
ar
X

iv
:1

30
8.

53
96

v3
  [

m
at

h.
C

O
] 

 2
8 

Fe
b 

20
14

Maximal bifix decoding
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Abstract

We introduce a class of sets of words which is a natural common gen-

eralization of Sturmian sets and of interval exchange sets. This class of

sets consists of the uniformly recurrent tree sets, where the tree sets are

defined by a condition on the possible extensions of bispecial factors. We

prove that this class is closed under maximal bifix decoding. The proof

uses the fact that the class is also closed under decoding with respect to

return words.

Contents

1 Introduction 2

2 Preliminaries 4
2.1 Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Bifix codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Group codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Interval exchange sets 10
3.1 Interval exchange transformations . . . . . . . . . . . . . . . . . . 10
3.2 Regular interval exchange transformations . . . . . . . . . . . . . 11
3.3 Natural coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Return words 14

5 Uniformly recurrent tree sets 15
5.1 Tree sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 The finite index basis property . . . . . . . . . . . . . . . . . . . 17
5.3 Derived sets of tree sets . . . . . . . . . . . . . . . . . . . . . . . 18

1

http://arxiv.org/abs/1308.5396v3


5.4 Tame bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 S-adic representations 21
6.1 S-adic representation of tree sets . . . . . . . . . . . . . . . . . . 21
6.2 The case of a ternary alphabet . . . . . . . . . . . . . . . . . . . 23

7 Maximal bifix decoding 29
7.1 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2 Proof of the main result . . . . . . . . . . . . . . . . . . . . . . . 31
7.3 Composition of bifix codes . . . . . . . . . . . . . . . . . . . . . . 34

A Labels in Figure 6.1 38

B Labels in Figure 6.2 40

1 Introduction

This paper studies the properties of a common generalization of Sturmian sets
and regular interval exchange sets. We first give some elements on the back-
ground of these two families of sets.

Sturmian words are infinite words over a binary alphabet that have exactly
n + 1 factors of length n for each n ≥ 0. Their origin can be traced back
to the astronomer J. Bernoulli III. Their first in-depth study is by Morse and
Hedlund [25]. Many combinatorial properties were described in the paper by
Coven and Hedlund [12].

We understand here by Sturmian words the generalization to arbitrary al-
phabets, often called strict episturmian words or Arnoux-Rauzy words (see the
survey [20]), of the classical Sturmian words on two letters. Sturmian sets are
the sets of factors of Sturmian words. For more details, see [19, 24].

Sturmian words are closely related to the free group. This connection is
one of the main points of the series of papers [2, 4, 5] and the present one. A
striking feature of this connection is the fact that our results do not hold only
for two-letter alphabets or for two generators but for any number of letters and
generators.

In a paper with part of the present list of authors on bifix codes and Sturmian
words [2] we proved that Sturmian sets satisfy the finite index basis property,
in the sense that, given a set F of words on an alphabet A, a finite bifix code is
F -maximal if and only if it is the basis of a subgroup of finite index of the free
group on A.

Interval exchange transformations were introduced by Oseledec [26] following
an earlier idea of Arnold [1]. These transformations form a generalization of
rotations of the circle. The class of regular interval exchange transformations
was introduced by Keane [22] who showed that they are minimal in the sense of
topological dynamics. The factors of natural codings of regular interval exchange
transformations are called interval exchange sets. In [5], we show that regular
interval exchange sets satisfy the finite index basis property.
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Even if they have the same factor complexity (that is, the same number
of factors of a given length), Sturmian words and codings of interval exchange
transformations have a priori very distinct combinatorial behaviours, whether
for the type of behaviour of their special factors, or for balance properties and
deviations of Birkhoff sums (see [10, 28]).

The class of tree sets, introduced in [4] contains both the Sturmian sets
and the regular interval exchange sets. They are defined by a condition on the
possible extensions of bispecial factors. One of the results of [4] is that, in a
uniformly recurrent tree set F , the set of first return words to a given word in
F is a basis of the free group on the alphabet of F . The main statement of [5]
is that uniformly recurrent tree sets satisfy the finite index basis property. This
generalizes the result concerning Sturmian words of [2] quoted above. As an
example of a consequence of this result, if F is a uniformly recurrent tree set on
the alphabet A, then for any n ≥ 1, the set F ∩ An is a basis of the subgroup
formed by the words of length multiple of n (see Theorem 5.7).

Our main result here is that the class of uniformly recurrent tree sets is
closed under maximal bifix decoding (Theorem 7.1). This means that if F is a
uniformly recurrent tree set and f a coding morphism for a finite F -maximal
bifix code, then f−1(F ) is a uniformly recurrent tree set. The family of regular
interval exchange sets is closed under maximal bifix decoding (see [5] Corollary
5.22) but the family of Sturmian sets is not (see Example 7.2 below). Thus,
this result shows that the family of uniformly recurrent tree sets is the natural
closure of the family of Sturmian sets. The proof uses the finite index basis
property of uniformly recurrent tree sets.

The proof of Theorem 7.1 uses the closure of uniformly recurrent tree sets
under decoding with respect to return words (Theorem 5.10). This property,
which is interesting in its own, generalizes the fact that the derived word of a
Sturmian word is Sturmian [21].

We also focus on tree sets defined on a ternary alphabet. In this case,
uniformly recurrent tree sets are uniquely ergodic (which means that they have
a unique invariant probability measure). We give a characterization of the S-
adic representation of ternary tree sets (Theorem 6.6) in terms of infinite paths
in a Büchi automaton, where S is the set of positive elementary automorphisms
of the free group on three letters..

The paper is organized as follows. In Section 2, we introduce the notation
and recall some basic results. We define the composition of prefix codes.

In Section 3, we introduce one important subclass of tree sets, namely in-
terval exchange sets. We recall the definitions concerning minimal and regular
interval exchange transformations. We state the result of Keane expressing that
regular interval exchange transformations are minimal (Theorem 3.4).

In Section 4, we define return words, derived words and derived sets and
prove some elementary properties.

In Section 5, we recall the definition of tree sets. We also recall that a regular
interval exchange set is a tree set (Proposition 5.3). We prove that the family
of uniformly recurrent tree sets is invariant under derivation (Theorem 5.10).
We further prove that all bases of the free group included in a uniformly recur-
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rent tree set are tame, that is obtained from the alphabet by composition of
elementary positive automorphisms (Theorem 5.16).

In Section 6, We deduce from the previous result that uniformly recurrent
tree sets have a primitive Se-adic representation (Theorem 6.5) where Se is the
finite set of positive elementary automorphisms of the free group. We give a
more precise result in the case of a ternary alphabet. It characterizes tree sets
by their S-adic representation (Theorem 6.6).

In Section 7, we state and prove our main result (Theorem 7.1), namely the
closure under maximal bifix decoding of the family of uniformly recurrent tree
sets.

Finally, in Section 7.3, we use Theorem 7.1 to prove a result concerning the
composition of bifix codes (Theorem 7.12) showing that the degrees of the terms
of a composition are multiplicative.

2 Preliminaries

In this section, we recall some notions and definitions concerning words, codes
and automata. For a more detailed presentation, see [2]. We also introduce the
notion of composition of codes.

2.1 Words

Let A be a finite nonempty alphabet. All words considered below, unless stated
explicitly, are supposed to be on the alphabet A. We denote by A∗ the set of
all words on A. The empty word is denoted by 1 or by ε . We denote by |w|
the length of a word w. For a set X of words and a word x, we denote

x−1X = {y ∈ A∗ | xy ∈ X}, Xx−1 = {z ∈ A∗ | zx ∈ X}.

A set of words is said to be factorial if it contains the factors of its elements.
Let F be a set of words on the alphabet A. For w ∈ F , we denote

L(w) = {a ∈ A | aw ∈ F}
R(w) = {a ∈ A | wa ∈ F}
E(w) = {(a, b) ∈ A×A | awb ∈ F}

and further

ℓ(w) = Card(L(w)), r(w) = Card(R(w)), e(w) = Card(E(w)).

A word w is right-extendable if r(w) > 0, left-extendable if ℓ(w) > 0 and biex-
tendable if e(w) > 0. A factorial set F is called right-essential (resp. left-
essential, resp. biessential) if every word in F is right-extendable (resp. left-
extendable, resp. biextendable).

A word w is called right-special if r(w) ≥ 2. It is called left-special if ℓ(w) ≥
2. It is called bispecial if it is both right and left-special.
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We denote by Fac(x) the set of factors of an infinite word x ∈ AN. The set
Fac(x) is factorial and right essential. An infinite word x ∈ Aω is recurrent if
for any u ∈ Fac(x) there is a v ∈ Fac(x) such that uvu ∈ Fac(x).

A factorial set of words F 6= {1} is recurrent if for every u,w ∈ F there is
a word v ∈ F such that uvw ∈ F . For any recurrent set F there is an infinite
word x such that Fac(x) = F .

For any infinite word x, the set Fac(x) is recurrent if and only if x is recurrent
(see [2]).

Note that any recurrent set not reduced to the empty word is biessential.
A set of words F is said to be uniformly recurrent if it is right-essential and

if, for any word u ∈ F , there exists an integer n ≥ 1 such that u is a factor of
every word of F of length n. A uniformly recurrent set is recurrent.

A morphism f : A∗ → B∗ is a monoid morphism from A∗ into B∗. If a ∈ A
is such that the word f(a) begins with a and if |fn(a)| tends to infinity with
n, there is a unique infinite word denoted fω(a) which has all words fn(a) as
prefixes. It is called a fixpoint of the morphism f .

A morphism f : A∗ → A∗ is called primitive if there is an integer k such
that for all a, b ∈ A, the letter b appears in fk(a). If f is a primitive morphism,
the set of factors of any fixpoint of f is uniformly recurrent (see [19] Proposition
1.2.3 for example).

An infinite word is episturmian if the set of its factors is closed under reversal
and contains for each n at most one word of length n which is right-special. It is
a strict episturmian word if it has exactly one right-special word of each length
and moreover each right-special factor u is such that r(u) = Card(A).

A Sturmian set is a set of words which is the set of factors of a strict epis-
turmian word. Any Sturmian set is uniformly recurrent (see [2], Proposition
2.3.3).

Example 2.1 Let A = {a, b}. The Fibonacci word is the fixpoint x = abaababa . . .
of the morphism f : A∗ → A∗ defined by f(a) = ab and f(b) = a. It is a Stur-
mian word (see [24]). The set Fac(x) of factors of x is the Fibonacci set.

Example 2.2 Let A = {a, b, c}. The Tribonacci word is the fixpoint x =
fω(a) = abacaba · · · of the morphism f : A∗ → A∗ defined by f(a) = ab,
f(b) = ac, f(c) = a. It is a strict episturmian word (see [21]). The set Fac(x)
of factors of x is the Tribonacci set.

2.2 Bifix codes

Recall that a set X ⊂ A+ of nonempty words over an alphabet A is a code if
the relation

x1 · · ·xn = y1 · · · ym
with n,m ≥ 1 and x1, . . . , xn, y1, . . . , ym ∈ X implies n = m and xi = yi for
i = 1, . . . , n. For the general theory of codes, see [3].

A prefix code is a set of nonempty words which does not contain any proper
prefix of its elements. A prefix code is a code.
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A suffix code is defined symmetrically. A bifix code is a set which is both a
prefix code and a suffix code.

A coding morphism for a code X ⊂ A+ is a morphism f : B∗ → A∗ which
maps bijectively B onto X .

Let F be a set of words. A prefix code X ⊂ F is F -maximal if it is not
properly contained in any prefix code Y ⊂ F 1. Equivalently, a prefix code
X ⊂ F is F -maximal if any word in F is comparable for the prefix order with
some word of X .

A set of words M is called right unitary if u, uv ∈ M imply v ∈ M . The
submonoid M generated by a prefix code is right unitary. One can show that
conversely, any right unitary submonoid of A∗ is generated by a prefix code
(see [3]). The symmetric notion of a left unitary set is defined by the condition
v, uv ∈M implies u ∈M .

We denote by X∗ the submonoid generated by X . A set X ⊂ F is right
F -complete if any word of F is a prefix of a word in X∗. If F is factorial, a
prefix code is F -maximal if and only if it is right F -complete (Proposition 3.3.2
in [2]).

Similarly a bifix code X ⊂ F is F -maximal if it is not properly contained in
a bifix code Y ⊂ F . For a recurrent set F , a finite bifix code is F -maximal as a
bifix code if and only if it is an F -maximal prefix code (see [2], Theorem 4.2.2).
For a uniformly recurrent set F , any finite bifix code X ⊂ F is contained in a
finite F -maximal bifix code (Theorem 4.4.3 in [2]).

A parse of a word w with respect to a set X is a triple (v, x, u) such that
w = vxu where v has no suffix in X , u has no prefix in X and x ∈ X∗. We
denote by δX(w) the number of parses of w.

Let X be a bifix code. The number of parses of a word w is also equal to the
number of suffixes of w which have no prefix in X and the number of prefixes
of w which have no suffix in X (see Proposition 6.1.6 in [3]).

By definition, the F -degree of a bifix codeX , denoted dF (X), is the maximal
number of parses of a word in F . It can be finite or infinite.

The set of internal factors of a set of words X , denoted I(X) is the set of
words w such that there exist nonempty words u, v with uwv ∈ X .

Let F be a recurrent set and let X be a finite F -maximal bifix code of F -
degree d. A word w ∈ F is such that δX(w) < d if and only if it is an internal
factor of X , that is

I(X) = {w ∈ F | δX(w) < d} (2.1)

(Theorem 4.2.8 in [2]). Thus any word of X of maximal length has d parses.
This implies that the F -degree d is finite.

Example 2.3 Let F be a recurrent set. For any integer n ≥ 1, the set F ∩An

is an F -maximal bifix code of F -degree n.

The kernel of a set of words X is the set of words in X which are internal
factors of words in X . We denote by K(X) the kernel of X . Note that K(X) =
I(X) ∩X .

1Note that in this paper we use ⊂ to denote the inclusion allowing equality.
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For any recurrent set F , a finite F -maximal bifix code is determined by its
F -degree and its kernel (see [2], Theorem 4.3.11).

Example 2.4 Let F be a recurrent set containing the alphabet A. The only
F -maximal bifix code of F -degree 1 is the alphabet A. This is clear since A is
the unique F -maximal bifix code of F -degree 1 with empty kernel.

2.3 Group codes

We denote A = (Q, i, T ) a deterministic automaton with Q as set of states,
i ∈ Q as initial state and T ⊂ Q as set of terminal states. For p ∈ Q and
w ∈ A∗, we denote p · w = q if there is a path labeled w from p to the state q
and p · w = ∅ otherwise.

The set recognized by the automaton is the set of words w ∈ A∗ such that
i · w ∈ T . A set of words is rational if it is recognized by a finite automaton.
Two automata are equivalent if they recognize the same set.

All automata considered in this paper are deterministic and we simply call
them ‘automata’ to mean ‘deterministic automata’.

The automaton A is trim if for any q ∈ Q, there is a path from i to q and a
path from q to some t ∈ T .

An automaton is called simple if it is trim and if it has a unique terminal
state which coincides with the initial state.

An automaton A = (Q, i, T ) is complete if for any state p ∈ Q and any letter
a ∈ A, one has p · a 6= ∅.

For a nonempty set L ⊂ A∗, we denote by A(L) the minimal automaton of
L. The states of A(L) are the nonempty sets u−1L = {v ∈ A∗ | uv ∈ L} for
u ∈ A∗. For u ∈ A∗ and a ∈ A, one defines (u−1L) · a = (ua)−1L. The initial
state is the set L and the terminal states are the sets u−1L for u ∈ L.

LetX ⊂ A∗ be a prefix code. Then there is a simple automatonA = (Q, 1, 1)
that recognizes X∗. Moreover, the minimal automaton of X∗ is simple.

Example 2.5 The automaton A = (Q, 1, 1) represented in Figure 2.1 is the
minimal automaton of X∗ with X = {aa, ab, ac, ba, ca}. We have Q = {1, 2, 3},

3 1 2

a

a, b, cb, c

a

Figure 2.1: The minimal automaton of {aa, ab, ac, ba, ca}∗.

i = 1 and T = 1. The initial state is indicated by an incoming arrow and the
terminal one by an outgoing arrow.

Let X be a prefix code and let P be the set of proper prefixes of X . The
literal automaton of X∗ is the simple automaton A = (P, 1, 1) with transitions
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defined for p ∈ P and a ∈ A by

p · a =











pa if pa ∈ P ,

1 if pa ∈ X ,

∅ otherwise.

One verifies that this automaton recognizes X∗.
An automaton A = (Q, 1, 1) is a group automaton if for any a ∈ A the map

ϕA(a) : p 7→ p · a is a permutation of Q.
The following result is proved in [2] (Proposition 6.1.5).

Proposition 2.6 The following conditions are equivalent for a submonoid M
of A∗.

(i) M is recognized by a group automaton with d states.
(ii) M = ϕ−1(K), where K is a subgroup of index d of a group G and ϕ is a

surjective morphism from A∗ onto G.
(iii) M = H ∩ A∗, where H is a subgroup of index d of the free group on A.

If one of these conditions holds, the minimal generating set of M is a maximal
bifix code of degree d.

A bifix code Z such that Z∗ satisfies one of the equivalent conditions of
Proposition 2.6 is called a group code of degree d.

2.4 Composition

We introduce the notion of composition of codes (see [3] for a more detailed
presentation).

For a set X ⊂ A∗, we denote by alph(X) the set of letters a ∈ A which
appear in the words of X .

Let Z ⊂ A∗ and Y ⊂ B∗ be two finite codes with B = alph(Y ). Then the
codes Y and Z are composable if there is a bijection from B onto Z. Since Z is
a code, this bijection defines an injective morphism f from B∗ into A∗. If f is
such a morphism, then Y and Z are called composable through f . The set

X = f(Y ) ⊂ Z∗ ⊂ A∗ (2.2)

is obtained by composition of Y and Z (by means of f). We denote it by

X = Y ◦f Z ,
or by X = Y ◦ Z when the context permits it. Since f is injective, X and Y
are related by bijection, and in particular Card(X) = Card(Y ). The words in
X are obtained just by replacing, in the words of Y , each letter b by the word
f(b) ∈ Z.

Example 2.7 Let A = {a, b} and B = {u, v, w}. Let f : B∗ → A∗ be the mor-
phism defined by f(u) = aa, f(v) = ab and f(w) = ba. Let Y = {u, vu, vv, w}
and Z = {aa, ab, ba}. Then Y, Z are composable through f and Y ◦f Z =
{aa, abaa, abab, ba}.
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If Y and Z are two composable codes, then X = Y ◦ Z is a code (Proposition
2.6.1 of [3]) and if Y and Z are prefix (suffix) codes, then X is a prefix (suffix)
code. Conversely, if X is a prefix (suffix) code, then Y is a prefix (suffix) code.

We extend the notation alph as follows. For two codes X,Z ⊂ A∗ we denote

alphZ(X) = {z ∈ Z | ∃ u, v ∈ Z∗, uzv ∈ X}.

The following is Proposition 2.6.6 in [3].

Proposition 2.8 Let X,Z ⊂ A∗ be codes. There exists a code Y such that
X = Y ◦ Z if and only if X ⊂ Z∗ and alphZ(X) = Z.

The following statement generalizes Propositions 2.6.4 and 2.6.12 of [3] for
prefix codes.

Proposition 2.9 Let Y, Z be finite prefix codes composable through f and let
X = Y ◦f Z.
(i) For any set G such that Y ⊂ G and Y is a G-maximal prefix code, X is

an f(G)-maximal prefix code.
(ii) For any set F such that X,Z ⊂ F , if X is an F -maximal prefix code, Y is

an f−1(F )-maximal prefix code and Z is an F -maximal prefix code. The
converse is true if F is recurrent.

Proof. (i) Let w ∈ f(G) and set w = f(v) with v ∈ G. Since Y is G-maximal,
there is a word y ∈ Y which is prefix comparable with v. Then f(y) is prefix
comparable with w. Thus X is f(G)-maximal.
(ii) Since X is an F -maximal prefix code, any word in F is prefix comparable
with some element of X and thus with some element of Z. Therefore, Z is
F -maximal. Next if u ∈ f−1(F ), v = f(u) is in F and is prefix-comparable
with a word x in X . Assume that v = xt. Then t is in Z∗ since v, x ∈ Z∗. Set
w = f−1(t) and y = f−1(x). Since u = yw, u is prefix comparable with y which
is in Y . The other case is similar.

Conversely, assume that F is recurrent. Let w be a word in F of length
strictly larger than the sum of the maximal length of the words of X and Z.
Since F is recurrent, the set Z is right F -complete, and consequently the word
w is a prefix of a word in Z∗. Thus w = up with u ∈ Z∗ and p a proper prefix
of a word in Z. The hypothesis on w implies that u is longer than any word of
X . Let v = f−1(u). Since u ∈ F , we have v ∈ f−1(F ). It is not possible that
v is a proper prefix of a word of Y since otherwise u would be shorter than a
word of X . Thus v has a prefix in Y . Consequently u, and thus w, has a prefix
in X . Thus X is F -maximal.

Note that the converse of (ii) is not true if the hypothesis that F is recurrent
is replaced by factorial. Indeed, for F = {1, a, b, aa, ab, ba}, Z = {a, ba}, G =
{1, u, uu, v}, Y = {uu, v}, f(u) = a and f(v) = ba, one has X = {aa, ba} which
is not an F -maximal prefix code.
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Note also that when F is recurrent (or even uniformly recurrent), G =
f−1(F ) need not be recurrent. Indeed, let F be the set of factors of (ab)∗, let
B = {u, v} and let f : B∗ → A∗ be defined by f(u) = ab, f(v) = ba. Then
G = u∗ ∪ v∗ which is not recurrent.

3 Interval exchange sets

In this section, we recall the definition and the basic properties of interval ex-
change transformations.

3.1 Interval exchange transformations

Let us recall the definition of an interval exchange transformation (see [11]
or [7]).

A semi-interval is a nonempty subset of the real line of the form [α, β[=
{z ∈ R | α ≤ z < β}. Thus it is a left-closed and right-open interval. For two
semi-intervals ∆,Γ, we denote ∆ < Γ if x < y for any x ∈ ∆ and y ∈ Γ.

Let (A,<) be an ordered set. A partition (Ia)a∈A of [0, 1[ in semi-intervals
is ordered if a < b implies Ia < Ib.

Let A be a finite set ordered by two total orders <1 and <2. Let (Ia)a∈A

be a partition of [0, 1[ in semi-intervals ordered for <1. Let λa be the length of
Ia. Let µa =

∑

b≤1a
λb and νa =

∑

b≤2a
λb. Set αa = νa − µa. The interval

exchange transformation relative to (Ia)a∈A is the map T : [0, 1[→ [0, 1[ defined
by

T (z) = z + αa if z ∈ Ia.

Observe that the restriction of T to Ia is a translation onto Ja = T (Ia), that
µa is the right boundary of Ia and that νa is the right boundary of Ja. We
additionally denote by γa the left boundary of Ia and by δa the left boundary
of Ja. Thus

Ia = [γa, µa[, Ja = [δa, νa[.

Since a <2 b implies Ja <2 Jb, the family (Ja)a∈A is a partition of [0, 1[
ordered for <2. In particular, the transformation T defines a bijection from
[0, 1[ onto itself.

An interval exchange transformation relative to (Ia)a∈A is also said to be
on the alphabet A. The values (αa)a∈A are called the translation values of the
transformation T .

Example 3.1 Let R be the interval exchange transformation corresponding to
A = {a, b}, a <1 b, b <2 a, Ia = [0, 1−α[, Ib = [1−α, 1[. The transformationR is
the rotation of angle α on the semi-interval [0, 1[ defined by R(z) = z+α mod 1.

Since <1 and <2 are total orders, there exists a unique permutation π of A such
that a <1 b if and only if π(a) <2 π(b). Conversely, <2 is determined by <1

and π and <1 is determined by <2 and π. The permutation π is said to be
associated to T .
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If we set A = {a1, a2, . . . , as} with a1 <1 a2 <1 · · · <1 as, the pair (λ, π)
formed by the family λ = (λa)a∈A and the permutation π determines the map
T . We will also denote T as Tλ,π. The transformation T is also said to be an
s-interval exchange transformation.

It is easy to verify that the family of s-interval exchange transformations is
closed by composition and by taking inverses.

Example 3.2 A 3-interval exchange transformation is represented in Figure 3.1.
One has A = {a, b, c} with a <1 b <1 c and b <2 c <2 a. The associated permu-
tation is the cycle π = (abc).

µa µb µc

νb νc νa

Figure 3.1: A 3-interval exchange transformation

3.2 Regular interval exchange transformations

The orbit of a point z ∈ [0, 1[ is the set {T n(z) | n ∈ Z}. The transformation T
is said to be minimal if for any z ∈ [0, 1[, the orbit of z is dense in [0, 1[.

Set A = {a1, a2, . . . , as} with a1 <1 a2 <1 . . . <1 as, µi = µai
and δi =

δai
. The points 0, µ1, . . . , µs−1 form the set of separation points of T , denoted

Sep(T ).
An interval exchange transformation Tλ,π is called regular if the orbits of

the nonzero separation points µ1, . . . , µs−1 are infinite and disjoint. Note that
the orbit of 0 cannot be disjoint of the others since one has T (µi) = 0 for some
i with 1 ≤ i ≤ s.

A regular interval exchange transformation is also said to satisfy the idoc
condition (where idoc stands for “infinite disjoint orbit condition”). It is also
said to have the Keane property or to be without connection (see [8]).

Example 3.3 The 2-interval exchange transformation R of Example 3.1 which
is the rotation of angle α is regular if and only if α is irrational.

The following result is due to Keane [22].

Theorem 3.4 (Keane) A regular interval exchange transformation is mini-
mal.

The converse is not true. Indeed, consider the rotation of angle α with α
irrational, as a 3-interval exchange transformation with λ = (1 − 2α, α, α)and
π = (132). The transformation is minimal as any rotation of irrational angle
but it is not regular since µ1 = 1− 2α, µ2 = 1− α and thus µ2 = T (µ1).

11



3.3 Natural coding

Let T be an interval exchange transformation relative to (Ia)a∈A. For a given
real number z ∈ [0, 1[, the natural coding of T relative to z is the infinite word
ΣT (z) = a0a1 · · · on the alphabet A defined by

an = a if T n(z) ∈ Ia.

Example 3.5 Let α = (3−
√
5)/2 and let R be the rotation of angle α on [0, 1[

as in Example 3.1. The natural coding of R with respect to α is the Fibonacci
word (see [24, Chapter 2] for example).

For a word w = b0b1 · · · bm−1, let Iw be the set

Iw = Ib0 ∩ T−1(Ib1) ∩ . . . ∩ T−m+1(Ibm−1
). (3.1)

Note that each Iw is a semi-interval. Indeed, this is true if w is a letter. Next,
assume that Iw is a semi-interval. Then for any a ∈ A, T (Iaw) = T (Ia)∩ Iw is a
semi-interval since T (Ia) is a semi-interval by definition of an interval exchange
transformation. Since Iaw ⊂ Ia, T (Iaw) is a translate of Iaw, which is therefore
also a semi-interval. This proves the property by induction on the length.

Then one has for any n ≥ 0

anan+1 · · · an+m−1 = w ⇐⇒ T n(z) ∈ Iw (3.2)

If T is minimal, one has w ∈ Fac(ΣT (z)) if and only if Iw 6= ∅. Thus the
set Fac(ΣT (z)) does not depend on z (as for Sturmian words, see [24]). Since it
depends only on T , we denote it by Fac(T ). When T is regular (resp. minimal),
such a set is called a regular interval exchange set (resp. a minimal interval
exchange set).

Let T be an interval exchange transformation. The natural codings ΣT (z)
of T with z ∈ [0, 1[ are infinite words on A. The set Aω of infinite words on
A is a topological space for the topology induced by the metric defined by the
following distance. For x = a0a1 · · · , y = b0b1 · · · ∈ Aω with x 6= y, one sets
d(x, y) = 2−n(x,y) if n(x, y) is the least n such that an 6= bn. LetX be the closure
in the space Aω of the set of all ΣT (z) for z ∈ [0, 1[ and let S be the shift on X .
The pair (X,S) is a symbolic dynamical system, formed of a topological space
X and a continuous transformation S. Such a system is said to be minimal if
the only closed subsets invariant by S are ∅ or X . It is well-known that (X,S) is
minimal if and only if F (S) is uniformly recurrent (see for example [24] Theorem
1.5.9).

We have the following commutative diagram.
The map ΣT is neither continuous nor surjective. This can be corrected by

embedding the interval [0, 1[ into a larger space on which T is a homeomophism
(see [22] or [7] page 349). However, if the transformation T is minimal, the
symbolic dynamical system (X,S) is minimal (see [7] page 392). Thus, we
obtain the following statement.

12



[0, 1[ [0, 1[

X X

T

ΣT

S

ΣT

Proposition 3.6 For any minimal interval exchange transformation T , the set
Fac(T ) is uniformly recurrent.

Example 3.7 Set α = (3 −
√
5)/2 and A = {a, b, c}. Let T be the interval

exchange transformation on [0, 1[ which is the rotation of angle 2α mod 1 on
the three intervals Ia = [0, 1 − 2α[, Ib = [1 − 2α, 1 − α[, Ic = [1 − α, 1[ (see
Figure 3.2). The transformation T is regular since α is irrational. The words

0 1− 2α 1− α 1

a b c

0 α 2α 1

b c a

Figure 3.2: A 3-interval exchange transformation.

of length at most 5 of the set F = Fac(T ) are represented in Figure 3.3. Since

a

b

c

c

a

b

b

c

b
c

c

a

a
b

b

b

b

b
c

c

c

a c

a

a
b

b

b

b
c

c

c

a
b

c

a

Figure 3.3: The words of length ≤ 5 of the set F .

T = R2, where R is the transformation of Example 3.5, the natural coding of T
relative to α is the infinite word y = γ−1(x) where x is the Fibonacci word and
γ is the morphism defined by γ(a) = aa, γ(b) = ab, γ(c) = ba. One has

y = baccbaccbbacbbacc · · ·
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4 Return words

In this section, we introduce the notion of return and first return words. We
prove elementary results about return words which essentially already appear
in [14].

Let F be a set of words. For w ∈ F , let ΓF (w) = {x ∈ F | wx ∈ F ∩ A+w}
be the set of right return words to w and let RF (w) = ΓF (w) \ ΓF (w)A

+ be
the set of first right return words to w. By definition, the set RF (w) is, for any
w ∈ F , a prefix code. If F is recurrent, it is a w−1F -maximal prefix code.

Similarly, for w ∈ F , we denote Γ′
F (w) = {x ∈ F | xw ∈ F ∩wA+} the set of

left return words to w and R′
F (w) = Γ′

F (w)\A+Γ′
F (w) the set of first left return

words to w. By definition, the set R′
F (w) is, for any w ∈ F , a suffix code. If F

is recurrent, it is an Fw−1-maximal suffix code. The relation between RF (w)
and R′

F (w) is simply
wRF (w) = R′

F (w)w . (4.1)

Let f : B∗ → A∗ is a coding morphism for RF (w). The morphism f ′ : B∗ → A∗

defined for b ∈ B by f ′(b)w = wf(b) is a coding morphism for R′
F (w) called the

coding morphism associated to f .

Example 4.1 Let F be the uniformly recurrent set of Example 3.7. We have

RF (a) = {cbba, ccba, ccbba},
RF (b) = {acb, accb, b},
RF (c) = {bac, bbac, c}.

Note that ΓF (w) ∪ {1} is right unitary and that

ΓF (w) ∪ {1} = RF (w)
∗ ∩ w−1F. (4.2)

Indeed, if x ∈ ΓF (w) is not in RF (w), we have x = zu with z ∈ ΓF (w) and
u nonempty. Since ΓF (w) is right unitary, we have u ∈ ΓF (w), whence the
conclusion by induction on the length of x. The converse inclusion is obvious.

Proposition 4.2 A recurrent set F is uniformly recurrent if and only if the set
RF (w) is finite for any w ∈ F .

Proof. Assume that all sets RF (w) for w ∈ F are finite. Let n ≥ 1. Let N be
the maximal length of the words in RF (w) for a word w of length n, then any
word of length N + 2n− 1 contains an occurrence of w. Conversely, for w ∈ F ,
let N be such that w is a factor of any word in F of length N . Then the words
of RF (w) have length at most |w|+N − 1.

Let F be a recurrent set and let w ∈ F . Let f be a coding morphism for RF (w).
The set f−1(w−1F ), denoted Df (F ), is called the derived set of F with respect
to f . Note that if f ′ is the coding morphism for R′

F (w) associated to f , then
Df (F ) = f ′−1(Fw−1).

The following result gives an equivalent definition of the derived set.
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Proposition 4.3 Let F be a recurrent set. For w ∈ F , let f be a coding
morphism for the set RF (w). Then

Df(F ) = f−1(ΓF (w)) ∪ {1}. (4.3)

Proof. Let z ∈ Df (F ). Then f(z) ∈ w−1F ∩ RF (w)
∗ and thus f(z) ∈ ΓF (w) ∪

{1}. Conversely, if x ∈ ΓF (w), then x ∈ RF (w)
∗ by Equation (4.2) and thus

x = f(z) for some z ∈ Df (F ).

Let F be a recurrent set and x be an infinite word such that F = Fac(x).
Let w ∈ F and let f be a coding morphism for the set RF (w). Since w appears
infinitely often in x, there is a unique factorization x = vwz with z ∈ RF (w)

ω

and v such that vw has no proper prefix ending with w. The infinite word f−1(z)
is called the derived word of x relative to f . If f ′ is the coding morphism for
R′

F (w) associated to f , we have f−1(z) = f ′−1(wz) and thus f, f ′ define the
same derived word.

The following well-known result (for a proof, see [6] for example), shows in
particular that the derived set of a recurrent set is recurrent.

Proposition 4.4 Let F be a recurrent set and let x be a recurrent infinite word
such that F = Fac(x). Let w ∈ F and let f be a coding morphism for the set
RF (w). The derived set of F with respect to f is the set of factors of the derived
word of x with respect to f , that is Df (F ) = Fac(Df (x)).

Example 4.5 Let F be the uniformly recurrent set of Example 3.7. Let f
be the coding morphism for the set RF (c) given by f(a) = bac, f(b) = bbac,
f(c) = c. Then the derived set of F with respect to f is represented in Figure 4.1.

a

b

c

c

b
c

a
b

a
b

b
c

c

c

b

Figure 4.1: The words of length ≤ 3 of the derived set of F .

5 Uniformly recurrent tree sets

In this section, we recall the notion of tree set introduced in [4]. We recall that
the factor complexity of a tree set on k+1 letters is pn = kn+1. Observe that
uniformly recurrent ternary tree sets, which will be considered in Section 6, are
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uniquely ergodic as a consequence of the fact that a minimal symbolic system
such that lim sup pn/n < 3 is uniquely ergodic [9].

We recall a result concerning the decoding of tree sets (Theorem 5.5). We
also recall the finite index basis property of uniformly recurrent tree sets (The-
orems 5.6 and 5.7) that we will use in Section 7. We prove that the family of
uniformly recurrent tree sets is invariant under derivation (Theorem 5.10). We
further prove that all bases of the free group included in a uniformly recurrent
tree set are tame (Theorem 5.16).

5.1 Tree sets

For a biextendable word w, we consider the undirected graph G(w) on the set
of vertices which is the disjoint union of L(w) and R(w) with edges the pairs
(a, b) ∈ E(w). The graph G(w) is called the extension graph of w in F .

Recall that an undirected graph is a tree if it is connected and acyclic.
We say that F is a tree set (resp. an acyclic set) if it is biessential and if for

every word w ∈ F , the graph G(w) is a tree (resp. is acyclic).
It is not difficult to verify the following statement (see [4], Proposition 4.3)

which shows that the factor complexity of a tree set is linear.

Proposition 5.1 Let F be a tree set on the alphabet A and let k = Card(A ∩
F )− 1. Then Card(F ∩ An) = kn+ 1 for all n ≥ 0

The following result is also easy to prove.

Proposition 5.2 A Sturmian set F is a uniformly recurrent tree set.

Proof. We have already seen that a Sturmian set is uniformly recurrent. Let
us show that it is a tree set. Consider w ∈ F . If w is not left-special there is a
unique a ∈ A such that aw ∈ F . Then E(w) ⊂ a× A and thus G(w) is a tree.
The case where w is not right-special is symmetrical. Finally, assume that w is
bispecial. Let a, b ∈ A be such that aw is right-special and wb is left-special.
Then E(w) = a×A ∪A× b and thus G(w) is a tree.

Putting together Propositions 3.6 and Proposition 5.8 in [5], we have the similar
statement.

Proposition 5.3 A regular interval exchange set is a uniformly recurrent tree
set.

Proposition 5.3 is actually a particular case of a result of [18] which charac-
terizes the regular interval exchange sets.

Let F be a set. For w ∈ F , and U, V ⊂ F , let U(w) = {ℓ ∈ U | ℓw ∈ F} and
let V (w) = {r ∈ V | wr ∈ F}. The generalized extension graph of w relative
to U, V is the following undirected graph GU,V (w). The set of vertices is made
of two disjoint copies of U(w) and V (w). The edges are the pairs (ℓ, r) for

16



ℓ ∈ U(w) and r ∈ V (w) such that ℓwr ∈ F . The extension graph G(w) defined
previously corresponds to the case where U, V = A.

The following result is proved in [4] (Proposition 4.9).

Proposition 5.4 Let F be a tree set. For any w ∈ F , any finite F -maximal
suffix code U ⊂ F and any finite F -maximal prefix code V ⊂ F , the generalized
extension graph GU,V (w) is a tree.

Let F be a recurrent set and let f be a coding morphism for a finite F -
maximal bifix code. The set f−1(F ) is called a maximal bifix decoding of F .

The following result is Theorem 4.13 in [4].

Theorem 5.5 Any maximal bifix decoding of a recurrent tree set is a tree set.

We have no example of a bifix decoding of a recurrent tree set which is not
recurrent (in view of Theorem 7.1 to be proved hereafter, such a set would be
the decoding of a recurrent tree set which is not uniformly recurrent).

5.2 The finite index basis property

Let F be a recurrent set containing the alphabet A. We say that F has the
finite index basis property if the following holds. A finite bifix code X ⊂ F is
an F -maximal bifix code of F -degree d if and only if it is a basis of a subgroup
of index d of the free group on A.

We recall the main result of [5] (Theorem 6.1).

Theorem 5.6 A uniformly recurrent tree set containing the alphabet A has the
finite index basis property.

Recall from Section 2.3 that a group code of degree d is a bifix code X such
that X∗ = ϕ−1(H) for a surjective morphism ϕ : A∗ → G from A∗ onto a finite
group G and a subgroup H of index d of G.

We will use the following result. It is stated for a Sturmian set F in [2]
(Theorem 7.2.5) but the proof only uses the fact that F is uniformly recurrent
and satisfies the finite index basis property. We reproduce the proof for the sake
of clarity.

For a set of words X , we denote by 〈X〉 the subgroup of the free group on
A generated by X . The free group on A itself is consistently denoted 〈A〉.

Theorem 5.7 Let Z ⊂ A+ be a group code of degree d. For every uniformly
recurrent tree set F containing the alphabet A, the set X = Z ∩ F is a basis of
a subgroup of index d of 〈A〉.

Proof. By Theorem 4.2.11 in [2], the code X is an F -maximal bifix code of
F -degree e ≤ d. Since F is a uniformly recurrent, by Theorem 4.4.3 of [2], X is
finite. By Theorem 5.6, X is a basis of a subgroup of index e. Since 〈X〉 ⊂ 〈Z〉,
the index e of the subgroup 〈X〉 is a multiple of the index d of the subgroup
〈Z〉. Since e ≤ d, this implies that e = d.
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As an example of this result, if F is a uniformly recurrent tree set, then
F ∩ An is a basis of the subgroup formed by the words of length multiple of n
(where the length is not the length of the reduced word but the sum of values
1 for the letters in A and −1 for the letters in A−1).

We will use the following results from [4]. The first one is Corollary 5.8 in [4].

Theorem 5.8 Let F be a uniformly recurrent tree set containing the alphabet
A. For any word w ∈ F , the set RF (w) is a basis of the free group on A.

The next result is Theorem 6.2 in [4]. A submonoid M of A∗ is saturated in
a set F if M ∩ F = 〈M〉 ∩ F .

Theorem 5.9 Let F be an acyclic set. The submonoid generated by any bifix
code X ⊂ F is saturated in F .

5.3 Derived sets of tree sets

We will use the following closure property of the family of uniformly recurrent
tree sets. It generalizes the fact that the derived word of a Sturmian word is
Sturmian (see [21]).

Theorem 5.10 Any derived set of a uniformly recurrent tree set is a uniformly
recurrent tree set.

Proof. Let F be a uniformly recurrent tree set containing A, let v ∈ F and let
f be a coding morphism for X = RF (v). By Theorem 5.8, X is a basis of the
free group on A. Thus f : B∗ → A∗ extends to an isomorphism from 〈B〉 onto
〈A〉.

Set H = f−1(v−1F ). By Proposition 4.3, the set H is recurrent and H =
f−1(ΓF (v)) ∪ {1}.

Consider x ∈ H and set y = f(x). Let f ′ be the coding morphism for
X ′ = R′

F (v) associated to f . For a, b ∈ B, we have

(a, b) ∈ G(x) ⇔ (f ′(a), f(b)) ∈ GX′,X(vy)

Indeed,

axb ∈ H ⇔ f(a)yf(b) ∈ ΓF (v) ⇔ vf(a)yf(b) ∈ F ⇔ f ′(a)vyf(b) ∈ F.

The set X ′ is an Fv−1-maximal suffix code and the set X is a v−1F -maximal
prefix code. By Proposition 5.4 the generalized extension graph GX′,X(vy) is a
tree. Thus the graph G(x) is a tree. This shows that H is a tree set.

Consider now x ∈ H \ 1. Set y = f(x). Let us show that ΓH(x) =
f−1(ΓF (vy)) or equivalently f(ΓH(x)) = ΓF (vy). Consider first r ∈ ΓH(x).
Set s = f(r). Then xr = ux with u, ux ∈ H . Thus ys = wy with w = f(u).

Since u ∈ H \ {1}, w = f(u) is in ΓF (v), we have vw ∈ A+v ∩ F . This
implies that vys = vwy ∈ A+vy ∩ F and thus that s ∈ ΓF (vy). Conversely,
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consider s ∈ ΓF (vy). Since y = f(x), we have s ∈ ΓF (v). Set s = f(r). Since
vys ∈ A+vy∩F , we have ys ∈ A+y∩F . Set ys = wy. Then vwy ∈ A+vy implies
vw ∈ A+v and therefore w ∈ ΓF (v). Setting w = f(u), we obtain f(xr) = ys =
wy ∈ X+y ∩ ΓF (v). Thus r ∈ ΓH(x). This shows that f(ΓH(x)) = ΓF (vy) and
thus that RH(x) = f−1(RF (vy)).

Since F is uniformly recurrent, the set RF (vy) is finite. Since f is an isomor-
phism, RH(x) is also finite, which shows that H is uniformly recurrent.

Example 5.11 Let F be the Tribonacci set (see Example 2.2). It is the set of
factors of the infinite word x = abacaba · · · which is the fixpoint of the morphism
f defined by f(a) = ab, f(b) = ac, f(c) = a. We have RF (a) = {a, ba, ca}. Let
g be the coding morphism for RF (a) defined by g(a) = a, g(b) = ba, g(c) = ca
and let g′ be the associated coding morphism forR′

F (a). We have f = g′π where
π is the circular permutation π = (abc). Set z = g′−1(x). Since g′π(x) = x, we
have z = π(x). Thus the derived set of F with respect to a is the set π(F ).

5.4 Tame bases

An automorphism α of the free group on A is positive if α(a) ∈ A+ for every
a ∈ A. We say that a positive automorphism of the free group on A is tame
if it belongs to the submonoid generated by the permutations of A and the
automorphisms αa,b, α̃a,b defined for a, b ∈ A with a 6= b by

αa,b(c) =

{

ab if c = a

c otherwise
, α̃a,b(c) =

{

ba if c = a

c otherwise

Thus αa,b places a b after each a and α̃a,b places a b before each a. The above
automorphisms and the permutations of A are called the elementary positive
automorphisms on A. The monoid of positive automorphisms is not finitely
generated as soon as the alphabet has at least three generators (see [27]).

A basis X of the free group is positive if X ⊂ A+. A positive basis X of the
free group is tame if there exists a tame automorphism α such that X = α(A).

Example 5.12 The set X = {ba, cba, cca} is a tame basis of the free group on
{a, b, c}. Indeed,one has the following sequence of elementary automorphisms.

(b, c, a)
αc,b−−→ (b, cb, a)

α̃2
a,c−−−→ (b, cb, cca)

αb,a−−−→ (ba, cba, cca).

The following result will play a key role in the proof of the main result of this
section (Theorem 5.16).

Proposition 5.13 A set X ⊂ A+ is a tame basis of the free group on A if and
only if X = A or there is a tame basis Y of the free group on A and u, v ∈ Y
such that X = (Y \ v) ∪ uv or X = (Y \ u) ∪ uv.
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Proof. Assume first that X is a tame basis of the free group on A. Then
X = α(A) where α is a tame automorphism of 〈A〉. Then α = α1α2 · · ·αn where
the αi are elementary positive automorphisms. We use an induction on n. If
n = 0, then X = A. If αn is a permutation of A, then X = α1α2 · · ·αn−1(A)
and the result holds by induction hypothesis. Otherwise, set β = α1 · · ·αn−1

and Y = β(A). By induction hypothesis, Y is tame. If αn = αa,b, set u = β(a)
and v = β(b) = α(b). Then X = (Y \u)∪uv and thus the condition is satisfied.
The case were αn = α̃a,b is symmetrical.

Conversely, assume that Y is a tame basis and that u, v ∈ Y are such that
X = (Y \ u) ∪ uv. Then, there is a tame automorphism β of 〈A〉 such that
Y = β(A). Set a = β−1(u) and b = β−1(v). Then X = βαa,b(A) and thus X is
a tame basis.

We note the following corollary.

Corollary 5.14 A tame basis which is a bifix code is the alphabet.

Proof. Assume that X is a tame basis which is not the alphabet. By Proposi-
tion 5.13 there is a tame basis Y and u, v ∈ Y such that X = (Y \ v) ∪ uv or
X = (Y \ u) ∪ uv. In the first case, X is not prefix. In the second one, it is not
suffix.

The following example is from [27].

Example 5.15 The set X = {ab, acb, acc} is a basis of the free group on
{a, b, c}. Indeed, accb = (acb)(ab)−1(acb) ∈ 〈X〉 and thus b = (acc)−1accb ∈
〈X〉, which implies easily that a, c ∈ 〈X〉. The set X is bifix and thus it is not
a tame basis by Corollary 5.14.

The following result is a remarquable consequence of Theorem 5.6.

Theorem 5.16 Any basis of the free group included in a uniformly recurrent
tree set is tame.

Proof. Let F be a uniformly recurrent tree set. Let X ⊂ F be a basis of the free
group on A. We use an induction on the sum ℓ(X) of the lengths of the words
of X . If X is bifix, by Theorem 5.6, it is an F -maximal bifix code of F -degree 1.
Thus X = A (see Example 2.4). Next assume for example that X is not prefix.
Then there are nonempty words u, v such that u, uv ∈ X . Let Y = (X \uv)∪v.
Then Y is a basis of the free group and ℓ(Y ) < ℓ(X). By induction hypothesis,
Y is tame. Since X = (Y \ v) ∪ uv, X is tame by Proposition 5.13.

Example 5.17 The set X = {ab, acb, acc} is a basis of the free group which is
not tame (see Example 5.15). Accordingly, the extension graph G(ε) relative to
the set of factors of X is not a tree (see Figure 5.1).
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a

c

b

c

Figure 5.1: The graph G(ε)

6 S-adic representations

In this section we study S-adic representations of tree sets. This notion was in-
troduced in [17], using a terminology initiated by Vershik and coined out by B.
Host. We first recall a general construction allowing to build S-adic representa-
tions of any uniformly recurrent aperiodic set (Proposition 6.1) which is based
on return words. Using Theorem 5.16, we show that this construction actu-
ally provides Se-representations of uniformly recurrent tree sets (Theorem 6.5),
where Se is the set of elementary positive automorphisms of the free group on
A.

We then investigate the case of a ternary alphabet where a careful study
of Rauzy graphs allows us to provide an S3-adic characterization of uniformly
recurrent ternary tree sets with S3 being the set of elementary positive auto-
morphisms of 〈{0, 1, 2}〉 (Theorem 6.6). In particular, this characterization can
be expressed using some (non-deterministic) Büchi automaton (Theorem 6.9).

6.1 S-adic representation of tree sets

Let S be a set of morphisms and s = (σn)n∈N be a sequence in SN with σn :
A∗

n+1 → A∗
n. We let Fs denote the set of words

⋂

n∈N
Fac(σ0 · · ·σn(A∗

n+1)). We
call a factorial set F an S-adic set if there exists s ∈ SN such that F = Fs. In
this case, the sequence s is called an S-adic representation of F .

A sequence of morphisms (σn)n∈N is said to be everywhere growing if mina∈An

|σ0 · · ·σn−1(a)| goes to infinity as n increases. A sequence of morphisms (σn)n∈N

is said to be primitive if for all r ≥ 0 there exists s > r such that all letters of
Ar occur in all images σr · · ·σs−1(a), a ∈ As. Obviously any primitive sequence
of morphisms is everywhere growing.

A uniformly recurrent set F is said to be aperiodic if it contains at least one
right special factor of each length. The next (well-known) proposition provides
a general construction to get a primitive S-adic representation of any aperiodic
uniformly recurrent set F .

Proposition 6.1 An aperiodic factorial set F ⊂ A∗ is uniformly recurrent if
and only if it has a primitive S-adic representation for some (possibly infinite)
set S of morphisms.

Proof. Let S be a set of morphisms and s = (σn : A∗
n+1 → A∗

n)n∈N ∈ SN

a primitive sequence of morphisms such that F =
⋂

n∈N
Fac(σ0 · · ·σn(A∗

n+1)).
Consider a word u ∈ F and let us prove that u ∈ Fac(v) for all long enough
v ∈ F . The sequence s being everywhere growing, there is an integer r > 0
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such that mina∈Ar
|σ0 · · ·σr−1(a)| > |u|. As F =

⋂

n∈N
Fac(σ0 · · ·σn(A∗

n+1)),
there is an integer s > r, two letters a, b ∈ Ar and a letter c ∈ As such that
u ∈ Fac(σ0 · · ·σr−1(ab)) and ab ∈ Fac(σr · · ·σs−1(c)). The sequence s being
primitive, there is an integer t > s such that c occurs in σs · · ·σt−1(d) for all d ∈
At. Thus u is a factor of all words v ∈ F such that |v| ≥ maxd∈At

|σ0 · · ·σt−1(d)|
and F is uniformly recurrent.

Let us prove the only if part. Let (un)n∈N ∈ FN be a non-ultimately periodic
sequence such that un is suffix of un+1. By assumption, F is uniformly recurrent
so RF (un+1) is finite for all n. The set F being aperiodic, RF (un+1) also has
cardinality at least 2 for all n. For all n, let An = {0, . . . ,Card(RF (un))−1} and
let αn : A∗

n → A∗ be a coding morphism forRF (un). The word un being suffix of
un+1, we have αn+1(An+1) ⊂ αn(A

+
n ). Since αn(An) = RF (un) is a prefix code,

there is a unique morphism σn : A∗
n+1 → A∗

n such that αnσn = αn+1. For all n
we get RF (un) = α0σ0σ1 · · ·σn−1(An) and F =

⋂

n∈N
Fac(α0σ0 · · ·σn(A∗

n+1)).
Without loss of generality, we can suppose that u0 = ε and A0 = A. In that
case we get α0 = id and the set F thus has an S-adic representation with
S = {σn | n ∈ N}.

Let us show that s = (σn)n∈N is everywhere growing. If not, there is a
sequence of letters (an ∈ An)n≥N such that σn(an+1) = an for all n ≥ N . This
means that the word r = σ0 · · ·σn(an) ∈ F is a first return word to un for all
n ≥ N . The sequence (|un|)n∈N being unbounded, the word rk belongs to F for
all positive integers k, which contradicts the uniform recurrence of F .

Let us show that s is primitive. The set F being uniformly recurrent, for
all n ∈ N there exists Nn such that all words of F ∩ A≤n occur in all words of
F∩A≥Nn . Let r ∈ N and let u = σ0 · · ·σr−1(a) for some a ∈ Ar. Let s > r be an
integer such that minb∈As

|σ0 · · ·σs−1(b)| ≥ N|u|. Thus u occurs in σ0 · · ·σs−1(b)
for all b ∈ As. As σ0 · · ·σs−1(As) ⊂ σ0 · · ·σr−1(A

+
r ) and as σ0 · · ·σr−1(Ar) =

RF (ur) is a prefix code, the letter a ∈ Ar occurs in σr · · ·σs−1(b) for all b ∈ Ar.

Remark 6.2 In the continuation of the proof of the above proposition, we could
also consider a sequence (an ∈ An)n∈N of letters such that σn(an+1) ∈ anA

∗
n

(such a sequence exists by application of König’s lemma). By doing so, we
would build a uniformly recurrent infinite word w = limn→+∞ σ0 · · ·σn(an+1)
with F for set of factors. According to Durand [14], w is substitutive if and
only if there is a sequence of words (un)n∈N that makes the sequence (σn)n∈N

be ultimately periodic.

Remark 6.3 In the proof of the previous proposition, the same construction
works if we define the sequence (un)n∈N such that un is prefix of un+1 and if we
consider R′

F (un) instead of RF (un).

Remark 6.4 Still in the continuation of the proof, we can also slightly mod-
ify the construction in such a way that the sequence (σn)n∈N is proper, i.e.,
for all n, there is an integer m > n and two letters a, b ∈ An such that
σn · · ·σm−1(Am) ⊂ aA∗

n ∩ A∗
nb. According to Durand [15, 16], if S is finite,
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then F is linearly recurrent if and only if there is an integer k ≥ 0 such that
for all n ∈ N, all letters of An occur in σn · · ·σn+k(a) for all a ∈ An+k+1 (this
property is called strong primitiveness) and there are two letters a, b ∈ An such
that σn · · ·σn+k(An+k+1) ⊂ aA∗

n ∩ A∗
nb.

Even for uniformly recurrent sets with linear factor complexity, the set of
morphisms S = {σn | n ∈ N} considered in Proposition 6.1 usually is infinite
as well as the sequence of alphabets (An)n∈N usually is unbounded (see [13]).
For tree sets F , the next theorem significantly improves the only if part of
Proposition 6.1: For such sets, the set S can be replaced by the set Se of
elementary positive automorphisms. In particular, An is equal to A for all n.

Theorem 6.5 If F is a uniformly recurrent tree set over an alphabet A, then
it has a primitive Se-adic representation.

Proof. For any non-ultimately periodic sequence (un)n∈N ∈ FN such that u0 = ε
and un is suffix of un+1, the sequence of morphisms (σn)n∈N built in the proof of
Proposition 6.1 is a primitive S-adic representation of F with S = {σn | n ∈ N}.
Therefore, all we need to do is to consider such a sequence (un)n∈N such that
σn is tame for all n.

Let u1 = a(0) be a letter in A. By Theorem 5.8, the set RF (u1) is a basis of
the free group on A. Therefore, by Theorem 5.16, the morphism σ0 : A∗

1 → A∗
0

is tame (A0 = A). Let a(1) ∈ A1 be a letter and set u2 = σ0(a
(1)). Thus

u2 ∈ RF (u1) and u1 is a suffix of u2. By Theorem 5.10, the derived set F (1) =
σ−1
0 (F ) is a uniformly recurrent tree set on the alphabet A. We thus reiterate the

process with a(1) and we conclude by induction with un = σ0 · · ·σn−2(a
(n−1))

for all n ≥ 2.

6.2 The case of a ternary alphabet

In the case of a ternary alphabet A, Theorem 6.5 can again be significantly
improved into an if and only if result. Let us first recall the notion of Rauzy
graph. For n ∈ N, the Rauzy graph of order n of F is the directed graph
GF (n) = (V (n), E(n)) where the set of vertices is V (n) = F ∩ An and there is
an edge from u to v if there is a word in F ∩An+1 with prefix u and suffix v. We
extend the notions of left special, right special and bispecial word to vertices
of GF (n). Clearly, a vertex will be left special (resp. right special) if it has at
least two incoming edges (resp. outgoing edges) and bispecial if it is both left
and right special.

Theorem 6.6 Let S3 be the set of elementary positive automorphisms over
{0, 1, 2}. A set F is a uniformly recurrent tree set over {0, 1, 2} if and only if
it has a primitive S3-adic representation that labels an infinite path starting at
vertex 2 in the directed graph represented in Figure 6.1 where edges are labeled
by subsets of S∗

3 given in Appendix A.
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The proof almost immediately follows from the proof of Theorem 5.24 in [23]
that we recall below (with a slightly different statement). Observe that we do
not recall hereafter the detailed formulation of [23] because it would force us to
give a lot of developments that are useless for Theorem 6.6 as the vertex 1 of
Figure 6.2 disappears.

Theorem 6.7 (Theorem 5.24 in [23]) Let M : {0, 1, 2}∗ → {0, 1, 2}∗ be the
morphism defined by M(0) = M(2) = 0 and M(1) = 1 and let S = S3 ∪ {M}.
An aperiodic uniformly recurrent set F satisfies p(n+1)− p(n) ≤ 2 if and only
if it has a primitive S-adic representation (σn)n∈N that labels a path starting
in vertex 1 or in vertex 2 in Figure 6.2 where edges are labeled by subsets of
S∗ given in Appendix A and Appendix B and that satisfies some (computable)
condition on the lengths of σ0 · · ·σn when σn labels the edge from 5/6 or 7/8 to
1.

The idea of the proof of Theorem 6.7 is the following. For the considered
class of factor complexity, the Rauzy graphs Gn can have 10 different shapes.
When computing the morphisms σn of Proposition 6.1, we notice that they only
depend on the shapes of the Rauzy graphs of order |un| and |un+1|. The result
is thus obtained by choosing for each n a word of length n for un and computing
all possible morphisms σn. The sequence (σn)n∈N thus describes a path in what
we called the graph of graphs that consists in the directed graph with one vertex
for each shape of Rauzy graph and with an edge from a vertex i to a vertex
j when a Rauzy graph Gn of shape i can evolve into a Rauzy graph Gn+1 of
shape j. A given Rauzy graph of shape i usually has several possibilities to
evolve to a Rauzy graph of shape j. The edges are thus labeled by several mor-
phisms. Theorem 6.7 is obtained by a careful description of the infinite path
in the graph of graphs that really correspond to S-adic representations of these
sets. A detailed computation can be found in [23].

Proof of Theorem 6.6. If F is a uniformly recurrent tree set over {0, 1, 2},
it satisfies p(n + 1) − p(n) = 2 for all n. Uniformly recurrent tree sets on
three letters are thus particular cases of aperiodic uniformly recurrent sets with
p(n+1)− p(n) ≤ 2. To get the S3-adic characterization of Theorem 6.6, it thus
suffices to remove from Theorem 6.7 all cases not corresponding to tree sets.

In Figure 6.2, the vertex 1 corresponds to a Rauzy graph with exactly one
right special vertex with exactly two outgoing edges and exactly one left special
vertex with exactly two incoming edges (these two vertices being possibly the
same bispecial vertex). If the Rauzy graph Gn has such a shape, then p(n +
1)−p(n) = 1, which is never the case for ternary tree sets (see Proposition 5.1).
The vertex 1 can thus be removed from the graph of graphs of tree sets over
{0, 1, 2}.

When computing all morphisms labeling the edges not related to the vertex
1, we observe that some of them correspond to evolutions of Rauzy graphs
involving bispecial factors whose extension graph is not a tree. This is the case
exactly for the morphisms given in Appendix B labeling the edge from the vertex
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2 to the vertex 7/8. We thus remove these morphisms from the set of labels
of this edge. Observe that this agrees with Theorem 6.5: these morphisms are
exactly those that belong to S+ \ S+

3 .

C1

C2

C3

C4

2

4B

V0

V1 V2

10B 7/8

5/6

Figure 6.1: Graph of graphs for ternary tree sets.

Remark 6.8 There are four strongly connected components in Figure 6.1 that
are denoted C1, C2, C3 and C4. The component C1 corresponds to Arnoux-
Rauzy words (also called strict episturmian words). The component C2 cor-
responds to words such that for all large enough n, there is exactly one right
special factor w with r(w) = 3 and two left special factors u, v, each with
ℓ(u) = ℓ(v) = 2. The component C3 is the opposite case of C2: for all large
enough n, there is exactly one left special factor w with ℓ(w) = 3 and two right
special factors u, v with r(u) = r(v) = 2. The component C4 corresponds to
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2

4B

V0

V1 V2

1

10B 7/8

5/6

Figure 6.2: Modified graph of graphs.

words such that for all large enough n, there are exactly two right (resp. left)
special factors u, v (resp. u′, v′) with r(u) = r(v) = 2 (resp. ℓ(u′) = ℓ(v′) = 2).
All 3-interval exchange words eventually end up in C4.

In Theorem 6.7 and Theorem 6.6, the condition of primitiveness of (σn)n∈N

can be hard to describe in the graph of graphs. Theorem 5.24 in [23] gives
evidence of this fact: the description of the primitiveness in Figure 6.2 needs a 2
page-long statement. The next result shows that this condition can be verified
by a (non-deterministic) automaton.

Recall that a Büchi automaton is an automaton with a condition of ac-
ceptance adapted to infinite words. An infinite word is accepted by such an
automaton if it labels an infinite path starting in an initial state and visiting
infinitely often terminal states.
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Theorem 6.9 There exists a Büchi automaton A over the alphabet S3 such that
F is a uniformly recurrent tree set if and only if it has an S3-adic representation
accepted by A.

We will use the following lemma.

Lemma 6.10 The set of primitive sequences of morphisms in S3 is accepted by
some Büchi automaton P.

Proof. The automaton will read infinite words (σn)n∈N ∈ SN
3 . The idea of the

proof is to keep track of the letters occurring in σk · · ·σk+n(a) for a ∈ {0, 1, 2}
and any k, n. This information will be registered in the vertices and the edges
will be labeled by the morphisms σn.

Consider the set T of 3-tuples (u, v, w) of non-empty words in 0∗1∗2∗ of
length at most 3. These words are devoted to register the letters occurring in
σk · · ·σk+n(a) for a ∈ {0, 1, 2} and we will put an edge from a state (u, v, w)
to a state (u′, v′, w′) with label σ if the letters occurring in u (resp. v, w) are
exactly those occurring in σ(u′) (resp. σ(v′), σ(w′)).

Let us formalize this. Given a 3-tuple (u′, v′, w′) of non-empty words over
{0, 1, 2}, we let λ(u′, v′, w′) denote the element t = (u, v, w) ∈ T where u
(resp. v, w) is the lexicographically smallest word in 0∗1∗2∗ that contains
an occurrence of 0, 1 or 2 if and only if u′ does (resp. v′, w′). For instance,
λ((2011210, 1, 220002)) = (012, 1, 02). Clearly, a sequence of morphisms (σn)n∈N ∈
SN
3 is primitive if and only if for all n ≥ 0, there exists m ≥ n such that
λ(σn · · ·σm(0), σn · · ·σm(1), σn · · ·σm(2)) = (012, 012, 012).

Let us build the automaton. Let P ⊂ T be the set of permutations of
(0, 1, 2). The set of states of the automaton is Q = T \ P . The initial state
t0 = (012, 012, 012) is also the unique terminal state.

Let us define the transitions. A sequence of morphisms (σn)n∈N is primitive if
it can be cut into pieces Σi = σki

· · ·σki+1−1 for an increasing sequence (ki)i∈N

with k0 = 0 such that λ(Σi(t)) = t0 for all t ∈ P . Our aim is to define the
transitions in such a way that all Σi label a path from t0 to t0.

For all t, t′ ∈ Q, t′ 6= t0, for all σ ∈ S3, there is a transition with label σ
from t to t′ if and only if t = λ(σ(t′)). With these transitions, we can start from
t0 and, reading morphisms as labels, reach some states with smaller words as
components. If the sequence of morphisms is primitive, we should be able to
reach a triple p ∈ P . As P * Q, we add the following transitions that allow us
to get back to t0 when such a triple should be reached. For all σ ∈ S3 and all
t ∈ Q, there is a transition with label σ from t to t0 if and only if t ∈ σ(P ).

By construction, this automaton accepts exactly the primitive sequences of
morphisms in SN

3 .

Proof of Theorem 6.9. The Büchi automaton is obtained from Figure 6.1 and
from the automaton P built in Lemma 6.10. Indeed, by Theorem 6.6 a set F is a
tree set if and only if it has a primitive S3-adic representation labeling an infinite
path starting in vertex 2 in Figure 6.1. Our goal thus is to turn Figure 6.1 into
a Büchi automaton with initial state 2 and all states being terminal and then,
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to consider the intersection of it with P . This can be achieved by showing that
the edges in Figure 6.1 are labeled by rational subsets of S+

3 .
We can observe in Appendix A that the edges in Figure 6.1 are labeled by

subsets of S≤K
3 Σ for some constant K, where Σ can be one of the sets given in

Equation (A.1).
Let us first show that the following sets are rational subsets of S∗

3 .

Σ1(i) = {[0, 1k2, 1k−12] | k ≥ i}, i ≥ 1

= α̃∗
2,1α̃

i−1
2,1 α1,2, i ≥ 1

Σ2,−(i) = {[1k−10, 21k0, 21k−10] | k ≥ i}, i ≥ 1

= α̃∗
0,1α̃

i−1
0,1 α̃1,2α1,0α2,0, i ≥ 1

Σ2,<(i) = {[1ℓ0, 21k0, 21k−10] | k − 1 > ℓ ≥ i}, i ≥ 0

= α+
2,1α̃

∗
0,1α̃

i
0,1α̃1,2α1,0α2,0, i ≥ 0

Σ3,=(i)[2, 1, 0] = {[1k−10, 1k0, 21k0] | k ≥ i}, i ≥ 1

= α̃∗
0,1α̃

i−1
0,1 α1,0α2,1, i ≥ 1

Σ3,−(i)[2, 1, 0] = {[1k−10, 1k0, 21k−10] | k ≥ i}, i ≥ 1

= α̃∗
0,1α̃

i−1
0,1 α1,0α2,0, i ≥ 1

Σ3,0(i)[2, 1, 0] = {[1k−10, 1k0, 20] | k ≥ i}, i ≥ 1

= α2,0α̃
∗
0,1α̃

i−1
0,1 α1,0, i ≥ 1

Obviously the sets Σ2,≤(i) = Σ2,−(i) ∪ Σ2,<(i), i ≥ 0, are also rational as
well as the set Σ2,0(i) as it can easily be deduced from Σ2,<(i)

At the opposite, the following sets are not rational subsets of S∗
3 .

Σ2,=(i) = {[1k0, 21k0, 21k−10] | k ≥ i}, i ≥ 1

Σ3,<(i) = {[21ℓ0, 1k0, 1k−10] | k − 1 > ℓ ≥ i}, i ≥ 0

Σ3,≤(i) = {[21ℓ0, 1k0, 1k−10] | k − 1 ≥ ℓ ≥ i}, i ≥ 0

Our goal is therefore to modify these sets into rational ones while keeping
S3-adic representations. We can observe that for all morphisms in these sets,
the last letter of the image is always 0. Let β0 be the inner automorphism of
the free group 〈{0, 1, 2}〉 defined by β0 : u 7→ 0u0−1. Let (σn)n∈N be an S3-adic
representation of a tree set F and suppose that σr · · ·σs ∈ Σ2,=(i) ∪ Σ3,<(i) ∪
Σ3,≤(i) for some integers r < s and i. Then the sequence of morphisms (σ′

n)n∈N

obtained from (σn)n∈N by replacing σr · · ·σs by a composition of morphisms in
S3 which is equal to β0σr · · ·σs is also an S3-adic representation of F .

Thus we only need to show that β0(Σ2,=(i)), β0(Σ3,<(i)) and β0(Σ3,≤(i))
are rational subsets of S∗

3 .
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β0(Σ2,=(i)) = {[01k, 021k, 021k−1] | k ≥ i}, i ≥ 1

= α̃2,0(α0,1α2,1)
∗(α0,1α2,1)

i−1α̃1,2, i ≥ 1

β0(Σ3,<(i))[2, 1, 0] = {[01k−1, 01k, 021ℓ] | k − 1 > ℓ ≥ i}, i ≥ 0

= α̃2,0α
+
0,1(α0,1α2,1)

∗(α0,1α2,1)
iα̃1,0, i ≥ 0

β0(Σ3,≤(i))[2, 1, 0] = {[01k−1, 01k, 021ℓ] | k − 1 ≥ ℓ ≥ i}, i ≥ 0

= α̃2,0α
∗
0,1(α0,1α2,1)

∗(α0,1α2,1)
iα̃1,0, i ≥ 0

The above equations conclude the proof.

7 Maximal bifix decoding

In this section, we state and prove the main result of this paper (Theorem 7.1).
In the first part, we prove two results concerning morphisms onto a finite group.
In the second one we prove a sequence of lemmas leading to a proof of the main
result.

7.1 Main result

The family of uniformly recurrent tree sets contains both the Sturmian sets and
the regular interval exchange sets. The second family is closed under maximal
bifix decoding (see [5], Corollary 5.22) but the first family is not (see Example 7.2
below). The following result shows that the family of uniformly recurrent tree
sets is a natural closure of the family of Sturmian sets.

Theorem 7.1 The family of uniformly recurrent tree sets is closed under max-
imal bifix decoding.

Note that, in contrast with Theorem 5.5, assuming the uniform recurrence,
instead of simply the recurrence, implies the same property for the decoding.

We illustrate Theorem 7.1 by the following example.

Example 7.2 Let F be the Tribonacci set on the alphabet A = {a, b, c} (see
Example 2.2). Let X = A2 ∩ F . Then X = {aa, ab, ac, ba, ca} is an F -maximal
bifix code of F -degree 2. Let B = {x, y, z, t, u} and let f : B∗ → A∗ be the
morphism defined by f(x) = aa, f(y) = ab, f(z) = ac, f(t) = ba, f(u) = ca.
Then f is a coding morphism for X . The set G = f−1(F ) is a uniformly
recurrent tree set by Theorem 7.1. It is not Sturmian since y and t are two
right-special words of length 1. It is not either an interval exchange set. Indeed,
for any right-special word w of G, one has r(w) = 3. This is not possible in
a regular interval exchange set T since, ΣT being injective, the length of the
interval Jw tends to 0 as |w| tends to infinity.
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We prove two preliminary results concerning the restriction to a uniformly re-
current tree set of a morphism onto a finite group (Propositions 7.3 and 7.5).

Proposition 7.3 Let F be a uniformly recurrent tree set containing the alphabet
A and let ϕ : A∗ → G be a morphism from A∗ onto a finite group G. Then
ϕ(F ) = G.

Proof. Since the submonoid ϕ−1(1) is right and left unitary, there is a bifix code
Z such that Z∗ = ϕ−1(1). Let X = Z ∩ F . By Theorem 5.7, X is a basis of a
subgroup of index Card(G). Let x be a word of X of maximal length. Then x
is not an internal factor of X and thus it has Card(G) parses. Let S be the set
of suffixes of x which are prefixes of X . If s, t ∈ S, then they are comparable
for the suffix order. Assume for example that s = ut. If ϕ(s) = ϕ(t), then
u ∈ X∗ which implies u = 1 since s is a prefix of X . Thus all elements of S
have distinct images by ϕ. Since S has Card(G) elements, this forces ϕ(S) = G
and thus ϕ(F ) = G since S ⊂ F .

We illustrate the proof on the following example.

Example 7.4 Let A = {a, b} and let ϕ be the morphism from A∗ onto the
symmetric groupG on 3 elements defined by ϕ(a) = (12) and ϕ(b) = (13). Let Z
be the group code such that Z∗ = ϕ−1(1). The group automaton corresponding
to the regular representation of G is represented in Figure 7.1. Let F be the
Fibonacci set. The code X = Z ∩ F is represented in Figure 7.2. The word

(13) (1) (12) (123)

(132) (23)

b

b

a

a

b

b

a

a b

b

a

a

Figure 7.1: The group automaton corresponding to the regular representation
of G.

w = ababa is not an internal factor of X . All its 6 suffixes (indicated in black in
Figure 7.2) are proper prefixes of X and their images by ϕ are the 6 elements
of the group G.

Proposition 7.5 Let F be a uniformly recurrent tree set containing the alphabet
A and let ϕ : A∗ → G be a morphism from A∗ onto a finite group G. For any
w ∈ F , one has ϕ(ΓF (w) ∪ {1}) = G.

Proof. Let α : B∗ → A∗ be a coding morphism for RF (w). Then β = ϕ ◦ α :
B∗ → G is a morphism from B∗ into G. By Theorem 5.8, the set RF (w) is a
basis of the free group on A. Thus 〈α(B)〉 = 〈A〉. This implies that β(〈B〉) = G.
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Figure 7.2: The code X = Z ∩ F

This implies that β(B) generates G. Since G is a finite group, β(B∗) is a
subgroup of G and thus β(B∗) = G. By Theorem 5.10, the set H = α−1(w−1F )
is a uniformly recurrent tree set. Thus β(H) = G by Proposition 7.3. This
implies that ϕ(ΓF (w) ∪ {1}) = G.

7.2 Proof of the main result

Let F be a uniformly recurrent tree set containing A and let f : B∗ → A∗ be a
coding morphism for a finite F -maximal bifix code Z. By Theorem 5.6, Z is a
basis of a subgroup of index dF (Z) and, by Theorem 5.9, the submonoid Z∗ is
saturated in F .

We first prove the following lemma.

Lemma 7.6 Let F be a uniformly recurrent tree set containing A and let f :
B∗ → A∗ be a coding morphism for an F -maximal bifix code Z. The set K =
f−1(F ) is recurrent.

Proof. Since F is factorial, the set K is factorial. Let r, s ∈ K. Since F is
recurrent, there exists u ∈ F such that f(r)uf(s) ∈ F . Set t = f(r)uf(s).
Let G be the representation of 〈A〉 on the right cosets of 〈Z〉. Let ϕ : A∗ →
G be the natural morphism from A∗ onto G. By Proposition 7.5, we have
ϕ(ΓF (t) ∪ {1}) = G. Let v ∈ ΓF (t) be such that ϕ(v) is the inverse of ϕ(t).
Then ϕ(tv) is the identity of G and thus tv ∈ 〈Z〉.

Since F is a tree set, it is acyclic and thus Z∗ is saturated in F by Theo-
rem 5.9. Thus Z∗∩F = 〈Z〉∩F . This implies that tv ∈ Z∗. Since tv ∈ A∗t, we
have f(r)uf(s)v = f(r)qf(s) and thus uf(s)v = qf(s) for some q ∈ F . Since
Z∗ is right unitary, f(r), f(r)uf(s)v ∈ Z∗ imply uf(s)v = qf(s) ∈ Z∗. In turn,
since Z∗ is left unitary, qf(s), f(s) ∈ Z∗ imply q ∈ Z∗ and thus q ∈ Z∗ ∩ F .
Let w ∈ K be such that f(w) = q. Then rws is in K. This shows that K is
recurrent.
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We prove a series of lemmas. In each of them, we consider a uniformly
recurrent tree set F containing A and a coding morphism f : B∗ → A∗ for
an F -maximal bifix code Z. We set K = f−1(F ). We choose w ∈ K and set
v = f(w). Let also Y = RK(w). Then Y is a w−1K-maximal prefix code. Let
X = f(Y ) or equivalently X = Y ◦f Z. Then, since f(w−1K) = v−1F , by
Proposition 2.9 (i), X is a v−1F -maximal prefix code.

Finally we set U = RF (v). Let α : C∗ → A∗ be a coding morphism for U .
Since X ⊂ ΓF (v), we have X ⊂ U∗. Since uU∗ ∩X 6= ∅ for any u ∈ U , we have
alphU (X) = U . Thus, by Proposition 2.8, we have X = T ◦α U where T is the
prefix code such that α(T ) = X .

Lemma 7.7 We have X∗ ∩ v−1F = U∗ ∩ Z∗ ∩ v−1F .

Proof. Indeed, the left handside is clearly included in the right one. Conversely,
consider x ∈ U∗ ∩Z∗ ∩ v−1F . Since x ∈ U∗ ∩ v−1F , α−1(x) is in α−1(v−1F ) =
α−1(ΓF (v)) ∪ {1} by Proposition 4.3. Thus x ∈ ΓF (v) ∪ {1}. Since x ∈ Z∗,
f−1(x) ∈ ΓK(w) ∪ {1} ⊂ Y ∗. Therefore x is in f(Y ∗) = X∗.

We set for simplicity d = dF (Z). Set H = α−1(v−1F ). By Proposition 5.10, H
is a uniformly recurrent tree set.

Lemma 7.8 The set T is a finite H-maximal bifix code and dH(T ) = d.

Proof. Since X is a prefix code, T is a prefix code. Since X is v−1F -maximal,
T is α−1(v−1F )-maximal by Proposition 2.9 (ii) and thus H-maximal since
H = α−1(v−1F ).

Let x, y ∈ C∗ be such that xy, y ∈ T . Then α(xy), α(y) ∈ X imply α(x) ∈
Z∗. Since on the other hand, α(x) ∈ U∗ ∩ v−1F , we obtain by Lemma 7.7 that
α(x) ∈ X∗. This implies x ∈ T ∗ and thus x = 1 since T is a prefix code. This
shows that T is a suffix code.

To show that dH(T ) = d, we consider the morphism ϕ from A∗ onto the
group G which is the representation of 〈A〉 on the right cosets of 〈Z〉. Set
J = ϕ(Z∗). Thus J is a subgroup of index d of G. By Theorem 5.8, the set
U is a basis of the free group on A. Therefore, since G is a finite group, the
restriction of ϕ to U∗ is surjective. Set ψ = ϕ ◦ α. Then ψ : C∗ → G is a
morphism which is onto since U = α(C) generates the free group on A. Let V
be the group code of degree d such that V ∗ = ψ−1(J). Then T = V ∩H , as we
will show now.

Indeed, set W = V ∩ H . If t ∈ T , then α(t) ∈ X and thus α(t) ∈ Z∗.
Therefore ψ(t) ∈ J and t ∈ V ∗. This shows that T ⊂W ∗. Conversely, if t ∈W ,
then ψ(t) ∈ J and thus α(t) ∈ Z∗. Since on the other hand α(t) ∈ U∗ ∩ F , we
obtain α(t) ∈ X∗ by Lemma 7.7. This implies t ∈ T ∗ and shows that W ⊂ T ∗.

Thus, since H is a uniformly recurrent tree set, by Theorem 5.7, T is a basis
of a subgroup of index d. Thus dH(T ) = d by Theorem 5.6.

Lemma 7.9 The set Y is finite.
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Proof. Since T and U are finite, the set X = T ◦U is finite. Thus Y = f−1(X)
is finite.

Proof of Theorem 7.1. Let F be a uniformly recurrent tree set containing A and
let f : B∗ → A∗ be a coding morphism for a finite F -maximal bifix code Z. Set
K = f−1(F ).

By Lemma 7.6, K is recurrent. By Lemma 7.9 any set of first return words
Y = RK(w) is finite. Thus K is uniformly recurrent. By Theorem 5.5, K is a
tree set.

Thus we conclude that K is a uniformly recurrent tree set.

Note that since K is a uniformly recurrent tree set, the set Y is not only
finite as asserted in Lemma 7.9 but in fact a basis of the free group on B, by
Theorem 5.8.

We illustrate the proof with the following example.

Example 7.10 Let F be the Fibonacci set on A = {a, b} and let Z = F ∩A2 =
{aa, ab, ba}. Thus Z is an F -maximal bifix code of F -degree 2. Let B = {c, d, e}
and let f : B∗ → A∗ be the coding morphism defined by f(c) = aa, f(d) = ab
and f(e) = ba. Part of the set K = f−1(F ) is represented in Figure 7.3 on the
left.
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Figure 7.3: The sets K and H .

The set Y = RK(c) and X = f(Y ) are

Y = {eddc, eedc, eeddc}, X = {baababaa, babaabaa, babaababaa}.

On the other hand, the set U = RF (aa) is U = {baa, babaa}. Let C = {r, s}
and let α : C∗ → A∗ be the coding morphism for U defined by α(r) = baa,
α(s) = babaa. Part of the set H = α−1((aa)−1F ) is represented in Figure 7.3
on the right. Then we have T = {rs, sr, ss} which is an H-maximal bifix code
of H-degree 2 in agreement with Lemma 7.8.

The following example shows that the condition that F is a tree set is nec-
essary.
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Example 7.11 Let F be the set of factors of (ab)∗. The set F does not satisfy
the tree condition since G(ǫ) is not connected. Let X = {ab, ba}. The set X is
a finite F -maximal bifix code. Let f : {u, v}∗ → A∗ be the coding morphism
for X defined by f(u) = ab, f(v) = ba. Then f−1(F ) = u∗∪v∗ is not recurrent.

7.3 Composition of bifix codes

In this section, we use Theorem 7.1 to prove a result showing that in a uniformly
recurrent tree set, the degrees of the terms of a composition of maximal bifix
codes are multiplicative (Theorem 7.12).

The following result is proved in [3] for a more general class of codes (includ-
ing all finite codes and not only finite bifix codes), but in the case of F = A∗

(Proposition 11.1.2).

Theorem 7.12 Let F be a uniformly recurrent tree set and let X,Z ⊂ F be
finite bifix codes such that X decomposes into X = Y ◦f Z where f is a coding
morphism for Z. Set G = f−1(F ). Then X is an F -maximal bifix code if and
only if Y is a G-maximal bifix code and Z is an F -maximal bifix code. Moreover,
in this case

dF (X) = dG(Y )dF (Z). (7.1)

Proof. Assume first that X is an F -maximal bifix code. By Proposition 2.9 (ii),
Y is a G-maximal prefix code and Z is an F -maximal prefix code. This implies
that Y is a G-maximal bifix code and that Z is an F -maximal bifix code.

The converse also holds by Proposition 2.9.
To show Formula (7.1), let us first observe that there exist words w ∈ F

such that for any parse (v, x, u) of w with respect to X , the word x is not a
factor of X . Indeed, let n be the maximal length of the words of X . Assume
that the length of w ∈ F is larger than 3n . Then if (v, x, u) is a parse of w, we
have |u|, |v| < n and thus |x| > n. This implies that x is not a factor of X .

Next, we observe that by Theorem 7.1, the set G is a uniformly recurrent
tree set and thus in particular, it is recurrent.

Let w ∈ F be a word with the above property. Let ΠX(w) denote the set of
parses of w with respect to X and ΠZ(w) the set of its parses with respect to Z.
We define a map ϕ : ΠX(w) → ΠZ(w) as follows. Let π = (v, x, u) ∈ ΠX(w).
Since Z is a bifix code, there is a unique way to write v = sy and u = zr with
s ∈ A∗\A∗Z, y, z ∈ Z∗ and r ∈ A∗\ZA∗. We set ϕ(π) = (s, yxz, r). The triples
(y, x, z) are in bijection with the parses of f−1(yxz) with respect to Y . Since
x is not a factor of X by the hypothesis made on w, and since G is recurrent,
there are dG(Y ) such triples. This shows Formula (7.1).

Example 7.13 Let F be the Fibonacci set. Let B = {u, v, w} and A = {a, b}.
Let f : B∗ → A∗ be the morphism defined by f(u) = a, f(v) = baab and f(w) =
bab. Set G = f−1(F ). The words of length at most 3 of G are represented on
Figure 7.4.
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Figure 7.4: The words of length at most 3 in G.

The set Z = f(B) is an F -maximal bifix code of F -degree 2 (it is the unique
F -maximal bifix code of F -degree 2 with kernel {a}). Let Y = {uu, uvu, uw, v, wu},
which is a G-maximal bifix code of G-degree 2 (it is the unique G-maximal bifix
code of G-degree 2 with kernel {v}).

The code X = f(Y ) is the F -maximal bifix code of F -degree 4 shown on
Figure 7.5.

a

b

a

b

a

a

a

b

a

b

b

a

b a

Figure 7.5: An F -maximal bifix code of F -degree 4.

Example 7.14 shows that Formula (7.1) does not hold if F is not a tree set.

Example 7.14 Let F = F (ab)∗ (see Example 7.11). Let Z = {ab, ba} and let
X = {abab, ba}. We have X = Y ◦f Z for B = {u, v}, f : B∗ → A∗ defined by
f(u) = ab and f(v) = ba with Y = {uu, v}. The codes X and Z are F -maximal
bifix codes and dF (Z) = 2. We have dF (X) = 3 since abab has three parses.
Thus dF (Z) does not divide dF (X).
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[4] Valérie Berthé, Clelia De Felice, Francesco Dolce, Julien Leroy, Dominique
Perrin, Christophe Reutenauer, and Giuseppina Rindone. Acyclic, con-
nected and tree sets. 2013. 2, 3, 15, 16, 17, 18
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[12] Ethan M. Coven and G. A. Hedlund. Sequences with minimal block growth.
Math. Systems Theory, 7:138–153, 1973. 2

[13] F. Durand, J. Leroy, and G. Richomme. Do the properties of an S-adic
representation determine factor complexity? J. Integer Seq., 16(2):Article
13.2.6, 30, 2013. 23

[14] Fabien Durand. A characterization of substitutive sequences using return
words. Discrete Math., 179(1-3):89–101, 1998. 14, 22

[15] Fabien Durand. Linearly recurrent subshifts have a finite number of non-
periodic subshift factors. Ergodic Theory Dynam. Systems, 20(4):1061–
1078, 2000. 22

[16] Fabien Durand. Corrigendum and addendum to: “Linearly recurrent
subshifts have a finite number of non-periodic subshift factors” [Er-
godic Theory Dynam. Systems 20 (2000), no. 4, 1061–1078; MR1779393
(2001m:37022)]. Ergodic Theory Dynam. Systems, 23(2):663–669, 2003. 22

[17] Sébastien Ferenczi. Rank and symbolic complexity. Ergodic Theory Dynam.
Systems, 16(4):663–682, 1996. 21
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A Labels in Figure 6.1

In this section we provide the full list of labels of the edges in Figure 6.1.
To shorten the presentation, for all words u, v, w, we let [u, v, w] denote the
morphism defined by σ(0) = u, σ(0) = v and σ(2) = w. We also define the
following notations. Finally, when we use the letters x, y and z to denote
the morphism [x, y, z], it is understood that {x, y, z} = {0, 1, 2}. In the same
way, when one of the letters x, y, z is fixed to some i ∈ {0, 1, 2}, the others
are understood such that one still has {x, y, z} = {0, 1, 2}. For instance, in
Table A.3, the morphism [0, x, y] can be [0, 1, 2] or [0, 2, 1].

Σ1(i) = {[0, 1k2, 1k−12] | k ≥ i}
Σ2,=(i) = {[1k0, 21k0, 21k−10] | k ≥ i}
Σ2,−(i) = {[1k−10, 21k0, 21k−10] | k ≥ i}
Σ2,<(i) = {[1ℓ0, 21k0, 21k−10] | k − 1 > ℓ ≥ i}
Σ2,≤(i) = {[1ℓ0, 21k0, 21k−10] | k − 1 ≥ ℓ ≥ i} = Σ2,−(i) ∪ Σ2,<(i)

Σ2,0(i) = {[0, 21k0, 21k−10] | k ≥ i}
Σ3,=(i) = {[21k0, 1k0, 1k−10] | k ≥ i}
Σ3,−(i) = {[21k−10, 1k0, 1k−10] | k ≥ i}
Σ3,<(i) = {[21ℓ0, 1k0, 1k−10] | k − 1 > ℓ ≥ i}
Σ3,≤(i) = {[21ℓ0, 1k0, 1k−10] | k − 1 ≥ ℓ ≥ i} = Σ3,−(i) ∪ Σ3,<(i)

Σ3,0(i) = {[20, 1k0, 1k−10] | k ≥ i}

(A.1)

2 → 2 {α1,0α2,0, α0,1α2,1, α0,2α1,2}
2 → V0 {α2,0α1,2, α1,0α2,1}
2 → V1 {α0,1α2,0, α2,1α0,2}
2 → V2 {α0,2α1,0, α1,2α0,1}
2 → 4B [x, y, z] ({α1,0α2,1, α2,0α1,2} ∪ Σ2,−(2) ∪Σ3,−(2))
2 → 7/8 [x, y, z] (Σ2,0(2) ∪ Σ2,<(1) ∪ Σ3,<(1) ∪ α1,2(Σ3,<(0) ∪ Σ2,≤(1))

∪α̃2,1α1,0Σ1(1) ∪ {α2,0, α0,2}Σ1(2))
2 → 10B [x, y, z] (Σ2,=(1) ∪ Σ3,=(2) ∪ α1,2(Σ2,=(2) ∪ Σ3,−(2)))

Table A.1: Labels of outgoing edges of vertex 2.
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Vx → Vx αy,xαz,x

Vx → Vy αx,z

Vx → 7/8 [x, y, z](Σ2,0(1) ∪ Σ2,−(1) ∪Σ3,<(0) ∪ Σ2,<(1)) ∪ [y, x, z]Σ1(2)
Vx → 10B α̃z,xαx,y[y, x, z] ∪ [x, y, z] (Σ2,=(1) ∪ Σ3,−(2))

Table A.2: Labels of outgoing edges of vertices Vx.

4B → 4B {α1,0α2,0} ∪ [x, y, 0] (Σ2,−(1) ∪ Σ3,−(1))
4B → 7/8 [0, x, y]α2,0Σ1(1) ∪ [x, y, 0] (Σ2,<(0) ∪Σ3,<(0) ∪ α1,0Σ2,≤(0))
4B → 10B [x, y, 0] (Σ2,=(1) ∪ Σ3,=(1) ∪ α1,0(Σ2,=(1) ∪ Σ3,−(1)))

Table A.3: Labels of outgoing edges of vertex 4B.

5/6 → 5/6 [2, 0, 1] (((Σ2,−(1) ∪Σ3,−(1))[1, 0, 2]) ∪ ((Σ2,=(1) ∪ Σ3,=(1))[2, 0, 1]))
5/6 → 7/8 [1, 0, 2]Σ1(1) ∪ [0, 2, 1](Σ2,≤(0) ∪ Σ3,≤(1) ∪ Σ3,=(1))
5/6 → 10B α0,1[1, 0, 2] ∪ [0, 2, 1](Σ2,=(1) ∪ Σ3,−(1))

Table A.4: Labels of outgoing edges of vertex 5/6.

7/8 → 5/6 α̃x,0α0,y[x, y, 0] ∪ α0,y[x, 0, y]
7/8 → 7/8 α1,0α2,0

Table A.5: Labels of outgoing edges of vertex 7/8.

10B → 5/6 (Σ2,−(1) ∪ Σ3,−(1))[1, 0, 2] ∪ (Σ2,=(1) ∪ Σ3,=(1))[2, 0, 1]
10B → 7/8 [0, 2, 1]Σ1(1) ∪ [2, 1, 0](Σ2,≤(0) ∪ Σ3,<(0))
10B → 10B α2,0[0, 2, 1] ∪ [2, 1, 0](Σ2,=(1) ∪ Σ3,−(1))

Table A.6: Labels of outgoing edges of vertex 10B.
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B Labels in Figure 6.2

We only given the labels of Figure 6.2 that are not labels of Figure 6.1. We use
the same notation as in the previous appendix. Recall that M is the morphism
defined by M(0) =M(2) = 0 and M(1) = 1.

1 → 1 {[01, 1], [1, 01], [0, 10], [10, 0]}
1 → 7/8 [x, y, 2]MΣ1(2)

Table B.1: Labels of outgoing edges of vertex 1.

2 → 1 [x, y, z]{α2,0α1,2, α2,1α0,2, α0,2α1,2, α0,2α1,0, α1,2α0,1}
∪[x, y, z](Σ2,=(2) ∪ Σ2,−(2) ∪ Σ3,=(2) ∪ Σ3,−(2))
∪[x, y, z]α1,2(Σ2,=(1) ∪ Σ3,=(1) ∪ Σ3,−(2))

2 → 7/8 [x, y, z]{α1,2, α0,2}MΣ1(2)
Vx → 1 {αy,xαz,i[y, z, x], αx,z[x, y, z], αx,z[y, x, z]}

∪[x, y, z](Σ2,=(1) ∪ Σ2,−(2) ∪ Σ3,=(1))
4B → 1 {id}

∪[x, y, 0](Σ2,=(1) ∪ Σ2,−(1) ∪ Σ3,=(1) ∪Σ3,−(1))
∪[x, y, 0]α1,2(Σ2,=(1) ∪ Σ3,=(1) ∪Σ3,−(1))

5/6 → 1 [x, y, z]{id, α0,1, α1,0}
∪[0, 2, 1](Σ2,=(1) ∪ Σ3,=(1) ∪ Σ3,−(1))

7/8 → 1 [x, y, z]{id, α0,1, α1,0}
10B → 1 [2, 1, 0](Σ2,=(1) ∪ Σ3,=(1) ∪ Σ3,−(1))

Table B.2: Labels of incoming edges of vertex 1.
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