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Abstract 

Urban environments are complex dynamic systems whose prediction of the future states cannot exclusively rely on deterministic 
rules. Although several studies on urban growth were carried out using different modelling approaches, the measurement of 
uncertainties was commonly neglected in these studies. This paper investigates the effect of uncertainty in urban growth models 
by introducing a stochastic perturbation method. A cellular automaton is used to simulate predicted urban growth. The effect of 
stochastic perturbation is addressed by comparing series of urban growth simulations based on different degree of stochastic 
perturbation randomness with the original urban growth simulation, obtained with the sole cellular automata neighbouring 
effects. These simulations are evaluated using cell-to-cell location agreement and a number of spatial metrics. The model 
framework has been applied to the Ourthe river basin in Belgium. The results show that the accuracy of the model is increased by 
introducing a stochastic perturbation component with a limited degree of randomness, in the cellular automata urban growth 
model.  
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1. Introduction 

Urban environments are complex dynamic systems influenced by various driving forces. To take into account the 
complexity of such systems, cellular automata (CA) provide a promising direction of thought for simulating changes 
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of dynamic urban systems1. CA explicitly take into account neighbouring effects and therefore, they can be used to 
model spatial auto-correlated landscape patterns. Subsequently, CA are widely implemented to model urban growth 
through time due to their ability to fit such complex urban environment using simple and effective rules. Gutowitz2 
defined CA system as: “dynamical systems in which space and time are discrete. The states of cells in a regular 
lattice are updated synchronously according to a deterministic local interaction rule”. Traditional CA models are 
based on a purely microscopic approach, i.e., they are originally built upon a basic unit of behaviour. Land 
development reflects the behaviour of a developer rather than a ward or district3. 

In a complex urban environment, urban growth is generally affected by a number of dynamic forces. In the 
literature, many explanatory drivers have been analysed4,5,6,7,8. These drivers could be categorized into four factors: 
socioeconomic factors, geo-physical factors, land-use policies and accessibility factors. The complex interaction of 
these driving forces propagates uncertainties and errors in the model, and thus leads to a high level of parameter 
sensitivity in CA urban models9. A number of authors focused on this issue by means of analysing the variation on 
the model results by adjusting various parameters such as neighbour effects, neighbour windows dimensions, time 
steps, multiple spatial resolutions11,12,13.  

Urban CA models, like other land-use modelling approaches, are always subject to uncertainties due to limited 
human knowledge, complexity of urban environment and limitation of technology. Therefore, uncertainties are 
unavoidable and can affect the simulation accuracy of CA15. Uncertainty in the model could be a result of10: 

 Input uncertainty: the future values of the exogenous variables are not well predicted. 
 Model errors: errors in the model’s input data and/or parameters introduced in the model’s equations. 

Input uncertainty represents all kind of variables which could not be predictable well. Indeed, the prediction of 
geo-physical and accessibility factors could be measured based on analyzing of the current situation. It is far from 
easy to predict socio-economic factors and policies in the future. On the one hand, a series of factors are related to 
micro decisions on local effects that typically fall outside the scope of CA model, for instance, the availability of 
land at the parcel level and administrative decisions regarding land use plans. On the other hand, global factors like 
population and household size forecasts will affect the general output of the system. These forecasts are very 
difficult to predict as they rely on complicated and interrelated factors such as population lifecycle, migration 
movements, societal values and standards, gender relationships and the relationships between parents and children. 
These kinds of factors depend always on something subject to change and therefore, it is difficult to forecast for 
decades to come. Furthermore, urban growth models are biased by the model's developer view so each developer 
defines the urban growth drivers based on his own analysis and view. 

A huge volume of Geographical Information System (GIS) data is usually used in urban growth models. It is well 
known that most GIS data are affected by a series of errors. Changes in scale, digitizing, conversion from raster to 
vector, etc. are all examples of possible sources of errors in model's input data. 

This paper will typically focus on the local effects of model’s input uncertainty and model errors due to input 
data and equations introduced in the model, whose influence will be modelled through stochastic perturbation.  

 Uncertainties can be considered as a component of fuzziness and randomness1. García et al.9 analyzed the effect 
of two of randomness methods in urban-CA models: Monte Carlo and stochastic perturbation methods. Wang et al.1 
analyzed uncertainties in urban growth models based on fuzziness.  

1.1. Objectives 

The motivations of this paper include a methodological perspective and an empirical perspective as well. At a 
methodological level, the paper focuses on one method to consider uncertainties in urban growth models, stochastic 
perturbation method. It further pays attention to a series of validation methods of urban growth models.  

At an empirical level, the paper introduced urban CA model that applied to Ourthe river basin area in Belgium. 
The model runs once with only cell’s neighbouring effects and several times with cell’s neighbouring effects and 
stochastic perturbation. The results of different model’s runs were compared in order to measure the effect of 
stochastic perturbation component introduced in the model by using different validation techniques. 
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1.2. Stochastic perturbation  

The stochastic perturbation proposed by White and Engelen14 is calculated with the following formula: 

 1 ( ln( ))R rand    (1) 

where R is the scalable random perturbation term of cell (i, j) at time t, rand is a uniform random variable varying 
between 0 and 1, and α is a parameter that controls the size of the perturbation introduced in the model. R will 
always be greater or equal to 1 since the smallest value that ln function can take is 0. The ‘-’ sign is added to allow 
ln function taking only positive values. Fig.1 shows the variation of the stochastic component according to different 
values of α. High values of α means that extreme values of rand are given more weight9. One of the strengths of this 
approach is the controlling of randomness size contrary to a number of other approaches, for instance, the Monte 
Carlo approach does not allow for the control of the degree of randomness9.  
2. Method 

2.1. Study area 

This study was conducted for the Ourthe river basin located in Wallonia, in the southern part of Belgium. It 
occupies an area of 2,140 km2 and consists of 37 administrative communes. It has 664,744 inhabitants in 201328. 
The geography of the area goes from flat to hilly with altitude ranges from +47 to +618 m above the sea level. The 
largest metropolitan area is Liège city with population of 195,931 in 201328. According to Corine Land Cover 
(CLC) raster datasets 2000, built-up lands covered 19.34%, arable lands covered 44.10%, grasslands covered 0.13% 
and forests covered 35.99% of the total area. The Ourthe River is a 165 km long river in the Ardennes in Wallonia.  

 

 

Fig. 1. Variation of the stochastic perturbation according to different size of α. 
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Fig. 2. Study area. 

It is formed at the confluence of the Ourthe Occidentale (Western Ourthe) and the Ourthe Orientale (Eastern 
Ourthe), west of Houffalize. After the confluence of the two Ourthes, the Ourthe flows in north direction. It flows 
into the river Meuse in the city of Liège. Study area is highly influenced by city of Liège and Luxembourg, Fig. 2. 

2.2. Cellular automata urban growth model 

The proposed urban growth model is based on a CA modelling approach. The model simulates urban growth over 
time based on the impacts of neighbour effects in a CA model framework. The initial state of simulation starts from 
land-use in the year 1990 and proceeds to simulate an urban growth of 2000. The analysis of land-use change is 
based on the CLC with resolution of 100*100 m for the years 1990 and 2000. CLC has been selected because it is an 
excellent dataset consistent with European standards30. The 44 classes of CLC datasets have been reclassified into 
six classes. The accuracy of CLC has been assessed and reported in Feranec et al.16 with a total accuracy of 
87.0  0.8%, therefore the accuracy of 85% specified by EEA is fulfilled. A core part in CA model is to define 
realistic transition rule-sets (pulls and pushes).  In this context, model considers built-up change probabilities based 
on a search window of 9x9 cells Moore neighbourhood. The neighbouring factors are based on calibrations reported 
on another study regarding urban growth modelling done for the northern part of Belgium11. These results mainly 
rely on the expert knowledge and calibration-based rules, based on spatial metrics. Each neighboring cell C is 
identified by its relative location on the map by i and j (row and column) and has one state s ranging from 1 to 6 (1 
built-up land, 2 arable land, 3 pastureland, 4 forest, 5 wetland and 6 water respectively) at time t with distance d of 
1, 2 or 3 (0 for the cell under evaluation, 100 or 200 meters respectively) form the cell under evaluation Ce. 
According to that, the neighboring factor for each cell at time t can be calculated with the following formula:  
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W is a weight factor for each neighbor based on cell state and distance 

from the cell under evaluation. If a cell state is built-up in 1990, it automatically remains the same in 2000. 
The built-up area demands of 2000 were extracted from observed CLC maps. The urban growth between 1990 

and 2000 is 47.24 km2 (2.21%). As a result, 4,724 of the 173,926 non-built-up cells should be converted into built-
up cells in order to simulate the actual quantity of 2000 urban growth.  

Along with transition probability according to neighbouring constraint, a built-up suitability map has been 
produced. A binomial logistic regression model was used to compute the suitability map in which the input 
dependent variable (Y) is a binary map of real built-up changes between 1990 and 2000 (1 if the cell is being 
developed into built-up state and 0 if the cell is remaining in the current state) and independent variables are the 
most significant urban growth driving forces in the study area. The model considers distance to national roads, 
distance to local roads, distance to main cities, slope, job potential within 20 km and zoning as independent 
variables (Xn) for the logistic regression model. This type of regression analysis is usually employed in estimating a 
model that defines the relationship between one or more independent variable(s) to the binary dependent variable. 
The suitability value of each cell can be estimated with the following formula7: 
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e
   (3) 

where SLUx is suitablity of land-use x; a is the intercept representing the value of Y when the values of the 
independent variables are zero; b1, b2, …, bn are regression coefficients; X1, X2, …, Xn are independent variables. 
The coefficients are based on a maximum likelihood estimation procedure. In order to minimise the spatial 
autocorrelation that violates the logistic regression results11, the model is calibrated using a stratified random sample 
of 3000 cells, 1.4% of the study area, with an equal sampling to 1 and 0 observations of the Y variable. The outcome 
of logistic regression model is a suitability map in which each cell in the study area presents transition suitability 
value ranging from 0 (the lowest transition suitability)  to 1.  

2.3. Introducing stochastic perturbation in cellular automata model 

The stochastic perturbation has been introduced in the model by multiplying stochastic component, equation 1, 
by the suitability of each cell in the study area to be converted into built-up cell (built-up suitability map) then 
multiplying the result by traditional CA transition probability (neighbouring effects) cell by cell.  

In general terms, introducing stochastic component in CA models could violate the deterministic rules of CA 
model which are purely based on neighbouring factors. In the study area, 173,926 cells could be converted into 
built-up land-use between 1990 and 2000. According to traditional CA model, the top ranked 4,724 cells were 
converted into built-up land-use. To analyse the effect of introducing stochastic perturbation in the model, the 
variability of change (from non-built-up to built-up) for each cell was tested through 500 runs of the model for 
different α values (0.01, 0.05, 0.1, 0.5, 1 and 2). Fig. 3 shows that number of change (from non-built-up to built-up) 
for the top 15,000 ranked cells (based on traditional CA). The variability of change decreases for increasing α value 
as the model creates more randomness. 

3. Model validation and comparisons 

The validation of the model is the process of measuring the accuracy of the simulated result against real world 
observations. In this paper, the validation process includes a validation of the simulated suitability map and different 
model’s simulations.  
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In regards with suitability map, the fitness of the model was assessed for both the selected samples (3000 cells) 
and for the whole suitability map. For the samples, the fit of the model was evaluated using classification table of 
the samples, Pseudo R2, Relative Operating Characteristic (ROC) procedure and for the suitability map of the whole 
area ROC procedure was used. Table 1 shows the classification table of the samples in which the predicted 
probability with 0.5 is employed as a dividing point, i.e., classifying all samples as 0 if the predicted probability is 
less than 0.5 or else as 1. Pseudo R2 is calculated with the following formula: 

~

2
^

ln( )_ 1
ln( )

P R    (4) 

where ln( ) is the likelihood for the full model as fitted and ln( ) is the likelihood for the model if the value of all 
coefficients except the intercept are 018. The P_R2 of the samples is 0.959. It indicates an almost perfect fit where the 
perfect fit should be 1. ROC, proposed by Pontius and Schneider19, is considered as an excellent method to evaluate 
validity of the models that predict the location of the occurrence of change by comparing the predicted probability 
map to a map with the observed changes of built-up cells between 1990 and 2000 in order to validate the model’s 
ability to specify the location of change. The procedure first calculates the proportion true positives and false-
positives for a range of specified threshold values and relates them to each other in a graph. The ROC statistic 
measures the area under the curve in the graph and should range between 0.5 (random fit) and 1 (perfect fit)11. The 
ROC result of the samples with 100 thresholds equals 0.998.  

The fit of the suitability map, not only samples, is assessed using ROC procedure and equals 0.742 with 50 
thresholds (Fig. 4).  

Fig. 3. Number of changes from 0 to 500 times (y axis) of the top ranked 15,000 cells (x axis). a:α=0.01, b:α=0.05, c:α=0.1, d:α=0.5, e:α=1, f:α=2 

Table 1. Classification table of the selected 3000 samples with equal observations of 0 and 1. 

Observed Fitted-0 Fitted-1 Percent correct 

0 1491 9 99.40 

1 18 1482 98.80 
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Fig. 4. ROC curve for the suitability map of the study area with 50 thresholds. 

The different runs of the model performance without stochastic perturbation and with different values of α in 
stochastic perturbation (α=0.01, 0.05, 0.1, 0.5, 1 and 2) are compared and assessed in order to analyse the effect of 
introducing stochastic perturbation in the traditional CA model.   

The validation of different model runs has been evaluated by several means. Pontius et al.29 proposed a validation 
method to measure agreement between two categorical maps through cell-to-cell comparison. This method separates 
agreement and disagreement between the two maps into main three components due to chance, quantity and 
location. The agreement of chance is the agreement that could be obtained with no information of location and no 
information of quantity. The agreement of quantity is the quantity accuracy of each category. The agreement due to 
location is the accuracy in terms of cell’s location of each category. In this paper, the scope of analysis pertains to 
the investigation of accuracy of different runs in terms of cell location. One of the shortcomings of this method is 
that it cannot discriminate between “near-miss” and “far-miss” errors and therefore fails to detect spatial patterns11. 
Pontius et al.29 suggested to evaluate the model runs at different multiple resolutions to solve such a shortcoming. 
Poelmans11; Akin et al.22 and Wanga et al.23 used this method to evaluate their urban growth models. The agreement 
due to location is measured for all built-up cells, e.g. Wu3, and for the only newly built-up cells changed between 
two time steps, e.g. Poelmans11 and Wanga et al.23. The overall agreement due to location for a number of previous 
studies are ranging between 92% and 69% for all built-up cells while for newly built-up cells ranging between 38% 
and 4.5%3,11,23. Table 2 shows the cell-to-cell agreement due to location for all built-up cells and for only newly 
built-up cells. Furthermore, Table 2 shows also Kappa Index of Agreement (KIA) which reported as a commonly 
used index for accuracy assessment of results of spatial models24,25. KIA indicates a perfect agreement of 1 and 
chance agreement of 0. The results show that the cell-to-cell agreement due to location for all built-up cells is over 
90% in all model simulations. However, this high cell-to-cell location agreement for the whole built-up cells 
between the two time steps is caused by the persistence of built-up cells between the two time steps. By considering 
the accuracy percentage or KIA of allocation of newly built-up cells, it is clear that the model performed much 
better with α=0.01 and 0.05 than other simulations.  

Urban growth model validation might also rely on evaluating how a model simulates certain spatial properties, 
e.g., a real change in spatial patterns. In this respect, a number of authors validated the performance of their models 
by means of spatial metrics9,11,20. Generally, spatial pattern matrices are grouped into four main levels corresponding 
to the level of heterogeneity: cell-level, patch-level, class-level and landscape-level21. Class-level matrices are used 
to evaluate categorical map patterns such as land-use maps9,21. 
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Table 2. Cell-to-cell agreement due to location for different model’s runs. 

Model Built-up overall 
agreement (%) 

Built-up 
overall KIA 

Newly built-up 
agreement (%) 

Newly built-
up KIA 

No Stoc. 91.878 0.899 28.831 0.272 

α=0.01 91.900 0.899 29.022 0.274 

α=0.05 91.902 0.899 29.043 0.274 

α=0.1 91.871 0.899 28.768 0.271 

α=0.5 91.576 0.895 26.185 0.245 

α=1 91.259 0.891 23.412 0.216 

α=2 90.561 0.883 17.295 0.154 

 
Before selecting spatial matrices, landscape pattern should be defined well including map contents and the 

purpose of analysis. The purpose here is to quantify the complexity and compactness (fragmentation and dispersion) 
of model’s simulations and real urban change pattern of 2000. It is difficult to capture these complex spatial 
properties using a single matrix9,21. García et al.9 selected, number of patches, mean patch area, area weighted mean 
patch fractal dimension and euclidean mean nearest neighbour distance spatial matrices to validate their model’s 
results while Parker and Meretsky20 selected, number of patches, mean patch area, area weighted mean shape index, 
edge density, total edge, euclidean mean nearest neighbour distance and class area concentration matrices to 
evaluate their model’s outcomes.  

In this study, two matrices measuring fragmentation (number of patches, mean patch area), one matrix measuring 
the complexity (area-weighted mean shape index), one matrix measuring dispersion (patch cohesion index) one 
matrix measuring dominance (largest patch index) and one matrix measuring isolation (Euclidean mean nearest 
neighbour distance) have been selected and calculated for newly simulated and observed built-up cells based on 
Moore neighbourhood method. Further explanation on the meaning of these matrices is stated below:    

 Number of Patches (NP): A patch is defined as a group of continues cells belong to the same land-use class. This 
matrix counts the total number of patches in the landscape. This matrix is a basic index for computing other 
metrics and also used to evaluate fragmentation index. As a number of patches decreases, the fragmentation 
index also decreases20,26. 

 Mean Patch Area (MPA): This spatial matrix is widely used to define fragmentation index where lower MPA 
index produces more fragmented pattern. The MPA index can be calculated based on the following formula26:  

1

i NP

iMPA
NP

ai
   (5) 

where ai is the area of the patch. 

 Area-Weighted Mean Shape Index (AWMSI): AWMSI is the most straightforward measure of shape complexity 
and irregularity. This matrix measures the weighted average deviation of the patch shape which minimizes 
edge/area ratio. Holding class area and the class NP constant, the edge/area ratio will fall as patch shape become 
more complex20. This index can be calculated based on the following formula20,26:      

1

0.25i NP

i

AWMSI
pi ai

Aai
   (6) 
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where pi is the patch perimeter and A is the total area of the class. 

 Patch Cohesion Index (PCI): This matrix indicates how the land-uses class under analysis in dispersion. PCI 
value is measured in percentage with 0% if all patches are confined to single isolated cells, and with 100% if 
each cell is included in a patch and calculated according to the following formula26,27:    

1

1

1
11 1 100

i NP

i
i NP

i

T

PCI
pi

Api ai
   (7) 

where AT is the total landscape area. 

 Largest Patch Index (LPI): This matrix expresses the dominance of largest patch size by percent of the total 
landscape and can be calculated based on the following formula: 

100LP

T

A
LPI

A
   (8) 

where ALP is the area of largest patch. 

 Euclidean Mean Nearest Neighbour Distance (EMNND): This spatial index measures accessibility which is an 
important factor of urban sprawl20 and also it is the simplest way to quantify patch isolation. However, EMNND 
is used here to measure patch isolation. This index equals the mean distance between each patch to the nearest 
neighboring patch in meters based on shortest edge-to-edge distance (the edge-to-edge distance is from cell 
center to cell center).  

Table 3 lists the values of the analysed spatial patterns, Fig. 5, for the different runs of the model. When 
analysing the result, it confirms that the model simulations with a stochastic perturbation with α of 0.01, 0.05 and 
0.1 yield values much better than the model simulation without stochastic perturbations (no stoc.) and were nearest 
to real changes of 2000 (obs. 2000) for NP, MPA, AWMSI, PCI and LPI and with α of 2 for EMNND.   

Table 3. Analysing of model’s simulations spatial patterns. 

Model  NP  MPA AWMSI PCI  LPI  EMNND 

Obs.2000 2063 22899 1.3414 49.1165 0.0161 311.5345 

No Stoc. 2574 18353 1.1999 35.1906 0.003 271.3698 

α=0.01 2496 18926 1.219 36.724 0.0032 271.1663 

α=0.05 2529 18679 1.2147 36.2139 0.003 271.4315 

α=0.1 2527 18694 1.2114 36.1165 0.003 272.6755 

α=0.5 2733 17285 1.1709 31.7663 0.0029 272.9275 

α=1 3020 15642 1.1385 26.7767 0.0018 275.9213 

α=2 3395 13915 1.1082 20.8915 0.0015 305.8424 

 
Comparing to model simulation without stochastic components, the results clearly show that the model 

simulation is affected by introducing stochastic perturbation in terms of spatial properties. Fragmentation in 
analysed patterns is decreased by introducing stochastic perturbation with very small values of α and sharply 
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increased with high values of α. The fragmentation index is always decreased by decreasing NP and increasing 
MPA. Consequently, model simulations with α=0.01, 0.05 and 0.1 seem proper than other simulations. Model 
simulations with α=0.01, 0.05 and 0.1 give the result better than other simulation in terms of complexity. Model 
simulation with α=2 tends to be a perfect square where AWMSI value of 1 represents a perfect regular shape. 
According to PCI, model simulation with α=2 around 21% of the modelled cells are confined in patches which 
results highly dispersal pattern. On the other hand, model simulations with α=0.01, 0.05 and 0.1 give more cohesive 
pattern. The largest patch (LPI) tends to increase its size in case of the model simulations with α=0.01. Regarding 
the analysis of patches isolation in the entire landscape, EMNND index for model simulations with α=2 yield the 
values that nearest to real changes of 2000. Fig. 6 shows the real changes of 2000 and the different simulations of 
the model within a clipped part of the study area.  

Fig. 5. Spatial matrices outcomes. 
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Fig. 6. Simulated built-up changes (b: no stoc., c:α=0.01, d:α=0.05, e:α=0.1, f: α=0.5, g:α=1, h:α=2) compared with real changes of 2000 (a). 
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4. Conclusions 

Land-use change models usually deal with two kinds of time directions: the forward direction and the inverse 
direction. For the inverse direction, land-use change models try to simulate a situation in the past regarding a set of 
transition rules based on the best available description of some phenomena. This kind of analysis usually depends on 
the deterministic analysis approach. For the forward direction, the model simulates a situation in the future. Bearing 
in mind the high level of complexity of urban environments, such models should be built on robust transition rules. 
However, this kind of analysis must be able to deal with uncertainties. 

This paper introduced and tested one of the widely used stochastic components in land-use change models. The 
model presented in this paper is a CA model used to simulate urban growth between 1990 and 2000. A stochastic 
perturbation component was introduced in the CA model to address how randomness propagates in urban growth 
model and how uncertainties affect simulation results. A cell-to-cell location validation technique has been used to 
evaluate the model results. It provides statistical information of how well allocation procedures succeeded. Since 
spatial matrices can potentially analyse landscape pattern under analysis, for instance, complexity and 
fragmentation, these analysis provide further information about how the model output patterns match real-world 
landscape patterns. Thus, a number of widely used spatial matrices have been used also to evaluate the model 
results. 

The results revealed that the model accuracy increases with very small size of stochastic perturbation and then 
decreases when stochastic perturbation size increases. Consequently, stochastic perturbation produces high changes 
in the degree of randomness for very low variations in the coefficient that controls the size of randomness. In this 
light, it is difficult to control the degree of randomness using stochastic perturbation and therefore, the calibration of 
the model to match a specific growth pattern using this technique is hard. This result is data-dependent relies on the 
study area, datasets and type of analysis.  

Finally, much work remains to define the best stochastic component and the degree of randomness in urban 
growth models. This work might include testing of other randomness techniques such as Monte Carlo method and 
fuzziness.  
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