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Abstract

We investigate the relation between bifix codes and interval exchange

transformations. We prove that the class of natural codings of regular

interval echange transformations is closed under maximal bifix decoding.
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1 Introduction

This paper is part of a research initiated in [2] which studies the connections
between the three subjects formed by symbolic dynamics, the theory of codes
and combinatorial group theory. The initial focus was placed on the classical
case of Sturmian systems and progressively extended to more general cases.

The starting point of the present research is the observation that the family
of Sturmian sets is not closed under decoding by a maximal bifix code, even in
the more simple case of the code formed of all words of fixed length n. Actually,
the decoding of the Fibonacci word (which corresponds to a rotation of angle
α = (3 −

√
5)/2) by blocks of length n is an interval exchange transformation

corresponding to a rotation of angle nα coded on n+ 1 intervals. This has lead
us to consider the set of factors of interval exchange transformations, called
interval exchange sets. Interval exchange transformations were introduced by
Oseledec [15] following an earlier idea of Arnold [1]. These transformations form
a generalization of rotations of the circle.

The main result in this paper is that the family of regular interval exchange
sets is closed under decoding by a maximal bifix code (Theorem 3.13). This
result invited us to try to extend to regular interval exchange transformations
the results relating bifix codes and Sturmian words. This lead us to generalize
in [5] to a large class of sets the main result of [2], namely the Finite Index Basis
Theorem relating maximal bifix codes and bases of subgroups of finite index of
the free group.

Theorem 3.13 reveals a close connection between maximal bifix codes and
interval exchange transformations. Indeed, given an interval exchange trans-
formation T each maximal bifix code X defines a new interval exchange trans-
formation TX . We show at the end of the paper, using the Finite Index Basis
Theorem, that this transformation is actually an interval exchange transforma-
tion on a stack, as defined in [7] (see also [19]).

The paper is organized as follows.
In Section 2, we recall some notions concerning interval exchange transfor-

mations. We state the result of Keane [12] which proves that regularity is a
sufficient condition for the minimality of such a transformation (Theorem 2.3).

We study in Section 3 the relation between interval exchange transforma-
tions and bifix codes. We prove that the transformation associated with a finite
S-maximal bifix code is an interval exchange transformation (Proposition 3.8).
We also prove a result concerning the regularity of this transformation (Theo-
rem 3.12).

We discuss the relation with bifix codes and we show that the class of regular
interval exchange sets is closed under decoding by a maximal bifix code, that
is, under inverse images by coding morphisms of finite maximal bifix codes
(Theorem 3.13).

In Section 4 we introduce tree sets and planar tree sets. We show, reformu-
lating a theorem of [9], that uniformly recurrent planar tree sets are the regular
interval exchange sets (Theorem 4.3). We show in another paper [4] that, in
the same way as regular interval exchange sets, the class of uniformly recurrent
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tree sets is closed under maximal bifix decoding.
In Section 4.3, we explore a new direction, extending the results of this

paper to a more general case. We introduce exchange of pieces, a notable
example being given by the Rauzy fractal. We indicate how the decoding of the
natural codings of exchange of pieces by maximal bifix codes are again natural
codings of exchange of pieces. We finally give in Section 4.4 an alternative
proof of Theorem 3.13 using a skew product of a regular interval exchange
transformation with a finite permutation group.

Acknowledgements This work was supported by grants from Région Ile-de-
France, the ANR projects Eqinocs and Dyna3S, the Labex Bezout, the FARB
Project “Aspetti algebrici e computazionali nella teoria dei codici, degli automi
e dei linguaggi formali” (University of Salerno, 2013) and the MIUR PRIN 2010-
2011 grant “Automata and Formal Languages: Mathematical and Applicative
Aspects”. We thank the referee for his useful remarks on the first version of the
paper which was initially part of the companion paper [5].

2 Interval exchange transformations

Let us recall the definition of an interval exchange transformation (see [8] or [6]).
A semi-interval is a nonempty subset of the real line of the form [α, β[=

{z ∈ R | α ≤ z < β}. Thus it is a left-closed and right-open interval. For two
semi-intervals ∆,Γ, we denote ∆ < Γ if x < y for any x ∈ ∆ and y ∈ Γ.

Let (A,<) be an ordered set. A partition (Ia)a∈A of [0, 1[ in semi-intervals
is ordered if a < b implies Ia < Ib.

Let A be a finite set ordered by two total orders <1 and <2. Let (Ia)a∈A

be a partition of [0, 1[ in semi-intervals ordered for <1. Let λa be the length of
Ia. Let µa =

∑

b≤1a
λb and νa =

∑

b≤2a
λb. Set αa = νa − µa. The interval

exchange transformation relative to (Ia)a∈A is the map T : [0, 1[→ [0, 1[ defined
by

T (z) = z + αa if z ∈ Ia.

Observe that the restriction of T to Ia is a translation onto Ja = T (Ia), that
µa is the right boundary of Ia and that νa is the right boundary of Ja. We
additionally denote by γa the left boundary of Ia and by δa the left boundary
of Ja. Thus

Ia = [γa, µa[, Ja = [δa, νa[.

Note that a <2 b implies νa < νb and thus Ja < Jb. This shows that
the family (Ja)a∈A is a partition of [0, 1[ ordered for <2. In particular, the
transformation T defines a bijection from [0, 1[ onto itself.

An interval exchange transformation relative to (Ia)a∈A is also said to be
on the alphabet A. The values (αa)a∈A are called the translation values of the
transformation T .
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Example 2.1 Let R be the interval exchange transformation corresponding to
A = {a, b}, a <1 b, b <2 a, Ia = [0, 1−α[, Ib = [1−α, 1[. The transformationR is
the rotation of angle α on the semi-interval [0, 1[ defined by R(z) = z+α mod 1.

Since <1 and <2 are total orders, there exists a unique permutation π of A such
that a <1 b if and only if π(a) <2 π(b). Conversely, <2 is determined by <1

and π and <1 is determined by <2 and π. The permutation π is said to be
associated with T .

If we set A = {a1, a2, . . . , as} with a1 <1 a2 <1 · · · <1 as, the pair (λ, π)
formed by the family λ = (λa)a∈A and the permutation π determines the map
T . We will also denote T as Tλ,π. The transformation T is also said to be an
s-interval exchange transformation.

It is easy to verify that if T is an interval exchange transformation, then T n

is also an interval exchange transformation for any n ∈ Z.

Example 2.2 A 3-interval exchange transformation is represented in Figure 2.1.
One has A = {a, b, c} with a <1 b <1 c and b <2 c <2 a. The associated permu-
tation is the cycle π = (abc).

µa µb µc

νb νc νa

Figure 2.1: A 3-interval exchange transformation.

2.1 Regular interval exchange transformations

The orbit of a point z ∈ [0, 1[ is the set {T n(z) | n ∈ Z}. The transformation T
is said to be minimal if, for any z ∈ [0, 1[, the orbit of z is dense in [0, 1[.

Set A = {a1, a2, . . . , as} with a1 <1 a2 <1 . . . <1 as, µi = µai
and δi =

δai
. The points 0, µ1, . . . , µs−1 form the set of separation points of T , denoted

Sep(T ). Note that the singular points of the transformation T (that is the points
z ∈ [0, 1[ at which T is not continuous) are among the separation points but
that the converse is not true in general (see Example 3.9).

An interval exchange transformation Tλ,π is called regular if the orbits of
the nonzero separation points µ1, . . . , µs−1 are infinite and disjoint. Note that
the orbit of 0 cannot be disjoint of the others since one has T (µi) = 0 for some
i with 1 ≤ i ≤ s − 1. The term regular was introduced by Rauzy in [17]. A
regular interval exchange transformation is also said to be without connections
or to satisfy the idoc condition (where idoc stands for infinite disjoint orbit
condition).

Note that since δ2 = T (µ1), . . . , δs = T (µs−1), T is regular if and only if the
orbits of δ2, . . . , δs are infinite and disjoint.
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As an example, the 2-interval exchange transformation of Example 2.1 which
is the rotation of angle α is regular if and only if α is irrational.

Note that if T is a regular s-interval exchange transformation, then for any
n ≥ 1, the transformation T n is an n(s−1)+1-interval exchange transformation.
Indeed, the points T i(µj) for 0 ≤ i ≤ n− 1 and 1 ≤ j ≤ s− 1 are distinct and
define a partition in n(s− 1) + 1 intervals.

The following result is due to Keane [12].

Theorem 2.3 (Keane) A regular interval exchange transformation is mini-
mal.

The converse is not true. Indeed, consider the rotation of angle α with α
irrational, as a 3-interval exchange transformation with λ = (1 − 2α, α, α) and
π = (132). The transformation is minimal as any rotation of irrational angle
but it is not regular since µ1 = 1− 2α, µ2 = 1− α and thus µ2 = T (µ1).

The following necessary condition for minimality of an interval exchange
transformation is useful. A permutation π of an ordered set A is called de-
composable if there exists an element b ∈ A such that the set B of elements
strictly less than b is nonempty and such that π(B) = B. Otherwise it is called
indecomposable. If an interval exchange transformation T = Tλ,π is minimal,
the permutation π is indecomposable. Indeed, if B is a set as above, the set
S = ∪a∈BIa is closed under T and strictly included in [0, 1[.

The following example shows that the indecomposability of π is not sufficient
for T to be minimal.

Example 2.4 Let A = {a, b, c} and λ be such that λa = λc. Let π be the
transposition (ac). Then π is indecomposable but Tλ,π is not minimal since it
is the identity on Ib.

2.2 Natural coding

Let A be a finite nonempty alphabet. All words considered below, unless stated
explicitly, are supposed to be on the alphabet A. We denote by A∗ the set of
all words on A. We denote by 1 or by ε the empty word. We refer to [3] for the
notions of prefix, suffix, factor of a word.

Let T be an interval exchange transformation relative to (Ia)a∈A. For a
given real number z ∈ [0, 1[, the natural coding of T relative to z is the infinite
word ΣT (z) = a0a1 · · · on the alphabet A defined by

an = a if T n(z) ∈ Ia.

For a word w = b0b1 · · · bm−1, let Iw be the set

Iw = Ib0 ∩ T−1(Ib1) ∩ . . . ∩ T−m+1(Ibm−1
). (2.1)

Note that each Iw is a semi-interval. Indeed, this is true if w is a letter. Next,
assume that Iw is a semi-interval. Then for any a ∈ A, T (Iaw) = T (Ia)∩ Iw is a
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semi-interval since T (Ia) is a semi-interval by definition of an interval exchange
transformation. Since Iaw ⊂ Ia, T (Iaw) is a translate of Iaw, which is therefore
also a semi-interval. This proves the property by induction on the length.

Set Jw = Tm(Iw). Thus

Jw = Tm(Ib0 ) ∩ Tm−1(Ib1 ) ∩ . . . ∩ T (Ibm−1
). (2.2)

In particular, we have Ja = T (Ia) for a ∈ A. Note that each Jw is a semi-
interval. Indeed, this is true if w is a letter. Next, for any a ∈ A, we have
T−1(Jwa) = Jw ∩ Ia. This implies as above that Jwa is a semi-interval and
proves the property by induction. We set by convention Iε = Jε = [0, 1[. Then
one has for any n ≥ 0

anan+1 · · · an+m−1 = w ⇐⇒ T n(z) ∈ Iw (2.3)

and
an−man−m+1 · · ·an−1 = w ⇐⇒ T n(z) ∈ Jw. (2.4)

Let (αa)a∈A be the translation values of T . Note that for any word w,

Jw = Iw + αw (2.5)

with αw =
∑m−1

j=0 αbj as one may verify by induction on |w| = m. Indeed
it is true for m = 1. For m ≥ 2, set w = ua with a = bm−1. One has
Tm(Iw) = Tm−1(Iw)+αa and Tm−1(Iw) = Iw+αu by the induction hypothesis
and the fact that Iw is included in Iu. Thus Jw = Tm(Iw) = Iw + αu + αa =
Iw + αw. Equation (2.5) shows in particular that the restriction of T |w| to Iw
is a translation.

2.3 Uniformly recurrent sets

A set S of words on the alphabet A is said to be factorial if it contains the
factors of its elements.

A factorial set is said to be right-extendable if for every w ∈ S there is some
a ∈ A such that wa ∈ S. It is biextendable if for any w ∈ S, there are a, b ∈ A
such that awb ∈ S.

A set of words S 6= {ε} is recurrent if it is factorial and if for every u,w ∈ S
there is a v ∈ S such that uvw ∈ S. A recurrent set is biextendable. It is said
to be uniformly recurrent if it is right-extendable and if, for any word u ∈ S,
there exists an integer n ≥ 1 such that u is a factor of every word of S of length
n. A uniformly recurrent set is recurrent.

We denote by AN the set of infinite words on the alphabet A. For a set
X ⊂ AN, we denote by F (X) the set of factors of the words of X .

Let S be a set of words on the alphabet A. For w ∈ S, set R(w) = {a ∈
A | wa ∈ S} and L(w) = {a ∈ A | aw ∈ S}. A word w is called right-special if
Card(R(w)) ≥ 2 and left-special if Card(L(w)) ≥ 2. It is bispecial if it is both
right and left-special.
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An infinite word on a binary alphabet is Sturmian if its set of factors is
closed under reversal and if for each n there is exactly one right-special word of
length n.

An infinite word is a strict episturmian word if its set of factors is closed
under reversal and for each n there is exactly one right-special word w of length
n, which is moreover such that Card(R(w)) = Card(A).

A morphism f : A∗ → A∗ is called primitive if there is an integer k such
that for all a, b ∈ A, the letter b appears in fk(a). If f is a primitive morphism,
the set of factors of any fixpoint of f is uniformly recurrent (see [10, Proposition
1.2.3], for example).

Example 2.5 Let A = {a, b}. The Fibonacci word is the fixpoint x = fω(a) =
abaababa . . . of the morphism f : A∗ → A∗ defined by f(a) = ab and f(b) = a.
It is a Sturmian word (see [13]). The set F (x) of factors of x is the Fibonacci
set.

Example 2.6 Let A = {a, b, c}. The Tribonacci word is the fixpoint x =
fω(a) = abacaba · · · of the morphism f : A∗ → A∗ defined by f(a) = ab,
f(b) = ac, f(c) = a. It is a strict episturmian word (see [11]). The set F (x) of
factors of x is the Tribonacci set.

2.4 Interval exchange sets

Let T be an interval exchange set. The set F (ΣT (z)) is called an interval
exchange set. It is biextendable.

If T is a minimal interval exchange transformation, one has w ∈ F (ΣT (z))
if and only if Iw 6= ∅. Thus the set F (ΣT (z)) does not depend on z. Since it
depends only on T , we denote it by F (T ). When T is regular (resp. minimal),
such a set is called a regular interval exchange set (resp. a minimal interval
exchange set).

Let T be an interval exchange transformation. Let M be the closure in AN

of the set of all ΣT (z) for z ∈ [0, 1[ and let σ be the shift on M . The pair
(M,σ) is a symbolic dynamical system, formed of a topological space M and a
continuous transformation σ. Such a system is said to be minimal if the only
closed subsets invariant by σ are ∅ or M (that is, every orbit is dense). It is
well-known that (M,σ) is minimal if and only if F (T ) is uniformly recurrent
(see for example [13, Theorem 1.5.9] ).

We have the following commutative diagram (Figure 2.2).

[0, 1[ [0, 1[

M M

T

ΣT

σ

ΣT

Figure 2.2: The transformations T and σ.
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The map ΣT is neither continuous nor surjective. This can be corrected by
embedding the interval [0, 1[ into a larger space on which T is a homeomophism
(see [12] or [6, page 349]). However, if the transformation T is minimal, the
symbolic dynamical system (M,S) is minimal (see [6, page 392]). Thus, we
obtain the following statement.

Proposition 2.7 For any minimal interval exchange transformation T , the set
F (T ) is uniformly recurrent.

Note that for a minimal interval exchange transformation T , the map ΣT is
injective (see [12] page 30).

The following is an elementary property of the intervals Iu which will be
used below. We denote by <1 the lexicographic order on A∗ induced by the
order <1 on A.

Proposition 2.8 One has Iu < Iv if and only if u <1 v and u is not a prefix
of v.

Proof. For a word u and a letter a, it results from (2.1) that Iua = Iu∩T−|u|(Ia).
Since (Ia)a∈A is an ordered partition, this implies that (T |u|(Iu) ∩ Ia)a∈A is an
ordered partition of T |u|(Iu). Since the restriction of T |u| to Iu is a translation,
this implies that (Iua)a∈A is an ordered partition of Iu. Moreover, for two words
u, v, it results also from (2.1) that Iuv = Iu ∩ T−|u|(Iv). Thus Iuv ⊂ Iu.

Assume that u <1 v and that u is not a prefix of v. Then u = ℓas and
v = ℓbt with a, b two letters such that a <1 b. Then we have Iℓa < Iℓb, with
Iu ⊂ Iℓa and Iv ⊂ Iℓb whence Iu < Iv.

Conversely, assume that Iu < Iv. Since Iu∩Iv = ∅, the words u, v cannot be
comparable for the prefix order. Set u = ℓas and v = ℓbt with a, b two distinct
letters. If b <1 a, then Iv < Iu as we have shown above. Thus a <1 b which
implies u <1 v.

We denote by <2 the order on A∗ defined by u <2 v if u is a proper suffix
of v or if u = waz and v = tbz with a <2 b. Thus <2 is the lexicographic order
on the reversal of the words induced by the order <2 on the alphabet.

We denote by π the morphism from A∗ onto itself which extends to A∗ the
permutation π on A. Then u <2 v if and only if π−1(ũ) <1 π

−1(ṽ), where ũ
denotes the reversal of the word u.

The following statement is the analogue of Proposition 2.8.

Proposition 2.9 Let Tλ,π be an interval exchange transformation. One has
Ju < Jv if and only if u <2 v and u is not a suffix of v.

Proof. Let (I ′a)a∈A be the family of semi-intervals defined by I ′a = Jπ(a). Then
the interval exchange transformation T ′ relative to (I ′a) with translation values
−αa is the inverse of the transformation T . The semi-intervals I ′w defined by
Equation (2.1) with respect to T ′ satisfy I ′w = Jπ(w̃) or equivalently Jw =
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I ′
π−1(w̃). Thus, Ju < Jv if and only if I ′

π−1(ũ) < I ′
π−1(ṽ) if and only if (by

Proposition 2.8) π−1(ũ) <1 π
−1(ṽ) or equivalently u <2 v.

3 Bifix codes and interval exchange

In this section, we first introduce prefix codes and bifix codes. For a more de-
tailed exposition, see [3]. We describe the link between maximal bifix codes and
interval exchange transformations and we prove our main result (Theorem 3.13).

3.1 Prefix codes and bifix codes

A prefix code is a set of nonempty words which does not contain any proper
prefix of its elements. A suffix code is defined symmetrically. A bifix code is a
set which is both a prefix code and a suffix code.

A coding morphism for a prefix code X ⊂ A+ is a morphism f : B∗ → A∗

which maps bijectively B onto X .
Let S be a set of words. A prefix code X ⊂ S is S-maximal if it is not

properly contained in any prefix code Y ⊂ S. Note that if X ⊂ S is an S-
maximal prefix code, any word of S is comparable for the prefix order with a
word of X .

A map λ : A∗ → [0, 1] such that λ(ε) = 1 and, for any word w

∑

a∈A

λ(aw) =
∑

a∈A

λ(wa) = λ(w), (3.1)

is called an invariant probability distribution on A∗.
Let Tλ,π be an interval exchange transformation. For any word w ∈ A∗,

denote by |Iw| the length of the semi-interval Iw defined by Equation (2.1). Set
λ(w) = |Iw|. Then λ(ε) = 1 and for any word w, Equation (3.1) holds and thus
λ is an invariant probability distribution.

The fact that λ is an invariant probability measure is equivalent to the fact
that the Lebesgue measure on [0, 1[ is invariant by T . It is known that almost
all regular interval exchange transformations have no other invariant probability
measure (and thus are uniquely ergodic, see [6] for references).

Example 3.1 Let S be the set of factors of the Fibonacci word (see Exam-
ple 2.5). It is the natural coding of the rotation of angle α = (3 −

√
5)/2 with

respect to α (see [13, Chapter 2]). The values of the map λ on the words of
length at most 4 in S are indicated in Figure 3.1.

The following result is a particular case of a result from [2] (Proposition
3.3.4).

Proposition 3.2 Let T be a minimal interval exchange transformation, let S =
F (T ) and let λ be an invariant probability distribution on S. For any finite S-
maximal prefix code X, one has

∑

x∈X λ(x) = 1.

9



1

1− α

α

1− 2α

α

α

1− 2α

α

1− 2α

3α− 1

1− 2α

1− 2α

3α− 1

1− 2α

3α− 1

a

b

a

b

b

a

a

a

b

a
a

b

b

a

Figure 3.1: The invariant probability distribution on the Fibonacci set.

The following statement is connected with Proposition 3.2.

Proposition 3.3 Let T be a minimal interval exchange transformation relative
to (Ia)a∈A, let S = F (T ) and let X be a finite S-maximal prefix code ordered
by <1. The family (Iw)w∈X is an ordered partition of [0, 1[.

Proof. By Proposition 2.8, the sets (Iw) for w ∈ X are pairwise disjoint. Let
π be the invariant probability distribution on S defined by π(w) = |Iw |. By
Proposition 3.2, we have

∑

w∈X π(w) = 1. Thus the family (Iw)w∈X is a parti-
tion of [0, 1[. By Proposition 2.8 it is an ordered partition.

Example 3.4 Let T be the rotation of angle α = (3−
√
5)/2. The set S = F (T )

is the Fibonacci set. The set X = {aa, ab, b} is an S-maximal prefix code (see
the grey nodes in Figure 3.1). The partition of [0, 1[ corresponding to X is

Iaa = [0, 1− 2α[, Iab = [1− 2α, 1− α[, Ib = [1− α, 1[.

The values of the lengths of the semi-intervals (the invariant probability distri-
bution) can also be read on Figure 3.1.

A symmetric statement holds for an S-maximal suffix code, namely that the
family (Jw)w∈X is an ordered partition of [0, 1[ for the order <2 on X .

3.2 Maximal bifix codes

Let S be a set of words. A bifix code X ⊂ S is S-maximal if it is not properly
contained in a bifix code Y ⊂ S. For a recurrent set S, a finite bifix code is
S-maximal as a bifix code if and only if it is an S-maximal prefix code (see [2,
Theorem 4.2.2]).

A parse of a word w with respect to a bifix code X is a triple (v, x, u) such
that w = vxu where v has no suffix in X , u has no prefix in X and x ∈ X∗. We
denote by δX(w) the number of parses of w with respect to X .

10



The number of parses of a word w is also equal to the number of suffixes of
w which have no prefix in X and the number of prefixes of w which have no
suffix in X (see Proposition 6.1.6 in [3]).

By definition, the S-degree of a bifix code X , denoted dX(S), is the maximal
number of parses of a word in S. It can be finite or infinite.

The set of internal factors of a set of words X , denoted I(X), is the set of
words w such that there exist nonempty words u, v with uwv ∈ X .

Let S be a recurrent set and let X be a finite S-maximal bifix code of S-
degree d. A word w ∈ S is such that δX(w) < d if and only if it is an internal
factor of X , that is,

I(X) = {w ∈ S | δX(w) < d}
(Theorem 4.2.8 in [2]). Thus any word of S which is not a factor of X has d
parses. This implies that the S-degree d is finite.

Example 3.5 Let S be a recurrent set. For any integer n ≥ 1, the set S ∩ An

is an S-maximal bifix code of S-degree n.

The kernel of a bifix code X is the set K(X) = I(X) ∩ X . Thus it is the set
of words of X which are also internal factors of X . By Theorem 4.3.11 of [2], a
finite S-maximal bifix code is determined by its S-degree and its kernel.

Example 3.6 Let S be the Fibonacci set. The set X = {a, baab, bab} is the
unique S-maximal bifix code of S-degree 2 with kernel {a}. Indeed, the word
bab is not an internal factor and has two parses, namely (1, bab, 1) and (b, a, b).

The following result shows that bifix codes have a natural connection with
interval exchange transformations.

Proposition 3.7 If X is a finite S-maximal bifix code, with S as in Propo-
sition 3.3, the families (Iw)w∈X and (Jw)w∈X are ordered partitions of [0, 1[,
relatively to the orders <1 and <2 respectively.

Proof. This results from Proposition 3.3 and its symmetric and from the fact
that, since S is recurrent, a finite S-maximal bifix code is both an S-maximal
prefix code and an S-maximal suffix code.

Let T be a regular interval exchange transformation relative to (Ia)a∈A. Let
(αa)a∈A be the translation values of T . Set S = F (T ). Let X be a finite
S-maximal bifix code on the alphabet A.

Let TX be the transformation on [0, 1[ defined by

TX(z) = T |u|(z) if z ∈ Iu

with u ∈ X . The transformation is well-defined since, by Proposition 3.7, the
family (Iu)u∈X is a partition of [0, 1[.

Let f : B∗ → A∗ be a coding morphism for X . Let (Kb)b∈B be the family
of semi-intervals indexed by the alphabet B with Kb = If(b). We consider B as

11



ordered by the orders <1 and <2 induced by f . Let Tf be the interval exchange

transformation relative to (Kb)b∈B. Its translation values are βb =
∑m−1

j=0 αaj

for f(b) = a0a1 · · ·am−1. The transformation Tf is called the transformation
associated with f .

Proposition 3.8 Let T be a regular interval exchange transformation relative
to (Ia)a∈A and let S = F (T ). If f : B∗ → A∗ is a coding morphism for a finite
S-maximal bifix code X, one has Tf = TX .

Proof. By Proposition 3.7, the family (Kb)b∈B is a partition of [0, 1[ ordered
by <1. For any w ∈ X , we have by Equation (2.5) Jw = Iw + αw and thus
TX is the interval exchange transformation relative to (Kb)b∈B with translation
values βb.

In the sequel, under the hypotheses of Proposition 3.8, we consider Tf as an
interval exchange transformation. In particular, the natural coding of Tf relative
to z ∈ [0, 1[ is well-defined.

Example 3.9 Let S be the Fibonacci set. It is the set of factors of the Fi-
bonacci word, which is a natural coding of the rotation of angle α = (3−

√
5)/2

relative to α (see Example 3.1). Let X = {aa, ab, ba} and let f be the coding
morphism defined by f(u) = aa, f(v) = ab, f(w) = ba. The two partitions of
[0, 1[ corresponding to Tf are

Iu = [0, 1− 2α[, Iv = [1− 2α, 1− α[ Iw = [1− α, 1[

and
Jv = [0, α[, Jw = [α, 2α[ Ju = [2α, 1[.

The transformation Tf is represented in Figure 3.2. It is actually a representa-

0 1− 2α 1− α 1

u v w

0 α 2α 1

v w u

Figure 3.2: The transformation Tf .

tion on 3 intervals of the rotation of angle 2α. Note that the point z = 1− α is
a separation point which is not a singularity of Tf . The first row of Table 3.1
gives the two orders on X . The next two rows give the two orders for each of
the two other S-maximal bifix codes of S-degree 2 (there are actually exactly
three S-maximal bifix codes of S-degree 2 in the Fibonacci set, see [2]).

Let T be a minimal interval exchange transformation on the alphabet A.
Let x be the natural coding of T relative to some z ∈ [0, 1[. Set S = F (x). Let
X be a finite S-maximal bifix code. Let f : B∗ → A∗ be a morphism which
maps bijectively B onto X . Since S is recurrent, the set X is an S-maximal

12



(X,<1) (X,<2)
aa, ab, ba ab, ba, aa
a, baab, bab bab, baab, a
aa, aba, b b, aba, aa

Table 3.1: The two orders on the three S-maximal bifix codes of S-degree 2.

prefix code. Thus x has a prefix x0 ∈ X . Set x = x0x
′. In the same way x′

has a prefix x1 in X . Iterating this argument, we see that x = x0x1 · · · with
xi ∈ X . Consequently, there exists an infinite word y on the alphabet B such
that x = f(y). The word y is the decoding of the infinite word x with respect
to f .

Proposition 3.10 The decoding of x with respect to f is the natural coding of
the transformation associated with f relative to z: ΣT (z) = f(ΣTf

(z)).

Proof. Let y = b0b1 · · · be the decoding of x with respect to f . Set xi = f(bi)
for i ≥ 0. Then, for any n ≥ 0, we have

T n
f (z) = T |un|(z) (3.2)

with un = x0 · · ·xn−1 (note that |un| denotes the length of un with respect to
the alphabet A). Indeed, this is is true for n = 0. Next T n+1

f (z) = Tf(t) with t =

T n
f (z). Arguing by induction, we have t = T |un|(z). Since x = unxnxn+1 · · · ,
t is in Ixn

by (2.3). Thus by Proposition 3.8, Tf(t) = T |xn|(t) and we obtain
T n+1
f (z) = T |xn|(T |un|(z)) = T |un+1|(z) proving (3.2). Finally, for u = f(b)

with b ∈ B,

bn = b⇐⇒ xn = u⇐⇒ T |un|(z) ∈ Iu ⇐⇒ T n
f (z) ∈ Iu = Kb

showing that y is the natural coding of Tf relative to z.

Example 3.11 Let T, α,X and f be as in Example 3.9. Let x = abaababa · · ·
be the Fibonacci word. We have x = ΣT (α). The decoding of x with respect to
f is y = vuwwv · · · .

3.3 Bifix codes and regular transformations

The following result shows that, for the coding morphism f of a finite S-maximal
bifix code, the map T 7→ Tf preserves the regularity of the transformation.

Theorem 3.12 Let T be a regular interval exchange transformation and let
S = F (T ). For any finite S-maximal bifix code X with coding morphism f , the
transformation Tf is regular.

13



Proof. Set A = {a1, a2, . . . , as} with a1 <1 a2 <1 · · · <1 as. We denote
δi = δai

. By hypothesis, the orbits of δ2, . . . , δs are infinite and disjoint. Set
X = {x1, x2, . . . , xt} with x1 <1 x2 <1 · · · <1 xt. Let d be the S-degree of X .

For x ∈ X , denote by δx the left boundary of the semi-interval Jx. For each
x ∈ X , it follows from Equation (2.2) that there is an i ∈ {1, . . . , s} such that
δx = T k(δi) with 0 ≤ k < |x|. Moreover, we have i = 1 if and only if x = x1.
Since T is regular, the index i 6= 1 and the integer k are unique for each x 6= x1.
And for such x and i, by (2.4), we have ΣT (δi) = uΣT (δx) with u a proper suffix
of x.

We now show that the orbits of δx2
, . . . , δxt

for the transformation Tf are
infinite and disjoint. Assume that δxp

= T n
f (δxq

) for some p, q ∈ {2, . . . , t}
and n ∈ Z. Interchanging p, q if necessary, we may assume that n ≥ 0. Let
i, j ∈ {2, . . . , s} be such that δxp

= T k(δi) with 0 ≤ k < |xp| and δxq
= T ℓ(δj)

with 0 ≤ ℓ < |xq|. Since T k(δi) = T n
f (T

ℓ(δj)) = Tm+ℓ(δj) for some m ≥ 0,
we cannot have i 6= j since otherwise the orbits of δi, δj for the transformation
T intersect. Thus i = j. Since δxp

= T k(δi), we have ΣT (δi) = uΣT (δxp
)

with |u| = k, and u a proper suffix of xp. And since δxp
= T n

f (δxq
), we have

ΣT (δxq
) = xΣT (δxp

) with x ∈ X∗. Since on the other hand δxq
= T ℓ(δi), we

have ΣT (δi) = vΣT (δxq
) with |v| = ℓ and v a proper suffix of xq. We obtain

ΣT (δi) = uΣT (δxp
)

= vΣT (δxq
) = vxΣT (δxp

).

Since |u| = |vx|, this implies u = vx. But since u cannot have a suffix in X ,
u = vx implies x = 1 and thus n = 0 and p = q. This concludes the proof.

Let f be a coding morphism for a finite S-maximal bifix code X ⊂ S. The set
f−1(S) is called a maximal bifix decoding of S.

Theorem 3.13 The family of regular interval exchange sets is closed under
maximal bifix decoding.

Proof. Let T be a regular interval exchange transformation such that S = F (T ).
By Theorem 3.12, Tf is a regular interval exchange transformation. We show
that f−1(S) = F (Tf ), which implies the conclusion.

Let x = ΣT (z) for some z ∈ [0, 1[ and let y = f−1(x). Then S = F (x) and
F (Tf) = F (y). For any w ∈ F (y), we have f(w) ∈ F (x) and thus w ∈ f−1(S).
This shows that F (Tf ) ⊂ f−1(S). Conversely, let w ∈ f−1(S) and let v = f(w).
Since S = F (x), there is a word u such that uv is a prefix of x. Set z′ = T |u|(z)
and x′ = ΣT (z

′). Then v is a prefix of x′ and w is a prefix of y′ = f−1(x′).
Since Tf is regular, it is minimal and thus F (y′) = F (Tf ). This implies that
w ∈ F (Tf ).

Since a regular interval exchange set is uniformly recurrent, Theorem 3.13
implies in particular that if S is a regular interval exchange set and f a coding
morphism of a finite S-maximal bifix code, then f−1(S) is uniformly recurrent.
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This is not true for an arbitrary uniformly recurrent set S, as shown by the
following example.

Example 3.14 Set A = {a, b} and B = {u, v}. Let S be the set of factors
of (ab)∗ and let f : B∗ → A∗ be defined by f(u) = ab and f(v) = ba. Then
f−1(S) = u∗ ∪ v∗ which is not recurrent.

We illustrate the proof of Theorem 3.12 in the following example.

Example 3.15 Let T be the rotation of angle α = (3 −
√
5)/2. The set S =

F (T ) is the Fibonacci set. Let X = {a, baab, babaabaabab, babaabab}. The set
X is an S-maximal bifix code of S-degree 3 (see [2]). The values of the µxi

(which are the right boundaries of the intervals Ixi
) and δxi

are represented in
Figure 3.3.

0 µx1
µx2

µx3
µx4

δx4
δx3

δx2
δx1 1

Figure 3.3: The transformation associated with a bifix code of S-degree 3.

The infinite word ΣT (0) is represented in Figure 3.4. The value indicated
on the word ΣT (0) after a prefix u is T |u|(0). The three values δx4

, δx2
, δx3

correspond to the three prefixes of ΣT (0) which are proper suffixes of X .

ΣT (0)=

δx4

a a b

δx2

a a b a b

δx3

a · · ·

Figure 3.4: The infinite word ΣT (0).

The following example shows that Theorem 3.13 is not true when X is not bifix.

Example 3.16 Let S be the Fibonacci set and letX = {aa, ab, b}. The set X is
an S-maximal prefix code. Let B = {u, v, w} and let f be the coding morphism
for X defined by f(u) = aa, f(v) = ab, f(w) = b. The set W = f−1(S) is
not an interval exchange set. Indeed, we have vu, vv, wu,wv ∈W . This implies
that both Jv and Jw meet Iu and Iv, which is impossible in an interval exchange
transformation.
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4 Tree sets

We introduce in this section the notions of tree sets and planar tree sets. We first
introduce the notion of extension graph which describes the possible two-sided
extensions of a word.

4.1 Extension graphs

Let S be a biextendable set of words. For w ∈ S, we denote

L(w) = {a ∈ A | aw ∈ S}, R(w) = {a ∈ A | wa ∈ S}

and
E(w) = {(a, b) ∈ A×A | awb ∈ S}.

For w ∈ S, the extension graph of w is the undirected bipartite graph G(w) on
the set of vertices which is the disjoint union of two copies of L(w) and R(w)
with edges the pairs (a, b) ∈ E(w).

Recall that an undirected graph is a tree if it is connected and acyclic.
Let S be a biextendable set. We say that S is a tree set if the graph G(w)

is a tree for all w ∈ S.
Let <1 and <2 be two orders on A. For a set S and a word w ∈ S, we

say that the graph G(w) is compatible with the orders <1 and <2 if for any
(a, b), (c, d) ∈ E(w), one has

a <1 c =⇒ b ≤2 d.

Thus, placing the vertices of L(w) ordered by <1 on a line and those of R(w)
ordered by <2 on a parallel line, the edges of the graph may be drawn as straight
noncrossing segments, resulting in a planar graph.

We say that a biextendable set S is a planar tree set with respect to two
orders <1 and <2 on A if for any w ∈ S, the graph G(w) is a tree compatible
with <1, <2. Obviously, a planar tree set is a tree set.

The following example shows that the Tribonacci set is not a planar tree set.

Example 4.1 Let S be the Tribonacci set (see Example 2.6). The words a, aba
and abacaba are bispecial. Thus the words ba, caba are right-special and the
words ab, abac are left-special. The graphs G(ε), G(a) and G(aba) are shown in
Figure 4.1. One sees easily that it not possible to find two orders on A making

a

b

c

c

b

a

b

c

a

a

c

b

c

a

b

a

b

c

Figure 4.1: The graphs G(ε), G(a) and G(aba) in the Tribonacci set.

the three graphs planar.
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4.2 Interval exchange sets and planar tree sets

The following result is proved in [9] with a converse (see below).

Proposition 4.2 Let T be an interval exchange transformation on A ordered
by <1 and <2. If T is regular, the set F (T ) is a planar tree set with respect to
<2 and <1.

Proof. Assume that T is a regular interval exchange transformation relative to
(Ia, αa)a∈A and let S = F (T ).

Since T is minimal, w is in S if and only if Iw 6= ∅. Thus, one has

(i) b ∈ R(w) if and only if Iw ∩ T−|w|(Ib) 6= ∅ and
(ii) a ∈ L(w) if and only if Ja ∩ Iw 6= ∅.

Condition (i) holds because Iwb = Iw ∩ T−|w|(Ib) and condition (ii) because
Iaw = Ia ∩ T−1(Iw), which implies T (Iaw) = Ja ∩ Iw . In particular, (i) implies
that (Iwb)b∈R(w) is an ordered partition of Iw with respect to <1.

We say that a path in a graph is reduced if it does not use consecutively the
same edge. For a, a′ ∈ L(w) with a <2 a

′, there is a unique reduced path in
G(w) from a to a′ which is the sequence a1, b1, . . . an with a1 = a and an = a′

with a1 <2 a2 <2 · · · <2 an, b1 <1 b2 <1 · · · <1 bn−1 and Jai
∩ Iwbi 6= ∅,

Jai+1
∩ Iwbi 6= ∅ for 1 ≤ i ≤ n − 1 (see Figure 4.2). Note that the hypothesis

that T is regular is needed here since otherwise the right boundary of Jai
could

be the left boundary of Iwbi . Thus G(w) is a tree. It is compatible with <2, <1

since the above shows that a <2 a
′ implies that the letters b1, bn−1 such that

(a, b1), (a
′, bn−1) ∈ E(w) satisfy b1 ≤1 bn−1.

Iwb1 Iwb2
Iwbn−1

Ja1
Ja2

Jan−1 Jan

Figure 4.2: A path from a1 to an in G(w).

By Proposition 4.2, a regular interval exchange set is a planar tree set, and
thus in particular a tree set. Note that the analogue of Theorem 3.13 holds for
the class of uniformly recurrent tree sets [4].

The main result of [9] states that a uniformly recurrent set S on an alphabet
A is a regular interval exchange set if and only if A ⊂ S and there exist two
orders <1 and <2 on A such that the following conditions are satisfied for any
word w ∈ S.

(i) The set L(w) (resp. R(w)) is formed of consecutive elements for the order
<2 (resp. <1).

(ii) For (a, b), (c, d) ∈ E(w), if a <2 c, then b ≤1 d.
(iii) If a, b ∈ L(w) are consecutive for the order <2, then the set R(aw)∩R(bw)

is a singleton.
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It is easy to see that a biextendable set S containing A satisfies (ii) and (iii)
if and only if it is a planar tree set. Actually, in this case, it automatically
satisfies also condition (i). Indeed, let us consider a word w and a, b, c ∈ A with
a <1 b <1 c such that wa,wc ∈ S but wb /∈ S. Since b ∈ S there is a (possibly
empty) suffix v of w such that vb ∈ S. We choose v of maximal length. Since
wb /∈ S, we have w = uv with u nonempty. Let d be the last letter of u. Then
we have dva, dvc ∈ S and dvb /∈ S. Since G(v) is a tree and b ∈ R(v), there is a
letter e ∈ L(v) such that evb ∈ S. But e <2 d and d <2 e are both impossible
since G(v) is compatible with <2 and <1. Thus we reach a contradiction.

This shows that the following reformulation of the main result of [9] is equiv-
alent to the original one.

Theorem 4.3 (Ferenczi, Zamboni) A set S is a regular interval exchange
set on the alphabet A if and only if it is a uniformly recurrent planar tree set
containing A.

We have already seen that the Tribonacci set is a tree set which is not a
planar tree set (Example 4.1). The next example shows that there are uniformly
recurrent tree sets which are neither Sturmian nor regular interval exchange sets.

Example 4.4 Let S be the Tribonacci set on the alphabet A = {a, b, c} and
let f : {x, y, z, t, u}∗ → A∗ be the coding morphism for X = S ∩ A2 defined by
f(x) = aa, f(y) = ab, f(z) = ac, f(t) = ba, f(u) = ca. By Theorem 7.1 in [4],
the set W = f−1(S) is a uniformly recurrent tree set. It is not Sturmian since
y and t are two right-special words. It is not either a regular interval exchange
set. Indeed, for any right-special word w of W , one has Card(R(w)) = 3. This
is not possible in a regular interval exchange set T since, ΣT being injective,
the length of the interval Jw tends to 0 as |w| tends to infinity and it cannot
contain several separation points. It can of course also be verified directly that
W is not a planar tree set.

4.3 Exchange of pieces

In this section, we show how one can define a generalization of interval exchange
transformations called exchange of pieces. In the same way as interval exchange
is a generalization of rotations on the circle, exchange of pieces is a generalization
of rotations of the torus. We begin by studying this direction starting from the
Tribonacci word. For more on the Tribonacci word, see [17] and also [14, Chap.
10].

The Tribonacci shift The Tribonacci set S is not an interval exchange set
but it is however the natural coding of another type of geometric transformation,
namely an exchange of pieces in the plane, which is also a translation acting on
the two-dimensional torus T2. This will allow us to show that the decoding of
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the Tribonacci word with respect to a coding morphism for a finite S-maximal
bifix code is again a natural coding of an exchange of pieces.

The Tribonacci shift is the symbolic dynamical system (Mx, σ), whereMx =
{σn(x) : n ∈ N} is the closure of the σ-orbit of x where x is the Tribonacci word.
By uniform recurrence of the Tribonacci word, (Mx, σ) is minimal andMx =My

for each y ∈Mx ([16, Proposition 4.7]). The Tribonacci set is the set of factors
of the Tribonacci shift (Mx, σ).

Natural coding Let Λ be a full-rank lattice in R
d. We say that an infinite

word x is a natural coding of a toral translation Tt : R
d/Λ → R

d/Λ, x 7→ x+ t
if there exists a fundamental domain R for Λ together with a partition R =
R1∪· · ·∪Rk such that on each Ri (1 ≤ i ≤ k), there exists a vector ti such that
the map Tt is given by the translation along ti, and x is the coding of a point
x ∈ R with respect to this partition. A symbolic dynamical system (M,σ) is
a natural coding of (Rd/Λ, Tt) if every element of M is a natural coding of the
orbit of some point of the d-dimensional torus Rd/Λ (with respect to the same
partition) and if, furthermore, (M,σ) and (Rd/Λ, Tt) are measurably conjugate.

Definition of the Rauzy fractal Let β stand for the Perron-Frobenius eigen-
value of the Tribonacci substitution. It is the largest root of z3 − z2 − z − 1.
Consider the translation Rβ : T

2 → T
2, x 7→ x+ (1/β, 1/β2). Rauzy introduces

in [18] a fundamental domain for a two-dimensional lattice, called the Rauzy
fractal (it has indeed fractal boundary), which provides a partition for the sym-
bolic dynamical system (Mx, σ) to be a natural coding for Rβ. The Tribonacci
word is a natural coding of the orbit of the point 0 under the action of the
toral translation in T

2: x 7→ x + ( 1
β
, 1
β2 ). Similarly as in the case of interval

exchanges, we have the following commutative diagram

T
2 Rβ−→ T

2




y





y

Mx
σ−→ Mx

The Abelianization map f of the free monoid {1, 2, 3}∗ is defined by f :
{1, 2, 3}∗ → Z

3, f(w) = |w|1e1+ |w|2e2+ |w|3e3, where |w|i denotes the number
of occurrences of the letter i in the word w, and (e1, e2, e3) stands for the
canonical basis of R3.

Let f be the morphism a 7→ ab, b 7→ ac, c 7→ a such that the Tribonacci word
is the fixpoint of f (see Example 2.6). The incidence matrix F of f is defined
by F = (|f(j)|i)(i,j)∈A2 , where |f(j)|i counts the number of occurrences of the

letter i in f(j). One has F =





1 1 1
1 0 0
0 1 0



 . The incidence matrix F admits as

eigenspaces in R
3 one expanding eigenline (generated by the eigenvector with

positive coordinates vβ = (1/β, 1/β2, 1/β3) associated with the eigenvalue β).
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We consider the projection π onto the antidiagonal plane x + y + z = 0 along
the expanding direction of the matrix F .

One associates with the Tribonacci word x = (xn)n≥0 a broken line starting
from 0 in Z

3 and approximating the expanding line vβ as follows. The Tribonacci
broken line is defined as the broken line which joins with segments of length 1
the points f(x0x1 · · ·xn−1), n ∈ N. In other words we describe this broken line
by starting from the origin, and then by reading successively the letters of the
Tribonacci word x, going one step in direction ei if one reads the letter i. The
vectors f(x0x1 · · ·xn), n ∈ N, stay within bounded distance of the expanding
line (this comes from the fact that β is a Pisot number). The closure of the
set of projected vertices of the broken line is called the Rauzy fractal and is
represented on Figure 4.3. We thus define the Rauzy fractal R as

R := {π(f(x0 · · ·xn−1)); n ∈ N},

where x0 . . . xn−1 stands for the empty word when n = 0.

Figure 4.3: The Rauzy fractal

The Rauzy fractal is divided into three pieces, for i = {1, 2, 3}

R(i) := {π(f(x0 · · ·xn−1)); xn = i, n ∈ N},
R′(i) := {π(f(x0 · · ·xn)); xn = i, n ∈ N}.

It has been proved in [18] that these pieces have non-empty interior and are
disjoint up to a set of zero measure. The following exchange of pieces E is thus
well-defined

E : Int R1 ∪ Int R2 ∪ Int R3 → R, x 7→ x+ π(ei), when x ∈ Int Ri.

One has E(Ri) = R′
i, for all i.

We consider the lattice Λ generated by the vectors π(ei) − π(ej), for i 6= j.
The Rauzy fractal tiles periodically the plane, that is, ∪γ∈Λγ + R is equal to
the plane x+ y + z = 0, and for γ 6= γ′ ∈ Λ, γ +R and γ′ +R do not intersect
(except on a set of zero measure). This is why the exchange of pieces is in fact
measurably conjugate to the translation Rβ . Indeed the vector of coordinates
of π(f(x0x1 · · ·xn−1)) in the basis (π(e3) − π(e1), π(e3) − π(e2)) of the plane
x + y + z = 0 is n · (1/β, 1/β2) − (|x0x1 · · ·xn−1|1, |x0x1 · · ·xn−1|2). Hence the
coordinates of En(0) in the basis (pi(e3) − π(e1),p i(e3) −p i(e2)) are equal to
Rn

β(0) modulo Z
2.
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Bifix codes and exchange of pieces Let (Ra)a∈A and (R′
a)a∈A be two

families of subsets of a compact set R incuded in R
d. We assume that the

families (Ra)a∈A and (R′
a)a∈A both form a partition of R up to a set of zero

measure. We assume that there exist vectors ea such that R′
a = Ra+ea for any

a ∈ A. The exchange of pieces associated with these data is the map E defined
on R (except a set of measure zero) by E(z) = z + ea if z ∈ Ra. The notion of
natural coding of an exchange of pieces extends here in a natural way.

Assume that E is an exchange of pieces as defined above. Let S be the set
of factors of the natural codings of E. We assume that S is uniformly recurrent.

By analogy with the case of interval exchanges, let Ia = Ra and let Ja =
E(Ra). For a word w ∈ A∗, one defines similarly as for interval exchanges Iw
and Jw.

Let X be a finite S-maximal prefix code. The family Iw, w ∈ X , is a
partition (up to sets of zero measure) of R. If X is a finite S-maximal suffix
code, then the family Jw is a partition (up to sets of zero measure) of R. Let
f be a coding morphism for X . If X is a finite S-maximal bifix code, then
EX is the exchange of pieces Ef (defined as for interval exchanges), hence the
decoding of x with respect to f is the natural coding of the exchange of pieces
associated with f . In particular, S being the Tribonacci set, the decoding of S
by a finite S-maximal bifix code is again the natural coding of an exchange of
pieces. If X is the set of factors of length n of S, then Ef is in fact equal to Rn

β

(otherwise, there is no reason for this exchange of pieces to be a translation).
The analogues of Proposition 3.8 and 3.10 thus hold here also.

4.4 Subgroups of finite index

We denote by FA the free group on the set A.
Let S be a recurrent set containing the alphabet A. We say that S has the

finite index basis property if the following holds: a finite bifix code X ⊂ S is an
S-maximal bifix code of S-degree d if and only if it is a basis of a subgroup of
index d of FA.

The following is a consequence of the main result of [5].

Theorem 4.5 A regular interval exchange set has the finite index basis prop-
erty.

Proof. Let T be a regular interval exchange transformation and let S = F (T ).
Since T is regular, S is uniformly recurrent and by Proposition 4.2, it is a tree
set. By Theorem 4.4 in [5], a uniformly recurrent tree set has the finite index
basis property, and thus the conclusion follows.

Note that Theorem 4.5 implies in particular that if T is a regular s-interval
exchange set and if X is a finite S-maximal bifix code of S-degree d, then
Card(X) = d(s− 1)+ 1. Indeed, by Schreier’s Formula a basis of a subgroup of
index d in a free group of rank s has d(s− 1) + 1 elements.
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We use Theorem 4.5 to give another proof of Theorem 3.12. For this, we
recall the following notion.

Let T be an interval exchange transformation on I = [0, 1[ relative to
(Ia)a∈A. Let G be a transitive permutation group on a finite set Q. Let
ϕ : A∗ → G be a morphism and let ψ be the map from I into G defined
by ψ(z) = ϕ(a) if z ∈ Ia. The skew product of T and G is the transformation
U on I ×Q defined by

U(z, q) = (T (z), qψ(z))

(where qψ(z) is the result of the action of the permutation ψ(z) on q ∈ Q).
Such a transformation is equivalent to an interval exchange transformation via
the identification of I×Q with an interval obtained by placing the d = Card(Q)
copies of I in sequence. This is called an interval exchange transformation on a
stack in [7] (see also [19]). If T is regular, then U is also regular.

Let T be a regular interval exchange transformation and let S = F (T ). Let
X be a finite S-maximal bifix code of S-degree d = dX(S). By Theorem 4.5, X
is a basis of a subgroup H of index d of FA. Let G be the representation of FA

on the right cosets of H and let ϕ be the natural morphism from FA onto G. We
identify the right cosets of H with the set Q = {1, 2, . . . , d} with 1 identified to
H . Thus G is a transitive permutation group on Q and H is the inverse image
by ϕ of the permutations fixing 1.

The transformation induced by the skew product U on I × {1} is clearly
equivalent to the transformation Tf = TX where f is a coding morphism for the
S-maximal bifix codeX . Thus TX is a regular interval exchange transformation.

Example 4.6 Let T be the rotation of Example 3.1. Let Q = {1, 2, 3} and let ϕ
be the morphism from A∗ into the symmetric group on Q defined by ϕ(a) = (23)
and ϕ(b) = (12). The transformation induced by the skew product of T and G
on I × {1} corresponds to the bifix code X of Example 3.15. For example, we
have U : (1 − α, 1) → (0, 2) → (α, 3) → (2α, 2) → (3α − 1, 1) (see Figure 4.4)
and the corresponding word of X is baab.

(0, 3) (α, 3) (1− α, 3) (1, 3)

a b

(0, 2) (1− α, 2) (2α, 2) (1, 2)

a b

(0, 1) (3α− 1, 1) (1− α, 1) (1, 1)

a b
Figure 4.4: The transformation U .
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