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Abstract

The numerical solution of high-frequency time-harmonic propagation prob-
lems by volumic discretization methods is a challenging task, most notably be-
cause of the very large size of the resulting linear systems. We present a framework
for a class of iterative methods that distribute the work between several CPUs and
exchange information between physical or artificial interfaces. The goal is to de-
fine subproblems of manageable sizes, and to exploit the power of parallel super-
computers.

Furthermore, the framework comprises the possibility of adding another com-
ponent, called a preconditioner, that aims at speeding up the convergence of the
algorithms. We present two methods, that reduce the size of the subproblems in
two different ways, either by defining them on smaller domains or by making them
amenable to an alternative formulation that requires less fine meshes. We analyze
their convergence and explore different preconditioning strategies.

Résumé

Résoudre numériquement des problèmes de propagation à haute fréquence et
en régime harmonique par des méthodes de discrétisation volumique s’avère dif-
ficile, principalement en raison de la très grande taille des systèmes d’équations
linéaires qui en résultent. Dans ce travail, nous présentons un cadre pour une
classe de méthodes itératives, dont le point commun est de partager le travail
entre processeurs et d’échanger des données entre un groupe d’interfaces, qui
peuvent être physiques ou artificielles. L’objectif est de définir un ensemble de
sous-problèmes de taille abordable, tout en exploitant le parallélisme des super-
calculateurs modernes.

Le cadre offre en outre la possibilité d’incorporer un préconditionneur, dans le
but d’accélérer la convergence. Nous présentons deux méthodes, qui réduisent le
nombre d’inconnues des sous-problèmes soit en les définissant sur des domaines
de taille réduite ou en permettant leur solution sur des maillages plus grossiers.
Nous étudions la convergence des méthodes et explorons les manières de les pré-
conditionner.
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Introduction

Computational electromagnetics is the branch of science that aims at develop-
ing models for the numerical simulation of a broad range of physical phenomena
linked to electromagnetic fields. Starting from Maxwell’s equations and constitu-
tive material laws, that provide the full model for the accurate description of the
physical phenomena in terms of electric and magnetic fields, it consists in the in-
troduction of simplifications and modelling tools, as well as a discretization of the
resulting equations, in view of their solution by means of computers.

It is an exciting field of study: it involves many aspects of (applied) mathe-
matics, physical modelling and the identification of relevant approximations, to
finally design efficient algorithms; finding the best methods requires careful anal-
ysis of the problem, as well as a great deal of creativity in order to propose new
and innovative approaches. In that process, it is crucial to be aware of the existing
techniques and current directions of research in order to be able to borrow ideas,
possibly from other fields, mix them together and create one’s own collection of
building blocks, that will allow for the design of new methods and the apparition
of new ideas.

Computational electromagnetics has seen considerable progress over the past
decades, in particular with the development of the finite element method (FEM)
that relies on a mathematically sound framework for the discretization of the pro-
blems. The FEM has now become an essential tool for the solution of practical en-
gineering problems. In parallel, the emergence of supercomputers and the spec-
tacular drop in the cost of computational resources has opened new horizons for
the development of always more accurate numerical models. Such models are
needed to accompany the present and future technological progress, in fields as
various as consumer electronics or medical imaging.

Among the most computationally demanding engineering problems is the sim-
ulation of high-frequency propagation problems, while the industrial need for
such simulations is booming. Indeed, recent years have seen tremendous tech-
nological progress and connected devices have become omnipresent, while con-
sumers are always requesting faster communications. Another example of ap-
plication is high-resolution imaging (e.g. for seismic exploration or medical pur-
poses), that is also very much in demand of efficient computational methods suit-
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2 Introduction

able for high-frequency problems, since the solution of the inverse problems in-
volved requires the solution of many forward problems.

In the context of numerical modelling, our understanding of “high-frequency”
is that we are interested in the situation where the wavelength at the working fre-
quency is small compared to the size of the surrounding objects, or more generally
of the computational domain, but where it is not relevant to make the assump-
tion of very small (asymptotically zero) wavelength, for which special methods are
available.

Motivation of this work

As working frequencies and/or the size of the computational domains are con-
stantly increasing, the solution of propagation problems has appeared to be a
particularly challenging problem. Indeed, the size of the corresponding discrete
linear systems and their mathematical properties make them hard to solve using
usual methods: they either have reached their limit, requiring excessive computa-
tion times and memory usage (like e.g. the family of so-called direct solvers) or are
not adapted to this particular case, like most currently available iterative methods
that have been developed for other problems.

On the other hand, with the advent of the new computational resources have
also appeared new concerns, related to their efficient use and the minimization of
their environmental impact: running and maintaining high performance compu-
tational facilities still involves considerable amount of expenses, both in terms of
financial investment and energy. It is therefore important that the philosophy of
computational engineers evolves in accordance with the growth of computational
power. Indeed, simply using the newly available resources to perform brute force
solution of larger problems makes little sense and is bound to fail; it is well known
that the cost of solving problems by conventional methods grows much faster than
their size, while it is clear that these methods cannot make an efficient use of the
power of the massively parallel architectures of computers of today and tomorrow.

Therefore, research in computational electromagnetics is experiencing a shift
from a modelling effort (the comprehensive mathematical description of the phy-
sical phenomena, and the different ways of formulating the problems) to the de-
sign of new strategies for the solution of these models, that can fully take advan-
tage of modern computers and respect their constraints.

We believe that in order to achieve that goal, it is fundamental to take into ac-
count the specificities of each particular class of problem, and to look for inspira-
tion into the underlying physics. This philosophy is at the heart of the methods
that we propose in this thesis.
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Scope and objectives

With this work, we intend to contribute to the development of efficient solvers
dedicated to time-harmonic propagation problems, i.e. we will consider both
scalar (Helmholtz equation) and vector (Maxwell’s equations) cases, and will al-
ways aim at methods that are well suited for the high-frequency regime. Most of
the presentation will be done for the scalar case and modifications for the vector
case will be given as a complement.

We have identified the following main objectives:

• design suitable methods for the solution of the large linear systems arising
from the discretization of the set of partial differential equations that de-
scribe propagation problems at high frequency, and that can efficiently take
advantage of parallel computers;

• for this last purpose, these algorithms should be based on the solution of
subproblems defined on a new set of domains; although different meth-
ods could be considered for their solution (provided that they are accurate
enough), we will choose to solve them by the finite element method;

• identify existing methods that have a good potential for parallelism. In view
of the first goal of this list, we will focus on iterative methods since it is clear
that direct methods are not good candidates;

• implement the methods inside a general environment, where all compo-
nents of the method will be described: the general loop that solves the prob-
lem, via the definition of an iteration operator, possibly with a precondi-
tioner; the definition of the subproblems; the post-processing that gener-
ates the solution to the full problem;

• identify the limitations of the selected methods, understand their origin,
propose directions for improvement and implement them inside our solver;

• benchmark the methods on some model problems that reflect the variety of
engineering problems encountered in practice.



4 Introduction

Outline

We have organized this thesis into four chapters. In the first one, after introduc-
ing our problem of interest we give insights to explain why solving it at high fre-
quencies is difficult. For that purpose, we review the different families of classical
approaches (partial differential equations and integral equations, as well as a few
asymptotic methods for the very high frequencies), and focus on the finite ele-
ment method. Then, we explore the different strategies that are classically used
for solving other problems and show that they fail when frequency is increased.

In Chapter 2, we provide a common framework for methods that share the prin-
ciple of being based on some redefinition of the computational domain, in a way
that naturally enables the iterative solution of an equivalent problem. We will call
them “multi-domain” methods, and will detail two of them: a non-overlapping
domain decomposition algorithm, and a method for the solution of multiple scat-
tering problems.

The next two chapters are dedicated to the original contributions of this the-
sis, where we will bring improvements to the aforementioned methods: Chapter 3
provides a way to improve the convergence of the DDM algorithm by means of a
preconditioning technique, and in Chapter 4 we take advantage of an alternative
formulation applicable to the problems on our newly defined domains, to speed
up their solution and make the algorithm usable in practice.

Finally, we will draw some conclusions and formulate perspectives for future
research on the topic.

Original contributions

This work is a contribution to the numerical solution of propagation problems at
frequencies high enough so that usual methods are no longer applicable. In this
regard, we have proposed the following list of presumably original contributions:

• we have defined a common framework for iterative methods based on a de-
composition of the original domain into several new domains. It is based
on the reformulation of the (existing) algorithms as matrix-free linear sys-
tems: we solve a linear system with a Krylov method, without explicitely
forming the corresponding matrix but by giving the application of that ma-
trix to some vector, as an iteration. The resulting algorithms are based on
subdomain solves and exchange of information;

• this framework naturally provides the possibility of introducing precondi-
tioners to improve their convergence. These preconditioners can be based
on similar subproblem operators as the original iteration operator, or be
based on other techniques;
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• in the context of optimized Schwarz methods, we have compared various
types of transmission conditions, including a non-local one based on per-
fectly matched layers, on a set of model problems used as test cases; the
link with a matrix probing technique to obtain the non-local transmission
operator has been made, to accelerate its otherwise excessively costly com-
putation. That idea has been published in [182];

• in order to improve the convergence of Schwarz methods, we have proposed
a sweeping preconditioner, that works by improving the transfer of informa-
tion over distant subdomains; our numerical tests have shown that in some
cases the convergence of the unpreconditioned method is so slow that it
cannot be used in practice, while the preconditioner makes it possible to
obtain a solution. This has led to the journal publication [180];

• since this kind of preconditioner is intrinsically non-parallel, and observ-
ing that a global sharing of information is not always required in view of
the topology of the problem, we propose a modified version that performs
smaller and independent sweeps on groups of subdomains. While this mod-
ification slightly degrades the convergence rate, it has the advantage of, at
least partially, restoring the parallelism of the method. This extension has
been published in [179];

• we propose an algorithm for the solution of multiple scattering problems
based on an alternative formulation of the simple scattering subproblems
involved in the iteration operator. This reformulation has the advantage of
being applicable with much coarser meshes than with the original formula-
tion. This has led to the journal publication [99].

The above methods have been implemented and made available for the com-
munity of computational electromagnetics engineers in the open-source software
GetDP [95, 175]. We also believe that our methods, by their modularity, will be
applicable to other fields of engineering and physics, since they are described in
terms of transfer operators, that can be redefined to suit the purposes of other
communities.





CHAPTER 1
A challenging problem:

the numerical solution of high-frequency
time-harmonic wave propagation

In this chapter, we detail the problem under consideration and give some practical
examples of application. We briefly describe different existing families of meth-
ods for its numerical solution, and discuss their advantages and drawbacks. We
then particularly focus on the finite element method and motivate this choice.
Since the main difficulty of the method resides in the very large size of the result-
ing linear systems at high frequencies, we conclude the chapter by introducing
some usual methods for their solution and expose their limitations when applied
to propagation problems.

1.1 Problem description

Wave propagation phenomena occur in various fields of physics, among which
practically important ones are in particular: solid mechanics (e.g. vibration of
structures), fluid mechanics (e.g. surface waves), acoustics, electromagnetism or
quantum physics. Although the physical variable of interest is different in each
of them (displacement, acoustic pressure, electric or magnetic fields, ...), they are
all mathematically governed by similar sets of equations. In this section, start-
ing from an equation that fully describes many wave phenomena with their time
dependency, we will introduce the time-harmonic equation that holds for the sys-
tems in steady state, that is for a harmonic excitation with constant frequency and
amplitude and after the transients have vanished.

We focus on linear waves, both in constant and heterogeneous media, for acous-
tic and electromagnetic applications. Most of the presentation will be given for the
scalar (Helmholtz) case, with a brief introduction to the vector (Maxwell) case.
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8 A challenging problem: the numerical solution of HF wave propagation

1.1.1 Time-dependent wave equation

The equation classically known as the linear wave equation is a scalar partial dif-
ferential equation (PDE) that involves second order derivatives in both the time t
and spatial x = (x1, . . . , xd ) variables, in dimension d . Its solutions U (x, t ) satisfy:

(
∆− 1

c2

∂2

∂t 2

)
U = 0, (1.1)

where ∆=∑d
i=1

∂2

∂2
xi

(in cartesian coordinates) is the Laplacian operator and c(x) is

the local speed of propagation of the wave in the medium. That equation was first
proposed in the 18-th century by French scientist d’Alembert in the 1-dimensional
case, who studied the shape of a vibrating string [47], and later by Euler in higher
dimensions when he was working on the propagation of sound [80].
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p
li

tu
d

e
a

λ

Figure 1.1: Illustration of the real part of a monochromatic wave u(x) = ae ıkx with ampli-
tude a = 1, propagating in a medium Ω= [0,1] with velocity c = 1. The pulsation is set to
ω= 14π, so the wavenumber is k = 14π and the wavelength is λ= 1/7.

Important concepts for the characterisation of a (monochromatic) wave are the
amplitude a, the frequency f and the wavelength λ. The frequency is a time-
related quantity: it is the inverse of the period of the excitation, that is typically
a periodic function. One also often speaks in terms of the angular frequency or
pulsation ω = 2π f . The wavelength is the spatial counterpart of the period: it is
the distance between two successive crests (or throughs) of a wave, or more gen-
erally between two consecutive points of the same phase. The wavenumber k is
another frequently used quantity, related to the wavelength as k = 2π

λ . In a given
medium with speed of propagation c, the wavenumber and angular frequency are
related by the relation k = ω

c . This is illustrated on a 1d example on Figure 1.1.
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With the above definitions and relations, we see that higher frequencies pro-
duce smaller wavelengths. This is an important observation to understand the
difficulties that arise in the numerical solution of high-frequency problems: while
fine discretizations are required to represent the fast oscillations of the solution in
space, the Courant-Friedrichs-Lewy condition [45] states that accordingly small
time steps are required to guarantee the stability of some time-integration
schemes (e.g. explicit Euler — implicit schemes are unconditionally stable but are
more computationally intensive and can be less accurate for large time steps [110]).
Since, in many practical cases, one is interested in the steady-state solution, a large
number of time steps may be required to reach that state, leading to extremely
long simulation times.

An alternative is to directly look for harmonic solutions. That strategy leads to a
different equation known as the Helmholtz equation, and is the object of the next
Section. We will see that numerically solving that equation is not an easy task: at
high-frequency, the wavelength of the solution is small compared to the size of
the computational domain, and the number of discretization points required to
represent the solution becomes large. Moreover, the properties of the Helmholtz
equation cause usual solution techniques to lose their efficiency or even to fail.
This thesis is thus devoted to the design of dedicated methods for the solution of
such high-frequency problems.

1.1.2 The Helmholtz equation and boundary conditions

Looking for a steady-state solution, hence independent of time, to (1.1), we sup-
pose a harmonic time dependence of the form U (x, t ) =ℜe

{
u(x)e−ıωt

}
, whereω is

the angular frequency, and inject that relation in the wave equation (1.1). We ob-
tain a new equation that describes the spatial repartition u of the unknown field
at frequency ω:

− (∆+k2)u = 0, (1.2)

where k(x) = ω
c(x) is the wavenumber introduced above. The wavenumber can ei-

ther be constant as in free-space problems, or depend on the coordinates as in
heterogeneous materials.

Equation (1.2) belongs to the category of elliptic problems (see [140] for a for-
mal definition) and is known as the homogeneous Helmholtz equation. It admits
a variety of solutions, depending on the source and boundary conditions, that
have in common an oscillatory nature (provided ℜe{k} > 0; the situation is sim-
ilar when ℑm{k} > 0, but it corresponds to a dissipative medium and produces
damped waves). We mention in particular plane waves that are solutions of the
form upw = e±ıkx, with the wave vector k = (k1,k2,k3) that determines the direc-
tion of propagation of the wave, such that |k| = k. Another example is a spherical
wave usw = e ıkr/|r| produced by a point source in free space at the origin and r is
the radial coordinate in spherical coordinates.
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−1 0 1

ℜe(upw)

−0.76 1.37 3.5

ℑm(usw)

Figure 1.2: Particular solutions to the Helmholtz equation, in the unit square at k = 7π:
a plane wave upw (left) with wave vector k = (cos(π/6),sin(π/6),0), and a spherical wave
produced by a point source usw (right); note the attenuation as one moves away from the
source.

As for any elliptic PDE problem, an appropriate set of boundary conditions
must be specified on the boundary Γ of the computational domain Ω for the so-
lution to be uniquely determined (the definition of Ω varies for each problem;
we give some examples in the next section). The governing equation in volume
together with the set of boundary conditions define a boundary value problem
(BVP). It is common to impose the field to vanish on part of the boundary, which
leads to a homogeneous Dirichlet boundary condition if one computes the total
field, or a non-homogeneous condition of the form u =−uinc for the scattered field
(see next section for a definition of these notions). One then speaks of a sound-soft
obstacle, while sound-hard refers to Neumann conditions on the normal deriva-
tive of the field, of the form ∂nu = 0.

An important caveat for the Helmholtz problem with Dirichlet or Neumann
boundary conditions only is that the problem can be ill-posed if k2 corresponds
to an eigenvalue of the Laplacian on the domain. Indeed, any multiple of the cor-
responding eigenfunction, called a resonant mode, solves the problem and the
solution is then non-unique. In the following we will assume that the Dirichlet
problems are studied at wavenumbers away from the resonant frequencies.

In the particular case of propagation phenomena, since one can define open
problems with domains that extend to infinity and since waves have the ability
to propagate over very long distances, special care must be taken with boundary
conditions imposed at infinity. The Sommerfeld radiation condition is one that
ensures that a wave originating from a source at finite distance is outgoing at in-
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finity. It therefore prevents the existence of an (unphysical) wave coming from
infinity and sinking at the source, which is otherwise also a valid solution to the
Helmhotz equation. It reads, in dimension d :

lim
|r|→∞

|r| d−1
2

( ∂

∂|r| − ık
)
u(r) = 0, (1.3)

in any radial direction r̂ = r/|r|. Although the Sommerfeld condition remains exact
at finite distance in 1-dimension [102], this is no longer the case in higher dimen-
sions. We will see in Section 1.2.2 that the truncation of the computational do-
main at finite distance is an essential feature of PDE-based numerical solution of
propagation problems in an unbounded domainΩ, and present some appropriate
alternatives to (1.3) in Section 1.3.3.

1.1.3 Model problems

We now present a few simple problems that are representative of the variety of
practical engineering problems involving propagation. They will be used later in
this work as test cases for our methods. Some useful definitions and notations are
also given.

Scattering in free space

Ω

uinc

uscat

Ω−

Γ

Figure 1.3: Illustration of the scattering of an incident wave by an object. The presence
of the object perturbs the wavefronts of the incident field uinc, here depicted as a plane
wave, by superimposing the scattered field uscat to it.

When a wave propagates in space and hits one or more objects, the interac-
tions between the wave and the objects create a perturbation of the wavefronts, as
part of the wave is reflected back in different directions. A shadow is also created
behind the objects. That phenomenon is known as scattering.

A practically important problem is the study of the scattering by an object in
free space. That is, the object is considered as immerged in an infinite medium
with constant properties, such as vacuum, air or water; an example is the reflec-
tion of a radar wave by an aircraft. In many cases, the incident field is supposed to
be a plane wave, but any kind of wave could be considered as well.
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We will focus on the case of impenetrable objects, notedΩ− (in case of multiple
objects, we will have Ω− = ∪Ω−

i ), with boundary Γ = ∂Ω− (see Figure 1.3). In that
case, it is common to impose boundary conditions on the total field on the surface
of the objects, that are either of the Dirichlet type: utot = 0, or of the Neumann
type: ∂nutot = 0, with n the outward normal to the exterior domain, i.e., directed
inward to the object(s). By total field, we mean the sum of the incident field and
the scattered field: utot = uinc +uscat. In such problems, since the incident field is
supposed to be known in the entire space, it is convenient to exploit the linearity
of the problem and to compute the solution in terms of the scattered field. In the
following, we will use the simplified notation u = uscat. The propagation domain
is the exterior of the object: Ω=Rd \Ω−, in dimension d = 2,3. It is also natural to
impose that the scattered field is outgoing at infinity, and thus to apply a radiation
condition. The problem then writes:

∆u +k2u = 0 inΩ, with k = k0

u =−uinc on Γ,

or ∂nu =−∂nuinc

+ radiation condition at |r |→∞.

(1.4)

This problem is known to be well posed [135]. However, the propagation domain
Ω is unbounded. We will see in Section 1.3.3 that some methods cannot work with
such domains, that must therefore be truncated.

Guided waves

At the opposite of waves propagating freely in an open medium, is the case of
waves that are confined in a structure with impenetrable walls. These waves are
forced to follow the direction given by the structure, therefore called a waveguide,
that can be of various shapes. Straight or bent waveguides are commonly encoun-
tered; we will use an S-shaped waveguide as test case for our methods.

c = c(y)

Γc

Γc

ΓD

Γ∞

x

y

d or

Γc

Ω

Figure 1.4: Example of a straight waveguide, and definition of the different types of bound-
aries. The interior medium needs not be homogeneous. Note that the right boundary can
be either open or closed (cavity).
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An important property of waveguides is that not any wave can propagate inside
them: each mode is characterized by a cut-off frequency, below which the mode
excited at one end cannot propagate and results in an evanescent wave [113, 153];
losses and internal reflections can also occur. It is therefore usual to study them
by exciting one mode at a time, and to compute quantities such as transmission
ratios. The medium inside the waveguide can either be homogeneous (e.g. air, or
vacuum) or heterogeneous with some velocity profile c = c(y), like in an optical
fiber.

As an example, we consider the simple case of a straight, homogeneous 2d
semi-infinite waveguide with width d , oriented along the x−axis (Figure 1.4). The
computational domainΩ is the interior of the waveguide, with boundary Γ= ΓD ∪
ΓC ∪Γ∞. Suppose that we impose homogeneous Dirichlet boundary conditions
on the walls Γc , and excite the m−th mode at the inlet ΓD with wavenumber k:

u(m)
D (0, y) = sin(

mπ

d
y); (1.5)

the solution inside the waveguide is [113, 153]:

um(x, y) = sin(
mπ

d
y)e ıβm x , (1.6)

with βm =
√

k2 −k2
c . The cut-off frequency of mode m is given by kc = mπ

d ; if the
wavenumber k is beneath kc , the propagation constant βm is complex and the re-
sulting wave does not propagate but its amplitude decreases exponentially in the
waveguide instead.

To numerically solve such problems, one must either consider finite
waveguides, where the open end can be modeled by means of an absorbing condi-
tion, or truncate the continuing waveguide with a similar condition. Another case
is to consider a closed waveguide, where a wall condition is also imposed at the
end. Such a configuration is called a cavity, and can only be studied at frequencies
away from resonances to guarantee the well-posedness of the problem. The defi-
nitions are illustrated on Figure 1.4. We solve for the field u, that verifies:

∆u +k2(y)u = 0 inΩ,

u =−u(m)
D on ΓD ,

u = 0 on Γc ,

or ∂nu = 0

+ absorbing condition on Γ∞.

(1.7)
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Propagation in non-homogeneous media

c1

c2

c3

Γ∞ Γ∞

Γ∞

ΓN ΓNΣD

Ω

Figure 1.5: Illustration and defintions of the simplified underground propagation of a
wave produced by a point source located on surface. The propagation medium is non-
homogeneous, here with three different velocities.

Another practically important problem is the propagation of a wave in a
strongly heterogeneous medium, such as the top layers of the earth, for under-
ground exploration. This kind of simulation is central in seismic inversion prob-
lems. We consider a point sourceΣD with pulsationω located on the surface, mod-
eled by a Neumann condition and noted ΓN . The underground sides are modeled
by absorbing conditions imposed on the truncation boundary Γ∞ (Figure 1.5).
Thus, we compute the solution in the region Ω enclosed in Γ = ΓN ∪Γ∞. This
problem writes:

∆u + ω2

c2(x)
u = 0 inΩ,

u = 1 on ΣD ,

∂nu = 0 on ΓN ,

+ absorbing condition on Γ∞.

(1.8)

1.2 Numerical techniques for the Helmholtz equation

Analytical solutions for wave problems are only available for very simple config-
urations, such as the scattering by a single disc or the propagation in a straight
and infinite waveguide. Since real-life engineering problems usually feature com-
plex geometries and possibly highly non-homogeneous media, it becomes nec-
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essary to resort to numerical techniques in order to approximate the solution. In
this section, we briefly introduce some of the most popular methods and list their
advantages and drawbacks. Although this thesis is essentially devoted to the de-
velopement of algorithms built on top of the finite element method described in
the next section, we will see that some concepts and ideas from the other families
of methods described here will be useful and we will emphasize the connections
with them whenever relevant.

1.2.1 Boundary integral equations

In the particular case of an homogeneous propagation medium k(x) = k, for which
fundamental solutions of the Helmholtz equation (1.2) are available, exterior scat-
tering problems can be solved by boundary integral equation methods. In these
methods, based on an integral representation of the fields (more details are given
in Appendix B; see also [44, 139] for a more complete treatment), one solves an
equivalent equation Lρ = f , with L an integral operator of the form (other forms
are possible):

Lρ(x) =
∫
Γ

G(x,y)ρ(y)dΓ, ∀xon Γ, (1.9)

where the kernel G is the fundamental solution (or Green’s function) (B.4) to the
Helmholtz equation and ρ is an unknown density function defined on the bound-
ary of the scatterers. Once this function is known, the field can be computed any-
where in the volume by simply evaluating a surface integral.

Such an approach has several advantages:

• it is naturally suitable for unbounded problems: there is no need to intro-
duce domain truncation techniques as for volumic methods;

• reduction of dimensionality: a problem defined in dimension d reduces to
a boundary problem, hence of dimension d −1;

• far-field calculations are easily done once the surface problem is solved.

Conversely, there are also difficulties:

• the discretized problems lead to dense (sometimes ill-conditioned) linear
systems of equations1;

• their iterative solution requires careful preconditioning, which is still an ac-
tive field of research;

1Algorithms exist however to perform sparse (approximate) matrix-vector products, like the fast
multipole method (FMM) [50].
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• special care is required in the implementation of these methods in reason of
the singularity of the kernel of the integral operator;

• they are only applicable to propagation in homogeneous media, because
Green’s function must be known everywhere, which is usually not the case
for non-homogeneous media.

A typical field of practical application of integral methods is the calculation of
the radar cross section (RCS) [14] of conducting objects, like aircrafts; an example
of numerical solver based on such methods is BEM++ [164].

1.2.2 PDE-based methods

This family of methods work by locally approximating the differential operators
that appear in the equation to be solved on a discrete grid, everywhere in the
computional domain, as opposed to the integral methods. For this reason, they
are sometimes called respectively volumic and surfacic methods.

The finite difference method (FDM) makes use of a difference quotient to ap-
proximate the derivatives on a regular grid with step size h. Examples are the for-
ward or backward difference approximations. In 1d, this gives the simple formu-
las:

∂x u(xi ) ≈ ui+1 −ui

h
or ∂x u(xi ) ≈ ui −ui−1

h
. (1.10)

Second order derivatives are approximated by the central difference formula:

∂xx u(xi ) ≈−−ui−1 +2ui −ui+1

h2 , (1.11)

known as the 3 points stencil. In 2 and 3 dimensions, similar formulas lead to
respectively 5 and 9 points stencils. The application of these stencils over the do-
main and the addition of the boundary conditions yield a linear system of equa-
tions, the solution of which is an approximate solution to the PDE problem.

Another important example of such methods is the finite element method
(FEM), described in Section 1.3. It is based on a variational formulation of the
problem and approximates the solution as a sum of compactly supported, piece-
wise polynomial functions defined on a discretization of the domain. A major ad-
vantage over the FDM is that a structured mesh is not required, allowing to mesh
complex-shaped domains and representing fine details, e.g. using triangles for
surfaces and tetrahedrons for volumes, without need to also finely mesh regions
where a coarser dicretization can be used instead.
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Advantages of the methods are:

• ease of implementation (FDM);

• discretization can conform to complex geometries and fine details (FEM);

• suitable for variable coefficients problems, e.g. non-homogeneous media
(k = k(x));

• local approximation of the operator, resulting in sparse linear systems (op-
timized storage, fast matrix-vector products).

Associated drawbacks:

• need to truncate the domain for unbounded problems, with special kinds of
boundary conditions (which can introduce an error before discretization);

• not well suited for some non-local operators (like some particular boundary
operators), therefore requiring local approximations of them;

• very large number of discretization points at high frequency, leading to large
linear systems to be solved;

• sign-indefiniteness of the system when applied to propagation problems.

There are many available implementations of these methods, both commercial
or open-source. We have used the GetDP [60, 95] finite element solver together
with the Gmsh [96, 97] mesh generator and solution viewer.

1.2.3 Asymptotic methods

Different approximations can be made to facilitate the solution of propagation
problems, especially by taking the high-frequency (or equivalently the small wave-
length) limit, i.e. that the wavenumber asymptotically tends towards infinity.
Among these, we choose to briefly describe and discuss two of the most popu-
lar techniques, since they will be useful and since interesting connections can be
made with other ideas in the remainder of this work.

Geometrical optics (GO)

One of the earliest and most widespread description of the propagation of light is
based on the concepts of light rays and wavefronts [25, 166]: in a medium, light
rays propagate along curves that are perpendicular to the surfaces of equal phase.
This model along with Huygen’s principle succesfully predicts practically impor-
tant phenomena like reflection and refraction in non-homogeneous media.
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By searching for a solution to the Helmoltz equation (1.2) of the form:

u(x) = a(x)e ıkφ(x), (1.12)

where a and φ are slowly varying functions, one obtains after rearranging the
terms as powers of 1/k:

(
1−|∇φ|2)a + ı

1

k
(a∆φ+2∇φ ·∇a)+ 1

k2∆a = 0. (1.13)

With the high-frequency asymptotic approximation k → ∞, one can neglect the
second order term and the above equation turns into the system of geometrical
optics:

|∇φ|2 = 1,

a∆φ+2∇φ ·∇a = 0.
(1.14)

The first equation is known as the eikonal equation. It is a non-linear equation
that describes the evolution of the phase φ, starting from boundary conditions.
The second one is a linear transport equation for the amplitude a.

There are various techniques for the numerical computation of solutions to the
eikonal equation, among which we mention the popular and efficient O(N log N )
fast marching algorithm [163], which is of the expanding wavefront type. Iterative
schemes have also been proposed [48, 114, 157].

The geometrical theory of diffraction (GTD) was later developed [118] to take
into account the diffraction phenomena that are absent in the GO model [25].

Paraxial approximation

In many situations, waves tend to propagate in a well identified preferential di-
rection, like radio waves in the atmosphere [87, 122]. That direction is called the
paraxial direction. Rewriting the 2d helmoltz equation in the (x, z) plane as:

∂2
x u +∂2

z u +k2u = 0, (1.15)

and considering a wave that propagates along the x-axis, we can factor the opera-
tor above as:

(∂x + ıP+)(∂x − ıP−)u = 0, (1.16)

that can be seen as the decomposition between a forward and backward propa-
gating waves, with the non-local pseudo-differential operators [173] P± given by:

P± =
√
∂2

z +k2. (1.17)
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A similar idea is used as starting point in the design of the AILU preconditioner
for the full discrete problem (Section 1.4.2). The paraxial approximation consists
in considering only the forward propagating part of the wave described by the
equation (∂x + ıP+)u = 0, that can be seen as an evolution equation along the
x-direction. One must choose a local approximation of the square-root opera-
tor (1.17), which can be done by a truncated Taylor expansion:

p
1+X ≈ 1+ 1

2
X . (1.18)

This leads to the parabolic equation:

∂x u − ıku − ı

2k
∂2

z u = 0, (1.19)

that can be solved using standard numerical schemes [123]. Other approximations
of the square-root can be used to improve the quality of the approximation, espe-
cially when the propagation direction deviates from the paraxial direction, like a
Padé rationale approximation [42]:

p
1+X ≈C0 +

Np∑
l=1

A j X

1+B j X
, (1.20)

where the coefficients are known [12].

Regarding the pros and cons of the asymptotic methods, their main interest
resides in their efficiency. They are based on a priori simplifications that succes-
fully capture the most important features of the solution. However they are, by
definition, approximate methods. Therefore, while they are well suited for some
particular problems, they do not take into account all the physics of propagation
phenomena and will fail when applied to other types of problems.

1.3 The finite element method

In view of its properties, the finite element method introduced in Section 1.2.2
is a good candidate for the solution of propagation problems, especially in the
non-homogeneous case. All the model problems presented in Section 1.1.3 are
amenabe to it, with so little adjustments regarding the boundary conditions that it
is possible to write a general code that is able to solve any of them. To define a new
problem, the user needs only provide a geometrical description of the problem
and the definition of the different regions and boundaries.

This section introduces in detail the method, as well as the necessary tools to
apply it to scalar propagation problems. Details on the vector version will be given
in a separate section at the end of the chapter.
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1.3.1 Weak formulation

In Section 1.1.2, we have given the governing equations, in the scalar case, of the
propagation problems that are the principal subject of this thesis. We now write
the corresponding weak formulation, which is the starting point of the finite ele-
ment method.

We will assume that the domains are truncated at finite distance and hence
that at least part of their boundary, denoted by Γ∞, is an artificial boundary where
an approximation of the Sommerfeld condition (1.3) is applied. More details on
such conditions can be found later in the section. We give the formulations with
the simplest examples of such conditions and will refer to the literature for the
formulations with more elaborate techniques.

We start by defining the usual function spaces that will be useful for the de-
scription of the method. The space L2(Ω) is the space of square integrable scalar
fields on the bounded domainΩ:

L2(Ω) = {
u :

∫
Ω

u2(x) dΩ<∞}
. (1.21)

The Sobolev space of scalar fields H 1(Ω) is defined as:

H 1(Ω) = {
u ∈ L2(Ω) : ∂x u,∂y u,∂z u ∈ L2(Ω)

}
, (1.22)

while the space of 0-trace fields H 1
0 (Ω) is:

H 1
0 (Ω) = {

u ∈ H 1(Ω) : u = 0 on ∂Ω
}
. (1.23)

We will also use the trace spaces H 1/2(Σ) and H−1/2(Σ) that are respectively the
Sobolev spaces of fields on the boundary ofΩ and its dual, see [76] for details.

In the case of homogeneous Dirichlet boundary conditions (supposing that the
problem is well-posed), the variational formulation of problem (1.2), modified to
incorporate a volumic source term f ∈ L2(Ω) is: find u in H 1

0 s.t.

−
∫
Ω

(∆+k2)uv dΩ=
∫
Ω

f v dΩ, ∀v ∈ H 1
0 (Ω), (1.24)

which, after integration by parts of the second order term in the derivative be-
comes: find u in H 1

0 s.t.

−
∫
Ω

(−∇u ·∇v +k2uv) dΩ=
∫
Ω

f v dΩ, ∀v ∈ H 1
0 (Ω). (1.25)

In practice, more complex sets of boundary conditions are encountered: we
will make use of a partition of the boundary ∂Ω, and impose homogeneous Dirich-
let or Neumann conditions on parts of the boundary ΓD,0 or ΓN ,0, non-homoge-
neous Dirichlet condition on ΓD and, for instance, the Sommerfeld condition on a
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truncation boundary Γ∞. The definition of the function spaces in that case re-
quires more care; we refer to [76] for details. In addition, we will make use of
transmission conditions ∂nu +Su = g on some artificial boundaries Σ, that are
impedance conditions with data g ∈ L2(Σ) (see Section 2.4.3). The weak formu-
lation then becomes, with H 1(Ω) the appropriate Sobolev space: find u ∈ H 1(Ω)
s.t. ∫

Ω
(∇u ·∇v −k2uv − f v) dΩ

−
∫
Σ

(−Suv + g v) dΣ

−
∫
Γ∞

(ıkuv) dΓ = 0,

∀v ∈ H 1(Ω). (1.26)

The bilinear form (u, v) = ∫
Ω (∇u ·∇v −k2uv) dΩ is known to be sign-indefinite

for high values of k. This is an important observation, since we will see that it will
cause difficulties. (See [134] for an in-depth discussion on its mathematical prop-
erties.)

It is common to encounter distributional source terms for the Helmholtz equa-
tion. A typical example in 1d is f = δ(x), the delta function that is 0 everywhere ex-
cept at 0, with an integral of 1:

∫ x
−∞δ(s)ds = H(x), with H(x) the unit Heaviside step

function. It behaves like a point source producing symmetric waves that propa-
gate in both directions. Such source terms must be integrated by parts, which is
easily done in weak formulations. For the delta function we have:∫

Ω
δv dΩ=−

∫
Ω

H∇v dΩ+
∫
∂Ω

H v dΓ.

1.3.2 Nodal finite element methods

Starting from the weak formulation (1.26), we look for an approximate solution uh

of the form:

uh(x) =
N∑

i=1
uiΦi (x), (1.27)

where the set {Φi } forms a basis of the piecewise polynomial functions overΩ and
is a finite dimensional subset of H 1, and the set of ui are the (unknown) nodal
values with the interpolation property uh(xi ) = ui . The basis functions are com-
monly chosen as the linear hat functions built on the vertices of the mesh (with
coordinates x1≤i≤N ), which gives the P1-FEM:

Φi (x j ) =
1 if i = j ,

0 if i 6= j .
(1.28)
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They are compactly supported since they are only non-zero in the vicinity of a
given vertex. Galerkin’s method is to restrict the infinite set of test function v
in (1.26) to the set of form functionsΦi , to obtain the finite-dimensional problem:
find uh such that

a(uh ,Φi ) = b( f ,Φi ), ∀Φi (Ω), (1.29)

where a(·, ·) and b(·, ·) are respectively the bilinear and linear forms corresponding
to the left- and right-hand sides of the problem (1.26).

Since we have discretized the problem by means of the definitions (1.27)
to (1.29), this can be rewritten in matrix form as:

Au = b, (1.30)

with the coefficient matrix Ai j = a(Φi ,Φ j ) and the right-hand side bi = b( f ,Φi ).
The solution to that system is called the finite element solution of the problem.
Since the Φi functions are compactly supported, most coefficients in A are zero
and the system is said to be sparse, which is an important feature of the method.

For vector-valued problems, a similar procedure can be followed, but suitable
vector basis functions must be used; we refer to [115, 135] for details. As an ex-
ample, in Section 1.3.1 we give the weak formulation of the vector high-frequency
Maxwell’s equations, whose FEM solution is represented by means of edge ele-
ments that naturally take into account the continuity of the tangential component
of the field, and for which the unknowns are the circulation of the field along the
edges of the mesh.

The usual workflow for the solution of a problem, and in particular of a propa-
gation problem, by the FEM follows the steps:

1. Discretize the domain in an appropriate way. The mesh parameters (dis-
cretization density) must be carefully chosen to represent the solution with
sufficient accuracy. If the domain is infinite, one must decide where to place
the truncation boundary;

2. Write the weak form of the problem and select interpolation functions. This
includes the definition of appropriate boundary conditions and the choice
of a truncation technique for the proper modeling of the external boundary;

3. Generate the linear system. This is usually done in a standard way by FEM
codes, that take the previously defined formulation and mesh as inputs.

4. Solve the problem. This is the most challenging part, since propagation
problems often result in extremely large, sign-indefinite linear systems that
are hard to solve by usual methods, as will be seen in Section 1.4.
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1.3.3 Absorbing boundary conditions

This section is dedicated to the techniques used to truncate the infinite domain
of a wave propagation problem in view of its discretization by a PDE-based me-
thod, since these cannot directly handle unbounded domains. Also, the region of
prime interest in the domain is often limited to the area enclosing some objects
or extending down to a given “depth”. For these reasons, one computes only the
restriction of the solution to the full problem inside the area of interest, notedΩ+,
which is enclosed in an artificial truncation boundary Γ∞: u+ = u|Ω+ , or an ap-
proximation of it; note that if one is interested in the far-field, other techniques
based on an integral representation of the field (see Section 1.2.1) or a combina-
tion with them, might be better candidates.

Ω

uinc

uscat

uinc

uscat

n̂

Γ∞

Ω+

Figure 1.6: Illustration of an open domain Ω (left) and the same domain truncated by an
artificial boundary (right), for a scattering problem by an object (darker gray). The com-
putational domain is in lighter gray and extends to infinity in the first case, while being
enclosed in an arbitrarily chosen boundary Γ∞ in the second. Proper boundary condi-
tions must be imposed on Γ∞ for the restriction in Ω+ of the solution to the full problem
to match the one of the truncated problem with good accuracy.

The boundary conditions to be applied on the truncation boundary Γ∞ of the
truncated domain to simulate a continuing domain have been the subject of much
research, see e.g. [81, 100, 101, 117] and references therein. They are often referred
to in the literature as absorbing boundary conditions (ABCs), but slightly different
names like non-reflecting or transparent conditions are also commonly encoun-
tered, though they sometimes refer to slightly different techniques, being approx-
imate [8, 117] or exact [24, 119].

If the computational domain is fully enclosed in a truncation boundary and
the source is located outside the truncated domain, which is a frequent situa-
tion in scattering problems, it is common to separate the total field into its in-
cident and scattered components: utot = uinc +uscat (see Figure 1.6). Since the
incident field (e.g. a plane wave in free space) is known, one solves for the scat-
tered field only by imposing that it is outgoing through Γ∞. The source for the
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scattered field is imposed via suitable boundary conditions on the surface of the
object (e.g. uscat =−uinc on sound-soft surfaces).

In other cases the source is located inside the domain and defining a scattered
field is irrelevant; the variable of interest is then the total field. Consider for ex-
ample the modeling of underground wave propagation: in that case the domain
is limited to a “cube” of ground (see Figure 1.5); the source can either be located
on the surface or underground. In both cases the surface, which is the only physi-
cal boundary, is modeled by a Neumann or a Dirichlet condition and Γ∞ consists
of all other boundaries that should let propagating waves escape without (or with
little) reflection.

Transparent conditions have recently regained interest in the context of op-
timized domain decomposition methods, since they are related to the optimal
choice for the transmission conditions, as will be explained in Section 2.4.2. Their
role in the numerical solution of open propagation problems is thus twofold: be-
sides their original truncation purpose, they are a key ingredient of domain de-
composition methods like the optimized Schwarz algorithm (detailed in
Section 2.4.2), since they are involved in the transmission of information between
the domains. Yet these are two different functions: the ABCs used for domain
truncation are modeling tools; the choice of a particular technique for that pur-
pose has an impact on the solution, since the amount of spurious reflected waves
will depend on the accuracy of the condition, as well as the location and shape
of the truncation boundary. On the other hand, a less accurate transmission con-
dition in a DDM algorithm, provided that it is non-singular, will only slow down
convergence but should theoretically not influence the solution after full conver-
gence of the method.

A general expression for absorbing conditions is:

(∂n +S)u = 0 on Γ∞, (1.31)

with S an operator that should be an approximation of the Dirichlet-to-Neumann
(DtN) map, which is a non-local operator, hence difficult to manipulate in a finite
element context (see Appendix B.2 for a formal definition in terms of boundary
integral operators). Approximations of it by means of local differential operators
or simply scalars have been developed in the literature; in the rest of this Section
we will present some techniques that are commonly used as absorbing conditions.
More advanced techniques that have been developed specifically in the context of
domain decomposition methods will be presented later on, in Section 2.4.3.
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Basic ABC: the Sommerfeld conditions

A simple approximation of a transparent condition at finite distance directly in-
spired by the radiation condition (1.3) is given by:

(∂n − ık)u = 0 on Γ∞. (1.32)

That approximation is not very accurate when applied on a boundary located too
close from the sources or with a strong curvature, and gives rise to non-negligeable
spurious reflected waves into the domain. It is only exact for some specific types
of waves, e.g. plane waves or spherical waves, under normal incidence.

Higher order ABCs

In an effort to improve the accuracy of the absorbing conditions, more elaborate
approximations of the DtN map, involving a second-order surface differential op-
erator have been developed, like in [67] for a straight boundary. Bayliss and Turkel
have proposed a condition that accounts for the curvature of a constant radius
truncation boundary [15, 17]:

(∂r − (ık −α)−β∆Γ∞)u = 0 on Γ∞, (1.33)

where ∂r and ∆Γ∞ are rspectively the outward pointing normal derivative and the
Laplace-Beltrami operator on Γ∞, and the coefficients α and β depend on the
radius of the truncation boundary. A more general version was proposed in [7],
where the local curvature of the boundary is accounted for in the case of a non-
constant curvature surface. These conditions can easily be implemented in a finite
element code. Many other high-order conditions have been proposed. For a re-
view and a comparison with other techniques such as absorbing layers, see [101,
102].

1.3.4 Perfectly matched layers

The concept of the perfectly matched layer (PML) was originally introduced by
Bérenger [22] as an alternative way to truncate the computational domain and
guarantee that all waves are outgoing. Its working principle is quite different than
the ABCs presented in the previous sections, since it does not rely on boundary
conditions imposed on the boundary of the domain.

Instead, the principle is here to modify the properties of the propagation me-
dium in the peripheral regionΩPML of the computational domainΩ+ (Figure 1.7),
in such a way that the waves are damped in that layer. If the attenuation is suf-
ficient, the amplitude of any spurious wave leaving the PML and reentering the
domain would be so small that it would lead to a negligible error. This is illus-
trated on Figure 1.8, where the attenuation coefficient and PML thickness have
been purposely set to non-standard values for the sake of clarity; practical PMLs
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Ω+

Γ∞
uscat

ΩPML

Figure 1.7: Illustration of a perfectly matched layer. The outgoing scattered wave is (al-
most) entirely absorbed in the layerΩPML surrounding the computational domainΩ+ and
cannot reenter the domain.

are typically just a few element layers thick, and the amplitude decay in ΩPML is
usually exponential.

0.0 0.5 1.0

x

ℜe(u)

Figure 1.8: Illustration of the attenuation of a wave in a perfectly matched layer, starting
at xPML = 0.5. The gradient represents the growth of the absorption coefficient.

This is done by introducing an imaginary part to the wavenumber to simulate
a lossy material; inside the PML, the absorption coefficient thus also grows con-
tinuously following some design function σ:

k → k
(
1+ ı

σ(x)

k

)
in ΩPML. (1.34)
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It is common to choose an absorption function that follows a polynomial law of
order p:

σ(x) =
( |x −xPML|

dPML

)p

σ0, (1.35)

where xPML and dPML are respectively the coordinate of the PML interface and the
PML thickness. Higher order p lead to smoother but slower growth of the coef-
ficient. Other types of laws for the growth are possible: it was shown in [23] that
functions with an infinite integral in the PML provide the best accuracy:

lim
t→dPML

∫ t

0
σ(s) d s =∞. (1.36)

Of course, adding a PML at the boundary of a domain leads to extra compu-
tational overhead since it results in an increased number of unknowns, especially
in 3d. The thickness of the PML should thus be kept small to maintain that in-
crease into reasonable limits, while still being efficient. The design of PMLs is an
active field of research and abundant literature on the topic is available, see for
example [23, 24, 102] and references therein. We conclude this presentation by
mentioning that the PML can either be terminated by an homogeneous Dirichlet
condition, or alternatively by one of the classical ABCs introduced above to let any
undamped wave leave it via its external boundary to improve its accuracy [147].

A comparison of the two approaches presented above (high-order absorbing
conditions and PML with various absorption functions) can be found in [152].

1.3.5 Difficulties with FEM at high frequency

Solving the linear systems arising from the discretization with a volumic method
of the Helmholtz equation at high frequency is a notoriously difficult problem.
The authors of [69] mention two main reasons. First, the size of the linear sys-
tems: since the domain must be discretized with a mesh density nλ sufficient
to represent the oscillations of the solution and control the pollution effect (see
later in the section), the number of mesh points in each direction is proportional
to the wavenumber k. The total size of the system in dimension d is N × N =
O(kd )×O(kd ), which leads to extremely large systems for large values of k.

Second, the sign-indefiniteness of the matrix: its eigenvalues are complex due
to the absorbing condition used to truncate the domain, and located on both posi-
tive and negative sides of the real axis, as shown on Figure 1.9. Also, it has a very os-
cillatory and slowly decaying Green’s function, which causes problems with other-
wise successful solution strategies for large elliptic problems, as will be discussed
in Section 1.4.
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Figure 1.9: Eigenvalues repartition of the FEM matrix of a 1d Helmholtz problem (Ω =
[0,1], k = 14π, nλ = 20, Sommerfeld ABC on both ends). They are complex, with real parts
on both positive and negative sides of the real axis.

Another important difficulty with time-harmonic propagation problems solved
by PDE-based methods is numerical dispersion2, commonly known in the abun-
dant literature on the topic as the pollution effect. These names refer to the fact
that the numerical solutions require extra-refinement of the discretizations to at-
tain a given accuracy, the problem being that the computed solution differs from
the best approximation that can be found on the chosen set of degrees of freedom,
as illustrated on Figure 1.10. Moreover, the ratio between the error of the FEM
and the error of the best approximation tends to infinity for growing wavenum-
ber [11], unless the discretization step h is decreased inverse-proportionally to
k2 [9], which would quickly lead to impractical discrete system sizes.

In practice, while just a few points (≥ 2) per wavelength are theoretically suf-
ficient to represent an oscillating signal, we observe that the solutions of prop-
agation problems are very inaccurate on such coarse meshes (i.e. they exhibit
substantial phase errors (Figure 1.10), and that much more points must be used
to satisfy the required accuracy. The pollution effect is intrinsic to the numer-
ical solution of propagation problems and it was proven in [10] that it is hope-
less to fully remedy it in dimensions higher than 1. However, some techniques
have been developed that enable significant reduction of the phenomenon: let
us mention the use of higher-order hp-FEM [112], the definition of generalized
FEM [11], or the modification of the FE space to include more suitable basis func-

2The term “dispersion” refers to the physical phenomenon that waves of different wavelengths
can propagate at different speeds in the same medium, thereby causing distortion of polychromatic
signals. A classic example is the refraction of white light by a prism. By analogy, the same term is
used to describe a purely numerical artefact.
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Figure 1.10: Illustration of the numerical dispersion on a 1d problem: the finite element
solution uh (solid), with a discretization density nλ = 7, does not match the analytical so-
lution (dashed). The phase error grows with the distance to the source (here at x = 0),
resulting in a wrong wavenumber in the numerical solution. The phenomenon is partic-
ularly visible on coarse meshes like the one used in this example.

tions [38, 109, 111, 146, 174]. Of particular notice is the PR-FEM formulation, de-
scribed in Chapter 4.

In Appendix D, we derive the dispersion relations in the 1d case for both the
FEM and FDM schemes. They are shown on Figure 1.11 in function of the mesh
density nλ = λ/h, for some discretization step h. One can see that low discretiza-
tion densities produce severe pollution, leading to the rule-of-thumb that at least
10−20 points per wavelength should be used to guarantee sufficient accuracy. The
same rule holds for higher dimensions. A direct consequence of the pollution ef-
fect is that the number of unknowns in propagation problems grows extremely fast
as one increases the frequency of the problem and the size of the domain is kept
constant: to guarantee the accuracy of the solutions, the mesh parameter must
evolve at least as h ∼ k−1, while some authors use h ∼ k−3/2. This rapidly leads to
huge linear systems, the solution of which by usual methods (e.g. LU factoriza-
tion) requires considerable resources (CPU time and memory).

To give an example of how detrimental the pollution effect can be when de-
signing numerical methods for propagation problems, we will see in Chapter 4
that the pollution effect is the main cause of failure of a solver for multiple scat-
tering problems: when building a subspace of solutions of a multiple scattering
problem, discretized by a standard FEM, with solutions of single scattering prob-
lems obtained by a method (the PR-FEM) that suffers less pollution than the FEM,
we find that our subspace does not contain an accurate approximation of the full
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Figure 1.11: Dispersion relations of the FE and FD methods, in function of the discretiza-
tion density nλ. The dispersion factor Fh converges to 1 for fine discretizations, but signif-
icantly deviates for densities nλ < 10−15. Interestingly, the FEM produces a solution with
underestimated wavenumber, while the FDM has the opposite behaviour.

problem, because the dispersion relations of the two methods do not match. In
other words, our (almost) pollution-free subspace is not included in the space of
the standard FEM solutions for a given wavenumber, which stronly limits the ac-
curacy of the method.

Another consequence is the degradation of the accuracy of the artificial bound-
ary conditions (ABCs) used to truncate computational domains that would other-
wise extend to infinity (see Section 1.3.3). In our simple 1d example, the Sommer-
feld condition (1.32) is theoretically exact, but the computed solution contains a
spurious reflected wave in the numerical solution (too small to be observable on
the figure). This is because the actual wavenumber of the numerical solution devi-
ates from the one in the ABC; if one replaces k by kh in the Sommerfeld condition,
the reflected wave vanishes. This phenomenon will have practical consequences
for the methods developed in this work, since such ABCs (in higher dimensions)
are a central component of our algorithms.

1.4 Sparse linear solvers for propagation problems

We have seen that the volumic discretization of the propagation problems leads
to linear systems, that, especially when the wavelength becomes small compared
to the size of the computational domain, can be extremely large: hundreds of mil-
lions of unknowns are not uncommon for scattering problems. The question of
their solution therefore becomes prominent. The goal of this section is to show



1.4. Sparse linear solvers for propagation problems 31

that usual techniques are unusable, either as a consequence of the size of the sys-
tem or because of the mathematical properties of the system to be solved.

The most classical strategy is to use a direct solver that performs gaussian elimi-
nation to compute a factorization of the matrix [103]. Alternatively, iterative solvers
are well adapted for large sparse linear systems, especially when used in conjunc-
tion with a carefully designed preconditioner [106, 159]. However, it has become
clear that when applied to high-frequency propagation problems, the usual strate-
gies fail [77].

The goal of the present work is to study, implement and improve an alterna-
tive approach, that actually combines ingredients of both families of solvers, to
bring an answer to that problem. The basic idea is to decompose the domain into
other ones, that can be either smaller and for which direct solvers are applicable,
or larger but for which fast solvers are available. One can even find a similarity
with integral methods since the unknowns will be defined on (actual or artificial)
surfaces, which reduces the dimensionality of the problem.

Then, iterations are designed to let the process converge to the solution of the
full problem. That idea will be briefly exposed as the conclusion of this Chapter,
and further explored as the main topic of this thesis in Chapters 2, 3 and 4.

1.4.1 Direct solvers

The most common way of solving linear problems is to perform some factoriza-
tion of the system matrix, in a gaussian elimination-like process. Numerically sta-
ble algorithms are available for a factorization as A = LU [2, 103, 177], where L and
U are lower and upper triangular matrices, respectively (an additional permuta-
tion matrix is often required to avoid division-by-0 problems in the elimination
process). Then, the problem can easily be solved in a 2-steps process, by solving
two triangular systems, which is easily done.

There has been significant progress in the factorization algorithms, with ded-
icated versions that exploit specific matrix properties (symmetry, positive-defini-
teness, banded structure, . . . ). State-of-the-art solvers feature parallel multifrontal
algorithms [37] that are well adapted for the solution of FEM-type sparse linear
systems on distributed memory architectures [143]. However, their complexity
is still typically O(N 3) (yet some authors report O(N 2) with multifrontal algori-
thms [68] in 2d), and the forward and backward substitutions are O(N 2), which
makes the solution of very large systems still extremely resource intensive.

1.4.2 Usual iterative methods and preconditioners

We have seen in the previous section that the size of the linear systems:

Au = b (1.37)
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obtained by discretizing the volumic operators at high frequency with sufficient
accuracy makes them hardly amenable to direct solvers, as these require consider-
able resources. The alternative is to resort to iterative methods. These include the
family of Krylov linear solvers, but other iterative schemes, like multigrid and do-
main decomposition, have been developed more specifically to solve PDE prob-
lems. These last methods have been designed as standalone solvers, but can also
be seen as preconditioners for (1.37) and can thus be used in conjunction with
Krylov solvers [106]. In this section, we present some classical methods that have
proved succesful for other problems and explain why they fail when applied to
propagation problems. It is partly inspired by the review paper by Ernst and Gan-
der [77].

Unpreconditioned Krylov methods

Krylov methods are a powerful family of linear solvers that are particularly well
adapted for the solution of the large sparse linear systems obtained by discretiza-
tion of elliptic differential operators. We will give more details on these methods
in Section 2.2.2, since they play a central role in the framework that we propose for
the solution of large propagation problems. For now, we focus on their application
as solver for the FEM discretized operators.

It is commonly observed that the convergence of such solvers is slow when di-
rectly applied to propagation problems. This is related to the slow decay of the as-
sociated Green’s functions, in other words the contribution of sources remain sig-
nificant at very long distance from their location. Consequently, since the solvers
propagate information inside the domain in a layer-by-layer fashion starting from
the sources, the number of iterations tends to depend on the maximum distance
between any source in the domain and the external boundary. Moreover, absorb-
ing conditions such as (1.32) are frequent in propagation problems, and make
the coefficient matrix of system (1.37) complex-valued and symmetric, but non-
hermitian. This last property prevents the use of memory efficient algorithms like
the Conjugate Gradient.

It is clear with these observations that the Krylov methods alone are not satis-
factory and that additional techniques are required to make them usable. Precon-
ditioning is a natural way of speeding up the convergence of linear solvers, and
many of such techniques have been developed, some of which having proved ex-
tremely efficient. In the following paragraphs we examine some of them and try to
explain why they do not perform well or fail with propagation problems.

Algebraic preconditioners

The most simple algebraic preconditioners are based on a splitting of the matrix
(see Section 2.2.3). It is well known that the damped Jacobi and Gauss-Seidel pre-
conditioners exhibit slow convergence of the lowest spatial frequencies or are even
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divergent when applied to the Helmholtz problem, due to the spectral radius of
the preconditioned operator being greater than 1. Still, they perform quite well
on the high frequencies and are thus frequently used as smoother in the multigrid
methods (see below). A modified 2-step version of the Jacobi method has been
reported to converge for all modes [107], but at a rate dependent on the grid size
and wavelength.

Another class of algebraic preconditioners is based on incomplete decompo-
sitions, that are less expensive to compute than a full factorization, but can still
be considered as an approximate solver. The idea is to compute an approximate
factorization A ≈ LU , known as ILU, and to apply the forward and backward sub-
stitutions with these approximate factors as preconditioner. The generic versions
ILU(0) [132] and ILU(tol ) [159] are found to perform well on low-frequency Helm-
holtz, but become inefficient for higher frequencies [77].

More specific versions for the Helmholtz problem have been developed, as
the analytic ILU (AILU) [92], which starts from the observation that, upon proper
numbering of the unknowns (the lexicographic arrangement), the forward substi-
tution can be interpreted as a time-stepping in one direction, whereas the back-
ward substitution does the same in the reversed direction. We will see that this in-
terpretation of the LU decomposition makes a clear link with the sweeping meth-
ods proposed in this work. Making the link with an analytic factorization of the
Helmholtz operator similar to that of the paraxial approximation (1.16), that in-
volves non-local operators that are localized in order to obtain sparse approxima-
tions, one obtains a new approximate factorization of the discrete operator. It has
much better performance than the generic ILU methods, since its design better
takes into account the nature of the problem. However, the iteration number still
grows with the wavenumber; another limitation is that it is not applicable on gen-
eral, unstructured, 3d meshes.

Following the same kind of idea, the sweeping preconditioner of Engquist and
Ying [68, 69] can be seen as an approximate LDLT decomposition, in which low
rank approximations are used to perform the substitutions efficiently, leading to a
method with nearly linear complexity.

Multigrid

A very efficient iterative method for elliptic problems such as the Poisson equation
(∆u = f ) is multigrid. It works by alternating the (approximate) solution of prob-
lems at different levels of mesh coarsening. Finer grids play the role of smoother,
by doing a step of a simple and inexpensive iterative method such as damped Ja-
cobi or Gauss-Seidel, that has the effect of removing the high-frequency compo-
nent of the error [165, 168]. Conversely and quite intuitively, the coarser grids are
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efficient at correcting low frequency (smooth) modes [86], leading to extremely
fast convergence, even without Krylov acceleration (though this component is al-
ways beneficial). Naturally, medium-frequencies can be better treated if an inter-
mediate level is introduced, resulting in a 3-level multigrid; the same pattern can
be followed with even more levels.

Popular multigrid methods follow the symmetric “V” cycle: a call to each level
consists in a presmoothing step, followed by a coarse grid correction (that itself
repeats this pattern), and completes with a postsmoothing step. A variant is the
“W” cycle, where the recursive call to the next level is repeated twice [106, 165].
Many combinations of smoothing steps and coarse corrections are possible, as
well as the application of several successive smoothing steps [165]. One can also
use more complex smoothers, like a step of a Schwarz method (see Section 2.4).

It is clear that the structure of the method is potentially the source of a lack
of robustness: if one of the components fails, the corresponding modes of the
error will not be removed, preventing convergence of the method. When applied
to indefinite problems such as Helmholtz at high frequency, the ideal behaviour
described above is seriously affected, since both the smoother and the coarse grid
do not behave as expected: the smoother is quite inefficient since high frequency
error modes have small residual and are thus “invisible” on the fine grids [33],
while not being resolved on the coarse ones. The smoother can even amplify low-
frequency modes associated to negative eigenvalues.

Also, the coarsest level must still be fine enough to properly represent smooth
eigenfrequencies of the operator, and the method loses its O(N log N )
performance [77]. Other problems in relation with eigenvalues close to 0 that
change sign when represented on coarser grids have been highlighted [34]. They
cause the method to become divergent since the associated coarse grid correction
actually has wrong sign.

Using the method as a preconditioner for a Krylov method turns it into a con-
vergent method, but one observes a quick degradation of the performance with
increasing wavenumber [77].

Note however that specific multigrid methods or preconditioners have been
developed for the Helmoltz equation [72, 79, 126, 170]. Underlying these devel-
opments in particular is the use of schemes that will produce the same dispersion
error at the different scales.
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Shifted Laplace preconditioner

We have seen in the previous sections that the long range interactions in the Helm-
holtz operator are causing difficulties for its iterative solution. When damping is
introduced, the decay of the Green’s function is faster, and the problems are more
easily solved by iterative methods. Following that observation, the idea has arised
to precondition non-dissipative problems by (an approximate inverse of) a mod-
ified version with damping [71]. This is done by adding an imaginary part to the
wavenumber of the problem: k → kε = k + ıε.

The preconditioner can then be approximately inverted, e.g. by a multigrid
method [72, 141], or an ILU decomposition [142]. Other solvers, e.g. a domain
decomposition method, can be considered as well. Of course, the problems with
large shifts are easier to solve, but are also more distant from the original problem,
resulting in a less efficient preconditioning. Finding the best compromise for the
amplitude of the shift has been widely discussed in the literature [73, 94, 178].

1.4.3 Domain decomposition methods

The domain decomposition method as initially introduced by Schwarz (Section
2.4.1) is another example of a method that works well on problems with smooth
solutions and that fails when applied to the indefinite Helmholz equation. Again
the spectral properties of the operator are at the origin of the problem: a modal
analysis reveals that the method converges well for the evanescent modes only,
while the propagative ones have a convergence factor equal to one [77, 90]. There-
fore, increasing the overlap does not help.

However, a modified version of the method, that makes use of different trans-
mission conditions (see Section 2.4.2), can be shown to converge for all modes.
With this modification, Schwarz methods have become amongst the most promis-
ing methods for the solution of HF propagation problems. One of its main assets is
that it is suitable for use on large parallel computers, and that it naturally couples
with efficient direct solvers on subdomains with manageable sizes. This approach
will be the starting point of one of the methods presented in this thesis, in Chap-
ter 3.

1.5 Extension to Maxwell’s equations

The framework of the next Chapter makes use of the concept of iteration opera-
tors, that are defined in terms of transmission operators between boundaries. At
this level of representation, it is not necessary to specify the nature of these oper-
ators, that can either be scalar or vector valued. Therefore, the methods that are
derived for the scalar Helmholtz equation can readily be extended to the vector
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case. This Section is a brief presentation of the problem that is solved in that case,
and of its discretization.

1.5.1 Time-harmonic Maxwell’s equations

We now derive the vector counterpart of the Helmhotz equation, starting from
Maxwell’s equations and making the time-harmonic assumption. In this presen-
tation, we will use the convention E =Re[E e−ıωt ] for the representation of fields
in the harmonic regime. A plane wave propagating in the x direction therefore has
expression E =Re[E 0 e ı(kx−ωt )]. Maxwell’s equations in free space (that is, in the
absence of charges and currents) write:

div D = 0; (1.38)

curl E = −∂tB; (1.39)

div B = 0; (1.40)

curl H = ∂tD, (1.41)

with the constitutive relations:

D = ε0E ; (1.42)

B = µ0H. (1.43)

Injecting our definition in equations (1.39) and (1.41), we get:

curl E = ıωµ0H ; (1.44)

curl H = −ıωε0E , (1.45)

and after elimination of H , we obtain the expression of the spatial part of the elec-
tric field:

curl curl E −k2E = 0, (1.46)

where k is the wavenumber k = ω/c and c = 1/
p
ε0µ0 is the speed of light in vac-

uum. A similar expression can be written for the magnetic field H .

Continuity of the tangential component of the electric field on interfaces must
be ensured, leading to the condition that n × E = 0 on conducting parts of the
domain; we again define n as the outward pointing normal. As in the case of
Helmholtz equations, a radiation condition is necessary to ensure unicity of the
solution of unbounded domain problems. The equivalent to the Sommerfeld con-
dition (1.32) in the vector case is known as the Silver-Müller condition:

lim
|r|→∞

r×curl E − ık r× r×E = 0, (1.47)

for any radial direction r.
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Following the same idea as for the Sommerfeld absorbing condition, the radia-
tion condition for Maxwell’s equation (1.47) can be adapted to be used as a simple
ABC at finite distance. It yields for the electric field:

n×curl E = ık n×n×E on Γ∞. (1.48)

1.5.2 Weak formulation

To obtain the weak formulation of problem (1.46), we will need the vector Green’s
formula. Starting from the vector identity:

div (w ×v ) = curl w ·v −w ·div v

and substituting e ′ = v and curl e = w , we obtain:

curl curl e ·e ′ = curl e ·curl e ′+div (curl e ×e ′).

Then, after integration over the domainΩ and application of the divergence theo-
rem (also using the identity n · (a×b) = (n ×a) ·b), Green’s formula for integration
by parts writes:∫

Ω
curl curl e ·e ′ =

∫
Ω

curl e ·curl e ′+
∫
∂Ω

(n×curl e) ·e ′. (1.49)

Defining the space of square integrable vector fields L2(Ω) = {u :
∫
Ω ||u||2 <∞}, we

introduce the space H curl(Ω) = {u ∈ L2 : curl u ∈ L2}. Putting aside the imposi-
tion of boundary conditions (see [135] for details), the weak formulation of the
problem defined by equation (1.46) is obtained by multiplying it by test functions
E ′ ∈ H curl(Ω) and integrating over domainΩ:∫

Ω
curl curl E ·E ′−k2E ·E ′dΩ= 0.

After integration by parts of the first term with formula (1.49), we obtain:

∫
Ω

(curl E ·curl E ′−k2E ·E ′)dΩ+
∫
∂Ω

(n×curl E ) ·E ′dΓ= 0.

Supposing that we have truncated the domain by an external boundary Γ∞, we
incorporate the Silver-Müller absorbing boundary condition (1.47) to obtain the
complete version of the weak formulation: find E in H curl(Ω) s.t.∫

Ω
(curl E ·curl E ′−k2E ·E ′) dΩ

+
∫
Γ∞

ık(n×n×E ) ·E ′ dΓ = 0,
∀E ′ ∈ H curl(Ω). (1.50)
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Other types of boundary conditions are of course possible and will be used;
we refer to [135] for the appropriate definitions of the vector function spaces.

The FEM discretization of the problem is achieved by using Galerkin’s pro-
cedure with another class of elements, suitable for the discretization of three-
dimensional vector fields [26, 115]. For these, the degrees of freedom are not nodal
values of the field as in the scalar case, but rather field-related quantities like the
circulation along the edges of the elements; of course, such a discretization also
suffers the pollution effect and similar discretization density constraints as in the
scalar case apply in the vector case.

For the truncation of the domain, an alternative to the Silver-Müller condition
is to use a vector version of the PML introduced in Section 1.3.4 for the scalar prob-
lem. Higher-order absorbing conditions have also been derived as in the scalar
case. A description can be found in [40, 161].



CHAPTER 2
Multi-domain methods

and linear systems

Given a computational domain Ω ⊂ Rd , we define a set of N other domains Ωi

(Ωi 6=Ω,∀i ) such thatΩ⊆∪Ω1≤i≤N . Supposing that we can solve our problem on
all of the domainsΩi , e.g. by means of a direct solver or some efficient algorithm,
a multi-domain method computes the solution to the problem in the original do-
main Ω by using only solutions of the subproblems and combining them in an
appropriate way.

Obviously, solving the subproblems only once is usually not sufficient, because
the information about the structure of the full problem is missing in the subprob-
lems. If we want the solution ui in every Ωi to match the restriction of the full
solution u|Ωi in them once combined, we need to exchange information between
the subdomains, and update the current estimation with the additional knowl-
edge about the other domains so obtained.

Repeating that procedure by, at each step, solving the subproblems with new
data and exchanging information between them, in a way that it progressively
converges towards the desired solution, is the basic idea of the family of multi-
domain methods. One can classify them in function of the particular choice of
the new domains. Two families are considered: first, conformal decompositions,
where the domain is cut into several subdomains, that may or may not overlap. In
these, equality holds between the union of the subdomains and the original do-
main: ∪Ωi =Ω; second, non-conformal coverings of domains that contain several
impenetrable objects, the interior of which thus being excluded of the domain.
The new domains are obtained by “filling the holes” and are actually larger than
the original one: ∪Ωi ⊃Ω.

39
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Note that other decompositions can be chosen, e.g. to handle parametric cal-
culation with moving object [160], model approximation[49, 62, 63], or material
changes [61].

The chapter is structured as follows: we will first introduce the general frame-
work of the different methods that share the characteristics of the idea exposed
above. Since they can clearly be seen as the engine of the (linear) multi-domain
methods, we will then give some important concepts on iterative linear solvers,
while the design of suitable preconditioners represents a great potential for im-
provement for methods relying on linear solvers. We will then present some exam-
ples of such methods; for each of them, we detail the mechanism of the transfer of
information between the different domains.

2.1 Common framework of multi-domain methods

In practice, since we are looking for equivalent solutions (or combinations of
them) inside the domainsΩi , we will need to find equivalent sources that produce
the solutions. Depending on the method, they will be of different natures, but will
have in common that the corresponding data are fields defined on a set of inter-
faces. Apart from volumic sources, not considered here (examples can be found
in [62, 63, 160]), the main kinds of sources are basically introduced by means of
Dirichlet and Neumann conditions, or some combination of them, possibly in-
volving operators, imposed on part of the boundary of the new problems.

These fields are of course a priori unknown, and therefore become the new
unknowns of the modified problem, that is equivalent to the original one. The
general framework that we now present tackles the problem under that alternative
formulation.

2.1.1 General iterative scheme

We are thus left with a new “interface” problem, of dimension d − 1, that needs
to be solved iteratively by exchanging information between the domains, via the
solution of subproblems and an update of the current solution. This defines the
general framework of all the multi-domain methods that will be presented in this
work. Their workflow is illustrated on Figure 2.1.

As will become clear in the light of Section 2.1.2, it starts with the computa-
tion of a right-hand side that contains the contributions of the physical sources of
the original problem. Then several steps of the method are performed until some
convergence criterion is met, after which the interface problem is considered as
solved and the solution of the original problem can be generated by combining
the solutions of the subproblems. In the following, we will speak of an application
of the iteration operator whenever a step of the method is performed.
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Compute rhs

Apply iteration
operator

Converged ?

Compute
full solution

for interface
problem

Figure 2.1: All multi-domain methods share a common workflow, based on an iteration
operator that involves the solution of subproblems and the sharing of information be-
tween disconnected interfaces.

That workflow is simple and, even though the corresponding interface prob-
lems are well-posed (their solutions provably exist and are unique if the original
problem is itself well-posed), the basic underlying methods may not provide a suf-
ficiently robust solver when used as is: they can converge too slowly, stagnate or
even diverge, especially for propagation problems when one is close to a reso-
nant frequency of the problem. However, we will see in the next sections that
these methods can be recast as linear systems for which more efficient and ro-
bust solvers are available. While it does not fundamentally modify the workflow,
the introduction of this new ingredient completes the definition of our framework.

2.1.2 Iteration operators and linear systems

We now more formally transcribe the procedure described above. Let us provi-
sionally define the set of the M (not necessarily equal to N ) unknown interface
fields as a vector noted g = [g1, . . . , gM ]T . Supposing that we have performed k
steps of the method, starting with an initial guess g (0), and a non-zero source term
b, we denote by g (k) the current approximate solution to the interface problem.
The next step of the method will generate a new approximation by solving the
subproblems with the current data as sources, collecting and exchanging infor-
mation between the interfaces. This defines the iteration operator A, and we have
the fixed-point iteration:

g (k+1) =Ag (k) +b. (2.1)
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This is a general relation where operator A contains the definition of the me-
thod, and the source vector b is also obtained in a way that depends on each par-
ticular method, as will be detailed in Sections 2.4.2 and 2.5.2. If iteration (2.1) is
convergent, it defines a series and we can define the solution g as limk→∞ g (k),
that verifies:

Fg = (I−A)g = b, (2.2)

which is a linear equation; we will see that it can fall into the category of matrix-
free problems introduced in Section 2.2.1. That section is dedicated to a simple
method for the solution of problems such as (2.2). One can easily verify that it-
eration (2.3) solves problem (2.2) if the action of matrix A is replaced by that of
operator F = I −A. Therefore, using a multi-domain method is equivalent to the
solution of an unpreconditioned linear system with a simple iteration, and a slight
modification of the iteration operator.

This observation is important since it implies that the multi-domain methods
are amenable to the theory of linear algebra, and will benefit from its strong theo-
retical foundation. In particular, Krylov acceleration techniques (see Section 2.2)
will guarantee that the methods will converge (though not necessarily fast), as
opposed to the fixed-point or Jacobi method (2.1) that can diverge. Improving
the convergence properties of the methods is one of the main objectives of the
present work, which will be achieved by the technique of preconditioning, later
introduced in Section 2.2.3.

At this stage, it is also useful to notice that the decomposition into subdomains,
and more specifically the definition of unknown functions on disjoint interfaces,
provides a first discretization of the problem, although the definitions of the meth-
ods is still made at the continuous level. Therefore, the iteration operators A or F
can be expressed as finite matrices, the elements of which are the (continuous)
transfer operators that describe the transfer of information from an interface to
another, and that act on the elements of the vector g defined at the beginning of
this section.

These matrices will have different structures in function of the considered me-
thod and reflect the connections between the domains, which is in turn a conse-
quence of the kind of partitioning inherent to each method. With the covering of
the method of Section 2.5, the matrix will be dense because each domain needs to
exchange information with all others. The layered or cyclic decompositions used
for the methods of Section 2.4.2 will, in contrast, give raise to sparse matrices. In
Chapter 3, we will see how this property can be exploited to compute an approx-
imate inverse of the iteration operator, that will be usable as a preconditioner to
speed up the convergence of the method.
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2.2 Introduction to iterative linear solvers

This Section briefly presents the concepts of iterative methods for the solution of
linear systems and discuss their robustness and convergence. Throughout this
work, such systems are encountered either as resulting from the discretization of
differential operators, or as the interface problems that underly the multi-domain
methods. The nature of the systems in these two cases is very different and even
the motivation for using iterative solvers to solve them is different: in the first case
they are the only possible way of solving the problems when they become so large
that direct solvers are no longer an option, by lack of memory or excessive com-
putation time. In the second case the systems are usually much smaller because
they are defined on interfaces rather than in volume. However, they involve an
iteration operator, that consists of a routine, while the associated matrix is usually
not available, making direct solvers irrelevant for their solution. The important
concept of preconditioner is also considered, as it will be useful for both of the
aforementioned situations.

First, we present a basic but important algorithm, as we will see that it actually
underlies the methods presented in this work, before introducing the more ad-
vanced and powerful family of Krylov subspace solvers, thanks to which the meth-
ods become usable for practical computations.

2.2.1 Basic iterative scheme

Supposing that we are to solve a linear system Au = b; a simple iteration for its
solution is:

u(k+1) = u(k) + (b − Au(k)), (2.3)

where the quantity r (k) = b − Au(k) is called the residual (sometimes also noted
ρ(k)) of the k-th iteration1. That quantity can readily be computed for any approx-
imate solution as it requires only a matrix-vector product. The only operations
actually required by the above method are such matrix-vector products and vec-
tor sums, which is interesting in cases where the matrix A is sparse, as is the case
with matrices obtained from the discretization of differential operators by meth-
ods such as the FEM or FDM. Of course, if u(k) is the actual solution, the corre-
sponding residual will be 0. We can see that in the simple iteration above, the
residual is used as a correction to the current estimate. Notice that the exact error
(which is clearly the optimal correction) can be computed by solving a problem
on the residual: e(k) = u −u(k) = A−1r (k). While computing it in this way makes
little sense, we will see in Section 2.2.3 that this observation is at the origin of the
concept of preconditioning.

1A variant is Richardson’s method, were a relaxation parameter ωR multiplies the residual in
iteration (2.3).
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It is well known that method (2.3) is not guaranteed to converge [106]. Its be-
haviour is mainly governed by the spectrum of the matrix I − A: the algorithm
will most likely diverge if any of its eigenvalues is greater than 1. In that case, the
component of the initial error e0 corresponding to the associated eigenvector will
expand at each iteration instead of being contracted. To understand this, notice
that the successive errors are linked by the relation e(k) = (I−A)e(k−1) = (I−A)k e(0).
Making the link with the power method for the computation of the largest eigen-
vector of an operator [2], we see that if the largest eigenvalue is smaller than but
close to 1, the algorithm will converge very slowly, because the contraction factor
of that component is small, while other components may still converge very fast.

Another interest of a solver that requires only matrix-vector products, as al-
ready mentioned at the beginning of the section, is when only the application of
matrix A to some vector is available, but not the coefficients of the matrix itself.
In such a case, it is simply impossible to solve the problem with a direct solver;
this situation can arise when the matrix can be seen as the discrete version of an
iteration operator such as F in equation (2.2), representing one step of an itera-
tive method. In that case, it is a routine involving the solution of a set of problems,
rather than a matrix. For that reason, such systems are commonly referred to as
“matrix-free” problems.

2.2.2 Krylov solvers

We now briefly introduce the principle of the Krylov subspace solvers, that are
more modern algorithms than the simple iteration of the previous section and its
variants. The motivation for their development is twofold: the need for solvers
that are guaranteed to converge is essential, regardless of the properties of the
system, and faster converging methods are also desired. For more details on the
different solvers we refer to [106, 159].

Given a matrix A with rank R, Krylov solvers work by progressively building a
subspace K(A,b,r ) = span{b, Ab, . . . , Ar−1b}, into which an approximate solution
is seeked at each iteration. One can see that the subspace is augmented with a vec-
tor that is the product of the last vector by matrix A, so only matrix-vector products
are required for that process. The subspace K(A,b,R) spans the range of the in-
verse operator A−1 [103], so the solver is guaranteed to find the exact solution (up
to machine precision) in at most R iterations. However, one is often satisfied with
a sufficiently good approximation of the solution, so the iterations are stopped
before full convergence, upon a criterion usually based on the relative decrease of
the residual ρ: ||ρ(r )||/||ρ(0)|| < ε, for some relative tolerance ε. The next section
will introduce the concept of preconditioner, which is very often required to find
a good approximation of the solution within a few iterations.
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Because the vectors of the Krylov subspace tend to be highly linearly depen-
dent, an orthogonalization of the basis is performed as a first step of every itera-
tion. Indeed, it is required to guarantee the good conditioning of the second step
of the iteration which is the computation of the coordinates of the new approxi-
mation, that is optimal in some sense. The many different Krylov algorithms es-
sentially differ by the type of orthogonalization procedure and the choice of the
optimization criterion for the solution. The algorithms are designed to exploit the
properties of the system to be solved so as to be as efficient as possible in terms of
operations and memory usage.

In this work we will focus on general systems, for which one of the most effi-
cient algorithms is the Generalized Minimized Residual (GMRES) and will be our
solver of choice. It is based on the Arnoldi procedure[103] for the orthogonaliza-
tion and looks for the solution with minimum residual in the current subspace,
which guarantees that the residual decreases at every step. Other popular algo-
rithms are BiCGStab and QMR for general systems, and Conjugate Gradient (CG)
for Hermitian systems.

2.2.3 Preconditioning

Even with Krylov acceleration, many classes of problems exhibit very slow conver-
gence, or even stagnation, because a Krylov space of dimension r does not con-
tain a sufficiently good approximation u(r ) ∈ span{b, . . . , Ar−1b} for small values
of r . Propagation problems typically belong to that family [77]. To improve that
situation, we consider a modification of the iteration (2.3) by introducing an ad-
ditional component M−1 intended to speed up the convergence, by computing a
more accurate correction ẽ(k) to the current estimate:

u(k+1) = u(k) +M−1(b − Au(k))

= u(k) + ẽ(k).
(2.4)

The operator M−1 is called a preconditioner, because one can easily see that the
above iteration is equivalent to (2.3) applied to the system M−1 Au = M−1b. That
modified system has same solution as the original one but will hopefully be better
behaved for iterative solution, if u(r ) ∈ span{M−1b, . . . , (M−1 A)r−1b} is a better ap-
proximation found in the modified Krylov space.

This naturally leads to the question of the choice of the preconditioner M−1.
We mentioned earlier that to obtain the exact correction to an estimate solution,
one should solve a problem on the residual. Doing so would make little sense, but
if an approximate and less costly solution of the problem is available, it would be
a good idea to use it as preconditioner. Another way to understand this is that if
the preconditioner is close to the inverse of the operator M−1 ≈ A−1, the precon-
ditioned system should be close to an identity: M−1 A ≈ I , and can be expected to
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converge very fast. But again, the cost of computing (in a pre-processing phase)
and applying the preconditioner should be small enough for it to be practically
interesting.

Therefore, designing an efficient preconditioner for a specific problem is not a
trivial task and is often a matter of compromise. There are many classes of precon-
ditioners, among which the incomplete LU factorization (ILU) for general alge-
braic (non matrix-free) systems and multigrid methods for elliptic problems have
proved succesful in many cases and are commonly employed. Let us also men-
tion that the classic Jacobi and Gauss-Seidel solvers are particular cases of (2.4),
where M is based on splittings of A = L+D+U : it is respectively taken as the diag-
onal M J = D and the lower triangular part MGS = D +L of A. Similarly, the reverse
Gauss-Seidel is MGSr = D +U ; they are sometimes called forward and backward
sweeps. Other splittings are possible and lead to different methods; we mention
the symmetric Gauss-Seidel preconditioner as it will have a clear link with the dou-
ble sweep methods presented in Chapter 3. The preconditioner expression is:

MSGS = (D +L)D−1(D +U )

= MGS M J MGSr ,
(2.5)

and alternates forward and backward sweeps, as an iteration with the symmetric
Gauss-Seidel amounts to the two half-steps:

u(k+1/2) =−(D +L)−1U u(k) + (D +L)−1b;

u(k+1) =−(D +U )−1Lu(k+1/2) + (D +U )−1b.
(2.6)

or in a form similar to (2.4):

u(k+1/2) = u(k) + (D +L)−1(b − Au(k));

u(k+1) = u(k+1/2) + (D +U )−1(b − Au(k+1/2)).
(2.7)

Modifying the problem as M−1 Au = M−1b is called left- preconditioning. The
new system can of course be solved by a Krylov solver as well, with the same ben-
efit on the convergence rate. In that case, each iteration involves the applica-
tion of A, followed by the application of M−1 (the implementations of the solvers
take the preconditioner as a separate (optional) argument and applies it sepa-
rately, to avoid the expensive explicit computation of the preconditioned opera-
tor). An alternative preconditioning strategy is to solve the system AM−1 y = b,
with the change of variable M−1 y = u. This is known as right-preconditioning,
and is sometimes prefered because the residual of the right-preconditioned sys-
tem can be directly compared with the one of the original system, as their right-
hand sides are identical. A more general preconditioned system by a matrix M =
M1M2 that combines left- and right-preconditioning can be written as Ãũ = b̃,
with Ã = M−1

1 AM−1
2 , b̃ = M−1

1 b and ũ = M2u.
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The workflow for the solution of a multi-domain method with a right precon-
ditioned system is shown on Figure 2.2.

Compute rhs

Converged ?

for interface
problem

Apply iteration
operator

Apply
preconditioner

Compute
full solution

Apply
preconditioner

Figure 2.2: Multi-domain workflow with a right preconditioner for the solution of Au =
b. A subsequent preconditioner application is needed after convergence because right
preconditioning solves for an auxiliary variable y , so the original unknown is recovered
as u = M−1 y . In the case of left preconditioning, it would be applied as a preliminary to
compute the new right-hand side M−1b of the modified problem.
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2.3 Domain partitions

The different algorithms presented in subsequent sections and chapters make use
of particular partitionings of a domain. This Section is intended to briefly explain
the different partitionings and the reasons that motivate these choices. We will
also introduce notations that will be used in the description of the algorithms.

2.3.1 Decompositions

The most simple and natural way of partitioning a domain is to divide it into
non-overlapping regions, called subdomains, often with additional constraints
such as balanced distribution of the unknowns over the domains (load balanc-
ing) and minimized surface of the interfaces. This task can be achieved automati-
cally in the context of finite element-type methods with packages like Metis [116]
for complex geometries and irregular grids. A well-known difficulty of the non-
overlapping Schwarz methods like the one of Section 2.4.2 is the presence of cross-
points [20, 29, 89], that are points located at the intersection of more than 2 subdo-
mains (Figure 2.3). For that reason, decompositions that avoid such crosspoints
are prefered in the present work. Note however that other domain decomposition
algorithms such as FETI-DP [84, 120] take advantage of the crosspoints to speed
up their convergence.

Ω1 Ω2

Ω3 Ω4

Figure 2.3: Simple decomposition of a square, with a crosspoint located in the center of
the domain. Such a crosspoint causes difficulties in optimized Schwarz methods.

Two categories of non-overlapping decompositions without crosspoints are
considered: layered decompositions, when the domain is decomposed into slices
where the first and last do not share a common boundary as in Figure 2.4, and
cyclic decompositions around an object (Figure 2.5).

The common boundary between domains Ωi and Ω j is called an artificial in-
terface and is notedΣi j =Σ j i with |i − j | = 1. It must not necessarily be connected,
i.e. the interface may be interrupted by an object that is not part of the computa-
tional domain, as in a cyclic decomposition with only 2 subdomains.
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Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7

Figure 2.4: Layered decomposition without overlap. This kind of decomposition naturally
avoids crosspoints.

Ω1Ω3

Ω2

Figure 2.5: Cyclic decomposition around an object (shaded) that is not part of the compu-
tational domain.

In the family of Schwarz methods, it is well known that the classical
Schwarz methods and its variants presented in Section 2.4.1 stagnate in the ab-
sence of overlap. An example of a layered decomposition suitable for these meth-
ods, derived from the non-overlapping example is shown on Figure 2.6. It is simply
obtained by letting the domains grow into their neighbours. The principle is the
same for cyclic decompositions; the case where more than 2 domains overlap in a
single patch, as would be obtained by widening the domains of Figure 2.3, is not
a problem for these methods. The category of optimized Schwarz methods (Sec-
tion 2.4.2) are suitable for both overlapping and non-overlapping decompositions.

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7

Σ32 Σ23

Figure 2.6: Layered decomposition with overlap
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With an overlap, the boundaries of adjacent domains no longer coincide: Σi j 6=
Σ j i . We will use the notation Σi j for the boundary of Ωi that closes the overlap
with Ω j . Note that for more complex (non-layered) decompositions, the artificial
boundaries Σi j may partly intersect each other.

2.3.2 Covering

This kind of decomposition will be used in the multiple obstacles scattering algo-
rithm, detailed in Section 2.5. That algorithm was designed for multiple scattering
problems, where one is interested in the field produced by an incident wave illu-
minating a collection of N > 1 impenetrable obstacles Ω−

i ,1≤i≤N with boundaries
Γi ,1≤i≤N , in a complementary domain Ω+. The computational domain is thus a
region of the space enclosed in a boundary Γ∞, with “holes” in it since the inci-
dent field is kept outside the objects (Figure 2.7).

Ω+

Ω−
1 Ω−

2

Ω−
3 Ω−

4

Γ∞

Figure 2.7: Geometry of a multiple scattering problem by 4 impenetrable objects Ω−
1≤i≤4

(shaded on the Figure). The computational domain isΩ+, with external boundary Γ∞.

Γ1
Ω+

1

Figure 2.8: Geometry of one of the subproblems involved in the covering ofΩ+.

The method, detailed in Section 2.5, works by solving single scattering prob-
lems by each of the objects considered separately in the space truncated by the
same boundary Γ∞, where the holes of the other objects have been “filled”. We
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denote these domains by Ω+
i ,1≤i≤N (Figure 2.8). It is thus clear that each of these

domains is larger than the original domain Ω+. Together, they cover the whole
(truncated) space: ∪N

1 Ωi = Ω◦, hence the name covering. It is less natural than
the decompositions presented above, though it can be seen as a limit case where
the subdomains totally overlap each other. The method however is not a Schwarz
method, although there are similarities that let them fit in the same framework.

The next sections will introduce different methods that fall into the multi-do-
main framework, and that are suitable for one or more of the partititioning strate-
gies presented above.

2.4 Schwarz methods

Figure 2.9: The “circle-rectangle” geometry used by Schwarz to expose his method. The
dashed portions of the boundaries are the artificial interfaces used to exchange informa-
tion between the domains and enclose the overlap region.

Schwarz methods are named after the german mathematician Karl H. Schwarz
who first proposed his method in 1870 [162], originally to prove the existence of
the solution to the Laplace problem in arbitrarily shaped domains. The demon-
stration, for which the famous circle-rectangle domain of Figure 2.9 was intro-
duced, is based on successive solutions of problems on the circle and the rect-
angle, for which solutions were known to exist. Later on, the method was redis-
covered and used to solve various kinds of elliptic problems on large domains,
see [124] and references therein. Since then, many variants of the method have
been proposed and studied.

2.4.1 Classical Schwarz

Schwarz methods can be formulated either at the continuous or discrete (or alge-
braic) levels, even though both approaches eventually lead to a discretization of
the problem. This distinction can sometimes be confusing, even more so as these
two approaches with apparently similar methods can in some cases be shown to
be strictly equivalent (in the sense that the approximation produced after each it-
eration are identical), while in other cases they can differ substantially.
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In this thesis, we will concentrate on the original approach followed by
Schwarz, and work on algorithms that are fully described in terms of continuous
operators and fields defined in the subdomains, as only these fit in our framework.
It is only at the implementation stage that they will be discretized, in contrast with
the situation where the problem is first discretized in the full domain, and the do-
main decomposition consists in manipulating parts of the resulting linear system
by means of restriction operators defined on the subdomains [106, 165].

We will refer to these two categories of Schwarz methods respectively as itera-
tive solvers and as preconditioners. To illustrate their similarities and differences,
we present some simple examples of such methods.

ΩC ΩR

Figure 2.10: Principle of the alternating Schwarz method: the domains ΩC and ΩR are
repeatedly solved in alternance and the solution in the overlap is updated everytime until
some convergence criterion is met.

The original Schwarz method, also known as the “alternating” Schwarz me-
thod, uses a decomposition into two domains with overlap. The portion of the
boundary of a domain that intersects the interior of the other domain is used to
exchange information at each step, by means of Dirichlet conditions imposed on
the artificial interfaces Σi j ; it is done by sequentially solving the subproblems,
and using the restriction of the solution on the boundary of the other problem
as boundary condition for the next problem.

Doing so, the solution inside the overlap is updated several times per iteration
(2 in the case of 2 subdomains), as illustrated on Figure 2.10, hence the name “al-
ternating”. The previous solution inside the overlap is simply discarded and re-
placed by the new one; the process continues until the solutions in the overlap
match within some prescribed tolerance, in a given norm. The method, summa-
rized in Algorithm 2.1, is described as follows in the case of two subdomains:

Lu(k+1)
1 = f1 in Ω1,

u(k+1)
1 = u(k)

2 on Σ12;

Lu(k+1)
2 = f2 in Ω2,

u(k+1)
2 = u(k+1)

1 on Σ21.

(2.8)
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It makes use of the most recent approximation of the solution to perform the
next subdomain solve, and is therefore also called “Gauss-Seidel Schwarz” (GSS).
The parallel “Jacobi Schwarz” (JS) is a modification proposed by Lions [124] that
works only with data available at the start of the iteration:

Lu(k+1)
1 = f1 in Ω1,

u(k+1)
1 = u(k)

2 on Σ12;

Lu(k+1)
2 = f2 in Ω2,

u(k+1)
2 = u(k)

1 on Σ21.

(2.9)

Algorithm 2.1: One step of the alternating Schwarz method (solver)

// Solve subproblems sequentially
for i = 1 : N

Solve Lui = fi , s.t.
ui = uD on ∂Ωi ∩∂Ω
ui = gi j on Σi j

// Update solution
u ← ui in Ωi

// Exchange information
for j = 1 : N

g j i ← u|Σ j i

end
end

Analogous to the GSS, but formulated at the algebraic level, is the multiplica-
tive Schwarz (MS) method. It is defined in two half steps as:

u(k+1/2) = u(k) +RT
1 A−1

1 R1( f − Au(k)),

u(k+1) = u(k+1/2) +RT
2 A−1

2 R2( f − Au(k+1/2)), (2.10)

where the R j is the discrete restriction operator that selects the unknowns in Ωi .
They can be combined in a single step, where it clearly appears as a precondi-
tioner:
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u(k+1) = u(k) +M−1
MS( f − Au(k)),

M−1
MS =

[
I −

N∏
j=1

(I −RT
j A−1

j R j A)

]
A−1.

(2.11)

Since Ai is exactly the discrete operator onΩi (and we have Ai = Ri ART
i , which

is a diagonal block of the full matrix), this method produces exactly the same ap-
proximations as its continuous counterpart GSS, after discretization on the same
mesh, as shown in [64]. Its additive parallel variant, introduced in [58], is:

M−1
AS =

N∑
i=1

RT
j A−1

j R j . (2.12)

This version of the preconditioner solves the subproblems and sums the solu-
tions obtained in all subdomains, including in the overlaps, where one has thus
several contributions, leading to an excessive amplitude. Unless coupled to a
Krylov solver, this method diverges, since the solution in the overlaps does not
converge, as confirmed by a spectral analysis done in [64]. In the same paper, it
is shown that the actual equivalent to the discretized JS is the restricted additive
Schwarz (RAS) method. It is a modification of AS where a weighted sum is per-
formed in the overlap, via modified restriction restriction matrices R̃ j , such that
the solution converges everywhere:

M−1
R AS =

N∑
i=1

R̃T
j A−1

j R j . (2.13)

In the continuous method, this problem does not occur since one keeps two
different approximate solutions in the overlap, that eventually match when the
solver has converged. In order to obtain a single approximation in the whole do-
main after any iteration, one needs to combine the different subdomain approxi-
mations in some way.

This is somehow similar to the situation of the RAS method. One could either
arbitrarily choose one of these contributions, prolonge them to the middle of the
overlap, or average them in some way. In all cases, it amounts to weighting the
subdomains solutions by partition of unity functions Pi : u = ∑Pi ui , provided
that the subsolutions are extended with 0 outside of their domain of definition.
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Ω1 Ω2Ω1 ∩Ω2

P1 P2

Figure 2.11: Different possible choices of the functions Pi that define a partition of unity
over a 1d domainΩ=Ω1∪Ω2: an arbitrary choice, in all or part of the overlap (top), a sim-
ple average (middle) or continuous weighting functions (bottom — smoother functions
are also possible). The extension with 0 of Pi outsideΩi is not represented.

The weight functions Pi are defined over the full domainΩ and must satisfy:

Pi =
{

1 inΩi \∪ j 6=i Ω j ,

0 in ∪ j 6=i Ω j \Ωi ,∑
Pi = 1 inΩ.

(2.14)

There are different ways to define a partition of unity over a domain, that differ in
the particular choice of weighting function in the overlaps (see Figure 2.11). Dis-
continuous partitions of unity, like the arbitrary choice and the average, are easy to
implement but lead to potentially discontinuous approximations, unless the me-
thod is fully converged. Continuous variants give smooth approximations across
the interfaces but are harder to implement in complex-shaped overlaps. The me-
thod is given at Algorithm 2.2. Note that the choice of the partition of unity does
not influence the convergence rate, only the quality of the iterates in the overlaps.

We will now see how the classical Schwarz method in its continuous version can
be expressed as a linear system in order to fit in the framework of multi-domain
methods. Supposing that we solve a linear problem Lu = f in a domain Ω for
some elliptic operator L and volume source f . We impose a Dirichlet boundary
condition on the external boundary: u = uD on ∂Ω. We first notice that the value
of the full solution on the portion of the subproblems boundaries that lays in-
side the other domain Σ=∪Σi j (the dashed lines on Figure 2.9), together with the
boundary conditions of the original problems on the external boundary, is all we
need to obtain the restriction of the full solution inside each subdomain ui = u|Ωi .
Therefore, the problem can be reformulated as a smaller problem with unknowns
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Algorithm 2.2: One step of the Jacobi Schwarz (JS) solver, with combination
of the subsolutions via a partition of unity

// Solve subproblems in parallel
for i = 1 : N

Solve Lui = fi , s.t.
ui = uD on ∂Ωi ∩∂Ω
ui = gi j on Σi j

end

// Update solution
u ← ∑N

i=1Pi ui in Ω

// Exchange information
for i = 1 : N

for j = 1 : N
g j i ← u|Σ j i

end
end

only on these artificial boundaries. To be consistent with the presentation of the
other methods and the general framework introduced above, we will rename these
unknowns as gi j = u|Σi j .

The next step is to distinguish between the components of the solution pro-
duced in each subdomain by the physical sources uD and f of the full problem
and the artificial sources gi j on the internal boundaries. We have ui = vi + wi ,
with the definitions:

Lwi = f Lvi = 0 inΩi ;

wi = 0 vi = u on Σi j ;

wi = uD vi = 0 on ∂Ωi \Σi j .

(2.15)

Similarly, we write u(k)
i = v (k)

i + wi . Iterating over the unknown function gi j , we
have the update relation:

g (k+1)
i j = u|(k+1)

Σi j

= v j |(k+1)
Σi j

+w j |Σi j ,
(2.16)

which gives for the full vector of unknowns g the fixed point relation:

g (k+1) =Ag (k) +b

= g (k) + (b −Fg (k)).
(2.17)
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This is the simple iteration relation (see next Section) for the operator F = I−A,
that solves the linear system Fg = b. Operator A applied to some vector g in-
volves the solution for the variables vi defined above, with Dirichlet data on Σi j

given by g .

These methods are usually convergent for problems with smooth solutions;
more details about them and their convergence can be found in [165]. Roughly
speaking, one can say that the methods work well for problems with sufficiently
regular solutions. However, they are found to fail for problems with oscillating so-
lutions [77], because the updated values on the boundary can change a lot from
one step to the next. This behaviour can cause the methods to oscillate or diverge
instead of smoothly converging towards the correct solution.

Many theoretical results exist regarding the convergence of these methods in
function of the size of the overlap, see [165] and references therein. Generally
speaking, for problems for which the method can be proved to converge, like the
Poisson problem, the methods converge faster as the overlap grows in size. In the
particular case of non-overlapping subdomains, the methods obviously stagnate
because the value on the common boundary is always updated to the same value.

Because they require an overlap and are not suitable for oscillatory functions,
the classical Schwarz methods are not satisfactory for the solution of wave prob-
lems. The later introduced family of optimized Schwarz methods presented in the
next section brings an answer to these issues.

2.4.2 Optimized Schwarz

Optimized Schwarz methods work by making use of more complex transmission
conditions than the Dirichlet conditions used in the classical Schwarz methods:
they involve both Dirichlet and Neumann data on the artificial interface and gen-
erally involve some operator S linking both. Such boundary conditions are called
Robin or Fourier conditions, or sometimes impedance conditions. We will see that
the choice of the operator S is critical for the rate of convergence and that an op-
timal choice exists, hence the name optimized Schwarz. These methods bring
in several improvements over classical Schwarz methods [91], a major difference
being that they are also suitable for non-overlapping decompositions. In the fol-
lowing, we will mostly focus on this last option.

A way of understanding the choice of Robin conditions as transmission condi-
tions in the case of non-overlapping decompositions is that we wish to enforce the
continuity of both the solution and its first (normal) derivative across the artificial
interfaces:

ui = u j on Σi j .

∂nui =−∂nu j
(2.18)
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It is well known that imposing either one of these conditions alone leads to
non-convergent methods with non-overlapping decompositions, and that it is not
possible to impose both conditions at once. The principle of optimized Schwarz
was first introduced by Lions [125] and consists in applying a linear combination
of these conditions:

α∂nui +βui =−α∂nu j +βu j on Σi j , (2.19)

with α,β 6= 0. Després [51, 53] proposed to use the combination α= 1 and β=−ık
when the method is applied to the Helmholtz equation. A more general concep-
tion is to consider a combination of linear operators; we will write:

∂nui +Sui =−∂nu j +Su j on Σi j , (2.20)

for some invertible operator S , that we will call the transmission operator. The al-
gorithm can be described as follows: suppose we wish to solve an elliptic problem
with operator H (for now, we consider the scalar Helmholtz operator
H=−(∆+k2), but the presentation that follows holds for general elliptic opera-
tors; we give the vector extension to Maxwell’s equations at the end of the chapter),
in a domainΩ:

Hu = f in Ω;

u = uD on ∂Ω.
(2.21)

We consider a layered decomposition ofΩ into N non-overlapping slicesΩi ,1≤i≤N ,
with artificial boundariesΣi j betweenΩi andΩ j , so that our partitioning contains
no loop: Ωi ∩Ω j =; if |i − j | 6= 1.

The original problem (2.21) can be formulated in the subdomains so as to have
ui = u|Ωi , by using impedance-matching boundary conditions on the artificial
boundaries Σi j . Introducing the unknown interface data g = {gi j ,1 ≤ i 6= j ≤ N ,
|i − j | = 1}, we look for the solution of:

−Hui = 0 in Ωi ,
(∂n +S)ui = gi j := (−∂n +S)u j on Σi j ,

(2.22)

where the operator S has a twofold role: it must simulate the impedance of the
domain that extends beyond the artifial boundary, and ensure that all sources lo-
cated outside produce an equivalent contribution inside the subdomain. Bound-
ary conditions on ∂Ωi ∩∂Ω are conserved from the original problem. We will as-
sume in all that follows that the DDM is well-posed, in the sense that each sub-
problem (2.22) is well-posed, i.e., away from interior resonances. We have defined
a pair of unknown functions per interface, and we use the convention that gi j is
the impedance data for problem i on the common boundary with subdomain j .
To solve for these new unknowns, the Schwarz algorithm works by iteratively solv-
ing the subproblems and transferring the updated information to the adjacent
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domains via an exchange relation. We present the additive version, where an it-
eration amounts to solving all subproblems in parallel (as opposed to the faster
converging and sequential multiplicative version thereof):

−Hu(k+1)
i = 0 in Ωi ,

(∂n +S)u(k+1)
i = g (k)

i j on Σi j ,
(2.23)

and then to updating the unknowns:

g (k+1)
i j = −∂nu(k+1)

j +Su(k+1)
j on Σi j ,

= −g (k)
j i +2Su(k+1)

j .
(2.24)

We still have the choice of operator S : H 1/2(Σi j ) → H−1/2(Σi j ). (Strictly speak-
ing, we should define 2 operators per artificial interface, but we use a unique no-
tation for convenience.) We have the constraint that its null-space must be equal
to {0}2; it is well known that this choice influences the rate of convergence [31, 91],
and it was shown in [138] that the optimum is obtained for S being the exterior
Dirichlet-to-Neumann (DtN) map D of the complement of the subdomainΩ\Ωi ,
defined on a boundary Σ as:

D : H 1/2(Σ) → H−1/2(Σ),

u|Σ 7−→ ∂nu|Σ =Du|Σ.
(2.25)

In practice, most optimized Schwarz algorithms make use of (approximations of)
DtN maps that correspond to an open, free-space complement of the subdomain
to avoid the very costly computation of the DtN map corresponding to the actual
complementary domain. This amounts to defining absorbing boundary condi-
tions on the artificial interfaces. A perfectly matched layer (PML) can also be used
for that purpose, as in [169]. We refer to Section 2.4.3 for the description of ap-
proximations that will prove useful for numerical applications.

Let us note that by defining a new set of unknowns g , we use the Schwarz pro-
cedure as a solver, although DDM algorithms are often regarded as precondition-
ers [105, 165] as was explained in Section 2.4.1. In the latter case, the iterative
solver acts on the full system obtained from the discretization of the original op-
erator in the whole domain, with unknowns u. It was shown in [167] that the mul-
tiplicative version of the discretized optimized Schwarz algorithm (2.23)–(2.24) is
equivalent to its discrete (preconditioner) equivalent. It is also the case for the
additive version presented above, with a condition on the overlap. For the non-
overlapping version, the equivalence only holds for an augmented system, where

2This is equivalent to requiring that the operator is invertible. It is however more intuitively
understood that if a non-zero field belongs to the null-space of the transmission operator, it will not
be transmitted and the corresponding mode will not converge.
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the unknowns on the artificial interfaces are duplicated.

Similarly to the classical Schwarz methods, we can rewrite this algorithm as a
linear system that fits well into our multi-domain framework: by exploiting the
linearity of the problem, we can separate the (unknown) solutions of the subprob-
lems into two components: the contribution of the artificial sources on the inter-
nal boundaries vi and the physical sources wi , such that ui = vi+wi . In the course
of iterations, we write the current approximation as u(k)

i = v (k)
i +wi , since the phys-

ical sources do not vary. We then inject the decomposition of the unknown field
in the update of the Schwarz unknowns (2.24):

g (k+1)
i j = −g (k)

j i +2Sv (k+1)
j +2Sw j on Σi j ,

= −g (k)
j i +2Sv (k+1)

j +bi j .

Considering the full vector of unknowns, we obtain the fixed point iteration:

g (k+1) =Ag (k) +b,

where the iteration operator A : ×N
i , j=1L2(Σi j ) → ×N

i , j=1L2(Σi j ) is one step of the
above algorithm with the physical sources set to 0. The vector b contains the local
contributions of the external sources, and is computed as the output of the update
relation (2.24) applied to wi . From the iteration above we obtain, at convergence,
the linear system:

Fg = (I−A)g = b. (2.26)

The new iteration operator F is very similar to A, with the difference that the up-
date relation (2.24) is modified to match its definition:

g (k+1)
i j = g (k)

i j + g (k)
j i −2Su(k+1)

j . (2.27)

The application of the iteration operatorF and the construction of the right-hand-
side b are summarized in Algorithms 2.3 and 2.4. Once the Schwarz problem has
been solved for g , one must compute vi from (2.22) and finally obtain the original
unknown u in each subdomain as ui = vi +wi .

The Schwarz problem under form (2.26) can be interpreted as the solution of
a linear system of equations, with matrix F , unknowns g and right-hand-side b,
ready to be solved by standard linear solvers suitable for non-symmetric systems.
In particular, the solution can be accelerated by using a Krylov solver like GM-
RES [105, 159]. The construction of the Krylov subspace only requires matrix-
vector products, which allows for a “matrix-free” implementation of the opera-
tor F — the only operation required being the application of F to a given vector,
which amounts to solving the subproblems and performing the update of the un-
knowns. We will see in the next section that an explicit expression of this matrix
can actually be formed, although doing so is only useful for the purpose of analysis
in view of the computational cost of the procedure.
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Algorithm 2.3: Application of the iteration operator g ← Fg .

// Solve subproblems (in parallel)
for i = 1 : N

uD ← 0 on ∂Ωi ∩ΓD

fi ← 0
gl ← gi ,i−1

gr ← gi ,i+1

Solve Hi ui = fi , with impedance data gl and gr

end

// Update impedance data
for i = 1 : N −1

gi ,i+1 ← gi ,i+1 + gi+1,i −2Sui+1|Σi ,i+1

gi+1,i ← gi+1,i + gi ,i+1 −2Sui |Σi+1,i

end

Algorithm 2.4: Computation of the right-hand side b.

// Solve subproblems
for i = 1 : N

uD ← uD on ∂Ωi ∩ΓD

fi ← f
gl ← 0
gr ← 0
Solve Hi ui = fi , with impedance data gl and gr

end

for i = 1 : N −1
bi ,i+1 ← −2Sui+1|Σi ,i+1

bi+1,i ← −2Sui |Σi+1,i

end

2.4.3 Transmission conditions for optimized Schwarz methods

The optimized Schwarz methods presented in Section 2.4.2 combine Dirichlet and
Neumann data, together with an operatorS , to build transmission conditions over
the artificial interfaces. We mentioned earlier that the optimal choice of the trans-
mission operator S in the algorithm defined by (2.22) and (2.24) is the DtN map
D defined by (2.25). In that case the convergence of the iterative process is opti-
mal [155, 156]. Beside the simple one-dimensional case where the DtN is trivial
(see Section 1.1.2), this however leads to a very expensive procedure in practice,
as the DtN is a non-local operator: see e.g. [43].
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A great variety of techniques based on local transmission conditions have thus
been proposed over the years: these include the class of FETI-H methods [32, 82,
83, 85], the optimized Schwarz approach [90], the evanescent modes damping al-
gorithm [21, 28, 29] and the Padé-localized square-root operator [31]. All these
local transmission conditions can be seen as approximations of the exact DtN op-
erator; the better the related impedance operators approximate the exact DtN op-
erator on all the modes of the solution, the better the convergence properties of
the resulting DDM.

The DtN map is intimately linked with the artificial boundary conditions that
were originally introduced to truncate infinite domains in various fields of appli-
cation, some of which have been presented in Section 1.3.3. When used in the con-
text of wave propagation problems, they are often called absorbing, non-reflecting
or transparent boundary conditions. All these names refer to the fact that such
conditions attempt to prevent or minimize the reflection of any outgoing wave
that would hit the artificial boundary, hence allowing it to freely leave the domain.
This property is interesting when designing a domain decomposition algorithm
since a wave propagating in a domain should naturally be able to cross artificial
boundaries without distortion or reflection. An efficient transmission operator
should therefore fully capture all of the outgoing waves and release them intact at
the other side of the boundary.

We will use several local approximations of the DtN operator for the numerical
tests presented in the next Section (IBC(χ), OO2 and GIBC(Np )), as well as one
non-local approximation using perfectly matched layers (PML(nPML)).

Local impedance condition: IBC(χ)

A simple local approximation of the DtN is the following Impedance Boundary
Condition:

S IBC(χ)u = (−ık +χ)u,

where χ is a self-adjoint positive operator [28]. When χ = 0, one recovers the
classical Sommerfeld radiation condition, used by Deprés in the original non-
overlapping Schwarz method for Helmholtz [53]. We only consider here the case
where χ is a real-valued positive coefficient, which amounts to approximate the
DtN map by a diagonal operator with a constant value on the diagonal. Choosing
χ 6= 0 allows to improve the convergence of the DDM for evanescent modes. In
Section 3.4.1 we will also use the impedance boundary condition with a modified
wavenumber kh , i.e. S IBCkh

(χ)u = (−ıkh +χ)u.

Optimized second order local impedance condition: OO2

While IBC(χ) is a zero-th order approximation of the DtN, higher order approxi-
mations can also be constructed. For a generic transmitting boundary Σ, Gander
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et al. [90] proposed to construct a second order local approximation of the DtN in
the form:

SOO2 u = (a −b∆Σ)u, (2.28)

where the complex numbers a and b are obtained by solving a min-max optimiza-
tion problem on the rate of convergence (hence the name “Optimized Order 2”),
and ∆Σ is the Laplace-Beltrami operator on the interface Σ: ∆Σ := divΣ∇Σ. The
optimal transmission coefficients depend on several parameters, chosen to solve
the min-max problem on a bounded domain, excluding the Fourier modes close
to the cut-off frequency [90]. In all the numerical tests we chose the parameters
leading to the optimal convergence rate. (An optimized 0th order approximation
can also be constructed in the same way.)

Padé-localized generalized impedance condition: GIBC(Np )

Instead of a polynomial approximation of the DtN operator, a rational approxima-
tion was proposed in [31]:

SGIBC(Np )u =C0u +
Np∑
`=1

A`divΣ(k−2
ε ∇Σ)(1+B`divΣ(k−2

ε ∇Σ))−1u, (2.29)

where C0, A` and B` (` = 1, . . . , Np ) are the coefficients of a complex Padé ex-
pansion of the square root operator (with a rotation of the branch cut of π/4),
and kε = k + ıε is a complexified wavenumber. (In all subsequent tests we used
ε= k/4). This condition leads to a DDM with quasi-optimal convergence proper-
ties, meaning that the rate of convergence is optimal on the evanescent modes and
is improved compared to other local techniques for the remaining modes. To be
noted is that, unlike the other techniques presented above, GIBC(Np ) makes use
of Np auxiliary unknown functions. Consequently, the size of the linear system to
be solved is augmented. The additional cost is usually very small [31], unless the
number of unknowns on the interfaces is large compared to the number of volume
unknowns.

Non-local PML condition: PML(nPML)

Finally, we also consider a non-local approximation of the DtN operator construc-
ted with the Perfectly Matched Layer (PML) technique introduced in Section 1.3.4,
which is an alternative to the construction of the DtN map with an integral formu-
lation as described in Appendix B.2. The procedure was developed in the context
of matrix probing of the DtN map [19, 41], that could be applied in our algorithm
as suggested in [182]. A fictitious “black-box” domain Ωbb is first created by ex-
truding the mesh of the interface Σ over nPML +3 layers, using a mesh size identi-
cal to the mesh of the subdomain connected to Σ (see Figure 2.12). If the mesh of
the interface Σ counts nΣ internal nodes, the approximate nΣ×nΣ DtN matrix is
built by inspection: column c is obtained by solving a Helmholtz problem with an
imposed value of 1 on the c th node and 0 on the other nodes of Σ, and a 1d PML



64 Multi-domain methods and linear systems

nPML

Σ

Figure 2.12: Geometry of fictitious “black-box” domain Ωbb used to compute the non-
local approximation of the DtN map using a perfectly matched layer. The domain Ωbb is
made of a few layers (3 in this case) between the interface of interest Σ and the PML, made
of nPML layers. The Dirichlet condition is imposed on Σ, while the boundary conditions
on the top and bottom sides of Ωbb are inherited from the ones imposed on the edges of
Σ in the original problem. The gradient represents the (1d) growth of the PML absorption
factor.

layer in the last nPML cells ofΩbb (the boundary condition on the top and bottom
boundary nodes ofΩbb is inherited from the ones on the top and bottom node of
Σ; a homogenous Dirichlet condition is imposed on the right). The normal deriva-
tive is extracted on Σ using the weak form of the finite element formulation. The
number of layers (3 in all our numerical tests) added in front of the PML allow to
clearly separate the PML from the elements used in the computation of the normal
derivative. More details on the construction of this approximation can be found
in Appendices C.1 and C.2.

This method would be too costly to use as-is in practical applications, but it is
useful to consider it here for benchmarking the proposed preconditioner, as the
quality of the approximate DtN map is directly related to that of the PML, which
can be controlled via its thickness (number of layers nPML). We will thus refer to
the non-local PML-based approximation as PML(nPML).

Another way of using PMLs in the algorithm would be to proceed like in [169]:
instead of extracting the DtN map from the black-box as explained above, a PML is
appended on the interfaces of the subdomains. Both approaches are algebraically
equivalent, but their implementations differ in several aspects: with the black-
box method, most of the computational work is done in preprocessing, and in
the frequent practical cases where several interfaces are similar and can use the
same DtN map (like in all the test cases of the next Section), the computation of
the DtN map must be done only once; the other approach needs no additional
preprocessing, but requires a modification of the geometry of all the subdomains
and the evaluation of the derivative at the boundary of the PML, with an increased
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cost at every iteration. Recalling that a motivation for using a DDM is the size of
the linear systems to be inverted, such an addition of the PMLs could make the
method less attractive. Details on this procedure are given in Appendix C.3.

2.4.4 Coarse grid and scalability

From the structure of the Schwarz methods and the exchange relations (2.16) and
(2.24), it is clear that information is only exchanged locally between adjacent sub-
domains during one step of the algorithm. Considering layered decompositions
(see Figure 2.4) with many subdomains, the number of iterations required for the
transfer of information between the most distant domains is large. This seriously
impacts the quality of the approximations computed after the first few iterations if
a source located in some subdomain has a significant contribution in other subdo-
mains, away from it. This is typically the case for propagation problems, or more
generally when the Green’s function associated with the problem operator decays
slowly [77].

A direct and undesired consequence is that the convergence rate of the meth-
ods strongly depends on the number of subdomains [106]. This leads to the con-
cepts of scalability: a method is said to be strongly scalable if it can solve a given
problem twice as fast if the number of processors involved is doubled. In a do-
main decomposition context, if we suppose that each processor is assigned to
one subdomain, adding processors means dividing the full domain into smaller
subdomains. Achieving strong scalability is illusory, simply because adding pro-
cessors automatically increases the amount of communication required. Also, it
makes little sense to hope that asymptotically increasing the number of proces-
sors to infinity would lead to a solution in zero time. Hence, a more useful and
achievable concept is that of weak scalability: supposing that we increase the size
of the problem and proportionally the number of processors, a weakly scalable
algorithm would solve the problems in a fixed amount of time.

Ω1 Ω2 Ω3 Ω4 Ω5
Figure 2.13: Principle of a coarse grid correction on an illustrative 1d example, with one
point per subdomain (black dots). The left-hand part of the solution is smooth and quite
well represented on the coarse grid, whereas the higher frequency features on the right-
hand side are missed by the coarse approximation.
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In order to make the methods less sensitive to the decomposition, some mech-
anism should be employed to share information on a global level between the sub-
domains, leading to the concept of multi-level methods. We have already come
across an example of such a method in Section 1.4.2, where we introduced multi-
grids. In a DDM context, the first example of such a technique was proposed
by [57] for the classical Schwarz methods. It consists in the introduction of an
additional component in the method, where the problem is solved on a much
coarser discretization, as shown on Figure 2.13. That coarse approximation is then
interpolated on the fine mesh, enabling the global exchange of information over
the subdomains. This leads to a modification of the additive Schwarz precondi-
tioner in the following way:

M−1
AS+C =

N∑
i=1

RT
j A−1

j R j +RT
C A−1

C RC , (2.30)

where RC is the interpolation operator from the fine to the coarse discretization,
and AC = RC ART

C is the discrete operator at the coarse level.

With this addition, the method is called a two-level algorithm, as it somehow
works like a multigrid method: the second level complements very well the stan-
dard DDM methods because the coarse approximation helps to remove the low-
frequency component of the residual during the iterations, whereas the high-fre-
quencies are resolved by the subproblems solves on the fine mesh. This can clearly
be observed when looking at the spectral radius of the method in function of the
frequency, with and without coarse grid as in [93].

Even more efficient coarse grids can be designed by carefully choosing the lo-
cation of the coarse discretization vertices: as the residual is typically 0 inside the
subdomains and jumps in the overlap, the coarse grid corrects the error more ac-
curately if its nodes are placed inside the overlap, on both sides of the jump, rather
than in the middle of the subdomains [93]. In [59], a coarse grid suitable for opti-
mized Schwarz methods is presented.

This kind of technique proved very succesful for Laplace-like problems. By ex-
tension, the name “coarse grid” (or sometimes “coarse space”) became generic
for all subsequent techniques with the same purpose, even though their working
principle is sometimes very different and does not rely on another discretization,
like e.g. deflation-based preconditioners [70, 74, 88].

Unfortunately, the basic principle of the coarse grid fails when employed for
problems with oscillating solutions [77], because the coarse discretization can-
not represent them and the approximations given by the coarse grid are totally
wrong, which makes it inefficient. Using more points in the coarse discretiza-
tion would make the technique more costly, while numerical dispersion would still
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cause phase errors in the correction. Moreover, that technique is implemented as
an additional component to a preconditioner (see equation (2.30)); it is not clear
how to implement a similar component in a method formulated at the continu-
ous level. Another example of coarse grid is found naturally in the FETI-DP me-
thod [84] and similar [20, 29] methods; see [183] for the vector case. We will see in
the next chapter how a similar performance improvement can be achieved for the
continuous optimized Schwarz algorithm.

2.5 Multiple obstacles scattering algorithm

In scattering problems, one is interested in the field produced by some incident
wave uinc propagating in free space and interacting with one or more objects. The
presence of the object, or scatterer, influences the propagation of the wave since
it causes reflections in different directions depending on its shape and creates a
shadow behind itself, as illustrated on Figure 2.14. Similarly, multiple scattering is
the effect of a collection of S objects on the propagation of an incident wave. If we
denote the portion of space occupied by the objects as Ω− =∪S

s=1Ω
−
s , the exterior

computational domain isΩ+ =Rd \Ω−.

−1.15 0.01 1.16

ℜe(uscat)

−1.13 −0.01 1.11

ℜe(uscat)

Figure 2.14: Examples of solutions of single scattering problems. Both objects are illumi-
nated by a plane wave under the same incidence, with k = 7π. The computational domain
is the unit square.

While high frequency single scattering problems can be solved by asymptotic
methods or even analytically for some particular shapes, multiple scattering prob-
lems are much harder to solve because of their interactions (e.g. multiple reflec-
tions) with each other (Figure 2.15). Typical examples of multiple scattering prob-
lems are the propagation of radio waves in an urban environment, or the scatter-
ing of surface waves by a group of islands, that can be observed from an airplane.
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−1.92 0.05 2.02

ℜe(uscat)

Figure 2.15: Illustration of the scattering by a collection of objects. The interactions be-
tween objects in multiple scattering problems create a more complex scattered field than
the superposition of the two waves produced by the objects taken separately.

2.5.1 Multiple scattering as coupled problems

Considering sound-soft obstacles, it is common to split the total field into the in-
coming wave and the scattered field: utot = uinc +uscat in the computational do-
main Ω+, in which case we want to solve the following problem (we use the sim-
plified notation u for uscat):

Hu = 0 inΩ+,

u =−uinc on Γ,

+ radiation condition at |r |→∞.

(2.31)

We refer to Section 1.3.3 for details on the radiation condition. The interior of
the objects is denoted byΩ−

i and is excluded from the original computational do-
main; see Section 2.3.2 for details on the geometrical setting. In problem (2.31) we
imposed a Dirichlet or sound-soft condition; alternatives are the sound-hard or
impedance conditions, that correspond respectively to Neumann (∂nu =−∂nuinc)
or Robin conditions ((∂nu + Z )u = −(∂nu + Z )uinc, with Z some complex-valued
scalar or operator). We only consider the sound-soft case in the following, except
when the sound-hard case requires special treatment.

Once again, solving this problem with standard discretization methods and a
direct solver rapidly becomes difficult as one increases the frequency of the in-
coming wave. The multiple obstacles scattering algorithm (MOSA) is an itera-
tive method that fits well in the multi-domain framework, as it reformulates the
problem in terms of surface unknowns and iterates by solving subproblems and
exchanging data between the different scattering surfaces. It is based on the de-
composition of the solution as a sum of fictitious waves that are solutions of single
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scattering problems, defined in the domainsΩ+
i that compose the covering of the

original domainΩ+ (see Section 2.3.2):

u =
S∑

s=1
us inΩ+, (2.32)

for some particular (and a priori unknown) set of individual sources {u1≤s≤S} on
the boundaries Γs that produce an equivalent solution after superposition [13]. In
the multi-domain framework presented in Section 2.1, the vector of unknowns g
corresponds to precisely this set of Dirichlet data.

These waves are the result of the combination of the incoming wave uinc and
the scattered waves by the other objects, and are thus solution to the coupled
problems:

Hus = 0 inΩ+
s ,

us =−uinc −
∑
q 6=s

uq on Γs ,

+ radiation condition at |r |→∞.

(2.33)

Under that form, the problem is reformulated as a surface problem, since the
knowledge of the us on the boundaries Γs is sufficient to reconstruct the solution
in the wholeΩ+.

2.5.2 Iterative solution of the coupled problem

One can prove [8] that the solution to (2.33) exists and is unique. However, solving
the coupled problem for the set of boundary data us cannot be done directly. In-
stead, we can rewrite the interface problem arising from the boundary conditions
in (2.33) as a linear system involving transfer operators Gsq from a boundary Γs to
another Γq : u1

...
uS

=−


0 G12 · · · G1S

G21 0 · · · G2S
...

. . .
...

GS1 GS2 · · · 0


u1

...
uS

−

uinc
1
...

uinc
S

 , (2.34)

that simplifies as Fu = (I +G)u = b = −uinc. Applying the transfer operator Gsq :
H 1/2(Γq ) → H 1/2(Γs) to a function vq defined on Γq implies the solution of a prob-
lem inΩ+

q with boundary data vq :

Huq = 0 inΩ+
q ,

uq = vq on Γq ,

+ radiation condition at |r |→∞.

(2.35)

and taking the trace of the solution on Γs . Therefore, applying the matrix of sys-
tem (2.34) involves the solution of S problems (2.35) and summing the S −1 cor-
responding traces for each of them, which provides the exchange of information
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between interfaces that is required to define a multi-domain method. The sub-
problems are independent and can be solved in parallel; Algorithm 2.5 is a routine
that performs the application of the MOSA operator. Note that, as opposed to
Schwarz methods where the exchange of information is limited to neighbouring
interfaces, the MOSA achieves a global exchange, as can be seen with the dense
structure of matrix G.

Algorithm 2.5: Application of the MOSA operator: r ← F r

// Solve subproblems in parallel
for i = 1 : N −1

uD ← ri on Γi

Solve Hi ui = 0, s.t. ui = ri on Γi

end

// Update
for i = 1 : N

ri ←
∑N

j=1 u j |Γi

end

Let us already mention that, as will be discussed in Section 4.4.1, the fact that
this exchange of information can be performed by solving each problem only once
into the whole single scattering domain simplifies the implementation, but doing
so also limits the possibilities of designing preconditioners into which selective
and less expensive exchange of information would be desirable.

As for the other multi-domain formulations, the linear system with operator
F can be solved by using the techniques presented in Section 2.2. In particular,
Jacobi and Gauss-Seidel methods have been compared, as well as an unprecon-
ditioned GMRES in [99] (in Section 4.4.1, we will propose some preconditioning
strategies for Krylov methods). Let us also mention that an alternative inspired by
the physics of the multiple reflections consists in computing the solution of the
original problem as the series [99]:

u =
∞∑

m=1

S∑
s=1

u(m)
s inΩ+, (2.36)

with the corrections u(m)
s at each iteration:

Hu(m)
s = 0 inΩ+

q ,

u(m)
s = c(m)

s on Γq ,

+ radiation condition at |r |→∞.

(2.37)
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and

c(m)
s =


−uinc −

s−1∑
q=1

u(m)
q for m = 1,

−
s−1∑
q=1

u(m)
q −

S∑
q=s+1

u(m−1)
q for m > 1.

(2.38)

This is somehow like a Gauss-Seidel iteration, where each correction u(m)
s can

be interpreted as the contribution introduced by the m-th wave reflection. That
method however is not very robust as one can experimentally observe that it di-
verges for some wavenumbers [99], possibly the ones that are close to a local res-
onance between any two objects.

An important question, at the heart of the multiple obstacles scattering algo-
rithm, is how the subproblems are solved. Indeed, since each domain in a covering
is actually larger than the original domain, it makes little sense in practice to solve
the auxiliary problems with the same method on the same discretization. How-
ever, these problems have a much simpler structure than the full problem as they
are single scattering problems that could be amenable to more efficient solvers.
Several techniques, including Fourier series decomposition, integral equations or
asymptotic methods, in addition to a PDE based approach, are investigated in [8].
In Chapter 4 we will describe an improvement of the algorithm by giving an ex-
ample of the use of a fast single scattering solver for the application of the transfer
operators Gsq in problem (2.34).

2.6 Extension to Maxwell’s equations

We have seen earlier that, in the framework of multi-domain methods, the opti-
mized Schwarz algorithm can be formulated in terms of unknown interface fields
and transfer operators. Consequently, by suitably redefining these operators, one
can obtain an algorithm for the solution of electromagnetic propagation prob-
lems. We present this reformulation in this section, and we also review some local
approximations of the magnetic-to-electric (MtE) map, which is the vector coun-
terpart of the DtN map in the scalar case.

2.6.1 Problem setting and non-overlapping optimized Schwarz DDM
for Maxwell

Let K be a bounded scatterer in R3 with smooth closed boundary Γ. The associ-
ated unbounded domain of propagation is denoted by Ω := R3\K . The exterior
electromagnetic scattering problem by a perfectly conducting body K is given by

curl curl E −k2E = 0, inΩ,
γT (E ) =−γT (E inc), on Γ,

lim
r→∞r

(
E − ı

k
x̂×curl E

)
= 0.

(2.39)
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In the above equations, E denotes the scattered electric field. The curl opera-
tor is defined by curl a :=∇×a, for a complex-valued vector field a ∈C3. The nabla
operator is ∇ :=t (∂x1 ,∂x2 ,∂x3 ), where x =t (x1, x2, x3) ∈R3. The notation a×b desig-
nates the cross product and a ·b the inner product between two vectors a and b in
C3, where z is the complex conjugate of z ∈C. The associated norm is ||a|| :=

p
a ·a.

Vector n is the unit outwardly directed normal to Ω and E inc defines a given inci-
dent electric field. Let us consider a general domain D with boundary ∂D, n the
outwardly directed unit vector to D, then the tangential traces applications are
defined by

γt : v 7→ vt := n×v|∂D and γT : v 7→ vT := n× (v|∂D×n). (2.40)

Let us now write x = r x̂ ∈R3, where r := ||x|| is the radial distance to the origin and
x̂ is the directional vector of the unit sphere S1. Then, the last equation of system
(2.39), which is the so-called Silver-Müller radiation condition at infinity, provides
the uniqueness of the solution to the scattering boundary-value problem (2.39).

To numerically solve (2.39) by a volume discretization method, it is standard
to truncate the exterior domain of propagation by using a fictitious boundary Γ∞

surrounding Ω. As a result, we have to solve the following problem in a bounded
domainΩ, with boundaries Γ and Γ∞,

curl curl E −k2E = 0, inΩ,
γT (E ) =−γT (E inc), on Γ,

B(γT (E ))− ı

k
γt (curl E ) = 0, on Γ∞.

(2.41)

The operator B can be exact, resulting then in a transparent boundary condition
that avoids any spurious unphysical reflection. However, such a boundary con-
dition is global since it is defined by a nonlocal boundary integral operator on
Γ∞ (i.e. the MtE operator Λ : γT (E ) 7→ Λ(γT (E )) = γt (curl E )). This generates a
dense part in the global discretization matrix that must be solved at the end of the
computational process. For reducing the cost of computation, a local Absorbing
Boundary Condition (ABC) is generally preferred, which means that the operator
B is in fact an approximation of Λ. Since the aim of this paper is not devoted to
ABCs, we restrict ourselves to the simplest ABC: B = I (I is the surface identity op-
erator). This corresponds to the well-known Silver-Müller ABC at finite distance.

Let us now focus on the construction of optimized Schwarz Domain Decom-
position Methods (DDM) without overlap [1, 31, 52, 54–56, 65, 90, 129, 130, 144,
145, 154] for the approximate boundary-value problem (2.41). The first step of the
method [52, 54] consists in splitting Ω into several non-overlapping subdomains
Ωi , i = 1, . . . , Ndom, as described in Section 2.3.1.

In a second step, we solve smaller size problems on each subdomain Ωi by an
iterative process (indexed by (p)) and using transmission boundary conditions
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(defined by an operator S below): we compute E(p+1)
i , 1 ≤ i ≤ Ndom, from E(p)

j ,
1 ≤ j 6= i ≤ Ndom, by

curl curl E(p+1)
i −k2 E(p+1)

i = 0, inΩi ,

γT (E (p+1)
i ) =−γT (E inc

i ), on Γi ,

γT (E (p+1)
i )− ı

k
γt (curl E (p+1)

i ) = 0, on Γ∞i ,

S(γT (E (p+1)
i ))− ı

k
γt (curl E (p+1)

i ) =S(γT (E (p)
j ))+ ı

k
γt (curl E (p)

j ) := g(p)
i j

on Σi j ,

(2.42)
and then form the quantities g(p)

i j through

g(p+1)
i j =S(γT (E (p+1)

j ))+ ı

k
γt (curl E (p+1)

j ) =−g(p)
j i +2S(γT (E (p+1)

j )) on Σi j , (2.43)

where E i = E |Ωi , ni (resp. n j ) is the outward unit normal to Ωi (resp. Ω j ) , i , j =
1, . . . , Ndom, Γi = ∂Ωi ∩Γ, Γ∞i = ∂Ωi ∩Γ∞ and S is an inversible transmission op-
erator through the interfaces Σi j . Let us remark that the boundary condition on
Γi (resp. Γ∞i ) does not take place if the interior of ∂Ωi ∩Γ (resp. ∂Ωi ∩Γ∞) is the
empty set.

Solving at each step all the local transmission problems through (2.42)-(2.43)
may be rewritten as one application of the iteration operator

A : ×Ndom

i , j=1(L2(Σi j ))3 7→ ×Ndom

i , j=1(L2(Σi j ))3

defined by:
g(p+1) =Ag(p) +b, (2.44)

where gp is the set of boundary data (gp
i j )1≤i , j≤Ndom , and b is given by the incident

wave field boundary data. Therefore, (2.42)-(2.43) can be interpreted as an itera-
tion step of the Jacobi fixed point iteration method applied to the linear system

(I−A)g = b, (2.45)

where I is the identity matrix of size N 2
dom × N 2

dom. A consequence is that any
Krylov subspace iterative solver suitable for general systems could be used for
solving this equation. This can significantly improve the convergence rate of the
method most particularly if S is well-chosen.

2.6.2 Optimized transmission boundary conditions

The convergence of the domain decomposition algorithm is fundamentally re-
lated to the choice of the operator S . For the time-harmonic Maxwell’s equa-
tions, the first converging iterative algorithm has been proposed by Després in
[54] where a simple impedance boundary operator is proposed

S0 = I. (2.46)
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In the sequel, the corresponding zeroth-order Impedance Boundary Condition
(IBC) is designated by IBC(0). A convergence analysis of the DDM method for this
boundary condition and for two half-spaces of R3 has been developed in [55, 65].
The approach, based on Fourier transforms, shows that the algorithm converges
only for the propagating modes. For the evanescent modes, the corresponding ra-
dius of convergence is equal to 1, which makes the method stagnates or diverges.
To improve the convergence factor for these special modes, Alonso et al. [1] de-
rive an optimized impedance boundary condition by using a Fourier frequency
decomposition. They adapt the technique developed by Gander in [90] for the
Helmholz equation to get a zero order optimized impedance boundary condition
called here GIBC(α) (GIBC means Generalized Impedance Boundary Condition).
For the Maxwell’s equation, the GIBC(α) impedance operator writes down

Sα =α(I− 1

k2 curlΣi j curlΣi j ), (2.47)

where α is judiciously chosen thanks to an optimization process (see [27]). The
same condition is proposed in [55] for the first-order system of Maxwell’s equa-
tions. In [145], Peng et al. show that the DDM converges for a well-chosen com-
plex-valued numberα and a decomposition into two half-spaces but by consider-
ing both the TE (Transverse Electric) and TM (Transverse Magnetic) modes. The
improvement of the rate of convergence for the evanescent modes is obtained
at the price of the deterioration of the rate of convergence for the propagative
modes. To improve this last transmission boundary condition for the two families
of modes, Rawat and Lee [154] introduce the following optimized transmission
boundary condition by using two second-order operators

Sα,β = (I+ α

k2 ∇Σi j divΣi j )−1(I− β

k2 curlΣi j curlΣi j ), (2.48)

where α and β are chosen so that an optimal convergence rate is obtained for the
(TE) and (TM) modes. We denote this boundary condition by GIBC(α,β) in the
sequel of the paper. In the half-space case, we refer to [154] for the expression ofα
andβ. Similar boundary conditions are derived in [55] for the first-order Maxwell’s
equations. Recently, in [56], the authors proved that the convergence rates and the
optimization processes for the first- and second-order formulations are finally the
same.

When developing optimized DDMs in [31], the authors use highly accurate
square-root/Padé-type On-Surface Radiation Conditions (OSRCs) [3–5, 16, 66, 121,
136, 158] as transmission boundary conditions, which are also GIBCs. While be-
ing easy-to-use and direct to implement in a finite element environment, these
GIBCs lead to the construction of fast converging non-overlapping DDMs, most
particularly when computing the solution to high-frequency three-dimensional
acoustics scattering problems. In [66], the extension of this high-order OSRC has
been developed for the three-dimensional first-order system of Maxwell’s equa-
tions. When coming back to the second-order formulation, the corresponding
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square-root GIBC (that we denote by GIBC(sq,ε)) for the DDM can be written as

Ssq,ε =Λ−1
1,εΛ2,ε, Λ1,ε = (I+∇Σi j

1

k2
ε

divΣi j −curlΣi j

1

k2
ε

curlΣi j )1/2,

Λ2,ε = I−curlΣi j

1

k2
ε

curlΣi j ,
(2.49)

where the complex wavenumber kε is defined by: kε = k + ıε, with the optimal
parameter ε = 0.39k1/3H2/3. In the previous expression, H is the local mean cur-
vature at the surface. Finally, A1/2 stands for the square-root of the operator A,
where the square-root of a complex-valued number z is taken with branch-cut
along the negative real axis.

The construction of this GIBC is realized in three steps [66]:

1) the half-space case is considered and the construction of the DtN operator
is realized by Fourier analysis,

2) the extension to a sphere SR (of radius R > 0) is made by considering the
local tangent plane approximation of the DtN map to a spherical surface and
a regularization procedure of a square-root operator with optimal damping
parameter ε for SR ,

3) and finally the approximation (2.49) of the MtE operator for a three-dimen-
sional general convex-shaped smooth surface Γ (:=Σi j in the DDM context)
is obtained by considering the local osculating sphere.

A more adapted form of the square-root GIBC defined by (2.49) is given by

Λ2,ε(γT (E p+1
i ))− ı

k
Λ1,εγt (curl E p+1

i )

=Λ2,ε(γT (E p
j ))+ ı

k
Λ1,εγt (curl E p

j )
on Γ=Σi j . (2.50)

The IBC (2.46) and the GIBCs (2.47)-(2.48) are defined by local surface operators.
In contrast, the GIBC given by (2.49)-(2.50) is nonlocal because of the presence of
the square-root operator.

If we set kε = α−1/2k = −β−1/2k, let us remark that the Rawat-Lee condition
GIBC(α,−α) with the operator (2.48) can be seen as GIBC(sq,ε) where Λ1,ε is ap-
proximated by

Λ1,ε = (I+∇Σi j

1

k2
ε

divΣi j −curlΣi j

1

k2
ε

curlΣi j )1/2

≈ (I+∇Σi j

1

k2
ε

divΣi j )1/2

≈ I+∇Σi j

1

k2
ε

divΣi j ,

(2.51)
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which corresponds to a first-order Taylor expansion of the square-root operator.
We will see in what follows that a high-order complex-valued Padé approximation
of the full nonlocal operator (2.50) can be used to get a local representation that is
well-suited for a numerical approximation based on finite element methods and
leads to quasi-optimal convergence of the DDM.

2.6.3 Localization of the square-root GIBC

The square-root transmission boundary condition, given by (2.49)-(2.50), is non-
local since it is defined by the pseudodifferential operatorΛ1,ε

Λ1,ε := (I+T )1/2, (2.52)

setting

T :=∇Γ
1

k2
ε

divΓ−curlΓ
1

k2
ε

curlΓ. (2.53)

Such an operator is impracticable in a finite element context since it generates a
full matrix part associated with the transmitting boundary. A standard way [30,
66, 133] to localize it consists in using rational approximations. Here, we use the
approach previously introduced in [66] in the framework of OSRC methods. We
introduce the rational Padé approximation of order Np of the square-root function
[133] with a rotation of the branch-cut

(1+z)1/2 ≈ e ı
θp
2 RNp ((1+z)e−ıθp−1) =C0+

Np∑
`=1

A`z

1+B`z
= R0−

Np∑
`=1

A`

B`(1+B`z)
, (2.54)

where RNp is the standard real-valued Padé approximation of order Np

(1+ z)1/2 ≈ RNp (z) = 1+
Np∑
`=1

a`z

1+b`z
, (2.55)

and

a` =
2

2Np +1
sin2(

`π

2Np +1
), b` = cos2(

`π

2Np +1
).

The angle of rotation θp is a free parameter that is fixed for the numerical simula-
tions and

C0 = e ı
θp
2 RNp (e−ıθp −1), A` =

e−ı
θp
2 a`

(1+b`(e−ıθp −1))2
,

B` =
e−ıθp b`

1+b`(e−ıθp −1)
, R0 =C0 +

Np∑
`=1

A`

B`
.

(2.56)

If one formally considers that z = T ,Λ1,ε can be approximated by

Λ1,ε = (I+T )1/2 ≈ Λ̃1,ε := (R0 −
Np∑
`=1

A`

B`
(I+B`T )−1). (2.57)



2.6. Optimized Schwarz for Maxwell 77

Now, if we use this approximation, the equation (2.53) and we introduce Np cou-
pled auxiliary vector fields {φ`}`=1,...,Np , then we obtain a local and approximate
representation ofΛ1,εM through Λ̃1,εM defined by

Λ̃1,εM = R0M−
Np∑
`=1

A`

B`
φ`, on Γ,

M−
(

I+B`

(
∇Γ

1

k2
ε

divΓ−curlΓ
1

k2
ε

curlΓ

))
φ` = 0, `= 1, . . . , Np , on Γ.

(2.58)

More details on this approximation and its properties can be found in [27].





CHAPTER 3
Double sweep preconditioner

for Schwarz methods

We mentioned in Section 2.4.4 that Schwarz methods with many subdomains suf-
fer slow convergence, and used an intuitive argument to explain that behavior. We
now concentrate on the properties of the iteration operator to find a more math-
ematically rigorous explanation to this problem. That analysis also highlights that
the inverse of the iteration operator can be easily computed in a particular case.
Starting from that observation, we then propose a means to speed up convergence
and make it independent of the number of subdomains, that takes the form of
a preconditioner for the linear system underlying the optimized Schwarz solver.
This makes a clear link with the coarse grid techniques introduced in Section 2.4.4.
Such a technique is still missing for propagation problems, which makes the ma-
terial of this chapter a relevant contribution in the field of fast solvers for this kind
of problems.

The proposed preconditioner involves sequences of subproblem solves, which
makes it intrinsincally non-parallel. While the gain in convergence speed justi-
fies the additional work of the preconditioner in sequential or pipelined (mul-
tiple right-hand sides) implementations, we will find that the same strategy can
be applied on smaller and independent groups of subdomains, therefore partially
restoring the parallelism of the method.

3.1 Matrix representation of the Schwarz operator

As we have done in Section 2.5 for the multiple obstacles scattering algorithm, we
now explain how the application of the Schwarz operator F of system (2.26) on
the set of unknown functions gi j , which has been previously described by Algo-
rithm 2.3, can be seen as a matrix-vector product. This representation is interest-

79
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ing because matrices, in the context of PDEs, are usually associated to discretized
systems. But so far, the only discretization that we have performed is the decom-
position of the domain into subdomains; the problem itself is still written at the
continuous level and we have not precised yet how the subproblems are going to
be solved. Hence, the entries of the matrix are continuous operators, that we will
call transfer operators. They act on (continuous) fields defined on the artificial
interfaces and map them to fields defined on other interfaces. Nevertheless, tech-
niques from linear algebra, in particular matrix factorization and inversion, are
applicable and will be used.

In the particular case of 1d problems, the transfer operators reduce to scalar
values, which enables the spectral study of the iteration operators.

3.1.1 General case

We start with the case of a layered decomposition that does not involve any loop.
In the general case, we do not impose any restriction on the actual geometry of the
problem other than the decomposition must be topologically equivalent to that of
Figure 2.4. We also allow for any velocity distribution in the propagation medium
and for the use of imperfect non-reflecting transmission conditions on the artifi-
cial interfaces, so that internal reflections may occur inside the subdomains.

We first number the unknowns of the Schwarz algorithm as g = [g12, g21, g23, . . . ]T ,
where an unknown function gi j corresponds to the impedance data of the bound-
ary condition for problem i , on Σi j . There are two unknowns per artificial inter-
face, for a total of M = 2(N −1) unknowns, which is therefore the size of the (con-
tinuous) Schwarz problem.

We introduce the forward and backward transfer operators B f
i and Bb

i . They
are defined by:

B f
i : H−1/2(Σi ,i−1) → H−1/2(Σi ,i+1)

gi ,i−1 7−→ 2Sui (gi ,i−1,0)|Σi ,i+1 =B f
i gi ,i−1;

Bb
i : H−1/2(Σi ,i+1) → H−1/2(Σi ,i−1)

gi ,i+1 7−→ 2Sui (0, gi ,i+1)|Σi ,i−1 =Bb
i gi ,i+1,

(3.1)

where ui (gl , gr )|Σ refers to the restriction on boundary Σ of the solution to the
subproblem Hi ui = fi defined by (2.22), with the simplified notation gl , gr re-
spectively corresponding to gi ,i−1, gi ,i+1. These operators involve the solution of
subproblems with an impedance source on one side only.
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We will also need the self-coupling operators E f
i and Eb

i defined from an inter-
face to itself:

E f
i : H−1/2(Σi ,i−1) → H−1/2(Σi ,i−1)

gi ,i−1 7−→ 2Sui (gi ,i−1,0)|Σi ,i−1 = E f
i gi ,i−1;

Eb
i : H−1/2(Σi ,i+1) → H−1/2(Σi ,i+1)

gi ,i+1 7−→ 2Sui (0, gi ,i+1)|Σi ,i+1 = Eb
i gi ,i+1.

(3.2)

These operators correspond to the contribution on an interface of the part of a
wave that travels through the domain and that is reflected back to its interface of
origin. With these definitions, the matrix corresponding to the Schwarz operator
writes:

F (N ) =



I E f
2 Bb

2

Eb
1 I 0 0

0 0 I E f
3

. . .

B f
2 Eb

2 I

. . .
. . .

Bb
N−1

0 0

0 0 I E f
N

B f
N−1 Eb

N−1 I



, (3.3)

with I the identity operator. Horizontal and vertical lines have been added to em-
phasize the layered structure of the matrix: for each additional domain, two lines
and two columns are added, conserving the same pattern. Therefore, that ma-
trix can easily be constructed for an arbitrary number of subdomains; its structure
directly follows from the update relation (2.27).

It is a banded matrix, with a bandwidth of 5, although at most 3 elements are
non-zero on a given line or column. This structure illustrates well the local cou-
plings between subdomains. Note that for a layered decomposition, the same
structure is kept in any dimension, as each subdomain (except the first and last
ones) has only 2 neighbors.

If we now consider discretized interface functions gi j , we can still obtain a ma-
trix expression of the iteration operator, with the same structure as (3.3). The ma-

jor difference is that the transfer and self-coupling operators B f ,b
i and E f ,b

i are

replaced by dense numerical blocks B f ,b
i and E f ,b

i , that can be seen as the Green
functions for the problems with impedance data, evaluated on the opposite inter-
face. These blocks are very expensive to form, and is never done in practice. But if
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the full numerical matrix was available, inverting it would solve the Schwarz prob-
lem. (We will see that this inverse can be expected to be quite dense, making its
storage, factorization and application in view of using it as a preconditioner rather
expensive, however.) The next section explores that idea by noticing that the ma-
trix with transfer operators can be inverted if one neglects the internal reflections,
and that its application involves the same kind of subproblem solves as for the
iteration operator.

3.1.2 Simplified case

We now consider a simplified case with similar decomposition, but where we sup-
pose that the shape of the domain and the use of ideal non-reflecting conditions
guarantee that no internal reflection can take place. In that case, we show in Ap-
pendix A that the interfaces do not couple with themselves and that the E f ,b oper-
ators vanish. That matrix, denoted by FA , writes:

FA(N ) =



I Bb
2

I
I . . .

B f
2 I

. . .
. . .

Bb
N−1

I

B f
N−1 I



, (3.4)

Compared to (3.3), the matrix has a more simple structure since half of its off-
diagonal elements have disappeared. In particular, notice that the first and last
columns of that matrix are only made of an identity operator, which will be ex-
ploited in the next Section to easily obtain an inverse of it.

3.1.3 Analysis of the 1d case

In 1d, the unknown functions gi j and the transfer operators reduce to scalar val-
ues, so the procedure of forming the numerical matrix is fast. The subproblems
can be solved analytically and the exact expression of the DtN map is known, so
we are in a situation where the optimized Schwarz algorithm is truly optimal. To
illustrate this, we first focus on a problem with Sommerfeld radiation conditions
on the left and right hand sides of the domainΩ= [xl , xr ] and a non-zero volume
source inside the domain:

−(∂xx +k2)u = f in Ω,

(∂n − ık)u = 0 on {xl , xr }.
(3.5)
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The Schwarz iteration operator with ideal transmission conditions and con-
stant medium is in the conditions of the simplified matrix (3.4) and therefore has
the general expression for N subdomains:

FA(N ) =



1 0 b2

0 1 0

0 1 0 . . .
b2 0 1

. . .
. . .

bN−1

0

0 1 0

bN−1 0 1



. (3.6)

Looking at the spectrum of this matrix, one can easily notice that it has only one
eigenvalue λ1−M = 1, with algebraic multiplicity M = 2(N −1) (the number of un-
knowns on the artificial interfaces) and geometric multiplicity 2: it has only 2 lin-
early independent eigenvectors, that are the first and last canonical basis vectors.
These eigenvectors correspond to sources located on interfaces on the first and
last domains. They produce waves in these domains that leave them via the ex-
act radiation conditions on the external boundaries, hence not creating coupling
with any other interface. They are thus the only possible invariants of the system,
as sources located elsewhere will generate couplings.

Matrices with the property of not having a full basis of eigenvectors are called
defective [171]. Although the inverse of the matrix exists (it has full rank, and we
will see in Section 3.2 that the inverse is particularly easy to find), this property is
known to cause slow convergence of Krylov solvers [39, 185]. This complements
our intuitive understanding that the slow convergence of the algorithm is due to
local exchange of information, which can also be inferred from the structure of
the matrix with at most two non-zero elements per row, near the diagonal. This is
also a counterexample of the widespread idea that a good clustering of the eigen-
values is a sufficient condition for the fast convergence of Krylov solvers: this ma-
trix has perfectly clustered eigenvalues and its condition number is small (see Ap-
pendix A), yet its convergence is very slow because it is defective.

We now consider numerical solutions (e.g. by the finite element method) of the
PDEs (3.5) in the subdomains. We observe that some entries that used to vanish
take a small value, hereunder denoted by ε (we use the same notation for all of
them, though their values may differ):
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FN (N ) =



1 ε b2

ε 1 0

0 1 ε . . .
b2 ε 1

. . .
. . .

bN−1

0

0 1 ε

bN−1 ε 1



. (3.7)

The parameters bi are also slightly affected. This is the consequence of the numer-
ical dispersion (also known as the pollution effect) that arises upon discretization
of the Helmholtz equation (see Section 1.3.5), as it causes inaccuracy of the ab-
sorbing boundary conditions. In other words, our choice of operator S = −ık no
longer matches the exact DtN map for the discretized problem, which causes a
partial reflection of outgoing waves.

0 1 2
ℜe(λi )

−1

0

1

ℑm
(λ

i)

Exact DtN
Approx. DtN

Figure 3.1: The eigenvalues of the iteration operator with exact DtN collapse to 1, as
opposed to the case of imperfect impedance conditions where the eigenvalues tend to
spread out over the complex plane, in a circle centered in (1,0). Despite the perfect condi-
tioning of the system with the exact DtN, the algorithm does not converge faster, because
the corresponding operator proves to be defective.

We observe that the eigenvalues are all distinct, with algebraic multiplicity 1,
and tend to spread in the complex plane, in a circular pattern around (1,0) (Figure
3.1). For 3 subdomains and a decomposition in equally sized subdomains, we
have bi = b,∀i , and the eigenvalues are:

λ1,2,3,4 = 1±
p
ε2 ±εb

≈ 1±
√

±εb2
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For more domains, the expression becomes too complicated to be reproduced
here, yet they can still be seen as perturbations of 1: λi = 1 + ri , where ri is a
complex number with approximately constant modulus |ri | ≈ R < 1 (if we sup-
pose ε¿ bi ; small deviations appear for large N ) that corresponds to the radius of
the circle. This radius tends to increase with the number of subdomains, or when
a coarser discretization is used (further degrading the accuracy of the impedance
condition). It asymptotically reaches 1 (with the consequence that some eigenval-
ues are close to 0), which strongly degrades the conditioning of the operator. Note
that, as an effect of the cascaded square roots in the expression of the eigenvalues,
even very small values of ε have a strong effect on the spectral radius.

0 1 2
ℜe(λi )

−1

0

1

ℑm
(λ

i)

N = 10
N = 20
N = 200

0 1 2
ℜe(λi )

−1

0

1
nλ = 30
nλ = 20
nλ = 10

Figure 3.2: Influence of the number of subdomains N and number of discretization points
per wavelength nλ on the eigenvalues distribution of the matrix of the operator in 1d, at
k = 20π. Left: increasing N with same discretization nλ = 30; right: coarser discretization
(constant N = 20). The spectral radius and the condition number increase whenever more
subdomains or a coarser grid are used. In extreme cases (very large N ), some eigenvalues
asymptotically approach 0. There are M = 2(N −1) eigenvalues.

The associated eigenvectors are distinct, but still resemble each other. So the
operator FN is not strictly defective as it was the case with the exact DtN, but can
still be considered as almost defective. Numerical experiments show very similar
convergence behaviours in both cases.

3.1.4 Cyclic decompositions

With cyclic decompositions as in Figure 2.5, the matrix of the Schwarz operator
is modified compared to the layered decomposition. The first difference is in the
size of the vector of unknowns: for N subdomains, there are 2N functions defined
on N interfaces, instead of 2(N −1), because the first and last domains now have a
common boundary with 2 associated unknowns. We arrange the unknown vector
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as g = [g12, g21, . . . , gN 1, g1N ] and again consider a case where no internal reflection
can occur, so that the self-coupling operators vanish. If we define the forward
direction as a clockwise propagation, the operator matrix now writes:

FA(N ) =



I Bb
2

I B f
1

I . . .

B f
2 I

. . .
. . .

Bb
N

Bb
1 I

B f
N I



. (3.8)

Four new transfer operators have appeared: B{ f ,b}
1 and B{ f ,b}

N that did not exist in
the layered case, and the matrix has become circulant as a consequence of the ad-
ditional couplings generated by the loop: it has lost its banded structure, with two
extra-diagonal elements, and there is no trivial line in the system anymore, since
no wave can escape the domain without creating coupling with another interface.

0 1 2
ℜe(λi )

−1

0

1

ℑm
(λ

i)

N = 20
N = 50
N = 20,χ> 0

Figure 3.3: A cyclic decomposition of a 1d problem in a non-dissipative medium (χ =
0) causes strong scattering of the eigenvalues with a spectral radius equal to 1, for any
number of domains. The spectral radius is smaller when dissipation is introduced (χ >
0).There are N distinct eigenvalues, with algebraic and geometric multiplicities 2.

As can be expected, this modified structure will complicate the inversion of the
matrix (see next section), as well as the interpretation that can be given to it in
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terms of sequence of subproblem solves. A spectral analysis similar to the one
performed for the layered decomposition (see problem definition (3.5), where Ω
is the edge of the unit circle) reveals that the eigenvalues scatter around (1,0) in
the complex plane with a spectral radius equal to 1: λi = 1+ ri with |ri | = 1, even
for a few subdomains and ideal transmission conditions. There are N eigenvalues,
each with algebraic multiplicity 2, because the forward part is strictly identical to
the backward part. Their geometric multiplicity is also 2, so the operator is not
defective in this case, but some eigenvalues are very close to 0, which causes the
same kind of slow convergence.

0 25 50 75 100

GMRES Iterations

0

−4

−8

−12

lo
g 10

(‖r
‖/
‖r

0
‖)

N = 100,χ= 0

N = 100,χ= 0.5k

Figure 3.4: Convergence of the GMRES on the 1d circle problem, with and without dissipa-
tion in the medium, in the case of many subdomains (N = 100). The endless propagation
in the undamped case causes strong coupling between all subdomains and leads to slower
convergence.

Although this problem seems very simple, it is not surprising that it is hard to
solve iteratively, as it is a highly resonant problem: waves are not allowed to leave
the domain and propagate indefinitely along the circle, interfering with them-

selves. The transfer operators therefore have unit modulus: |B{ f ,b}
i | = 1.

Introducing damping in the medium:

∂xx u + (k + ıχ)2 = f in Ω, (3.9)

with χ a positive real number, yields |B f ,b
i | < 1 and leads to a reduced spectral ra-

dius, as shown on Figure 3.3. The stronger the dissipation, the smaller the spectral
radius and the faster the convergence (Figure 3.4). (It is a well-known property that
problems with dissipation are generally easier to solve. It is exploited, for instance,
by the shifted Laplace preconditioner, presented in Section 1.4.2.)

Similarly, open 2d problems decomposed in the same fashion but with a non-
reflecting condition on part of their boundaries (see e.g. Figure 2.5 for a simple
scattering problem) can therefore be expected to converge well because there is
less coupling between distant subdomains.
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3.2 Inverse operator as preconditioner

We explained in Section 2.2 that an efficient preconditioner should have the fol-
lowing properties: first it should be a good approximation of the inverse of the op-
erator or matrix to be solved, second the costs of preparing the preconditioner and
applying it to a vector should be small. In this section, we will describe how a sim-
plified version of the Schwarz operator for a layered decomposition (see Section
3.1.2), that neglects the internal reflections due to inhomogeneities in the medium
or interface conditions on physical or artificial boundaries, can be easily inverted
and its application to a vector obtained as a simple routine, quite similar to a stan-
dard iteration. It is therefore natural to use that inverse of an approximate iteration
operator as preconditioner for the original operator.

The procedure for the preconditioner application is identical for any number
of subdomains, without any pre-calculation. This already fulfills the first two con-
ditions above. We will see however that this approach, despite its very interest-
ing properties with respect to the number of subdomains and frequency, is quite
time-consuming and non-parallel, thereby violating our last requirement. It is also
hardly applicable to cyclic decompositions. The next section will bring an answer
to that problem, by proposing a modification of the preconditioner routine that
partially re-enables the parallelism of the method and make it readily applicable
to cyclic decompositions.

3.2.1 Inversion of the simplified Schwarz operator

Looking at the expression of the Schwarz iteration operator (3.4), where we as-
sumed perfectly non-reflecting conditions at the artificial interfaces, two observa-
tions can be made: the forward and backward parts are totally independent from
each other (it was not the case in the general case (3.3) with self-coupling oper-

ators E f ,b
i ), and both of these parts are triangular, lower and upper respectively.

Hence, they can be inverted separately and very easily. Doing so, we obtain the
expression for the inverse:

F−1
A (N ) =



I −Bb
2 . . . F−1

1,M−1

I

I . . . F−1
3,M−1

−B f
2 I ...

...
...

. . .
−Bb

N−1

I

F−1
M ,2 F−1

M ,4 . . . −B f
N−1 I



, (3.10)
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with the entries, using the index mappings defined in Appendix A:

F−1
mn =


−(−1)i (n)+ j (m) ∏ j (m)

k=i (n)B
b
k if m = 1,3, . . . and m < n;

−(−1)i (n)+ j (m) ∏i (n)
k= j (m)B

f
k if m = 2,4, . . . and m > n;

0 otherwise.

(3.11)

The same transfer operators Bi appear in the iteration matrix and in its inverse,
though the structure of the latter is more complex, with the operators multiply-
ing each other. But we see that, as a consequence of the layered structure of the
matrix FA(N ), a recursion formula can again be found for forming its inverse with
increasing number of subdomains.

One might think that forming and applying that inverse matrix will be expen-
sive, but we will see in Section 3.2.3 that the terms of the matrix-vector product
with the inverse operator can be rewritten in such a way that the products of oper-
ators are fully avoided. This means that, provided that the Bi operators are avail-
able, the matrix-vector products with the iteration operator and with its inverse
can be obtained at reasonable cost and without having to form these matrices first.
Since the application ofBi to any vector v amounts to solving the i -th subproblem
with v as impedance data on one side and applying operator S to the restriction of
the solution on the other side, we have all the ingredients at hand to build a fully
matrix-free algorithm.

3.2.2 Spectrum of the preconditioned operator

In Section 3.1.3, we have identified two sources for the slow convergence of the al-
gorithm: the defectiveness of the operator, and the bad conditioning of the system
caused by the small eigenvalues when many subdomains are used, in combina-
tion with approximate DtN maps on the artificial interfaces. Figure 3.5 shows the
spectrum of the preconditioned iteration operator in the 1d case, i.e. of FN F−1

A .
The eigenvalues of the preconditioned system are much more clustered around
(1,0) than in the unpreconditioned case. This spectrum resembles the one of the
operator with the exact DtN, with the fundamental difference that the eigenvec-
tors are now distinct. So the difficulty with the operator being defective, or close
to it, has been removed and the good clustering of the eigenvalues opens the way
for fast convergence. The preconditioner produces the same effect with a coarser
discretization, yet the eigenvalues are not as well clustered in that case. In relation
to this, we will see that the quality of the approximate DtN has a direct impact on
the rate of convergence.

3.2.3 Interpretation as the double sweep

Throughout the developments above, we insisted on the recurrence relations in
the structure of the iteration operator (3.3) and its approximate inverse (3.10), that
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Figure 3.5: The double sweep preconditioner produces an excellent clustering of the
eigenvalues of the iteration operator. Left: comparison of the spectrums of the opera-
tors (k = 40π, N = 100,nλ = 20), with and without preconditioner; right: zoom, centered
in (1,0), on the eigenvalues of the preconditioned operator. The eigenvalues are again
equal or very close to each other, but the preconditioned operator has a full set of distinct
eigenvectors, so the convergence is now expected to be fast.

we propose to use as a preconditioner. We now take advantage of that property to
write the matrix-vector product with the preconditioner F−1

A in a simplified way
and give it an interpretation in terms of a double sweep of subproblems solves.
The product g ′ = F−1

A r (in the context of right-preconditioned Krylov solvers, r
denotes the residual), is given component-wise as:

g ′
i ,i−1 = ri ,i−1 +

2∑
p=i−1

(−1)i+p
p∏

q=i−1
B f

q rp,p−1, i = 2, . . . , N ;

g ′
i ,i+1 = ri ,i+1 +

N−1∑
p=i+1

(−1)i+p
p∏

q=i+1
Bb

q rp,p+1, i = 1, . . . , N −1.

Factoring these expressions, we rewrite them as:

g ′
i ,i−1 = ri ,i−1 −B f

i−1

(
ri−1,i−2 −B f

i−2

(
. . . (r3,2 −B f

2 r2,1)
))

,

i = 2, . . . , N ;

g ′
i ,i+1 = ri ,i+1 −Bb

i+1

(
ri+1,i+2 −Bb

i+2

(
. . . (rN−2,N−3 −Bb

N−1rN−1,N )
))

,

i = 1, . . . , N −1,
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which finally gives the double recurrence relation:

g ′
21 = r21;

g ′
i+1,i = ri+1,i −B f

i g ′
i ,i−1, i = 2, . . . , N −1;

g ′
N−1,N = rN−1,N ;

g ′
i−1,i = ri−1,i −Bb

i g ′
i ,i+1, i = N −1, . . . ,2.

The first relation describes the forward sequence: we start from the first bound-
ary and propagate the information by solving a problem at each step to move to
the next boundary and incorporate the contribution of that boundary. The other
relation describes the same procedure in the backward direction; because these
sequences are independent of each other, they can be done in parallel. We note
that the extreme problems (the first and the N -th) are not solved in any of the
sequences, so each of them requires N −2 steps.

A sequence of solves over the domain is sometimes called a sweep, hence the
name “double sweep” for this procedure. With the recurrence relations above, it
becomes natural to implement the preconditioner as a matrix-free operator: each
sweep is performed by calling, at every step, the subproblem solve routine and
applying the DtN map to its output; the result is then used to start the next step.
This gives rise to algorithm 3.1. In practice, the solution of Hi ui = fi is done using
the factorization of Hi that is readily available in the Schwarz algorithm. But one
could also envision using an approximate solution if a faster technique is available.

Algorithm 3.1: Application of the double sweep preconditioner r ← F−1
A r

// Forward sweep
r21 ← r21

for i = 2 : N −1
uD ← 0 on ∂Ωi ∩ΓD

fi ← 0
gl ← ri ,i−1

gr ← 0
Solve Hi ui = fi , with data gl and gr

ri+1,i ← ri+1,i +2Sui |Σi ,i+1

end

// Backward sweep
rN−1,N ← rN−1,N

for i = N −1 : 2
uD ← 0 on ∂Ωi ∩ΓD

fi ← 0
gl ← 0
gr ← ri ,i+1

Solve Hi ui = fi , with data gl and gr

ri−1,i ← ri−1,i +2Sui |Σi ,i−1

end

One can further push the idea of the matrix representation of the iteration oper-
ator and the preconditioner, by directly considering the product of these matrices
as our iteration operator instead of separately applying them. That matrix is com-
puted as a classical matrix-matrix product, and can also be obtained by following
a recurrence relation. This is somehow equivalent to defining a new, unprecon-
ditioned algorithm, as it amounts to solve (FN F−1

A )g ′ = b with GMRES, with the
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matrix-vector product by (FN F−1
A ) performed in one single step. In the case of

right preconditioning, that operation rewrites well in a matrix-free fashion as a
double sequence of subproblems solutions, with the difference that it includes the
first and last domains. The advantage of this combined approach is that it is more
efficient in terms of number of solves per iteration, by skipping those solves that
are redundant in the separate applications of the operators: the integrated version
requires 2N −2 solves, for 3N −4 solves in the separate version. This results in Al-
gorithm 3.2. (Note that in this case the solution of Hi ui = fi must be computed
fully, whereas approximate solves were an option in the separate preconditioner
step.)

Computationally, although the sweeps in the algorithm are sequential by na-
ture, parallelism can still be exploited in practice in several ways. Indeed, the most
costly step (the factorization) of the direct solutions by sparse LU of all Helmholtz
problems is fully parallelizable (the actual solution of each system at each iteration
is also parallelizable by itself, but does not scale as well). For problems with mul-
tiple excitations (e.g. multiple incidence angle or multiple source types), many (at
most N − 2) sweeps can be pipelined in order to fully utilize each CPU and per-
fectly balance communications. Finally, partial sweeps can also be envisioned on
smaller groups of subdomains, in order to restore some parallel efficiency. This
idea will be investigated in Section 3.3.

Algorithm 3.2: Combined application of iteration operator and precondi-
tioner r ← F F−1

A r

// Use two auxiliary variables: g c contains the correction
to the input data, g t saves data for use at next
iteration. Both have same structure as input data r.

// Forward sweep
g t

2,1 ← 0

for i = 2 : N
gl ← ri ,i−1 + g t

i ,i−1

gr ← 0
Solve Hi ui = fi

g c
i−1,i ← gl −2Sui |Σi ,i−1

g t
i+1,i ← 2Sui |Σi ,i+1

end

// Backward sweep
g t

N−1,N ← 0

for i = N −1 : 1
gl ← 0
gr ← ri ,i+1 + g t

i ,i+1

Solve Hi ui = fi

g c
i+1,i ← gr −2Sui |Σi ,i+1

g t
i−1,i ← 2Sui |Σi ,i−1

end

// Add correction
r ← r + g c
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3.2.4 Inverse operator for cyclic decompositions

In this Section, we attempt to use the same approach as for the layered decompo-
sition in the case of a cyclic decomposition. We will see that, although it remains
possible, the expressions of the matrices and the corresponding application rou-
tine are more complex. We compute the inverse of matrix (3.8) that is a simplified
version with supposedly perfectly non-reflecting transmission operators, in the
case of 3 subdomains:

F−1
A =



1
1+Bb

2Bb
3Bb

1
0

−Bb
2

1+Bb
3Bb

1Bb
2

0
Bb

2Bb
3

1+Bb
1Bb

2Bb
3

0

0 1
1+B f

1 B
f
3 B

f
2

0
B f

1 B
f
3

1+B f
2 B

f
1 B

f
3

0
−B f

1

1+B f
3 B

f
2 B

f
1

Bb
3Bb

1

1+Bb
2Bb

3Bb
1

0 1
1+Bb

3Bb
1Bb

2
0

−Bb
3

1+Bb
1Bb

2Bb
3

0

0
−B f

2

1+B f
1 B

f
3 B

f
2

0 1
1+B f

2 B
f
1 B

f
3

0
B f

2 B
f
1

1+B f
3 B

f
2 B

f
1

−Bb
1

1+Bb
2Bb

3Bb
1

0
Bb

1Bb
2

1+Bb
3Bb

1Bb
2

0 1
1+Bb

1Bb
2Bb

3
0

0
B f

3 B
f
2

1+B f
1 B

f
3 B

f
2

0
−B f

3

1+B f
2 B

f
1 B

f
2

0 1
1+B f

3 B
f
2 B

f
1



=



1 0 −Bb
2 0 Bb

2Bb
3 0

0 1 0 B f
1 B

f
3 0 −B f

1

Bb
3Bb

1 0 1 0 −Bb
3 0

0 −B f
2 0 1 0 B f

2 B
f
1

−Bb
1 0 Bb

1Bb
2 0 1 0

0 B f
3 B

f
2 0 −B f

3 0 1





Db
1

D f
2

Db
2

D f
3

Db
3

D f
1



−1

= SD−1,

(3.12)

with D f
i = 1−(−1)NB f

kB
f
j B

f
i and Db

i = 1−(−1)NBb
j B

b
kB

b
i , where {i , j ,k} represents

the appropriate permutation of indices. The inverse of the iteration operator is
now expressed as the product of two matrices S and D−1, the first of which resem-
bles the double sweep preconditioner of the layered decomposition with some
additional entries, while the second is the inverse of a diagonal matrix whose ele-
ments can also be regarded as sweeps. Again using F−1

A to right-precondition the
system F g = b, we write the preconditioned system as:

F F−1
A g ′ = b,

F−1
A g ′ = g .

(3.13)

Using the factored expression of the preconditioner, we get the new precondi-
tioned system:

F Sg ′′ = b, (3.14)

with the change of variable g ′ = Dg ′′. We can therefore solve system (3.14) by our
matrix-free iterative method as usual, and then do an additional step which is the
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application of D to g ′′, before recovering our initial variable g using the second
relation of (3.13).

Let us now give an interpretation of the matrix-vector product with matrix S
that appears in the factorization of F−1

A in equation (3.12). In the case of the
layered decomposition it could be rearranged as two independent sequences of
solves thanks to a double recursion formula. It is no longer the case with the cyclic
decomposition: we now have to perform as many forward and backward sweeps
as there are domains, since each domain is connected to itself via the loop (in 2
possible directions).

It is still possible to reuse the results of the previous solve by passing it as source
term for the next domain, but all domains must be solved at each step, whereas
only one domain had to be solved (in each direction) in the layered case. However,
the total duration of a sweep is unchanged if the domains are solved in parallel,
with the difference that no process remains idle during the sweep, hence ruling out
the possibility of pipelining different excitations. For that reason also, the forward
and backward sweep cannot be performed concurrently.

Algorithm 3.3: Application of the double sweep preconditioner (with loop):
r ← Sr

// Forward sweeps
for j = 1 : N −1

// Solve all problems in
parallel

for i = 1 : N
uD ← 0 on ∂Ωi ∩ΓD

fi ← 0
gl ← ri ,i−1

gr ← 0
Solve Hi ui = fi , with data gl

and gr

end
// Transfer to next domain
for i = 1 : N

ri+1,i ← ri+1,i +2Sui |Σi ,i+1

end
end

// Backward sweeps
for j = 1 : N −1

// Solve all problems in
parallel

for i = 1 : N
uD ← 0 on ∂Ωi ∩ΓD

fi ← 0
gl ← 0
gr ← ri ,i+1

Solve Hi ui = fi , with data gl

and gr

end
// Transfer to next domain
for i = 1 : N

ri−1,i ← ri−1,i +2Sui |Σi ,i−1

end
end

// N.B.: Manage indices over- or underflow

The recursive structure of the preconditioner is not as obvious as in the layered
case, but the matrix elements can still be predicted for any number of domains. An
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efficient (O(2N )) matrix-free algorithm can therefore be designed for the applica-
tion of matrix S to a vector if N processes are available (Algorithm 3.1). Note that
the iteration operator itself is O(1) under the same conditions. If only 1 process is
used to run the algorithm, the preconditioned and unpreconditioned versions are
respectively O(3N ) and O(N ). Therefore, one should assess the relevance of us-
ing the preconditioner in this case, as information is not necessarily massively ex-
changed between all subdomains, and the regular algorithm could therefore give
decent convergence rates, while the preconditioner would bring little improve-
ment compared to the much increased iteration cost.

While matrix D has a much simpler structure than that of matrix S, its appli-
cation to a vector is quite similar since it also involves a full set of sweeps start-
ing from one boundary of each domain, in both directions. Note that in this case
the sweeps cover all domains, while the last one was previously skipped. The for-
ward and backward sweeps are again independent, so the multiple right-hand side
strategy can be used here as well to avoid the repetition of the full sequence of
solves.

Algorithm 3.4: Application of matrix D : r ′ ← Dr

// Take a copy of r
r ′ ← r
// Forward sweeps
for j = 1 : N

// Solve all problems in
parallel

for i = 1 : N
uD ← 0 on ∂Ωi ∩ΓD

fi ← 0
gl ← ri ,i−1

gr ← 0
Solve Hi ui = fi , with data gl

and gr

end
// Transfer to next domain
for i = 1 : N

ri+1,i ← 2Sui |Σi ,i+1

end
end

// Backward sweeps
for j = 1 : N

// Solve all problems in
parallel

for i = 1 : N
uD ← 0 on ∂Ωi ∩ΓD

fi ← 0
gl ← 0
gr ← ri ,i+1

Solve Hi ui = fi , with data gl

and gr

end
// Transfer to next domain
for i = 1 : N

ri−1,i ← 2Sui |Σi ,i−1

end
end

// Sum with initial value
r ′ ← r ′+ r
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An interesting question is the behaviour of the preconditioner designed for the
layered case when applied to a looped decomposition. We need to introduce a
cut in the loop, for instance in the middle of domain 1 (Figure 3.6(a)). Perfectly
absorbing conditions are imposed on both sides of the cut. This is topologically
equivalent to the configuration of the layered decomposition, with one additional
domain, as domain 1 is split into 1a and 1b, and the unknowns set remains un-
changed. The iteration operator FAc of the cut problem has the same structure as
(3.4). If we use its inverse (3.10) to precondition the looped problem, the precon-
ditioned operator will be:

FAl F−1
Ac

=



1 0 0 0 0 0

0 1+B f
1 B

f
3 B

f
2 0 −B f

1 B
f
3 0 B f

1
0 0 1 0 0 0
0 0 0 1 0 0
Bb

1 0 −Bb
1B

b
2 0 1+Bb

1B
b
2B

b
3 0

0 0 0 0 0 1


. (3.15)

It has only two lines that are non-trivial (this also holds for more domains). If the
coupling between the domains are not too strong (distant domains exchange lit-
tle information), the product between the Bi operators quickly become small, and
that matrix is close to an identity, making the simplified preconditioner a good
approximation of the iteration operator. One can therefore expect good conver-
gence of the algorithm. In the Section 3.3, we will present a modification of the
double sweep algorithm that introduces one or more cuts to reduce the length of
the sweeps to be performed. This is very similar to the cut introduced here to break
the loop, and has a similar effect. The two approaches can easily be combined in
the case of a loop involving many domains, which leads to a loop broken in several
parts over which the partial sweeps are performed.

Ω3

Ω2

Ω1b

Ω1a

(a)

Ω1a Ω1bΩ3 Ω2

(b)

Figure 3.6: Introducing a cut in the middle of a domain (a) makes the configuration topo-
logically equivalent to a layered decomposition (b). Transparent boundary conditions are
imposed on the new boundaries (dashed lines).
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3.2.5 Relation with incomplete decompositions

We notice that a straightforward factorization can be obtained for FA : we have
FA = LU =U L, with L−1 and U−1 being immediately related to forward and back-
ward sweeps. Since the sweeps are independent of each other, there is also an
additive relation between the factors. The additional property FA = (L +U )− I in-
deed shows that applying the sweeps sequentially or in parallel is equivalent, since
the following relations hold:

F−1
A = L−1U−1 =U−1L−1

= (L−1 +U−1)− I
(3.16)

Going back to the full Schwarz operator, it is now clear that the double sweep can
be seen as an incomplete LU decomposition of FN . This observation establishes
an interesting link with the related works on the AILU preconditioner [92] and the
sweeping preconditioner [68, 69, 150], since these methods perform an approxi-
mate decomposition of the discrete Helmholtz operator in a layer-by-layer fash-
ion.

3.3 Parallelization of the double sweep

The main shortcoming associated with the double sweep preconditioner is its se-
quential nature, that makes the application of the double sweep a non-parallel
and time-consuming step of the algorithm. If the associated performance is ex-
cellent in cases where there is a massive transfer of information between all the
domains, as is the case in waveguide-like configurations, the situation is different
when there is less transfer between domains, like in some scattering problems. In
such cases, the performance gain brought by the preconditioner is unsufficient to
compensate for the additional overhead.

Therefore, we would like a preconditioner that is able to share information over
a sufficient but limited range of domains, unlike the standard double sweep pre-
conditioner that covers all domains, but that has a reduced application cost. To
design such a preconditioner, we propose to introduce one or more cuts in the se-
quence of domains, and to do the sweeps inside these groups of adjacent domains,
that we will call portions of the domain in the following. Absorbing conditions are
imposed on both sides of the cut. As the groups of domains do not overlap, the
partial sweeps can be performed independently and in parallel, therefore reduc-
ing the application time of the whole procedure.

The matrix corresponding to these reduced sweeps is derived from the full pre-
conditioner matrix, where the transmission operators corresponding the cut do-
main is replaced by 0. As a consequence, communication between the two groups
of domains is forbidden and the preconditioner matrix has well separated blocks,
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Ω1 Ω4bΩ2 Ω3 Ω4a Ω5 Ω6 Ω7

Figure 3.7: Partial sweeps cover non-overlapping groups of domains, separated by the
dashed line. The position of the cut inside the domain is not important as the first and
last domains are not solved in our sweeps, as shown by the arrows.

that correspond to the independent restricted double sweeps. They can thus be
performed in parallel. Each of the block is the inverse of an optimized Schwarz
DDM operator FAi over the i -th portion of the domain consisting of a few adja-
cent domains, taken apart from the other portions. For the situation of Figure 3.7,
where portions 1 and 2 consist of domains {1,2,3,4a} and {4b,5,6,7} respectively,
the matrix is:
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]
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(3.17)

This is very much like a block-Jacobi preconditioner for the simplified Schwarz
iteration operator. In the ideal case where the true DtN is used as transmission
condition, the preconditioned operator has the following structure:
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FAF−1
Acut
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,

(3.18)
that is relatively close to an identity. Spectral analysis reveals that the eigenvalues
are well clustered (λ1,...,2N−2 = 1) but that it is defective, as is the unpreconditioned
DDM operator. However, the number of missing eigenvectors is 2Nc instead of
2N − 4, if Nc is the number of cuts, which is a strong improvement if Nc << N .
Numerical experiments with the new version of the preconditioner confirm this
analysis, with a convergence rate that degrades as the number of cuts increases
for a strongly guided problem, and plateaus appearing on the convergence curve
(Figure 3.15). This situation is to be compared with the behaviour of the unprecon-
ditioned DDM algorithm, that corresponds to the limit case where a cut is placed
in every other domains.
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Figure 3.8: Introducing 2 cuts in the double sweep preconditioner (right) enables parallel
execution of the partial sweeps, reducing the application time of the preconditioner with-
out cuts (left). The white diamonds indicate solves performed in the iteration operator;
the black circles and squares indicate solves in the forward and backward sweeps, respec-
tively. These time lines were obtained for the COBRA test case of Section 3.4.2, with 16
subdomains and cuts in subdomains 6 and 11.

To illustrate the gain in application time and the improved parallelism of the
double sweep with cuts, Figure 3.8 presents timelines of the solves performed dur-
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ing the application of the Schwarz iteration operator and the double precondi-
tioner, with and without cuts. In Section 3.2.3, we suggested to perform simul-
taneous application of the Schwarz iteration operator and the double sweep pre-
conditioner, by precomputing the matrix-matrix product of these two steps and
inferring an equivalent application routine. This allowed to save redundant solves
and reduce the time required to complete an iteration, giving raise to Algorithm
3.2. Of course, the same strategy can be applied to the preconditioner with cuts.
Doing so, only the cut domains need to be solved after the subgroups of domains
have been sweeped, as illustrated on Figure 3.9.

3.4 Numerical results

We will present numerical results on different test cases of increasing complexity,
with the intent of first showing how the preconditioner behaves on simple cases
in the scalar case, in homogeneous and non-homogeneous media. This will be
the occasion to notice the importance of the accuracy of the transmission condi-
tions, before focusing on more realistic configurations, where the vector case will
be treated as well. Following that progression, only the full version of the precon-
ditioner will be studied in a first step. The parallelized version is then introduced
to demonstrate its potential on the most challenging cases.

3.4.1 Full sweeps

We first present numerical results in the 1d case with constant parameters, from
which the preconditioner was derived in Section 3.2. We then use the same pre-
conditioning strategy on more complex configurations and in the presence of a
non-homogeneous medium, with guided and non-guided waves in 2d. In each
case we analyse the effect of the accuracy of the DtN approximation on the per-
formance of the preconditioner. In the non-homogeneous cases, we define the
pulsation ω and velocity c(x, y), such that k(x, y) =ω/c.

1d with constant parameters

We study the behaviour of the algorithm in an homogeneous 1d mediumΩ= [0,1].
This test case reproduces the conditions of the construction of the double sweep
preconditioner (Section 3.2): we use absorbing conditions on both sides of the do-
main, and a volume source modeled by a delta-function located on the left bound-
ary f = δ(0).

We observe that the convergence is fast compared to the unpreconditioned
case (Figure 3.10): no more than a few iterations are required with the double
sweep preconditioner. More interestingly, the rate of convergence is independent
of the number of subdomains (Table 3.1) and wavenumber (Figure 3.11), under
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Figure 3.9: Illustration on synthetic timelines of the separate (left) and combined (right)
application of the double sweep with cuts and the Schwarz operator. The combined appli-
cation avoids redundant solves, while not being faster in a fully parallel implementation.
The main difference (invisible on the Figure) between both algorithms is in the flow of
information during the sweeps.
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Figure 3.10: A typical convergence history of the optimized Schwarz algorithm with GM-
RES acceleration applied to a 1d problem, with N = 20 subdomains (solid line). The curve
exhibits 2 plateaus with length N −1, before suddenly converging with full accuracy. The
dashed line is obtained for the same problem with the preconditioned algorithm using
optimal transmission operators.
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the condition that the exact DtN map is used. In 1d, this can be achieved by re-
placing the wavenumber k in the Sommerfeld condition IBC(0) by the wavenum-
ber kh accounting for the numerical dispersion of FEM for a discretization step h,
as given by formula (D.5).

N = 5 25 50 100 150 200

IBC(0), nλ = 10
4 4 5 5 6 6

(8) (48) (98) (198) (298) (398)

IBC(0), nλ = 20
3 3 4 4 4 4

(8) (48) (98) (198) (298) (398)

IBCkh (0), nλ = 10
3 3 3 3 3 3

(8) (48) (98) (198) (298) (398)

IBCkh (0), nλ = 20
2 2 2 2 2 3

(8) (48) (98) (198) (298) (398)

Table 3.1: The iteration count (||r ||/||r0|| ≤ 10−6) in the 1d case is very small and steady
with the number of domains when the exact DtN is used as transmission operator (S =
D = −ıkh); more iterations are required when less accurate approximations of the DtN
map are used instead (S 6= D = −ık), with a slight dependence on N . Values between
parentheses are for the unpreconditioned algorithm: Ni t = M = 2(N −1), where M is the
size of the Schwarz system, hence the theoretical maximal number of iterations required
to solve it by a Krylov method.
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Figure 3.11: 1d problem: the iteration count is also stable with the wavenumber k, for all
the tested transmission operators S (N = 100).

In the more practical case when an approximate DtN map is used as transmis-
sion operator, the performance of the algorithm is slightly degraded and the num-
ber of iterations weakly depends on the number of subdomains. To observe this
effect, we repeat the computation with different discretizations (we denote by nλ
the number of grid points per wavelength). As the numerical dispersion is more
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pronounced for coarser discretizations (smaller nλ), the accuracy of the Sommer-
feld conditions (S =−ık) that we use as transmission operators is also degraded.

This behaviour is easily understood under the light of the analysis of Section 3.2:
the double sweep preconditioner was built upon the assumption that no reflection
occurs at the artificial boundaries, which can only be verified with an accurate DtN
map as transmission operator; in that case, it is an exact inverse of the iteration
operator and should converge in 1 iteration in exact arithmetic. With reflections
at the artificial boundaries, the double sweep is no longer an exact inverse of the
iteration operator and its performance deteriorates with the amplitude of the spu-
rious reflected waves. More intuitively, an effect of the reflections is the transmis-
sion of partial information to the neighbouring subdomains. As this information is
transmitted multiple times in the course of a sweep, it will be distorted everytime
it crosses an artificial boundary. This explains why more iterations are required
when more domains are involved if inexact DtN maps are used as transmission
operators.

Homogeneous waveguide

The geometry of this test case is a straight waveguide (Ω = [0,D]× [0,d ]) made
of an homogeneous medium. Homogeneous Dirichlet conditions are imposed
on the upper and lower sides of the guides: u = 0 on y = {0,d}. We excite the
second mode on the left hand side: u(0, y) = sin(mπy/d), with m = 2, and use an
absorbing condition on the right hand side to model a continuing waveguide.

x

y

Figure 3.12: Waveguide geometry (D = 4;d = 1) and decomposition, and solution for m = 2
and k = 20π.

As there is only one possible propagation direction and no internal reflection
for such a problem, the method is expected to behave somewhat like in the 1d case
since we are still in the conditions of the preconditioner derivation. Moreover, an
analytical solution for this problem is available for each mode, considered sepa-
rately [148]:

uA(x, y) = sin
(mπ

d
y
)

exp ıβm x,
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ω= 20π ω= 40π
N = 5 10 25 50 100 5 10 25 50 100

IBC(0)
3 3 4 4 4 3 3 4 4 4

(8) (18) (48) (98) (198)

IBC(k/2)
8 8 23 56 88 8 9 38 49 dnc

(8) (18) (50) (120) (326)

OO2
3 3 4 4 4 3 3 3 3 4

(8) (18) (46) (98) (201)

GIBC(2)
3 3 3 4 4 3 3 4 4 8

(8) (18) (48) (119) (239)

GIBC(8)
3 3 3 4 4 3 3 4 4 8

(8) (18) (48) (119) (240)

PML(5)
4 4 5 6 6 4 4 6 8 12

(8) (18) (48) (96) (196)

PML(15)
3 3 3 4 4 3 3 3 3 4

(8) (18) (48) (98) (198)

PML(75)
2 2 2 3 3 2 2 2 2 2

(8) (18) (48) (98) (198)

Table 3.2: Homogeneous waveguide: iteration count of the preconditioned GMRES
(||r ||/||r0|| < 10−6) as a function of N , for different transmission conditions. Values in
parentheses are for the unpreconditioned algorithm; “dnc” stands for “did not converge”
within the prescribed 500 iterations.

with:

βm =


√
k2 − (mπ/d)2 if 1 ≤ m ≤ kd

π (propagative);

ı
√
−k2 + (mπ/d)2 otherwise (evanescent).

We only present results for the propagative modes. An exact expression of the
DtN map can be inferred from the above expression: D = −ıβm . Modifying the
Sommerfeld transmission condition by replacing k by βm therefore gives an ex-
cellent approximation of the DtN map, that can be ever improved by accounting
for the numerical dispersion in its definition (βh

m). However, we do not include
these results as they are not sufficiently general (only valid for a single mode.) The
results for all the tested approximations of the DtN map are presented in Table 3.2.
With the exception of IBC(χ), they all perform well and little penalty is associated
with the use of rough approximations of the DtN map; the good performance of
the local approximations is therefore not surprising. GIBC(k/2) fails as it adds
a real part to the operator S while the DtN map in this particular case is purely
imaginary.
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Simple underground model

c1 = 2000

c2 = 1500

c3 = 3000

(a) (b)

Figure 3.13: (a) Underground propagation test case geometry and decomposition, (b) so-
lution for ω= 160π.

We consider a rectangular domain Ω = [0,600]× [0,1000] made of an hetero-
geneous medium with 3 different velocities in regions separated by straight non-
parallel boundaries (Figure 3.13(a)). The outside world is modeled by Sommerfeld
conditions on the “underground” sides, and a Neumann condition on the top side.
A Dirichlet point source is located in the middle of the top line. This test-case was
proposed in [75, 149] to test multigrid preconditioners for the Helmholtz equation.

As opposed to the previous test case, we are now in presence of abrupt varia-
tions of the wavenumber, that will produce internal reflections in different direc-
tions. The Sommerfeld conditions on the external boundaries are also likely to
reflect part of the outgoing waves back into the domain. For these reasons, this
problem is expected to be more challenging for a Schwarz method, as the multi-
ple reflections will be harder to capture throughout the iterations. This also holds
for our preconditioner, since this case is further removed from the hypotheses un-
derlying its construction (recall that we neglected both numerical and physical
reflections).

If the number of iterations is indeed slightly increased, the property of indepen-
dence of the number of iterations with respect to the number of subdomains is ac-
tually preserved with the most accurate approximation of the DtN map (PML(75)).
Even with less accurate approximations, we find that the number of additional it-
erations required for convergence grows relatively slowly with N (see Table 3.3).
The GIBC(2) condition in particular performs extremely well—at a fraction of the
cost of the non-local PML approximation.
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ω= 80π ω= 160π

N = 5 10 25 50 100 5 10 25 50 100

IBC(0)
88 90 99 158 347 97 98 107 134 265

(96) (133) (244) (415) (dnc)

IBC(k/4)
62 63 68 92 178 66 67 73 90 168

(70) (110) (231) (404) (dnc)

OO2
22 24 28 46 70 25 27 42 74 186

(38) (77) (207) (384) (dnc)

GIBC(2)
25 27 29 35 41 25 26 29 36 56

(40) (74) (186) (369) (dnc)

GIBC(8)
18 19 22 32 39 19 20 24 34 56

(36) (73) (186) (369) (dnc)

PML(5)
15 16 17 23 29 22 27 43 143 dnc

(38) (75) (195) (368) (dnc)

PML(15)
14 15 16 16 15 14 15 15 16 79

(36) (74) (183) (359) (dnc)

PML(75)
14 14 14 14 14 14 14 14 15 15

(35) (72) (182) (357) (dnc)

Table 3.3: Results for the underground propagation test case (||r ||/||r0|| < 10−6) for differ-
ent approximations of the DtN map. The convergence rate is independent of the number
of domains and wavenumber when a very accurate non-local approximation of the DtN
map is used(PML(75)). Less accurate approximations degrade the convergence rate, es-
pecially when many subdomains are involved, but the algorithm still appears to be quite
robust for the best fast local approximations; “dnc” stands for “did not converge” within
the prescribed 500 iterations. Values between parentheses are for the unpreconditioned
algorithm.
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Gaussian waveguide

The geometry of this test case is comparable to the one presented in Section 3.4.1,
but we now consider a non-homogeneous medium, with a velocity profile con-
stant in the propagation direction (along the x-axis) and gaussian in the transverse
direction (see Figure 3.12): c(x, y) = 1.25(1− .4exp−32(y − .5)2). This a 2D version
of a test case used in [150]. The second mode is excited on the left hand boundary
and we model the continuing domain by means of a Sommerfeld condition on the
right hand side.

(a)

(b)

Figure 3.14: Solution of the gaussian waveguide problem at (a) ω = 20π and (b) ω = 40π.
In both examples, the second mode is excited on the left hand side.

ω= 20π ω= 40π
N = 5 10 25 50 100 5 10 25 50 100

IBC(0)
38 40 78 207 497 51 65 129 217 dnc

(70) (131) (345) (dnc) (dnc)

IBC(k/2)
35 45 134 314 dnc 56 82 241 495 dnc

(71) (157) (412) (dnc) (dnc)

OO2
30 33 69 175 303 41 53 123 202 dnc

(62) (128) (356) (dnc) (dnc)

GIBC(2)
19 20 42 98 149 27 31 67 103 288

(53) (114) (314) (dnc) (dnc)

GIBC(8)
19 20 42 98 150 27 31 67 105 283

(53) (114) (314) (dnc) (dnc)

PML(5)
13 12 13 15 16 16 20 30 52 115

(47) (103) (271) (dnc) (dnc)

PML(15)
12 12 12 12 12 13 13 13 14 15

(44) (101) (266) (dnc) (dnc)

PML(75)
11 11 11 11 11 13 13 13 13 13

(44) (99) (264) (dnc) (dnc)

Table 3.4: Gaussian waveguide: iteration count of the GMRES (||r ||/||r0|| < 10−6) as a func-
tion of the number of subdomains N .
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As opposed to the homogeneous case presented above, the gaussian speed pro-
file will cause curved beams at high frequency that make the problem truly 2D, as
can be seen on Figure 3.12. As a consequence, the “oscillations” exhibited in the
matrix of the DtN map are more complex (their direction varies with position) and
harder to capture by approximate methods. This is verified in practice: Table 3.4
shows that the convergence of all the local approximations degrades significantly
for large N , and only the most accurate non-local PML approximations are able
to maintain a constant iteration count with N . The interest of the preconditioner
is particularly visible on this test case, where the unpreconditioned Schwarz algo-
rithm becomes practically unusable for more than 25 domains.

3.4.2 Sweeps with cuts

We start with an interesting result obtained on the straight 2d waveguide of Fig-
ure 3.12. We can observe on Figure 3.15 that the double sweep somehow acts like
a compressor on the convergence curve, and that the introduction of cuts progres-
sively reduces that effect. This is probably because the residual at some interfaces
does not start to decrease before the information has reached them, which re-
quires more iterations when more cuts are involved.

0 20 40 60

GMRES Iterations

0

−2

−4

−6

lo
g 10

(‖
r‖

/‖
r 0
‖)

Figure 3.15: Homogeneous waveguide test case with 31 subdomains and increasing num-
ber of cuts (solid lines), from left to right: Nc = 0,1,2,4,5,9,14. The phase of fast conver-
gence starts with a delay: during the Nc first iterations, the convergence curve follows the
unpreconditioned one (dashed line). With many cuts, similar plateaus tend to appear.

We now present results obtained on three different test geometries: a straight
3d (parallelepipedic) waveguide, a 3d S-shaped cavity (the COBRA benchmark de-
fined by the JINA98 workgroup) and the open 2d scattering problem by a circular
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object. The first two are solved using a layered decomposition while the third uses
a cyclic decomposition. The COBRA is solved for both Helmholtz and Maxwell,
while the other two are solved for Helmholtz only. Earlier work ([31, 180, 182]) has
shown that without preconditioner, the iteration count for such problems typi-
cally grows linearly with the number of domains, and that with the use of the dou-
ble sweep it becomes almost independent for layered decompositions, provided
that the approximation of the DtN map is sufficiently accurate.

Tables 3.5–3.7 summarize the number of iterations required by each algorithm
to converge to the prescribed tolerance, together with an estimation of the nor-
malized times required for the completion of the algorithm. Provided that at least
2 CPUs are alloted per group of domains, the time required for the application of
the standard Schwarz operator and the double sweep preconditioner with Nd sub-
domains, Nc cuts and Ctot CPUs (assumed evenly distributed between the groups
of subdomains) are approximately given, in the case of a layered decomposition
by:

TSch =
⌈

Nd

Ctot

⌉
Tp and Tsw(Nc ) =

⌈
Nd −Nc −2

Nc +1

⌉
Tp , (3.19)

with Tp the solution time for one subproblem (supposed identical for all subdo-
mains). Note that Tsw would be doubled if only one CPU is available to perform
the double sweep per group of domains. Slightly different estimations hold in the
case of the cyclic decomposition. The total solution times for the unprecondi-

tioned and double sweep algorithms are then T (np)
sol = TSchN (np)

i t and T (d s)
sol (Nc ) =

(TSch +Tsw(Nc ))N (d s)
i t .

Figure 3.16: Geometry and typical decomposition of the 3d cobra cavity (JINA98) and 2d
scattering (unit sound-soft disc with Sommerfeld ABC at radius = 5m) test cases. They
differ by the topology of the decomposition (layered vs. cyclic) and by the type of wave
involved (guided vs. free.) The parallelepipedic waveguide (not pictured) has dimensions
0.91m ×0.084m ×0.11m, comparable to the COBRA.
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#CPU 2 4 6 8 14 22

N (np)
it 62

T (np)
sol 992 496 331 248 142 91

Nc 0 1 2 3 6 10

N (ds)
it 5 6 8 10 16 24

T (ds)
sol 230 138 128 110 112 96

#CPU 2 4 6 8 14 22

N (np)
it 766

T (np)
sol 12256 6128 4086 3064 1751 1115

Nc 0 1 2 3 6 10

N (ds)
it 116 153 174 188 241 308

T (ds)
sol 5336 3519 2784 2068 1687 1232

Table 3.5: Straight waveguide (top) and COBRA (bottom) cases for Helmholtz with 32
subdomains, k = 314.16 (relative residual decrease by 10−4; the transmission operator is
GIBC(2); the transmission operator is GIBC(2)).

#CPU 2 4 6 8 14 22

N (np)
it 448

T (np)
sol 7168 3584 2390 1792 1024 652

Nc 0 1 2 3 6 10

N (ds)
it 21 34 48 62 104 160

T (ds)
sol 966 782 768 682 728 640

#CPU 2 4 6 8 14 22

N (np)
it > 1000

T (np)
sol > 16016 > 8008 > 5339 > 4004 > 2288 > 1456

Nc 0 1 2 3 6 10

N (ds)
it 44 74 105 135 230 354

T (ds)
sol 2024 1702 1680 1485 1610 1416

Table 3.6: COBRA test case for Maxwell with 32 subdomains, k = 157.08 (top) and k =
314.16 (bottom) (relative residual decrease by 10−4).
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#CPU 2 52 86

N (np)
it 55

T (np)
sol 3520 136 82

Nc 1 26 43

N (ds)
it 24 27 31

T (ds)
sol 4584 189 124

#CPU 2 52 86

N (np)
it 85

T (np)
sol 5440 210 127

Nc 1 26 43

N (ds)
it 20 29 37

T (ds)
sol 3820 203 148

Table 3.7: Scattering test case for Helmholtz with 128 subdomains, k = 6.28 (left) and k =
25.13 (right) (relative residual decrease by 10−4; the transmission operator is GIBC(2)).

Tables 3.5–3.7 show that in all cases the behaviour of the algorithm is similar.
The preconditioner strongly reduces the number of iterations, and thus the num-
ber of overall linear system solves. Moreover, the parallel version of the precon-
ditioner makes it also an appealing proposition with respect to the overall com-
putational (wall-clock) time when the number of CPUs is smaller than the num-
ber of subdomains, especially in the high frequency regime. For example, in the
challenging COBRA case for Maxwell, with 32 domains on 8 CPUs (3 cuts), with
k = 100π, the preconditioned version requires 135× (32+2× (32−2−3)) = 11610
system solves instead of > 1000×32 and runs about 3 times faster than the stan-
dard algorithm.

It is also interesting to compare the increase in the number of iterations when
cuts are introduced in the two different cases where the waves are guided or prop-
agate in free space. It is clear that in the first case, the coupling between distant
domains (e.g. the first and last) is very strong since a source located in one of them
will generate waves with significant amplitude in all others. In other words the in-
formation exchange between domains is very important in the guided case. Con-
versely, in problems such as scattering in free space, one can reasonably expect
that there will be little exchange of information between diametrically opposed
domains.

As a consequence, the introduction of a cut, that somehow breaks the flow of
information, will have more impact when the coupling is strong; in Table 3.7, we
see that introducing a large number of cuts produces a very limited number of ad-
ditional iterations, while in Table 3.6 one can observe a fast growth of the iteration
count as soon as a cut is added.
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The Marmousi model

1500 3500 5500

Velocity c(x, y)

Figure 3.17: Velocity profile of the Marmousi model. Dimensions (in meters) are
[0,9192]× [0,−2904].

The Marmousi model is a synthetic 2d acoustic model that reproduces the com-
plex velocity profile of a slice of earth. It features a wide range of speeds, from 1500
m/s to 5500 m/s, with many layers an normal faults as depicted on Figure 3.17.
It has become a classic test case for benchmarking seismic inversion codes. We
will simulate the propagation of the time-harmonic acoustic waves produced by
a point source located at coordinates (6200,−2300) as was done in [169], so both
methods can be compared.

We solve the Helmholtz equation with Sommerfeld boundary conditions on all
sides except the top side where we impose a homogeneous Neumann boundary
condition; we will also consider the case of Sommerfeld conditions on all sides,
since we assume that this situation was used in [169]. We will also test the meth-
ods in a similar domain with an homogeneous medium; Figure 3.18 shows typical
solutions in all these configurations.

In the following, we report the results of our experiments in tables for each of
the configurations, with decompositions into 16, 64 and 256 domains. We have
tested two different transmission conditions: the GIBC(2) and the IBC(0), which
is the most simple one; each case has been run twice, with decompositions into
vertical and horizontal layers. The tables present the number of iterations for each
run to converge with a relative residual decrease of 10−3, with a maximum num-
ber of iterations of 1000. Values in parentheses are an estimation of the normalized
time required to reach convergence when using as many CPUs as there are subdo-
mains. The time unit is the time to solve a single subproblem. Hence, these values
cannot be directly compared for different decompositions or frequencies.
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Figure 3.18: Solutions at ω = 100π: (a) marmousi model with Neumann condition on
top; (b) marmousi model with absorbing condition on top; (c) homogeneous model
(c(x, y) = 3500) with Neumann condition on top; (d) homogeneous model with Sommer-
feld condition on top. The reflections produced by the Neumann condition are clearly
visible.
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Marmousi model with Neumann condition on top

This test case is the full physical model, that is also the most difficult to solve with
our methods: we will see that using a Sommerfeld condition on the top boundary
and considering an homogeneous medium both make the convergence faster. For
this particular example, we have tested two different discretizations: a regular grid
with step size h = λmin/20 that represents the shortest wavelength in the model
with 20 points, and a discretization such that h ω

2π = 200, as was used in [169]. This
second choice leads to a discretization that is about 3 times as coarse as the first
one.

# doms 16 64
# cuts n.a. 4 2 0 n.a. 20 6 0

ω
2π = 30

58 26 22 19 236 100 61 50
(58) (78) (110) (285) (236) (300) (549) (3150)

ω
2π = 50

56 26 21 18 227 94 54 43
(56) (78) (105) (270) (227) (282) (486) (2709)

# doms 256
# cuts n.a. 84 50 16 0

ω
2π = 30

> 1000 444 355 324 364
(> 1000) (1332) (1775) (4860) (92820)

ω
2π = 50

> 1000 538 458 461 564
(> 1000) (1614) (2290) (6915) (143820)

(a) vertical layers, GIBC(2)

# doms 16 64
# cuts n.a. 4 2 0 n.a. 20 6 0

ω
2π = 30

181 78 59 36 783 310 154 90
(181) (234) (295) (540) (783) (930) (1386) (5670)

ω
2π = 50

171 75 58 39 718 291 146 93
(171) (225) (290) (585) (718) (873) (1314) (5859)

# doms 256
# cuts n.a. 84 50 16 0

ω
2π = 30

> 1000 930 591 257 118
(> 1000) (2790) (2955) (3855) (30090)

ω
2π = 50

> 1000 985 660 339 227
(> 1000) (2955) (3300) (5085) (57885)

(b) horizontal layers, GIBC(2)

Table 3.8: Marmousi model with Neumann condition on top (Figure 3.18(a)). Conver-
gence of the algorithm, with h =λmin/20. The preconditioner was used with decreasing
number of cuts, with more cuts usually resulting in shorter run times (values in parenthe-
ses); n.a. indicates the unpreconditioned algorithm.
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# doms 16 64
# cuts n.a. 4 2 0 n.a. 20 6 0

ω
2π = 30

77 52 49 47 285 140 111 102
(77) (156) (245) (705) (285) (420) (999) (6426)

ω
2π = 50

71 50 47 45 285 120 85 76
(71) (150) (235) (675) (285) (360) (765) (4788)

# doms 256
# cuts n.a. 84 50 16 0

ω
2π = 30

986 742 739 735 727
(986) (2226) (3695) (11025) (185385)

ω
2π = 50

> 1000 596 537 488 466
(> 1000) (1788) (2685) (7320) (118830)

(a) vertical layers, IBC(0)

# doms 16 64
# cuts n.a. 4 2 0 n.a. 20 6 0

ω
2π = 30

234 103 83 65 868 437 293 244
(234) (309) (415) (975) (868) (1311) (2637) (15372)

ω
2π = 50

247 110 91 75 929 411 254 209
(247) (330) (455) (1125) (929) (1233) (2286) (13167)

# doms 256
# cuts n.a. 84 50 16 0

ω
2π = 30

> 1000 > 1000 > 1000 > 1000 972
(> 1000) (> 3000) (> 5000) (> 15000) (247860)

ω
2π = 50

> 1000 > 1000 > 1000 > 1000 525
(> 1000) (> 3000) (> 5000) (> 15000) (133875)

(b) horizontal layers, IBC(0)

Table 3.9: Marmousi model with Neumann condition on top (Figure 3.18(a)). Conver-
gence of the algorithm, with h =λmin/20.

Comparing Tables 3.8(a) and (b), we see that the convergence is faster with
vertical layers than with horizontal layers. We will see that it will be the case in
all of our subsequent experiments on this test case, even when an homogeneous
medium is considered. Two possible explanations for this behaviour are the as-
pect ratio of the slices (resulting in longer transmission boundaries and more un-
knowns in the Schwarz problem), and the incidence of the wavefronts that is more
tangential in the horizontal case.

The main observation is that the introduction of the cuts efficiently reduces the
computation time thanks to the increased parallelization of the preconditioner
application (recall that we report timings for the case where NCPU = Ndom), that
largely compensates for the increased iteration count. However, we observe that
when the (fully parallelized) unpreconditioned algorithm converges, it runs faster
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# doms 16 64
# cuts n.a. 4 2 0 n.a. 20 6 0

ω
2π = 30

57 26 21 18 239 100 60 48
(57) (78) (105) (270) (239) (300) (540) (3024)

ω
2π = 50

56 26 21 18 229 92 52 41
(56) (78) (105) (270) (229) (276) (468) (2583)

# doms 256
# cuts n.a. 84 50 16 0

ω
2π = 30

> 1000 446 351 314 353
(> 1000) (1338) (1755) (4710) (90015)

ω
2π = 50

> 1000 520 437 443 538
(> 1000) (1560) (2185) (6645) (137190)

(a) vertical layers, GIBC(2)

# doms 16 64
# cuts n.a. 4 2 0 n.a. 20 6 0

ω
2π = 30

181 78 59 36 772 310 155 92
(181) (234) (295) (540) (772) (930) (1395) (5796)

ω
2π = 50

167 74 57 37 706 289 145 92
(167) (222) (285) (555) (706) (867) (1305) (5796)

# doms 256
# cuts n.a. 84 50 16 0

ω
2π = 30

> 1000 903 578 253 113
(> 1000) (2709) (2890) (3795) (28815)

ω
2π = 50

> 1000 984 658 341 224
(> 1000) (2952) (3290) (5115) (57120)

(b) horizontal layers, GIBC(2)

Table 3.10: Marmousi model with Neumann condition on top (Figure 3.18(a)). Conver-
gence of the algorithm, with h ω

2π = 200.

than the preconditioned one. However, the preconditioner seems to bring some
extra reliability, in the sense that it is more likely to converge within a reasonable
number of iterations, even when many subdomains are involved.

We again emphasize the importance of the transmission condition to keep that
number low; we have seen on other test cases that good approximations of the
DtN map gives a convergence independent of the number of domains, even in the
non-homogeneous case. This is confirmed by the results obtained in [169] with
PMLs, on the same Marmousi test case as we are investigating here. Clearly, the
transmission used here are suboptimal, as they are either of too low order (IBC) or
have not been developed for non-homogeneous media (GIBC).
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# doms 16 64
# cuts n.a. 4 2 0 n.a. 20 6 0

ω
2π = 30

76 55 52 50 235 125 97 89
(76) (165) (260) (750) (235) (375) (873) (5607)

ω
2π = 50

74 53 50 48 237 117 87 78
(74) (159) (250) (720) (237) (351) (783) (4914)

# doms 256
# cuts n.a. 84 50 16 0

ω
2π = 30

776 559 525 505 491
(776) (1677) (2625) (7575) (125205)

ω
2π = 50

831 478 426 378 362
(831) (1434) (2130) (5670) (92310)

(a) vertical layers, IBC(0)

# doms 16 64
# cuts n.a. 4 2 0 n.a. 20 6 0

ω
2π = 30

207 102 86 68 699 363 252 216
(207) (306) (430) (1020) (699) (1089) (2268) (13608)

ω
2π = 50

192 95 81 65 692 329 211 172
(192) (285) (405) (975) (692) (987) (1899) (10836)

# doms 256
# cuts n.a. 84 50 16 0

ω
2π = 30

> 1000 > 1000 > 1000 > 1000 > 1000
(> 1000) (> 3000) (> 5000) (> 15000) (> 255000)

ω
2π = 50

> 1000 > 1000 > 1000 > 1000 817
(> 1000) (> 3000) (> 5000) (> 15000) (208335)

(b) horizontal layers, IBC(0)

Table 3.11: Marmousi model with Neumann condition on top (Figure 3.18(a)). Conver-
gence of the algorithm, with h ω

2π = 200.

We have seen in Tables 3.8-3.9 that performing full sweeps is extremely slow
in the case where NCPU = Ndom since most CPUs remain idle during the sweeps.
Formulas (3.19) give the timings for the case where less CPUs are used than there
are domains. In Table 3.13, we report timing estimations for various number of
cuts, in the case where only 2 CPUs per group of subproblems are used, in order
to guarantee an optimal use of the resources. This example shows that using the
preconditioner in that configuration is always more efficient than using the un-
preconditioned algorithm with same number of CPUs.

We notice that the influence of the discretization is extremely limited, since the
two different discretizations that we have used produce almost identical conver-
gence results, independently of the transmission condition and decomposition
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# doms 16 64
# cuts n.a. 4 2 0 n.a. 20 6 0

ω
2π = 30

50 19 13 8 188 70 27 9
(50) (57) (65) (120) (188) (210) (243) (567)

ω
2π = 50

49 19 13 7 184 67 26 8
(49) (57) (65) (105) (184) (201) (234) (504)

# doms 256
# cuts n.a. 84 50 16 0

ω
2π = 30

650 240 150 57 10
(650) (720) (750) (855) (2550)

ω
2π = 50

684 243 151 56 11
(684) (729) (755) (840) (2805)

ω
2π = 400

646 236 146 54 15
(646) (708) (730) (810) (3825)

Table 3.12: Marmousi model with Neumann condition on top (Figure 3.18(a)). Conver-
gence of the algorithm, with h ω

2π = 200, with vertical layers and PML transmission condi-
tion. The iteration count is stable, even at the much higher frequency ω= 800π.

#CPU 2 14 42

N (np)
it 227

T (np)
sol 7264 1135 454

Nc 0 6 20

N (ds)
it 43 54 94

T (ds)
sol 4042 702 376

Table 3.13: Marmousi model with Neumann condition on top (Figure 3.18(a)). Normal-
ized timing estimations in function of the number of CPUs, for the case of Table 3.8(a)
with 64 subdomains at ω/2π = 50. Even though the method does not perfectly scale, the
speed-up obtained by increasing the number of CPUs is still interesting.

direction, as can be seen by comparing tables 3.8 and 3.10, as well as 3.9 and 3.11.
In the following, only results with the coarsest discretization will be presented.

Another observation is that, despite a few counter-examples, the GIBC(2) trans-
mission condition generally gives faster convergence than the IBC(0), like in our
previous test cases. On Table 3.12, we compare the results obtained with a PML
transmission condition. Clearly, this type of transmission condition is more adapted
to the non-homogeneous medium and gives faster convergence. We also notice
the remarkable stability of the transmission condition at very high frequency.

On Figure 3.19, we present results from the previous tables in a more synthetic
way. One can clearly observe that performing longer sweeps reduces the number
of iterations.
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Figure 3.19: Dependence of the length of the sweeps on the iteration count (ω= 100π), in
terms of number of subdomains: (a) 16 domains, (b) 64 domains, (c) 256 domains. Longer
sweeps generally produce faster convergence. The PML is clearly the best transmission
condition in this non-homogeneous test case.



120 Double sweep preconditioner for Schwarz methods

Marmousi model with Sommerfeld condition on top

This is the situation that seems to have been simulated in [169]. By comparing
these results with the previous ones, one can notice that the convergence is sig-
nificantly faster in this case. The reflection on the top boundary seem to generate
modes that are harder to capture. A possible explanation is to be found in the
transmission condition. Table 3.16 shows results with optimized allocation of the
CPUs for the preconditioner .

Apart from the faster convergence, the conclusions of the previous section re-
main mostly unchanged. Let us simply mention the lack of convergence of the
preconditioned algorithm with small number of cuts (Table 3.15(b)). This be-
haviour is unexplained.

# doms 16 64
# cuts n.a. 4 2 0 n.a. 20 6 0

ω
2π = 30

31 15 12 11 116 44 21 15
(31) (45) (60) (165) (116) (132) (189) (945)

ω
2π = 50

32 15 13 12 115 44 21 15
(32) (45) (65) (180) (115) (132) (189) (945)

# doms 256
# cuts n.a. 84 50 16 0

ω
2π = 30

429 157 105 59 52
(429) (471) (525) (885) (13260)

ω
2π = 50

493 182 125 74 69
(493) (546) (625) (1110) (17595)

(a) vertical layers, GIBC(2)

# doms 16 64
# cuts n.a. 4 2 0 n.a. 20 6 0

ω
2π = 30

65 38 35 27 277 124 74 58
(65) (114) (175) (405) (277) (372) (666) (3654)

ω
2π = 50

67 40 40 30 273 134 86 72
(67) (120) (200) (450) (273) (402) (774) (4536)

# doms 256
# cuts n.a. 84 50 16 0

ω
2π = 30

> 1000 353 235 114 64
(> 1000) (1059) (1175) (1710) (16320)

ω
2π = 50

> 1000 394 275 157 119
(> 1000) (1182) (1375) (2355) (30345)

(b) horizontal layers, GIBC(2)

Table 3.14: Marmousi model with Sommerfeld condition on top. Convergence of the al-
gorithm in the situation of Figure 3.18(b), with h ω

2π = 200.
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# doms 16 64
# cuts n.a. 4 2 0 n.a. 20 6 0

ω
2π = 30

43 33 31 31 130 59 44 41
(43) (99) (155) (465) (130) (177) (396) (2583)

ω
2π = 50

44 35 33 33 134 61 44 40
(44) (105) (165) (495) (134) (183) (396) (2520)

# doms 256
# cuts n.a. 84 50 16 0

ω
2π = 30

441 217 175 149 141
(441) (651) (875) (2235) (35955)

ω
2π = 50

490 214 162 132 126
(490) (642) (810) (1980) (32130)

(a) vertical layers, IBC(0)

# doms 16 64
# cuts n.a. 4 2 0 n.a. 20 6 0

ω
2π = 30

85 62 59 52 279 195 169 161
(85) (186) (295) (780) (279) (585) (1521) (10143)

ω
2π = 50

87 63 63 54 287 183 148 140
(87) (189) (315) (810) (287) (549) (1332) (8820)

# doms 256
# cuts n.a. 84 50 16 0

ω
2π = 30

917 750 828 > 1000 > 1000
(917) (2250) (4140) (> 15000) (> 255000)

ω
2π = 50

981 826 916 > 1000 > 1000
(981) (2478) (4580) (> 15000) (> 255000)

(b) horizontal layers, IBC(0)

Table 3.15: Marmousi model with Sommerfeld condition on top. Convergence of the al-
gorithm in the situation of Figure 3.18(b), with h ω

2π = 200.

#CPU 2 34 102 170

N (np)
it 493

T (np)
sol 63104 3944 1479 986

Nc 0 16 50 84

N (ds)
it 69 74 125 182

T (ds)
sol 26358 1628 875 728

Table 3.16: Marmousi model with Sommerfeld condition on top. Normalized timing es-
timations in function of the number of CPUs, for the case of Table 3.8(a) with 256 subdo-
mains at ω/2π= 50.
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Homogeneous model with Neumann condition on top

For comparison purposes, we give the results for the same geometry, but with an
homogeneous media. One can notice that the difficulties with the Neumann con-
dition are also present in this case (compare with the next case), despite the fact
that the transmission conditions are more appropriate.

# doms 16 64
# cuts n.a. 4 2 0 n.a. 20 6 0

ω
2π = 30

31 15 13 12 141 49 27 22
(31) (45) (65) (180) (141) (147) (243) (1386)

ω
2π = 50

32 16 14 13 147 53 32 28
(32) (48) (70) (195) (147) (159) (288) (1764)

# doms 256
# cuts n.a. 84 50 16 0

ω
2π = 30

503 184 120 76 69
(503) (552) (600) (1140) (17595)

ω
2π = 50

628 258 193 176 289
(628) (774) (965) (2640) (73695)

(a) vertical layers, GIBC(2)

# doms 16 64
# cuts n.a. 4 2 0 n.a. 20 6 0

ω
2π = 30

94 33 28 24 391 159 95 104
(94) (99) (140) (360) (391) (477) (855) (6552)

ω
2π = 50

95 36 30 27 516 210 201 336
(95) (108) (150) (405) (516) (630) (1809) (21168)

# doms 256
# cuts n.a. 84 50 16 0

ω
2π = 30

> 1000 382 232 104 58
(> 1000) (1146) (1160) (1560) (14790)

ω
2π = 50

> 1000 410 270 156 121
(> 1000) (1230) (1350) (2340) (30855)

(b) horizontal layers, GIBC(2)

Table 3.17: Homogeneous model with Neumann condition on top. Convergence of the
algorithm on the homogeneous test case in the situation of Figure 3.18(d), with h ω

2π = 200.
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# doms 16 64
# cuts n.a. 4 2 0 n.a. 20 6 0

ω
2π = 30

35 23 22 21 120 53 40 39
(35) (69) (110) (315) (120) (159) (360) (2457)

ω
2π = 50

37 25 23 22 119 57 46 43
(37) (75) (115) (330) (119) (171) (414) (2709)

# doms 256
# cuts n.a. 84 50 16 0

ω
2π = 30

384 236 207 193 186
(384) (708) (1035) (2895) (47430)

ω
2π = 50

441 261 230 223 219
(441) (783) (1150) (3345) (55845)

(a) vertical layers, IBC(0)

# doms 16 64
# cuts n.a. 4 2 0 n.a. 20 6 0

ω
2π = 30

80 41 37 35 273 190 179 169
(80) (123) (185) (525) (273) (570) (1611) (10647)

ω
2π = 50

81 45 41 38 293 208 170 164
(81) (135) (205) (570) (293) (624) (1530) (10332)

# doms 256
# cuts n.a. 84 50 16 0

ω
2π = 30

935 779 874 > 1000 > 1000
(935) (2337) (4370) (> 15000) (> 255000)

ω
2π = 50

976 807 908 > 1000 > 1000
(976) (2421) (4540) (> 15000) (> 255000)

(b) horizontal layers, IBC(0)

Table 3.18: Homogeneous model with Neumann condition on top. Convergence of the
algorithm on the homogeneous test case in the situation of Figure 3.18(d), with h ω

2π = 200.
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Homogeneous model with Sommerfeld condition on top

This case is close to the propagation of a circular wave in free space. Not surpris-
ingly, it gives the faster convergence. To be noted are still the difficulties with the
decomposition in many horizontal layers. However, Table 3.19(b) shows that the
preconditioner is quite efficient in this particular case.

# doms 16 64
# cuts n.a. 4 2 0 n.a. 20 6 0

ω
2π = 30

26 11 10 10 101 39 16 13
(26) (33) (50) (150) (101) (117) (144) (819)

ω
2π = 50

26 12 10 10 102 38 17 14
(26) (36) (50) (150) (102) (114) (153) (882)

# doms 256
# cuts n.a. 84 50 16 0

ω
2π = 30

314 136 89 42 32
(314) (408) (445) (630) (8160)

ω
2π = 50

397 166 119 73 88
(397) (498) (595) (1095) (22440)

(a) vertical layers, GIBC(2)

# doms 16 64
# cuts n.a. 4 2 0 n.a. 20 6 0

ω
2π = 30

74 33 28 23 256 121 81 76
(74) (99) (140) (345) (256) (363) (729) (4788)

ω
2π = 50

71 36 31 26 359 172 183 274
(71) (108) (155) (390) (359) (516) (1647) (17262)

# doms 256
# cuts n.a. 84 50 16 0

ω
2π = 30

795 251 152 76 47
(795) (753) (760) (1140) (11985)

ω
2π = 50

907 270 183 121 91
(907) (810) (915) (1815) (23205)

(b) horizontal layers, GIBC(2)

Table 3.19: Homogeneous model with Sommerfeld condition on top. Convergence of the
algorithm on the homogeneous test case in the situation of Figure 3.18(d), with h ω

2π = 200.
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# doms 16 64
# cuts n.a. 4 2 0 n.a. 20 6 0

ω
2π = 30

29 16 15 14 92 41 27 25
(29) (48) (75) (210) (92) (123) (243) (1575)

ω
2π = 50

28 17 15 14 93 41 30 29
(28) (51) (75) (210) (93) (123) (270) (1827)

# doms 256
# cuts n.a. 84 50 16 0

ω
2π = 30

260 153 121 101 96
(260) (459) (605) (1515) (24480)

ω
2π = 50

330 169 131 122 118
(330) (507) (655) (1830) (30090)

(a) vertical layers, IBC(0)

# doms 16 64
# cuts n.a. 4 2 0 n.a. 20 6 0

ω
2π = 30

58 39 37 35 176 160 143 138
(58) (117) (185) (525) (176) (480) (1287) (8694)

ω
2π = 50

62 44 41 38 191 180 148 138
(62) (132) (205) (570) (191) (540) (1332) (8694)

# doms 256
# cuts n.a. 84 50 16 0

ω
2π = 30

592 543 658 > 1000 > 1000
(592) (1629) (3290) (> 15000) (> 255000)

ω
2π = 50

609 554 644 > 1000 > 1000
(609) (1662) (3220) (> 15000) (> 255000)

(b) horizontal layers, IBC(0)

Table 3.20: Homogeneous model with Sommerfeld condition on top. Convergence of the
algorithm on the homogeneous test case in the situation of Figure 3.18(d), with h ω

2π = 200.





CHAPTER 4
Amplitude formulation for the

multiple obstacles scattering algorithm

In Section 2.5 we presented the multiple obstacles scattering algorithm for mul-
tiple scattering problems, that fits well in our multi-domain framework. The me-
thod is based on a covering (Section 2.3.2) of the computational domain, and we
concluded the presentation by noticing that, since the subdomains are actually
larger than the original domain, the method has little interest if the subproblems
are solved using classical finite elements or finite difference formulations. As an
alternative, there are different candidate methods for the solution of the subprob-
lems, that include integral representations and asymptotic methods, see [8, 35, 98]
for a presentation.

In this Chapter, we focus on the finite element method and propose to take ad-
vantage of the nature of these subproblems, that are single scattering problems,
to apply a faster solution algorithm to them. Let us mention that it is not the first
time that the principle of embedding the computational domain into a larger one
to take advantage of an efficient solver is proposed. In [36, 151], the idea was to
apply fast Poisson solvers to domains for which the method is not directly appli-
cable. More recently, similar techniques have been proposed for the Helmholtz
equation [78, 108]. These methods are known as fictitious domain, domain em-
bedding or capacitance matrix methods.

We will start by presenting an alternative formulation of the Helmholtz prob-
lem, applicable to single scattering problems, that allows for a coarser discretiza-
tion of the subproblems than the standard formulation. Such discretizations will
be discussed and the choice of the parameters will be motivated by numerical ex-
periments and efficiency-related arguments. On that basis, we will derive a new
implementation of the algorithm that leverages the new formulation to efficiently
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produce accurate solutions. After the presentation of some numerical results, we
will conclude by the description of some related methods.

4.1 Phase reduction formulation

The basic idea behind the fast solver for time-harmonic single scattering problems
was introduced in [6]. It makes use of a representation of the solution u ∈ C(Ω+)
as the product between the oscillatory part and its envelope:

u(x) = a(x)e ıkφ(x). (4.1)

The key point with this representation is that an estimation φ̃ of the phase φ is
relatively easy to obtain (Section 4.1.2) in the case of single scattering by a con-
vex obstacle, and that one can solve a problem to find the corresponding ampli-
tude. Also, while u(x) is an highly oscillatory function over the domain, requir-
ing fine meshes (typically nλ = 10− 20 points per wavelength, see Section 1.3.5)
for an accurate representation, the associated amplitude a and phase φ are much
smoother functions, especially away from the scatterers boundaries. In expression
(4.1), the amplitude function is real-valued only if the phase function corresponds
to the exact phase of the field u. If we relax that assumption, that decomposition
is no longer unique: suppose that an approximation φ̃ of the phase is available, it
is still possible to decompose the field with a similar expression, using a complex-
valued amplitude ã that contains the correction to the phase error:

ã(x) = a(x)e ık(φ(x)−φ̃(x)). (4.2)

In that case however, the amplitude might oscillate a lot where the phase error (or
the gradient thereof) is large, which is of course not desirable, hence the impor-
tance of a good phase estimation. Section 4.1.2 is dedicated to a more detailed
discussion of this point.

In this Section, we present the Phase Reduction–Finite Element Method (PR-
FEM) formulation of the propagation problem; the idea is to solve for the ampli-
tude ã of the solution, provided that an estimation of the phase φ̃ has been ob-
tained in a first step, by means of some (ideally fast) algorithm. If the estimation of
the phase is good enough, the corresponding envelope can be expected to oscil-
late slowly and one can solve for it on a coarse mesh. Once both ã and φ̃ quantities
are known, the field of interest u can be reconstructed by plugging them into for-
mula (4.1), interpolating them on an appropriate mesh if need be. Another interest
of such a formulation is that it is less subject (even not at all in 1d) to numerical
dispersion than the standard formulation [6].

We first introduce what we will call the amplitude formulation of the PR-FEM,
before introducing some phase estimation techniques for the single scattering
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Figure 4.1: From left to right: amplitude, estimated phase and original unknown of the
scattered field for a single scattering problem by the unit circle at k = 15 (top) and k =
50 (bottom). The first two quantities are much less oscillatory than the latter, especially
away from the boundary of the object. Some oscillations appear in the amplitude at high
frequency, mostly as a consequence of the increased inaccuracy of the low-order phase
propagator.

case. We then present a suitable kind of discretization of the problem, that ex-
ploits the regularity of the solution in terms of amplitude to significantly reduce
the number of unknowns.

4.1.1 Phase reduction formulation

We start by recalling the standard variational formulation of the Helmholtz equa-
tion for a scattering problem with an incident field uinc. For the sake of clarity,
we consider a simple Sommerfeld approximation of the radiation condition on
the truncation boundary Γ∞. (Higher order conditions like the BGT2 [17] are also
applicable, see [6] for a formulation with high order terms.) Supposing we have
truncated the domain with the Sommerfeld condition on Γ∞, the scattered field
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verifies:

−(∆+k2)u = 0 in Ω;

u =−uinc on Γ;

(∂n − ık)u = 0 on Γ∞.

(4.3)

The variational formulation of that problem is: find u ∈ H 1(Ω) such that∫
Ω

∇u ·∇v −k2uv dΩ

−
∫
Γ∞

ıkuv dΓ = 0,

∀v ∈ H 1(Ω). (4.4)

We reformulate the problem in terms of ã = e−ıkφ̃u, for some known phase func-
tion φ̃; phase estimation techniques are presented in Section 4.1.2. Injecting that
change of unknown in (4.4) and choosing test-functions of the form b̃ = e−ıkφ̃v
gives: find ã ∈ H 1∫

Ω
∇ã ·∇b̃

−k2(1−|∇φ̃|2)ãb̃

+ ık∇φ̃(
ã∇b̃ −∇ãb̃

)
dΩ

−
∫
Γ∞

ıkãb̃ dΓ = 0,

∀b̃ ∈ H 1(Ω). (4.5)

This new formulation resembles the classical formulation, with some additional
terms; it can still be easily implemented in a standard finite element solver, with
some minor modifications. Figure 4.1 shows, for a single scattering example un-
der plane wave illumination, the result of the computation via formulation (4.5) of
the envelope ã for a low-order phase estimation φ̃ (see next section), at moderate
and high frequencies. The high-frequency example exhibits the typical amplitude
oscillations that appear in presence of an erroneous phase estimation, while the
output in the low-frequency case is more satisfactory. The next Section proposes
more advanced techniques to improve the accuracy of the a priori phase estima-
tion.

Note the similarity with the starting point of geometrical optics presented in
Section 1.2.3, with the difference that no high frequency assumption is made to
neglect the term in the second derivative in a, and that the phase is supposed to
be known.
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4.1.2 Phase estimation

We insisted above that a key ingredient for the PR-FEM solution of single scatter-
ing problems is the estimation of the phase φ̃, in the whole computational do-
main. The authors of [6] propose a starter-propagator approach, where the phase
is estimated on the boundary Γ of the scatterer in a first step, then extended in the
wholeΩ.

The starter in case of a Neumann (sound-hard) problem, approximates the
trace of the solution on Γ by applying the On-Surface Radiation Condition (OSRC)
technique as approximation of the DtN map, via a Padé rationale approximation
of the square root operator [31, 117]. A low-order alternative is to use the Sommer-
feld condition to obtain ũΓ from ∂nuΓ:

ũΓ =
1

ık
∂nuΓ. (4.6)

In case of a Dirichlet (sound-soft) problem, this step is not necessary. The phase
on Γ is then extracted via a phase unwrapping technique [6], necessary to avoid
the undesired 2π discontinuities resulting from a direct phase calculation by the
formula (supposing u 6= 0):

φ̃= 1

ık
log

(u

ã

)
. (4.7)

A continuous phase is obtained by differentiating relation exp(ıkφ̃) = u
ã on the

(closed) path Γ and taking the real part:

∇Γφ̃=ℜe

(
1

ık

ã

u
∇Γ

u

ã

)
= F. (4.8)

The right-hand side F of that equation is known. Therefore, after taking the surface
divergence of it, one can compute the continuous (unwrapped) φc by solving a
FEM problem with a Dirichlet condition (obtained e.g. via (4.7)) at an arbitrary
point x0, via the weak formulation: find φc ∈ H 1/2(Γ) s.t.∫

Γ
∇Γφc ·∇Γϕc +∇Γ ·F ϕc dΓ= 0, ∀ϕc ∈ H 1/2(Γ). (4.9)

Once the phase is known on Γ, the next step is to extend it in the whole com-
putational domain by means of a propagator, with again different possible tech-
niques. A simple low-order propagator is to assume that the phase is directly pro-
portional to the distance to the obstacle boundary and to approximate it at a point
x inΩ away from the boundary by its distance from the boundary:

φ̃(x) = φ̃(xπ)+dist(x,xπ) (4.10)

where xπ is the projection of x on the surface, which is uniquely determined for
any point of the domain since we have supposed that Γ is convex:

xπ = argmin
x ∈ Γ

||x−xπ||. (4.11)
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(a) (b)

Figure 4.2: Evolution lines (schematic) of the phase propagator with the simple distance
approximation (a) or as solution of the eikonal equation (b), for an incident plane wave
coming from the left, scattered by the unit disc. Figure reproduced from [6].

For a more accurate but numerically more costly approximation of the phase,
one can solve the eikonal equation as in geometrical optics:

|∇φ̃|2 = 1 in Ω, (4.12)

which is a non-linear partial differential equation. Efficient approximations of the
phase field that solves equation (4.12) can be obtained by a fast marching algo-
rithm [163]. Higher order models can also be considered, e.g. the Beam Propaga-
tion Method (BPM) [127, 128]. Such methods are beyond the scope of the present
work; we again emphasize, though, that with more accurate approximations of the
phase φ̃, less oscillatory envelopes ã can be expected to be computed as solution
of (4.5). The result is therefore less sensitive to numerical pollution and the overall
quality of the final solution u after reconstruction is improved. In the next section,
we will also exploit this fact to compute that quantity on a coarser discretization,
which is a key ingredient to obtain a computationally efficient method.

4.2 Efficient implementation of the MOSA

The multiple obstacles scattering algorithm is practically unusable with the stan-
dard formulation (4.4), because the single scattering subproblems need to be solved
on the same grid as the original problem, leading to even larger problems in the
covering ofΩ by the set ofΩp defined in Section 2.3.2. In the previous section, we
have presented the PR-FEM formulation (4.5) for single scattering problems, that
allows for coarser discretizations and makes it possible to solve the high-frequency
subproblems efficiently.
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While PR-FEM is not suitable for multiple scattering problems, because the
phase estimation in that case is difficult, the combination of the MOSA iteration
with that formulation leads to a complete and usable multiple scattering FEM
solver.

4.2.1 Discretization for PR-FEM and MOSA

Figure 4.3: Illustration (on a low-frequency example) of the difference between a standard
mesh (left) and the mesh used to solve the problem with the MOSA combined with the PR-
FEM formulation (right). The grids match on the surface of the scatterers. The standard
mesh has 3846 triangles, whereas the PR-FEM mesh has 738 triangles.

To take advantage of the low dispersion properties of the PR-FEM formulation
to reduce the computational cost, much coarser meshes than with the standard
formulation should be used. However, one must still use sufficiently fine dis-
cretizations near the surface of the scattering objects, since an accurate extraction
of the phase of the incident wave must be performed in a first step. Since the am-
plitude and phase are expected to be smooth far off these surfaces, the mesh can
be made coarser as one moves away from them. A suitable discretization would
therefore be one that progressively coarsens with the distance to the nearest sur-
face, until it reaches a maximum value. The authors of [8] suggest the following
mesh density in function of the distance to the nearest boundary:

h(x) = min
{λ

2
,
λ

15
+dist

Γ
(x)

}
. (4.13)

An example of mesh that follows such a rule is illustrated in Figure 4.3. The actual
lower and upper bounds in formula (4.13) should actually result from a compro-
mise between efficiency and accuracy. In our algorithm, the quality of the overall
solution is driven by the accuracy of the solution of the coupled problem, defined
on the surfaces. Therefore, we prefer to use a finer surface mesh than we would
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choose for a single scattering problem, since experiments in Section 4.3.1 show
the importance of the surface discretization on the accuracy.

Defining the parameters Nλ and nλ as respectively the smaller and larger num-
ber of discretization points per wavelength (hence leading to the coarsest and
finest local mesh densities, resp.), we rewrite rule (4.13) as:

h(x) = min
{ λ

Nλ
,
λ

nλ
+dist

Γ
(x)

}
. (4.14)

With these notations, we see in Tables 4.1 and 4.2 that the relative increase in the
number of degrees of freedom is small when using a finer surface discretization,
especially when the domain is large. Therefore, we will use nλ = 30.

Nλ = 30 15 10 7.5 5 3
nλ = 15 – 80300 37150 21900 11300 6200
nλ = 30 320500 83350 40300 25500 15000 10000

Table 4.1: Number of degrees of freedom per subproblem. 4 objects, Ro = 4, k = 15. In
comparison, solving the problem on a uniform mesh requires 65500 dofs with nλ = 15
and 259355 dofs with nλ = 30.

Nλ = 30 15 10 7.5 5 3
nλ = 15 – 187731 84508 48500 23300 10500
nλ = 30 747200 190700 87850 52300 27100 14250

Table 4.2: Number of degrees of freedom per subproblem. 4 objects, Ro = 6, k = 15. In
comparison, solving the problem on a uniform mesh requires 172850 dofs with nλ = 15
and about 686000 dofs with nλ = 30.

These tables also show that the decrease in number of dofs is fast for small val-
ues of the mesh size ratio rλ = nλ/Nλ, but tends to become approximately linear
for larger values. We will see in Section 4.3.2 that the error tends to grow faster for
large values of rλ, so values of 3−5 are probably a good compromise.

Of course, with a rule such as (4.13) the gain in number of degrees of freedom
will depend on the size of the domain. For large domains (i.e. when the distance
between the truncation boundary and the objects is large), it will be determined
by the largest allowed mesh size (the region with fine mesh being a small subset
of the whole domain), whereas for smaller domains this number will be mostly
influenced by the smallest mesh size.

To compare the computational cost of the MOSA with PR-FEM and the stan-
dard FEM alone, one should take into account the factorization cost of the N sub-
problems with sizes given in the tables above to the one of the full problems. It
is clear that the MOSA becomes especially interesting in large domains, since the
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reduction in the number of dofs is more pronounced in such cases. An important
feature of the algorithm is that the subproblems are smaller and can be factored
in parallel. One should not overlook the cost of the iterations, though this phase is
parallelizable as well.

4.2.2 Fast iterations and stabilization

Now suppose that we have designed some method (Jacobi, Gauss-Seidel, a pre-
conditioned GMRES, . . . ) for solving the coupled interface problem (2.34) and thus
have an iteration operator that involves subproblem solves and takes a vector of
boundary data as input. An iteration of the algorithm is modified in the following
way to incorporate the PR-FEM formulation:

• before each subproblem solve, extract the phase φ̃c using the phase unwrap-
ping method (starter);

• compute the phase in volume with the propagator;

• solve the PR-FEM formulation for the amplitude ã. This implies assembling
and solving a new discrete system, since the phase appears explicitely in the
formulation;

• evaluate the solution in terms of the original unknown u on the surface
Γ=∪Γi , by injecting ã and φ̃ in relation (4.1).

After convergence, we also compute the solution of the coupled problem in a sim-
ilar fashion and project on the original mesh to visualize the full solution. As ex-
plained in the previous Section, the solutions produced by the two formulations
are different. The solutions of the full problem are therefore also (slightly) dif-
ferent, the one obtained with the PR-FEM being supposedly more accurate. Re-
garding the robustness of the method in function of the solver used, we will see in
Section 4.3.2 that its convergence is not much affected by the choice of the solver.

A practical variant of the algorithm above is to conserve the initial phase es-
timation over the iterations, instead of systematically computing a new one. In-
deed, from our observations, the evolution of the phase estimations with a low or-
der propagator becomes quite complicated after a few iterations: fast oscillations
appear on the boundary, that propagate in volume. These in turn lead to rapidly
changing amplitudes along the same lines, hence missing the goal of being able to
capture them on a coarse mesh (Figure 4.4). Eventually, even though the algorithm
converges, the reconstructed final solution is totally wrong if the mesh is not able
to capture these oscillations. That phenomenon tends to be more pronounced at
higher frequencies.
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Figure 4.4: The method can be stabilized by not recomputing a phase estimation at each
iteration, and keeping the initial estimation instead. Top: iso-values superimposed on the
norm of the gradient of the phase and amplitude after 7 iterations with renewed phase
estimation. The phase exhibits fast oscillations that are not well represented on the coars-
ened mesh away from the boundary of the object. They induce aligned amplitude oscil-
lations, resulting in a poor quality reconstructed solution. Bottom: by keeping the initial
phase estimation, the amplitude is smoother.
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A possible cause of the observed instability is the use of the low-order phase
propagator in our computations; we have not verified the behavior of the method
with a more accurate propagator such as the one of Figure 4.2(b). Alternatively,
we propose to attempt to stabilize the method by skipping the phase-related steps
in the iterations above and to keep to the smooth phase estimations φ̃s(x)(k) =
φ̃s(x)(0). Doing so, in addition to saving considerable amounts of work since the
amplitude systems to be solved are unchanged through the iterations, results in an
amplitude that varies relatively fast in the vicinity of the scatterers boundary but
not faster than the original unknown, and becomes smoother away from it. This
behaviour is well captured by a discretization such as the one shown in Figure 4.3
(right), provided that the mesh does not coarsen too fast with the distance to the
boundary. We found that a modification of rule (4.13) as:

h(x) = min
{ λ

Nλ
,
λ

nλ
+ (

dist
Γ

(x)
)c

}
, (4.15)

with the exponent c between 2−3 is a good compromise between mesh density
and accuracy.
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Figure 4.5: Using the initial phase estimation throughout the iterations has several advan-
tages: it leads to a much faster and more stable method, and converges slightly faster.

The method then converges slightly faster (Figure 4.5) and eventually produces
the correct solution (Figure 4.6), even at high frequency. In view of the arguments
listed above, we will abandon the method with phase estimations at each step and
follow our new strategy in all our subsequent numerical experiments.
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Figure 4.6: Amplitude, phase and original unknown for one of the subproblems after a few
iterations (k = 15). The ã and φ̃ have been computed by the algorithm on a PR-FEM mesh,
while ũ is reconstructed by interpolating ã and φ̃ on a fine mesh. On the top line, a new
phase estimation was computed (by the distance approximation), leading to unstability of
the method and wrong solution. On the bottom line, the initial phase estimation was kept
throughout the iterations in order to stabilize the method, which produces the correct
solution.

4.3 Numerical results

In this section, we present the results of some numerical experiments in relation
with the introduction of the PR-FEM formulation in the multiple scattering solver.
Some convergence results will be presented, but we will also focus on the evalua-
tion of the error with respect to the coarsening of the mesh, which is a main feature
of the proposed method.

To validate our approach, we measure the accuracy of the computed solutions
with the new formulation and compare it with a reference solution, which is com-
puted by the classical formulation on a very fine mesh (60 points per wavelength),
in order to reduce the effect of numerical dispersion. For the calculations with the
PR-FEM formulation, we will make use of the special discretizations introduced
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Figure 4.7: Full solution (k = 15) with 3 methods. From left to right: converged (tol= 10−4)
MOSA solution with PR-FEM and renewed phase estimation u(r,k)

PR-FEM, same with con-

served phase estimation u(s,k)
PR-FEM and direct FEM solution uFEM. The first two are obtained

on a PR-FEM mesh, while the latter was computed on a fine mesh and is used as reference.
The solution with renewed phase estimation has required more iterations and is less ac-
curate than the one with conserved phase.

in Section 4.2.1, and compare the evolution of the error for different values of the
parameters Nλ and nλ in rule (4.15) where the exponent has been chosen as c = 3,
unless otherwise noted.

We will compute relative errors in L2-norm, on the scattered field u with respect
to a reference solution uref:

e =
√∫

Ω |u −uref|2dΩ∫
Ω |uref|2dΩ

. (4.16)

In a first step, we study the error introduced by the PR-FEM formulation on a sin-
gle scattering example. We then perform the same kind of analysis on multiple
scattering test cases. Finally, we will give some convergence results for the pre-
conditioners discussed in Section 4.4.1.

4.3.1 PR-FEM for single scattering problems

In Tables 4.3 and 4.4, we report the relative error in the case of the scattering by
the unit disc, for two different sizes of the computational domain (i.e. we study
the same problem and vary the radius Ro of the truncation boundary), since the
pollution effect tends to be more pronounced further away from the scattering
surfaces. In each case, we use two different mesh densities on the boundary of the
object: nλ = 30 and nλ = 15, and increasing levels of mesh coarsening far from the
boundary, following the rule Nλ = nλ/rλ, where Nλ represents the coarsest dis-
cretization density and nλ remains fixed in the experiment. The case rλ = 1 thus
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corresponds to a uniform mesh density. (Calculations involving a mesh density
smaller than Nλ = 2 have been skipped.)

rλ = 1 2 3 4 5 10

nλ = 30 0.0045 0.0047 0.0066 0.0084 0.0079 0.0273

nλ = 15 0.0114 0.0114 0.0105 0.0183 0.0275 –

Table 4.3: Relative errors for different levels of mesh coarsening, at k = 15. The computa-
tional domain is a disk with unit inner radius and outer radius Ro = 2.

rλ = 1 2 3 4 5 10

nλ = 30 0.01 0.0095 0.0093 0.0095 0.0097 0.0165

nλ = 15 0.0145 0.0132 0.0148 0.0165 0.0178 –

Table 4.4: Relative errors for different levels of mesh coarsening, at k = 15. The computa-
tional domain is a disk with unit inner radius and outer radius Ro = 4.

We observe that the error remains relatively stable when the mesh is coarsened,
up to a certain level, confirming that the pollution effect is well reduced and de-
pends only little on the discretization. However, the error is more strongly im-
pacted when the mesh is coarsened on the boundary of the object, which is not
surprising since the source field is then less accurately represented.

−1.9 −0.0246 1.85

ℜe(utot)
−1.17 0.000823 1.17

ℜe(uscat)
5.83e −08 0.00855 0.0171

|uref−upr-fem|

Figure 4.8: Illustration of the error repartition in a domain with size Ro = 4. Left: total field
utot with the shadow region clearly visible; middle: scattered field uscat = utot −uinc, with
maximal amplitude in the shadow region and decaying amplitude in front of the object;
right: the error concentrates in the shadow region, further away from the boundary of the
scatterer as an effect of numerical dispersion.

A second observation is that the relative error is larger in the case of the largest
computational domain (Table 4.4). This is a consequence of the fact that the error
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concentrates in the shadow area, away from the boundary of the object. Indeed,
in the case of illumination by a plane wave, the scattered field has maximal am-
plitude, with no decay, in the shadow behind the object (since it must cancel the
incoming field), whereas the reflected wave in front of the object decays with the
distance to the boundary. The effect of numerical dispersion, i.e. the discrepancy
between the FEM and the PR-FEM solutions, is therefore mostly noticeable in the
shadow area, especially away from the object, where the phase error is maximal,
as illustrated on Figure 4.8. This effect is less pronounced when the truncation
boundary is placed closer to the object.

4.3.2 Multiple scattering

We first investigate the behaviour of the multiple scattering solver with the classi-
cal FEM formulation and with the new PR-FEM formulation (on different meshes).
We observe on Figure 4.9 that the convergence curves are almost identical during
the first iterations, and slightly diverge as the residual decreases. This can be un-
derstood as an effect of the coarser discretizations that less accurately represent
high frequency features of the solution.
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Figure 4.9: Convergence of the multiple scattering algorithm with the classical FEM for-
mulation (on fine mesh), and the PR-FEM formulation on the same grid and on coarser
meshes. The convergence is very similar in all cases, demonstrating that the method is
quite robust with respect to the solver used for the single scattering problems.

In Table 4.5, we perform the same kind of analysis as in the previous section.
Unlike the single scattering case, the error is now much more sensitive to the
coarsening of the discretization. The number of iterations for the convergence of
the method however remains quite stable. In an attempt to understand the reason
for this behaviour, we repeat the experiment, by choosing a much larger value for
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rλ = 1 2 3 4 5 10

nλ = 30 0.017 0.0385 0.0632 0.0932 0.1307 0.2921

(22) (24) (24) (26) (26) (27)

nλ = 15 0.0588 0.1228 0.1942 0.2716 0.3435 –

(24) (25) (26) (25) (26) –

Table 4.5: Relative errors for different levels of mesh coarsening for a multiple scattering
problem, at k = 15. Values in parentheses are the number of iterations for a residual re-
duction by 106.

1.96e −07 0.112 0.224

|uref−upr-fem|
1.38e −07 0.0366 0.0732

|uref−upr-fem|

Figure 4.10: Coarse (c = 3) versus fine (c = 15) discretization in the inner region. The
overall amplitude of the error is reduced, especially in the inner region. Both have been
obtained with fine mesh density nλ = 30 and rλ = 3; corresponding errors can be found in
Tables 4.5 and 4.6; we note a factor of 3 between the absolute errors in these two examples.

the exponent c in the mesh density formula (4.15), which has the effect of meshing
the region between the scatterers more finely.

We now observe that the error is less dependent on the discretization than in
the case where we allow a coarse mesh in the inner region, into which most of
the exchange of information takes place. It is also at this particular place that
resonance phenomena, that are harder to capture numerically, tend to occur. It
is therefore natural to maintain a sufficiently fine discretization in that region to
guarantee the accuracy of the solution. The impact of this refinement on the con-
vergence rate is very limited.
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rλ = 1 2 3 4 5 10

nλ = 30 0.017 0.0184 0.0203 0.0239 0.0291 0.0722

(22) (22) (23) (25) (25) (26)

Table 4.6: Relative errors for different levels of mesh coarsening for a multiple scattering
problem, at k = 15, with a refined mesh in the region between the scatterers (c = 15).
Values in parentheses are the number of iterations for a residual reduction by 106.

rλ = 1 2 3 4 5 10

eFEM 0.049 0.2124 0.4537 0.7195 0.9952 1.2682

#dofs 685725 195603 107358 77266 63575 45867

ePR-FEM 0.0199 0.041 0.0698 0.0993 0.135 0.2749

Ni t 22 23 25 25 26 27

#dofs (≈ 4×) 746900 222400 129450 98150 83750 65480

Table 4.7: Relative errors on the 4 objects case, at k = 15. A larger domain was considered,
with external radius Ro = 6.

We conclude our analysis by comparing the error of the standard FEM formula-
tion with our algorithm, when applied on similar meshes (Table 4.7). Despite the
reduced cost of the standard method, we see that the relative errors are an order
of magnitude larger for the standard method, leading to unacceptable values for
rλ > 1. We see that with a coarsening factor rλ = 3, the multiple obstacles scatter-
ing algorithm can achieve a comparable error while the 4 problems to be factored
are about 5 times smaller, which demonstrates the interest of that method. Fur-
thermore, we have seen that by refining the mesh in the multiple scattering region,
the accuracy could ever be improved, at reasonable additional cost.
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4.4 Related methods

4.4.1 Preconditioning the MOSA

Since solving a multiple scattering problem with our algorithm involves the so-
lution of the linear system given by (2.34) by some iterative method, it is natural
to try and use the preconditioning techniques presented in Section 2.2 to obtain
the solution as efficiently as possible. Basic iterative solvers like Jacobi and Gauss-
Seidel have been investigated in [99], and their performances have been compared
to a Krylov subspace solver (GMRES). We will focus on the latter, because, unlike
the basic solvers, it is guaranteed to converge. Indeed, the experiments in [99]
have shown that the basic solvers are not stable in the sense that they do not con-
verge at all frequencies. We now investigate some possible techniques for precon-
ditioning the system and discuss their relevance in terms of efficient use of the
resources.

We start by recalling the iteration operator of the MOSA:

F =


I G12 · · · G1S

G21 I · · · G2S
...

. . .
...

GS1 GS2 · · · I

 . (4.17)

It is a full matrix and its elements are transfer operators from an interface to an-
other, defined by (2.35). This limits the possibilities of designing a dedicated pre-
conditioner. We will limit our investigation on the basic preconditioners presen-
ted in Section 2.2.3: the Gauss-Seidel and symmetrical Gauss-Seidel precondition-
ers (since the diagonal of the MOSA operator is made exclusively of identity oper-
ators, a Jacobi preconditioner would be pointless). Defining the lower and upper
triangular parts of F as respectively:

FL =


I
G21 I

...
. . .

GS1 GS2 · · · I

 ; FU =


I G12 · · · G1S

I · · · G2S
. . .

...
I

 , (4.18)

the Gauss-Seidel preconditioner is given by F−1
L , and the symmetrical version

thereof is, in our case, M−1
SGS = F−1

U F−1
L . Since they are triangular operators, they

can be inverted easily; we will see that we can give the application of these inverse
to a vector an interpretation as sequences of solves, as we did for the Schwarz al-
gorithm in Section 3.
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We give an example for the case of 3 scatterers. The inverse of FL is:

FL =


I

−G21 I

−G31 +G32G21 −G32 I

 . (4.19)

This example is sufficient to see that our preconditioner for more domains will
involve compositions of the transfer operators Gsq , while conserving a triangular
structure. If we apply it to a vector r = [r1,r2,r3]T , we find the recurrence relation
for r ′ = F−1

L r :

r ′
1 = r1

r ′
2 = r2 −G21r1

r ′
3 = r3 + (−G31 +G32G21)r1 −G32r2

= r1

= r2 −G21r ′
1

= r3 −G31r ′
1 −G32r ′

2,

(4.20)

which is easily extended to the case of more domains:

r ′
s = rs −

s−1∑
q=1

Gsq r ′
q . (4.21)

The application of F−1
U is very similar. Recalling that the output of Gsq r ′

q is ob-
tained for all s at once by solving a single problem (2.35), we can write routines for
the application of our preconditioners as Algorithms 4.1 and 4.2, that involve the
sequential solution of N −1 (resp. 2(N −1)) problems.

It is clear from the structure of Algorithms 4.1 and 4.2 that they are sequential by
nature and cannot be run in parallel, unlike the iteration operator 2.5. Since each
sweep involves the solution of N−1 subproblems, it is clear that the duration of an
iteration of the preconditioned algorithm is doubled (resp. tripled) in a sequential
implementation, and multiplied by N in a parallel implementation. Therefore, us-
ing such preconditioners seems to have little practical interest since the number
of iterations decreases only by a factor of 2 in the case of the Gauss-Seidel precon-
ditioner, and by less than 3 in the case of the symmetric Gauss-Seidel, as will be
seen on a numerical experiment in Section 4.4.1. Alternatively, one could envision
an hybrid method that makes use of fast approximations (e.g. integral or asymp-
totic methods, see Sections 1.2.1 and 1.2.3) to speed up the solution of the single
scattering subproblems in the preconditioners, e.g. an asymptotic method suit-
able for high frequencies.

Another option is to adopt a less column-oriented strategy in the matrix-vector
products, by splitting the application of the G•q operators and having dedicated
solvers for each transfer operator instead of applying them all at once. This makes
sense, since approximately half of the information so obtained is discarded in the
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Algorithm 4.1: Gauss-Seidel preconditioner for the MOSA: r ← F−1
L r

for i = 1 : N −1
// Solve subproblem
uD ← ri on Γi

Solve Hi ui = 0, s.t. ui = ri on Γi

// Triangular update
for j = i +1 : N

r j ← r j −ui |Γ j

end
end

Algorithm 4.2: Symmetric Gauss-Seidel preconditioner for the MOSA:
r ← F−1

U F−1
L r

r1 ← r1

// Forward sweep
for i = 1 : N −1

uD ← ri on Γi

Solve Hi ui = 0, s.t. ui = ri on Γi

for j = i +1 : N
r j ← r j −ui |Γ j

end
end

// Backward sweep
for i = N : 2

uD ← ri on Γi

Solve Hi ui = 0, s.t. ui = ri on Γi

for j = i −1 : 1
r j ← r j −ui |Γ j

end
end
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triangular update, while the fine discretizations on the surfaces make the over-
all solves quite costly. Also, it would reintroduce some parallelism in the process.
Finally, it would enable the implementation of preconditioners based on the in-
teraction distance between any two obstacles as proposed in [8].

A conclusion of this discussion is that the current implementation with simul-
taneous transfers by solving a full domain problem (inΩ+

q forG•q ) is clearly subop-
timal in the context of preconditioners, even with the PR-FEM, and is not flexible
enough. Though the above ideas or a combination of them could potentially re-
duce the preconditioners application cost, they are left for further investigation, as
well as the design of more advanced preconditioning strategies. A currently unex-
plored way is the construction of some deflation space by using e.g. plane waves,
like has been proposed in the DDM context [137, 172]. The balancing Neumann-
Neumann preconditioner [74] could be a good candidate.

We now give some results and compare the convergence of the methods re-
sulting of the implementation of these preconditioners. Since the preconditioned
systems have same solution as the initial one, there is no need to study the error
here, and only convergence results are presented.

Figure 4.11: Geometry of the scattering problem by 7 objects used to test the method and
the preconditioners.

We used the more complex test case of Figure 4.11, with 7 scattering objects.
Figure 4.12 shows that in all cases the convergence is smooth, with significantly
improved rates when the preconditioners are used, which is the expected result.
In Table 4.8, we report iteration counts on the same test case at increasing fre-
quencies.

One can notice that in the unpreconditioned case, the iteration count tends to
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Figure 4.12: Convergence of the MOSA with different preconditioning strategies. All three
methods converge smoothly, with improved rates for the preconditioned versions. The
cost of the preconditioner applications is however a limiting factor. The test case is the
one shown on Figure 4.11 with k = 45.

k = 15 30 45 60 75

Unpreconditioned 40 39 42 50 55

Gauss-Seidel 22 20 22 26 29

Symmetric G-S 17 16 16 21 22

Table 4.8: Iteration counts (10−4) of the MOSA with different preconditioners. The algo-
rithm is quite stable with the wavenumber. The test case is the one shown on Figure 4.11.
Right preconditioning was used to make the residuals comparable.

grow significantly with the wavenumber, while the preconditioners (especially the
symmetric Gauss-Seidel) seem to make that dependency less pronounced, while
the iteration count is well reduced in both cases. As discussed above, however, the
current implementation does not allow an efficient application of such precondi-
tioners, and their cost is comparable or higher (for the symmetric) to that of the
full operator. However the introduction of alternative solvers in the precondition-
ers, resulting in a hybrid method, could help to make the overall method more
computationally attractive.

4.4.2 Macro Basis Functions

The multiple obstacles scattering algorithm, like the other multi-domain methods
presented in this work, solves a problem over surface unknowns and then recon-
structs the solution in volume. However, at each iteration the subproblems are
actually solved in volume and the surface data is extracted, while the rest of the
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solution is discarded. From this observation, we attempted in [181] to define an
alternative method to take advantage of the available volumic data. The idea is to
iterate as in the usual algorithm, with the difference that the subsolutions of the
subproblems are progressively collected and orthogonalized to build a subspace,
into which the solution to the full problem is sought after completion of each iter-
ation.

This method is inspired from the concept of Macro Basis Functions (MBFs) [46,
104], also referred to as Characteristic Basis Functions (CBF) [184], that are a class
of basis functions whose support is the entire computational domain Ω+. That
property contrasts with standard finite element basis functions, the support of
which is generally restricted to a few mesh elements (e.g. those touching a given
mesh vertex for standard P1 elements). The MBFs are constructed as a linear com-
bination of the standard basis functions, and can thus be seen as higher level ba-
sis functions, built on top of the standard ones. As such, if we denote by W 0(Ω+)
the N -dimensional finite element space in which we are seeking the discrete so-
lution of the problem, a reduced set of P linearly independent MBFs spans a P-
dimensional subspace of solutions W MBF(Ω+) ⊂ W 0(Ω+). An approximation ũ(x)
of the solution to the original problem can of course be expressed inΩ+ as a linear
combination of the P MBFs:

ũ(x) =
P∑

k=1
αk uk (x). (4.22)

In matrix form, we can write
ũ = PMBFα, (4.23)

where PMBF = [u1, . . . ,uP ] is the MBF basis of W MBF(Ω+
h ), andα= [α1, . . . ,αP ] is the

vector of coordinates of ũ(x) in that basis.

Although that subspace does not necessarily contain the standard FE solution,
its orthogonal projection onto this subspace is its best approximation in the least-
square sense. If the discretized problem to solve reads

Au = b, (4.24)

and a basis PMBF of dimension P is available, the coordinates α of the projected
solution in (4.23) are obtained by solving the normal equation:

Aredα= P T
MBF b, (4.25)

with Ared = P T
MBF APMBF the reduced matrix of the new system. Although this ma-

trix P×P is dense, it should be much smaller than the original system matrix N×N .
Equation (4.25) can thus be straightforwardly solved to find the approximated so-
lution, without solving the original system.
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Of course, the success of this approach strongly relies on an appropriate choice
of the basis. By noticing that the MOSA produces the terms of decomposition
(2.36), one can expect them to form a suitable basis into which a good quality
approximation can be found after a few iterations.

While the method seems to work when the standard formulation (4.4) is used to
solve the subproblems (which is extremely costly), it fails when the PR-FEM is in-
troduced. This is because the full problem to be solved is defined by the standard
formulation; subsolutions obtained with the same formulation verify that equa-
tion (in particular, they undergo the same numerical dispersion), and their resid-
ual therefore vanishes away from the boundaries. Subsolutions obtained with an
alternative solver do not have that property and consequently the subspace they
span does not contain the solution to the full problem, thereby limiting the accu-
racy.



Conclusion

The size of the linear systems arising from the discretization of the PDEs that
describe propagation phenomena limits their solution by standard factorization
methods based on gaussian elimination, even with state-of-the-art multifrontal
solvers: at high frequencies, their solution becomes so demanding in terms of
computation time and memory that it becomes practically impossible to handle,
at least in an industrial context. Usual iterative methods and preconditioners for
the discrete operator also fail to solve such problems.

Therefore, computational engineers are looking for alternative methods, that
can better take advantage of the power of massively parallel computer architec-
tures. An idea is to exploit the direct solvers on subsystems of manageable size,
while an external loop would try to converge towards the global solution by com-
bining the solutions of these subsystems. The methods investigated in this work
belong to that category of “hybrid” direct/iterative solvers.

Multi-domain methods

We have proposed a common framework for a class of methods that reformulates,
at the continuous level, the problem in terms of unknown surface sources in a set
of new domains, such that they produce an equivalent solution once combined.
Since the new problem is formulated as a linear system that can be solved by it-
erative solvers, we found it natural to look for a preconditioner to speed up its
convergence. This is different than directly preconditioning the discretized oper-
ator, since we first design a new solver with new unknowns for the problem, and
then try to improve it by adding a second level.

Optimized Schwarz method

Our sweeping preconditioner for the non-overlapping optimized Schwarz method
is based on an improved exchange of information between distant subdomains;
with this observation, we think that it makes sense to make the link with the tech-
niques of “coarse grids” that were previously introduced in the literature and that
achieve such global communication.
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To our knowledge, preconditioning such a matrix-free iteration operator by
means of an approximation of it, also expressed in terms of a combination of sub-
problem solves as we did for the domain decomposition algorithm, is an original
approach. We have presented two of such methods, but any other method that
fits into the framework could benefit from a similar kind of preconditioning. Of
course, other preconditioning strategies could also be employed.

We have shown with various numerical tests on both scalar (acoustic) and vec-
tor (electromagnetic) test cases that the proposed preconditioner allows to sub-
stantially reduce the number of iterations, when a good approximation of the trans-
mission operator between the subdomains is available. Such approximations are
easy to obtain when the propagation medium is homogeneous; the construction
of efficient approximations for non-homogeneous media remains an open prob-
lem. In addition to reducing the number of iterations, the preconditioner can also
drastically reduce the time-to-solution and exploit parallelism when solving prob-
lems with multiple right-hand sides, using pipelining. For single right-hand side
problems, we have shown that some level of parallel efficiency can be restored by
doing partial sweeps over groups of subdomains.

Multiple obstacles scattering algorithm

Another advantage of the multi-domain approach is that it can enable faster so-
lution techniques for the subproblems that would not be applicable for the full
problem, like in the case of the algorithm for multiple scattering problems. Note
that this is independent of the use of a preconditioner for the resulting method. In
the case of a modified subproblem solver, the final (combined) solution can be dif-
ferent than the solution obtained by a direct solver and the standard formulation,
but still constitutes a valid solution that can even be more accurate.

Perspectives for future research

Below is a list of future directions of research or improvements that could be made
to our methods:

• we have seen that our preconditioners tend to be sequential, which makes
their application quite expensive on parallel machines, unless computa-
tions are pipelined or cuts are introduced to make them more parallel. In-
dependently, another way of speeding up their application would be to use
fast solvers in the preconditioner stage. The resulting loss of accuracy would
decrease the efficiency of the preconditioner and result in an increased iter-
ation count, but this could be compensated for by the gain in application
time and result in a shorter time to solution;

• since we iterate over surface data, unknowns in volume are discarded after
the solution of the subproblems. Instead, one could eliminate these by com-
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puting the (factorization of the) Schur complement of the surface unknowns
and solving for these only. This could potentially be implemented efficiently
due to the fact that the right-hand sides for all the subproblems are sparse
(the subproblems only have surface sources). The solution in volume of the
subdomains should only be computed after convergence of the solver, for
the construction of the full solution;

• we have seen that propagation problems are more easily solved when the
medium is dissipative, and that it is also true for domain decomposition
methods. Since the Laplace-shifted preconditioner approximates the op-
erator by a similar one with dissipation, a candidate solver for the shifted
problem could be a multi-domain method.

• the efficiency of the domain decomposition algorithm is strongly influenced
by the quality of the approximation of the DtN map. While good local ap-
proximations are available for homogeneous media, we have found that
these are less well-adapted to the non-homogeneous case. Developing such
approximations specifically for this situation would greatly improve the effi-
ciency of the method and the double sweep preconditioner, since it is based
on the assumption of an ideal transmission condition. Using PMLs for that
purpose seems a promising solution, although it currently requires either a
more complex implementation or a modification of the geometry to phys-
ically append the PMLs. In Appendix C, we give some details on the two
different ways of constructing a non-local approximation of the DtN map
by means of PMLs, in a finite element context. As both approaches are com-
putationally expensive, efficient implementations would be attractive. An
interesting direction of research would be to further investigate the matrix
probing technique.





APPENDIX A
Formal construction

of the double sweep preconditioner

Here we detail how the matrix of the iteration operator FA (3.6) was formed in
Section 3.1.3, when analytical solutions of the PDEs in the Schwarz algorithm are
used. Applying algorithm (2.23–2.24) with Krylov acceleration, we have to solve
the subproblems (recall that external sources are cancelled in the definition of op-
erator F and that we use S = D = −ık, so we apply the same condition on the
artificial interfaces than on the external boundaries):

−(∂xx +k2)u j = 0 inΩ j

(∂n − ık)u j = g j i on Σi j

(∂n − ık)u j = 0 on {xl , xr }.
(A.1)

The solutions of these problems are a superposition of a forward and a backward
wave:

u j (x, gl , gr ) = A f , j exp ıkx + Ab, j exp−ıkx, x ∈Ω j , j = 1, . . . , N ,

with respective amplitudes given as functions of the impedance data gl and gr on
the artificial boundary (we suffix by l and r quantities or coordinates associated
with resp. the left and right side of the considered domain):

A f , j =− gl

2ık
exp ıkxl ; Ab, j =− gr

2ık
exp ıkxr , (A.2)

While the matrix is easy to form numerically, its formal expression is rather techni-
cal and requires some definitions. We first number the unknowns of the Schwarz
algorithm as g = [g12, g21, g23, . . . ]T , where an unknown gi j corresponds to the
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156 Formal construction of the double sweep preconditioner

impedance data of the boundary condition for problem i , on Σi j . There are two
unknowns per artificial interface, for a total of M = 2(N −1) unknowns. Then, we
classically number the entries of the matrix as:

F =

 F11 . . . F1M
...

. . .
...

FM1 . . . FM M

 ,

where entry Fmn refers to the m-th row and n-th column. So we have two dif-
ferent ways of indexing the unknowns: the “matrix index” gm and the “problem
index” gi j . As both are convenient depending on the context, we define the index
mappings:

m(i , j ) =
{ i + j −1 if i > j

i + j −2 if i < j
;

[i , j ](m) =
{

[ m+1
2 , m+3

2 ] if m = 1,3, · · ·
[ m

2 +1, m
2 ] if m = 2,4, · · ·

Each unknown gi j has a companion unknown g j i associated to the same interface
Σi j . In the matrix indexing, we will write g ′

m the unknown associated to gm , with
the index relation:

m′ = m − (−1)m .

The column F·,n is the output of the update relation (2.27) applied to the n-th col-
umn of an identity matrix as source vector g k , so the m-th entry of that column
will be:

Fmn = δmn +δm′n +2ıku j (m)(xΣi j (m) ,δ2( j (m)−1),n ,δ2 j (m)−1,n). (A.3)

In the n-th column, at most 3 entries have a non-zero contribution from at least
one of its terms: the n-th entry (the one on the diagonal of the matrix) is exactly
1, as only the δnn term contributes; the n′-th is 0, because the δm′n term is ex-
actly canceled by the problem contribution as an effect of the exact transmission
condition; and the (n±2)-th only has the problem contribution alone. The matrix
therefore has the following structure for N subdomains:

FA(N ) =



1 0∗ b2

0∗ 1 0

0 1 0∗ . . .
b2 0∗ 1

. . .
. . .

bN−1

0

0 1 0∗

bN−1 0∗ 1


,
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where parameters bi depend only on the size of the subdomains ∆i = xΣi+1 − xΣi

(we introduce the simplified notation Σk = Σi j , with k = min(i , j )): bi = exp ık∆i .
The 0∗ entries indicate values that are 0 as the result of the cancellation of 2 contri-
butions in expression (A.3). (We will see that in the numerical solution case, they
are no longer 0.) The condition number of FA(N ) is small. For example, for the
case of 3 subdomains, the matrix is:

FA(3) =


1 0∗ b2

0∗ 1 0

0 1 0∗

b2 0∗ 1

 .

One can easily verify that all eigenvalues are equal to 1 (λ1−4 = 1) and that only 2
independent eigenvectors exist: [1,0,0,0] and [0,0,0,1]. They are indeed the only
possible invariants since the wave they produce leaves the domain via the external
boundaries instead of coupling to other subdomains. Since b2 has unit modulus
(|bi ,1<i<N | = 1), we have for the condition number, in spectral norm:

||FA(3)||2 = ||F−1
A (3)||2 =

√
1

2
|b2|2 +

1

2

√
|b2|4 +4|b2|2 +1;

κ2(FA(3)) = ||FA(3)||2||F−1
A (3)||2

= |b2|2
2

+
√
|b2|4 +4|b2|2

2
+1

=
( |b2|

2
+

√
|b2|2

4
+1

)2
= 2.618.

The condition number grows linearly with the number of subdomains, as shown
by Table A.1.

N 2 3 4 5 10 20 50 100
κ2 1 2.62 4.09 5.41 11.94 24.57 63 126.67

Table A.1: Condition number of the iteration matrix FA(N ) for increasing number of sub-
domains.





APPENDIX B
Integral representation

of the fields (scalar case)

This Section is a very succinct presentation of the potential theory and integral
methods, and is not meant to be exhaustive. In particular, questions related to the
solvability of the integral equations are not discussed. For a detailed and rigorous
presentation, we refer to [44, 139].

uinc

uscat

Ω−

Γ

n̂

Figure B.1: Scattering by a single object Ω− with boundary Γ = ∂Ω−. The computational
domain of the exterior problem isΩ= Rd \Ω−.

In the practically important case of an homogeneous propagation medium (e.g.
air, water or vacuum), the scattering problem by a conducting object defined as
(see Figure B.1):

−(∆+k2)u = 0 in Ω+ =Rd \Ω−;

u =−uinc on Γ,
(B.1)

together with radiation condition (1.3), admits as exact solution for the scattered
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160 Integral representation of the fields (scalar case)

field the integral representation:

u(x) =−
∫
Γ

G(x,y) ∂ny u|Γ(y) dΓ+
∫
Γ
∂nyG(x,y) u|Γ(y) dΓ, ∀x ∈Ω. (B.2)

This result is known as the representation theorem [139]. It features the Green
function (or fundamental solution) of the Helmholtz operator G(·,y) centered on
y in Rd (1.2), that verifies:−(∆+k2)G(·,y) = δy in Rd ,

G(·,y) is outgoing.
(B.3)

It admits analytical expressions:

∀x 6= y, G(x,y) =


ı
4 H 1

0 (k‖x−y‖) if d = 2,

e ık‖x−y‖
4π‖x−y‖ if d = 3.

(B.4)

These functions decay respectively as 1p
r

and 1
r as r → ∞, which is consistent

with the radiation condition (1.3) (H 1
0 is zero-th order Hankel’s function of the

first kind), and exhibit a singularity at their local origin: G(y,y) = ∞. Since they
describe the wave emitted by a point source located in y, they correspond to the
impulse response of the Helmholtz operator. Note that other fundamental solu-
tions can be used [131].

The integral representation theorem (B.2) states that, provided that the Cauchy
data (the field and its normal trace) are known everywhere along the boundary
Γ, the solution can be found at any point in Ω by simply evaluating an integral
over the surface Γ. This is generally not the case in practice, since the boundary
conditions of the problem only specify either the Dirichlet or Neumann data, and
computing the one from the other is as costly as solving the problem.

Let L and M be respectively the single layer and double layer volume integral
operators defined as:

L : H−1/2(Γ) −→ H 1(Rd \Γ)

ρ 7−→ Lρ(x) =
∫
Γ

G(x,y) ρ(y) dΓ(y), ∀x in Rd \Γ.

M : H 1/2(Γ) −→ H 1(Rd \Γ)

λ 7−→ Mλ(x) =−
∫
Γ
∂nyG(x,y) λ(y) dΓ(y), ∀x in Rd \Γ.

(B.5)
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applied to surface densities ρ and λ. We speak of the single and double layer po-
tentials Lρ and Mλ, that have the properties of verifying the Helmholtz equation
together with the radiation condition. Thus these potentials can both be regarded
as outgoing waves. The solution field can be written as a sum of such potentials,
with an appropriate choice of densities ρ and λ:

u(x) =Lρ(x)+Mλ(x), ∀x in Ω. (B.6)

Let us remark that this decomposition is not unique: for any incident wave, there
are an infinity of (ρ,λ) combinations that produce the scattered field, provided
that they verify the boundary conditions. It is important for the following to no-
tice that the same representation also holds for a fictitious field defined inside the
objectΩ−.

B.1 Boundary integral operators

The trace and normal trace operators γ±0 and γ±1 are defined as:

∀x ∈ Γ :

γ±0 g (x) := lim
z∈Ω±→x

g (z),

γ±1 g (x) := lim
z∈Ω±→x

∂nz g (z).
(B.7)

We have defined interior (−) and exterior (+) trace operators since we will see
that the potentials (B.5) have the property of being discontinuous across the in-
terface Γ. We first introduce the set of boundary integral operators:

L : H−1/2(Γ) −→ H 1/2(Γ)

ρ 7−→ Lρ(x) =
∫
Γ

G(x,y) ρ(y) dΓ(y), ∀x on Γ;

N : H−1/2(Γ) −→ H−1/2(Γ)

ρ 7−→ Nρ(x) = ∂nx

∫
Γ

G(x,y) ρ(y) dΓ(y), ∀x on Γ;

M : H 1/2(Γ) −→ H 1/2(Γ)

λ 7−→ Mλ(x) =−
∫
Γ
∂nyG(x,y) λ(y) dΓ(y), ∀x on Γ;

D : H 1/2(Γ) −→ H−1/2(Γ)

λ 7−→ Dλ(x) =−∂nx

∫
Γ
∂nyG(x,y) λ(y) dΓ(y), ∀x on Γ.

(B.8)

Compared to the volume integral operators (B.5), the latters are defined from
the boundary Γ to itself, whereas the others were defined in volume. This implies
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that the singularity of the Green function is now part of the integrals in (B.8), which
requires extra care in their numerical evaluation. This also implies that while the
single layer potential is continuous across the boundary Γ, its normal derivative
is not. Conversely, the double layer potential is discontinuous, while its normal
derivative is continuous. Making use of the trace operators (B.7) on the single and
double layer potentials (B.5), one obtains the jump relations summarized as:

γ±0 Lρ = Lρ; γ±0 Mλ= (∓ I
2 +M

)
λ;

γ±1 Lρ = (∓ I
2 +N

)
ρ; γ±1 Mλ= Dλ.

(B.9)

Using these jump relations, and applying them to the traces of the exterior and
(fictitious) interior total fields:

utot(x) =Lρ(x)+Mλ(x)+uinc ∀x in Ω+;

u−
tot(x) =Lρ(x)+Mλ(x)+uinc ∀x in Ω−,

(B.10)

one finally finds that the densities ρ and λ are naturally the jumps of the traces of
the total fields: [

ρ

λ

]
=

[
(∂nu−

tot −∂nutot)|Γ
(u−

tot −utot)|Γ

]
. (B.11)

From there, since the interior field is fictitious and can be set to 0, one obtainsλ= 0
(recall the boundary condition utot = 0 on Γ). Still it must verify some boundary
conditions on Γ, the choice of which gives raise to the family of boundary inte-
gral equations that are equivalent equations, with unknown ρ, to the scattering
problem (B.1):

Lρ =−uinc on Γ;

(
I

2
+N )ρ =−∂nuinc on Γ.

(B.12)

The first of these equations is an integral equation of the first kind, sometimes
known as the electric field integral equation (EFIE). The second is an integral equa-
tion of the second kind, known as the magnetic field integral equation (MFIE). A
combination of them is often prefered for its enhanced convergence properties
when solved numerically and is then called a combined field integral equation
(CFIE).

When these equations are discretized, they result in the boundary element me-
thod (BEM), also known as the method of moments (MoM) in the context of elec-
tromagnetism. Compared to volumic methods, integral methods have the advan-
tage of reducing the number of unknowns since one solves a problem in dimen-
sion d −1. This makes them well adapted for applications where one is interested
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in the far field, like for the practically important calculation of radar cross-sections
(RCS) of metallic objects. However, the resulting matrices are full and can only be
solved by iterative solvers. Also, the Green function is only available for homo-
geneous media, which rules out the application of integral methods for a large
category of problems, for which volumic methods are more natural candidates.

B.2 Dirichlet-to-Neumann map

The Dirichlet-to-Neumann (DtN) operator is a practically important mathemat-
ical tool. Its definition is rather simple: when applied to a function defined on
some surface Γ that is the boundary of a volumic domain Ω, it returns the nor-
mal derivative of the prolungation of the function inΩ, for some governing linear
operator. The normal derivative is the inner product of the local unit normal to
the surface with the gradient of the function: ∂nx = (n̂(x) · ∇). In this section we
give expressions of the DtN map using the boundary integral operators introduced
above.

We can give a formal definition of the DtN map, noted D, by means of the trace
operators (B.7) introduced in the previous Section:

D : H 1/2(Γ) −→ H−1/2(Γ)

u 7−→ γ+1 u(x) =D γ+0 u(x) = ∂nx u(x), ∀x on Γ.
(B.13)

Recalling the representation of the exterior field (B.2) with the Cauchy data and
the volume integral operators (B.5), we have:

u(x) =−L(∂nu|Γ)(x)−M(u|Γ)(x) , ∀x in Ω+ \Γ. (B.14)

Applying the exterior trace operators (B.7) to that expression and using the jump
relations (B.9) gives the two relations:

γ+0 u =−Lγ+1 − (−I /2+M)γ+0 u; (B.15)

γ+1 u =−(−I /2+N )γ+1 u −Dγ+0 u. (B.16)

Transforming these equations we obtain expressions that can be identified to def-
inition (B.13):

γ+1 u =−L−1(I /2+M)γ+0 u; (B.17)

γ+1 u =−(I /2+N )−1Dγ+0 u. (B.18)

Thus we have two different expressions of the DtN map in terms of boundary in-
tegral operators. They involve the inverse of some of these operators, which, pro-
vided that they exist, amounts to solving respectively an EFIE and a MFIE problem
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(compare with (B.12)). Thus obtaining the application of an accurate version of
the DtN map by these techniques is possible but still computationally demand-
ing.



APPENDIX C
Non-local approximation

of the DtN map based on PMLs

C.1 Explicit construction of the DtN map from the black
box

Recall the non-overlapping optimized Schwarz algorithm:

−(∆+k2)u(m+1)
i = 0 inΩi

(∂n +S)u(m+1)
i = (−∂n +S)u(m)

j on Σi j

= g (m)
i j ,

(C.1)

with k the wavenumber and the update:

g (m+1)
i j = −∂nu(m+1)

j +Su(m+1)
j on Σi j

= −g (m)
j i +2Su(m+1)

j .
(C.2)

Boundary conditions on ∂Ωi ∩ ∂Ω are conserved from the original problem (we
assume they are homogeneous Dirichlet in the following).

In order to solve the PDEs in the algorithm by the FEM, we use the weak form
(dropping the iteration index):

0 = ∫
Ωi

∇ui∇v −∫
Ωi

k2ui v −∫
∂Ωi

∂nui v inΩi ,∀v ∈ H 1(Ωi )

= ∫
Ωi

∇ui∇v −∫
Ωi

k2ui v −∫
∂Ωi

(−Sui + gi j )v,
(C.3)

where the boundary condition was injected to replace the normal derivative in the
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166 Non-local approximation of the DtN map based on PMLs

boundary term. We note that the term
∫
∂Ωi

Sui v appears in the expression above,
where S should be the DtN map. Let’s write the weak form of the update (C.2),
using the same set of test functions v on Σi j as above:

∫
∂Ωi

g (m+1)
i j v = −∫

∂Ωi
g (m)

j i v +2
∫
∂Ωi

Su(m+1)
j v on Σi j ,∀v ∈ H 1

0 (Σi j ). (C.4)

The quantity
∫
∂Ωi

Sui v is again required to compute the update, with the differ-

ence that u(m+1)
i is here a known function. Note that the result of this update di-

rectly appears as the right-hand side in the formulation above, at the next itera-
tion. This lets us redefine the unknowns of the Schwarz algorithm as the integral
(against the test functions) of the gi j functions used previously:

λ(m+1)
i j = ∫

∂Ωi
g (m+1)

i j v = −λ(m)
j i +2

∫
∂Ωi

Su(m+1)
j v on Σi j . (C.5)

Thus, in the weak version of the algorithm, we do not need the explicit version
of S , but rather its integral against some test functions. To extract this from the
black box, we define a problem in a small domain Ωbb , with Dirichlet boundary
condition on the boundary Σ where we would like to obtain the DtN map, a PML
on the opposite boundary, and boundary conditions inherited from the reference
problem on the other sides.

We proceed in two steps: first we solve (by FE) the problem above for some right
hand side, and then we extract the quantity of interest from the solution ubb . Fol-
lowing the approach of [176], we compute it as (assuming homogeneous Dirichlet
on all boundaries, except Σ):∫

ΣSubb v = ∫
Σ∂nubb v = ∫

Σn ·∇ubb v on Σ,∀v ∈ H 1(Σ)
= ∫

Ωbb
∇· (∇ubb v)

= ∫
Ωbb

(∇ubb∇v +∆ubb v)
= ∫

Ωbb
(∇ubb∇v −k2ubb v),

(C.6)

using equation (C.1) to obtain the last equality.

In the discrete formulation, where we denote by Λ the vector consisting of the
integrals in (C.6), these two terms correspond to parts of the mass and stiffness
matrices related to the test functions on Σ and can be obtained easily:

Λ = AΣΣuΣ+ AΣΩuΩ,

which is the residual for the unknowns uΣ of a problem with homogeneous Neu-
mann boundary conditions on Σ and no volume source, if uΣ and uΩ are the dis-
crete unknowns on the boundary and in the interior of the domain, and A is the
matrix arising from the discretization of this problem.
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Finally, to build the discrete integrated DtN map from the black box, we repeat
this using each test function as Dirichlet source. The output Λi of each of these
experiments gives the i -th column of the matrix corresponding to the integral of
the DtN map, suitable for the FE formulation of the problem. Note that it is di-
rectly summable with the other components of the FE matrix, avoiding significant
overhead for the non-local operator integration otherwise required with a non-
integrated DtN map.

Back to the DDM solver, the quantities Λi j are the new (discrete) unknowns of
the modified algorithm, and corresponds to the integral of the gi j functions used
in the classical version (see equation C.4). It can also be summed directly to the
other components of the right-hand side, without requiring extra integration (this
is a considerable speed-up of the DDM algorithm, since many right-hand sides
must be computed).

This procedure is computationally very expensive. As an alternative, a com-
pressed version of the DtN map can be obtained via matrix probing. We give some
insights on this technique in the next section.

C.2 DtN map approximation via probing

We are thus looking for an accurate approximation D to the DtN map D at some
interface Σ. Consider the Helmholtz equation in a PML placed next to Σ. The
operator D is viewed as a black box that maps Dirichlet data on Σ to the normal
derivative, on Σ as well, of the solution to the Helmholtz equation in the PML:
∂nū = Dū. We first precompute the matrix D offline, then apply it to vectors on
the fly as needed.

Matrix probing is used to make the precomputation of D tractable. Suppose
that we wish to approximate a matrix D ∈ Rn×n , but we only have access to a
handful of products of D with vectors. We assume D can be written as a linear
combination of a small number of basis matrices B j , D ≈ ∑p

j=1 c j B j fixed ahead
of time. Under various assumptions, notably p ¿ n (see [41] for details) we can
recover the vector c with great accuracy using only a few black box calls. For il-
lustration, it is often advantageous to consider a single random vector z, so that
Dz ≈ ∑p

j=1 c j B j z =Ψz c, where the B j z are columns of Ψz . Solving for c now re-
quires the pseudo-inverse of Ψz , which can be quickly obtained since this is an
n ×p matrix with p ¿ n.

Hence we need a relatively small set of basis matrices which can accurately
approximate the DtN map D . There are different ways to do this: we can use a
geometrical optics approximation with oscillations of the form e iωτ(x,y) times a
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parametrized singular amplitude, see [19] for details, or else we can use the relaxed
terms of the Padé expansion proposed in [31], obtained from a few 1D PDE solves.

A full description can be found in [18].

C.3 Implicit application of the black blox

The procedure described in Section C.1 features a computationally expensive pre-
computation phase and is not very practical since it requires a modification of the
code to account for the non-local boundary condition. We now present a vari-
ant where no precomputation is required, since we rather apply the DtN map in
an implicit fashion. The subdomains are meshed with appended PMLs, and the
subproblems formulations are modified in the PMLs regions to achieve the non-
reflecting boundary condition. After each subproblem solve, our approximation
of the DtN map is applied to the Dirichlet data on the interfaces by solving prob-
lems in the PMLs only. To obtain the resulting Neumann data, the Dirichlet con-
dition is applied by using Lagrange multipliers λ ∈ H 1(Σ), the value of which after
solution being naturally the normal derivative at the interface. We give the weak
formulation of the black box problem as: find u ∈ H 1(Ω), λ ∈ H 1(Σ) s.t.∫

Ω
(Dn∇u ·∇v −k2

Σcnuv) dΩ

+
∫
Σ

(λv +uλ′−uDλ
′) dΣ = 0,

∀v ∈ H 1(Ω),

∀λ′ ∈ H 1(Σ),
(C.7)

where Dn and cn are the PML tensor and damping function in the direction nor-
mal to the interface. Other boundary conditions are inherited from the main prob-
lem. The wavenumber in the PML kΣ is prolonged normally from its value at the
interface. At the next iteration, the source is imposed in the neighbouring domains
via a surfacic delta function δ(Σ), in a similar way to how it is done in [169].

The definition of the subproblems geometry requires more care, and the cost of
solving the subproblems is increased since unknowns are added in the PMLs, but
this version of the method has the advantage of being directly implementable in a
finite element code, without requiring any precomputation other than the factor-
ization of the black boxes; since the PMLs are built to be symmetric with respect
to the interface, there is one black box problem to be solved per interface. The re-
sulting algorithm might be more efficient if it converges rapidly, especially in the
case where there are many unknowns on the interfaces, making the construction
of the explicit version overexpensive.



APPENDIX D
Numerical dispersion relation

To derive the numerical dispersion relation in the 1d case, we consider the matrix
obtained after discretization of the standard weak formulation of the problem with
some wavenumber k, and show that the functions that solve the discrete system
have a different wavenumber kh . The standard P1 FE discretization with uniform
step h of the 1d Helmholtz equation:

(∂xx −k2)u = 0 (D.1)

gives raise to a system of equations of the form (away from the boundaries):


0

. . .
. . .

. . . 0 . . .

. . . 0 (− 1
h − k2h

6 ) ( 2
h − 4k2h

6 ) (− 1
h − k2h

6 ) 0 . . .

. . . 0
. . .

. . .
. . . 0

u =


...
0
...

 .

(D.2)

To identify the dispersion relation, that is the relation between the wavenum-
ber k that appears in the weak formulation and the effective wavenumber of the
numerical solution, we look for a discrete solution of the form: uh(nh) = e i kh (nh)

and inject it in the n−th equation of the system above:

(− 1

h
− k2h

6
)e i kh (n−1)h + (

2

h
− 4k2h

6
)e i kh nh + (− 1

h
− k2h

6
)e i kh (n+1)h = 0, (D.3)

which becomes after division by e i kh nh and using the identity e i x +e−i x = 2cos(x):

169
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2cos(khh) =
(2− 4(kh)2

6 )

(1+ (kh)2

6 )
, (D.4)

which is the desired dispersion relation. Solving that equation for kh provides the
“true” wavenumber of the numerical solution and can be used to account for nu-
merical dispersion and design almost exact absorbing conditions. However, this is
only applicable in some particular cases like in waveguides, and in practice more
general techniques must be employed.

The discretization density is an important parameter for high frequency sim-
ulations. It is defined as nλ = λ/h; we can obtain a direct relation between the
numerical wavenumber kh and the true wavenumber as a function of nλ by solv-
ing (D.4) for kh :

kh = k
nλ
2π

arccos
(1− 1

3

(2π
nλ

)2

1+ 2
3

(2π
nλ

)2

)
= k Fh(nλ). (D.5)

This relation is linear, with a dispersion factor Fh that depends only on the dis-
cretization density.

A similar derivation can be done for the 3-points stencil of a 1d finite difference
scheme. We have:

1

h2 e ıkh (n−1)h − 2

h2 e ıkh nh + 1

h2 e ıkh (n+1)h +k2e ıkh nh = 0, (D.6)

leading to:
2cos(khh) = 2− (kh)2. (D.7)

The dispersion relation can be rewritten in terms of the discretization density as:

kh = k
nλ
2π

arccos
(
1− (kh)2

2

)
. (D.8)
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