1 has height at most 1.1115

Proof. The proof of Theorem
basisTheorem
6.1 shows that y = z0v1z1 · · · zn−1vnzn where1116

(i) z0, . . . , zn have height at most 1,1117

(ii) v1 · · · vn is reduced.1118

Thus y has height at most 1.1119

Example 6.12 Let X be as in Example
exampleBasisJulien
6.4. The word bc(ac)−1ab, which1120

reduces to bb, has height 1.1121
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