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Abstract

This paper presents a model-checking method for
linear-time temporal logic that avoids the state ex-
plosion due to the modelling of concurrency by in-
terleaving. The method relies on the concept of
Mazurkiewicz’s trace as a semantic basis and uses
automata-theoretic techniques, including automata
that operate on words of ordinality higher than ω.

1 Introduction

Model Checking [13, 29, 35, 44] is an effective and
simple method for verifying that a concurrent program
satisfies a temporal logic formula. It works on finite-
state programs and proceeds by viewing the program
as a structure for interpreting temporal logic and by
evaluating the formula on that structure. It is much
simpler than temporal deductive proofs and can be
easily and effectively implemented.

It has been intensively studied for linear-time tem-
poral logic [29, 44, 43] branching-time temporal logic
[13, 19, 18, 6] and temporal µ-calculi [20, 42, 14, 37].
It has been extended to probabilistic [41, 33, 44, 17] as
well as real-time programs and logics [2, 3, 25]. It has
been adapted to programs containing arbitrary num-
bers of identical processes [12, 11, 21, 47, 28]. Meth-
ods for making it applicable to very large systems have
been investigated [10, 15, 16, 23]. Moreover, the re-
sults from its experimental use have been very encour-
aging [36, 5]. What more can be said about it?

In spite of all its success, almost all work around model
checking is based on a very wasteful idea: modelling
concurrency by interleaving. Even if one is not in-
clined to loose sleep about whether interleaving se-
mantics are adequate for concurrency, it remains unar-
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guably silly to investigate the concurrent execution
of n events by exploring all n! interleavings of these
events!

In this paper, we develop a simple method for ap-
plying model checking without incurring the cost of
modelling concurrency by interleaving. Our method
yields results identical to those of methods based on
interleaving semantics, it just avoids most of the as-
sociated combinatorial explosion. It is quite orthog-
onal to model checking based on partial-order logics
[32, 27, 31]. Indeed, these logics are designed to be
semantically more powerful. We are “only” more effi-
cient. The idea that the cost of modelling concurrency
by interleaving can be avoided in finite-state verifica-
tion already appears in [34, 39, 40, 22]. We build upon
this earlier work, specifically that of [22], and bring to
it the full capabilities of model checking.

We study model checking for linear-time temporal
logic and adopt the automata-theoretic approach of
[44, 42, 46]. In this approach, the program is viewed
as a collection of communicating automata on infinite
words [7]. It can thus include arbitrary fairness con-
ditions. The negation of the formula to be checked is
then also converted to an automaton on infinite words
and the verification can be done by simply checking
that the product of the automata describing the pro-
gram and the automaton corresponding to the nega-
tion of the formula is nonempty. This is traditionally
done by computing the product automaton which is
where the cost of modelling concurrency by interleav-
ing has to be paid.

In [22] it is shown that the global behavior of a set
of communicating processes can be represented by
an automaton which can be much smaller than the
usual product automaton. The basic idea is to build
an automaton that only accepts one interleaving of



each concurrent execution. The method is justified by
using partial-order semantics, namely the concept of
Mazurkiewicz’s trace [30] and the automaton is thus
called a trace automaton. A trace automaton can
be viewed as an automaton accepting at least one,
but usually no more than one, interleaving for each
trace (concurrent computation) of the concurrent pro-
gram. Thus, together with the independence rela-
tion on transitions, this automaton fully represents the
concurrent executions of the program. The practical
benefit is that this automaton can be much smaller
than the automaton representing all interleavings.

The motivating idea behind the method presented
here is that, in the automata-theoretic approach to
model checking, the trace automaton could be used in
place of the product automaton. Unfortunately, this is
not directly the case. However, we are able to obtain
such a result by using a new type of automaton.

We consider automata operating on infinite words of
ordinality higher than ω. Precisely, we define au-
tomata operating on words of length ω × n, n ∈ ω.1

We study these automata and give an efficient algo-
rithm to check whether such automata are nonempty.
We then show that, when it is viewed as an ω × n-
automaton, the trace automaton can be substituted
for the product automaton in linear-time model check-
ing. The efficiency of the method of [22] is thus fully
available for model checking.

Finally, we conclude the paper with a comparison be-
tween our contributions and related work.

2 Automata and Model Checking

We briefly recall the essential elements of the
automata-theoretic approach to model checking. More
details can be found in [44, 46] and in Chapter 4 of
[38]. The problem we consider is the following. We
are given a concurrent program P composed of n pro-
cesses Pi, each described by a finite automaton Ai on
countably infinite words over an alphabet Σi. We are
also given a linear-time propositional temporal logic
formula f . The model-checking problem is then to
verify that all infinite behaviors of the program P sat-
isfy the temporal formula f .

The automata we use for describing the processes Pi

are generalized Büchi automata2, i.e. tuples A =
(Σ, S,∆, s0,F), where

1Interestingly, a related type of automata on ordinals was
used by Büchi [9, 8] to study the decidability of the monadic
theory of the ordinals.

2Generalized Büchi automata differ from Büchi automata [7]
in that they have a set of sets of accepting states rather than
just one set of accepting states.

• Σ is an alphabet,

• S is a set of states,

• ∆ ⊆ S × Σ× S is a transition relation,

• s0 ∈ S is the starting state, and

• F = {F1, . . . , Fk} ⊆ 2S is a set of sets of accepting
states.

Generalized Büchi automata are used to define lan-
guages of ω-words, i.e. functions from the ordinal ω
to the alphabet Σ. Intuitively, a word is accepted by a
Generalized Büchi automaton if the automaton has an
infinite execution that intersects infinitely often each
of the sets Fj ∈ F .

Formally, we define the concept of a run of A over
an ω-word, i.e. a function from the ordinal ω to the
alphabet Σ. A run σ of A over an ω-word w = a1a2 . . .

is an ω-sequence σ = s0, s1, . . . (i.e. a function from
ω to S) where (si−1, ai, si) ∈ ∆, for all i ≥ 1. A run
σ = s0, s1, . . . is accepting if, for each Fj ∈ F , there
is some state in Fj that repeats infinitely often, i.e.
for some s ∈ Fj there are infinitely many i ∈ ω such
that si = s. The ω-word w is accepted by A if there
is an accepting run of A over w. The set of ω-words
accepted by A is denoted Lω(A).

An automaton AP representing the joint behavior of
the processes Pi can be computed by taking the prod-
uct of the automata describing each process, actions
that appear in several processes are synchronized, oth-
ers are interleaved. Formally, the product (×) of
two (generalization to the product of n automata
is immediate) generalized Büchi automata A1 =
(Σ1, S1,∆1, s01,F1) and A2 = (Σ2, S2,∆2, s02,F2) is
the automaton A = (Σ, S,∆, s0,F) defined by

• Σ = Σ1 ∪ Σ2,

• S = S1 × S2, s0 = (s01, s02),

• F =
⋃

Fj∈F1
{Fj × S2} ∪

⋃
Fj∈F2

{S1 × Fj}

• ((s, t), a, (u, v)) ∈ ∆ when

– a ∈ Σ1∩Σ2 and (s, a, u) ∈ ∆1 and (t, a, v) ∈
∆2,

– a ∈ Σ1 \ Σ2 and (s, a, u) ∈ ∆1 and v = t,

– a ∈ Σ2 \ Σ1 and u = s and (t, a, v) ∈ ∆2.

Note that with this definition, the product automaton
can have an infinite accepting computation that corre-
sponds to a finite computation of some (but not all) of



its components. Indeed, if a component i has a state s
such that s ∈ Fj for all Fj ∈ Fi, then an infinite com-
putation of the product in which component i stays
indefinitely in state s will appear as accepting. This is
a counterintuitive consequence of the straightforward
definition we have chosen for the product. To avoid
this, we adopt the following restriction on the accep-
tance conditions of the generalized Büchi automata we
will use.

• either the acceptance condition is vacuous (F =
∅), in which case the automaton can have either
finite or infinite computations, or

• the set F contains at least two disjoint compo-
nents, in which case the product automaton can-
not have an accepting computation corresponding
to a finite computation of the automaton

For a given generalized Büchi automaton, it is quite
straightforward to construct an equivalent automaton
that satisfies this restriction. In programming terms,
the restriction is a form of fairness condition imposed
on the processes with nonvacuous acceptance condi-
tions: their executions must be infinite (executions
that might legitimately not be infinite can be mod-
elled by using an additional “idling” action).

To obtain a model-checking procedure, the only fact
we need about linear-time temporal logic is that, for
each formula f , it is possible to build a generalized
Büchi automaton Af that accepts exactly the infinite
words satisfying the temporal formula f (the alpha-
bet of this automaton is 2P where P is the set of
propositions appearing in the formula f) [48, 44, 46].
This construction is exponential in the length of the
formula, but this is usually not a problem since the
formulas to be checked are quite short and since the
algorithm often behaves much better than its upper
bound. The model-checking procedure is then the fol-
lowing:

1. Build the finite-automaton on infinite words for
the negation of the formula f (one uses the nega-
tion of the formula as this yields a more efficient
algorithm). The resulting automaton is A¬f .

2. Compute the product AG =
∏

1≤i≤n Ai×A¬f (in
practice only the reachable states of this product).

3. Check if the automaton AG is nonempty.

To check if the automaton AG is nonempty, it is suffi-
cient to check that its graph contains a strongly con-
nected component that is reachable from the initial

state and that includes a state from each of the sets Fj

of its set F of accepting sets. This can be done with
a linear-time algorithm [1]. The complexity of this
model-checking method is thus determined by the size
of AG. Note that model checking is often said to be of
complexity “linear in the size of the program” which
is correct if one measures the size of the program as
the size of

∏
1≤i≤n Ai. In practice, the limits of all

model-checking methods come from the often exces-
sive size of this product. The frustrating fact is that
a lot of this excessive size is unnecessary: it is due to
the modelling of concurrency by interleaving. This is
what we are tempting to eliminate. Let us therefore
turn to partial-order semantics.

3 Partial-Order Semantics and Trace
Automata

In partial-order semantics, the possible behaviors of
a concurrent system are described in terms of par-
tial orders instead of sequences. More precisely, we
use Mazurkiewicz’s traces [30] as semantic model. We
briefly recall some basic notions of Mazurkiewicz’s
trace theory.

Definition 3.1 A concurrent alphabet is a pair Σ =
(A,D) where A is a finite set of symbols, called the
alphabet of Σ, and where D is a binary, symmetrical,
and reflexive relation on A called the dependency in
Σ.

IΣ = A2 \D stands for the independency in Σ.

Definition 3.2 Let Σ be a concurrent alphabet, let
A∗ represent the set of all finite sequences (words) of
symbols in A, let · stand for the concatenation oper-
ation, and let ε denote the empty word. We define
the relation ≡Σ as the least congruence in the monoid
[A∗; ·, ε] such that

(a, b) ∈ IΣ ⇒ ab ≡Σ ba.

The relation ≡Σ is referred to as the trace equivalence
over Σ.

Definition 3.3 Equivalence classes of ≡Σ are called
traces over Σ.

A trace characterized by a word w and a concurrent
alphabet Σ is denoted by [w]Σ. Thus a trace over a
concurrent alphabet Σ = (A,D) represents a set of
words defined over A that only differ by the order of
adjacent symbols which are independent according to



D. For instance, if a and b are two symbols of A

which are independent according to D, the trace [ab]Σ
represents the two words ab and ba. A trace is an
equivalence class of words.

Let us now return to a concurrent program described
as the composition of n finite-state transition systems
Ai and of a property f represented by the automaton
A¬f . From now on, A¬f will be denoted by An+1. Let
∆ ⊆ S × Σ × S denote the transition relation of the
product AG of these automata.

For each transition t = (s, a, s′) ∈ ∆ with s =
(s1, s2, . . . , sn+1) and s

′ = (s′1, s
′
2, . . . , s

′
n+1), the sets

(by extension, we consider the states of AG as sets in
the following definitions3)

-
•t = {si ∈ s : (si, a, s

′
i) ∈ ∆i}

- t• = {s′i ∈ s
′ : (si, a, s

′
i) ∈ ∆i}

-
•t• = •t ∪ t•

are called respectively the preset , the postset and the
proximity of the transition t. Intuitively, the preset ,
resp. the postset , of a transition t = (s, a, s′) of AG

represents the states of the Ai’s that synchronize to-
gether on a, respectively before and after this transi-
tion. We say that the Ai’s with a nonempty preset and
postset for a transition t are active for this transition.

Two transitions t1 = (s1, a1, s
′
1), t2 = (s2, a2, s

′
2) ∈ ∆

are said to be equivalent (notation ≡) iff

•t1 = •t2 ∧ t•1 = t•2 ∧ a1 = a2.

Intuitively, two equivalent transitions represent the
same transition but correspond to distinct occurrences
of this transition. These occurrences can only differ by
the states of the Ai’s that are not active for the tran-
sition. We denote by T the set of equivalence classes
defined over ∆ by ≡.

We define the dependency in AG as the relationDAG
⊆

T × T such that:

(t1, t2) ∈ DAG
⇔ •t•1 ∩

•t•2 6= ∅.

The complement of DAG
is called the independency

in AG. If two independent transitions occur next to
each other in a computation, the order of their occur-
rences is irrelevant (since they occur concurrently in
this execution).

Let ΣAG
= (T,DAG

) be the concurrent alphabet asso-
ciated with AG and let L(AG) be the language of finite

3We assume that the sets S1, . . . , Sn+1 (where Si is the set
of states of Ai) are pairwise disjoint.

words accepted by AG (all states of AG considered ac-
cepting). We define the trace behavior of AG as the
set of equivalence classes of L(AG) defined by the rela-
tion ≡ΣAG

. These equivalence classes are called traces
of AG. Such a class (trace) corresponds to a partial
order (i.e. a set of causality relations) and represents
all its linearizations (words).

To describe the behavior of AG by means of traces
rather than sequences, we need the dependency DAG

of AG and only one linearization for each trace of AG.
So, the behavior of AG is fully characterized by the
dependency DAG

and an automaton which generates
(at least) one linearization for each trace. We call
such an automaton a trace automaton (denoted AT )
for AG [22].

Formally, the language L(AT ) accepted by a trace au-
tomaton AT satisfies the following relation:

L(AG) =
⋃

w∈L(AT )

Pref(lin([w]ΣAG
))

where lin([w]ΣAG
) denotes the set of linearizations

(words) of the trace (equivalence class) [w]ΣAG
and

Pref(w) denotes the prefixes of w.

In [22] an algorithm for constructing a trace automa-
ton corresponding to a concurrent program4 is given.
To construct such an automaton AT , we do not need
to compute all the reachable states of AG: whenever
several independent transitions are executable, we exe-
cute only one of these transitions in order to generate
only one interleaving (linearization) of these transi-
tions. By construction, AT is a “sub-automaton” of
AG (i.e. the states of AT are states of AG and the
transitions of AT are transitions of AG). The order of
the time complexity for the algorithm presented in [22]
is given by the number of transitions in AT times the
maximum number of simultaneous executable transi-
tions. In practice it turns out that building AT often
requires much less time and memory than building
AG.

For instance, the behavior of a simple protocol like the
5-dining-philosophers problem (see [22]) that would
classically require the use of a state-graph AG con-
taining 2163 states and 8770 transitions can be rep-
resented by a trace automaton AT containing only 72
states and 83 transitions.

4In [22] a concurrent program is represented by a contact-free
one-safe P/T-net instead of a parallel composition of sequential
processes as defined here; since the former is a more general
formalism (it allows the modelling of process creation/deletion)
than the latter, the algorithm described in [22] is still applicable
in the context considered here.



4 Using Trace Automata for Model
Checking

In order to use the results of Section 3 for doing model
checking, we would like to be able to proceed as fol-
lows.

1. Build the finite-automaton on infinite words for
the negation of the formula f . The resulting au-
tomaton is A¬f .

2. Compute the trace automaton AT corresponding
to the concurrent executions of the processes Ai,
1 ≤ i ≤ n, and of the automaton A¬f .

3. Check if the automaton AT is nonempty.

Unfortunately, this is incorrect. First, there is an ob-
vious reason that makes this incorrect which is that
the trace automaton AT is not defined as an automa-
ton on infinite words and hence does not have a set F .
However, this problem can be easily solved. Let SG

and ST respectively be the set of states of AG and AT .
By construction, ST ⊆ SG. Let FG = {F1, . . . , Fk} be
the set of sets of accepting states of AG. The set FT

of sets of accepting states of AT is then defined by
FT = {F ′

1, . . . , F
′
k} with F ′

i = Fi ∩ ST .

Even if we extend the definition of AT to include the
set FT defined above (let us call the result A∞

T ), we
still cannot use A∞

T for model checking. Indeed it is
quite possible that the automaton AG obtained by the
traditional computation of the product accepts some
infinite word whereas A∞

T does not accept any infinite
word. This might seem counter intuitive because one
could expect that, if AG accepts some word w, then by
permuting independent transitions of the computation
accepting w, one would obtain an accepting computa-
tion of A∞

T which would then be nonempty. This is ac-
tually true for finite computations but not for infinite
computations. Indeed, consider two processes that are
totally independent (their alphabets are completely
disjoint). The trace automaton for these two processes
can be one that allows any number of transitions of the
first process followed by any number of transitions of
the second process. This is is fine for finite compu-
tations, but for infinite computations, one will be left
with either an infinite computation of the first process
or one of the second process, but not an infinite com-
putation of both processes. One can summarize this by
saying that A∞

T represents the infinite computations of
all processes, but not the joint infinite computations
of unsynchronized processes. The following example
illustrates this situation. Consider the generalized
Büchi automata A and A′ of Figures 1 and 2 where

F = {{s1}, {s2}} and F ′ = {{s′1}, {s
′
2}} respectively.

A possible trace automaton A∞
T is given in Figure 3.

Its set of sets of accepting states is defined by FT =
{{(s1, s

′
0), (s1, s

′
1), (s1, s

′
2)}, {(s2, s

′
0)}, {(s1, s

′
1)},

{(s1, s
′
2)}}. This automaton does not accept any word

whereas there is a joint infinite execution of the au-
tomata A and A′ that would be accepted by the cor-
responding global automaton.

s1✖✕
✗✔
> s2✖✕

✗✔
q

a

✐

a

Figure 1: Generalized Büchi automaton A

s′0✖✕
✗✔
>

s′1✖✕
✗✔

s′2✖✕
✗✔

❄

c

q

b

✐

b

Figure 2: Generalized Büchi automaton A′

We now formalize the above discussion. Let AG and
A∞

T be respectively the product automaton and the
trace automaton obtained by composing the general-
ized Büchi automata Ai, 1 ≤ i ≤ n + 1. Consider
a computation of AG or A∞

T on an infinite word w.
One can view this computation as an infinite sequence
of transitions each of which is an element (s, a, s′) of
S × Σ× S. For any transition of AG or A∞

T , one can



s1,s′
0✖✕

✗✔
> s2,s′

0✖✕
✗✔

q

a

✐

a

s1,s′
1✖✕

✗✔
s1,s′

2✖✕
✗✔

❄

c

q

b

✐

b

Figure 3: Trace automaton A∞
T

identify the automata Ai that are active (as defined
in Section 3) for this transition. This enables us to
define the restriction of a computation of AG or A∞

T

to one of the components Ai.

Definition 4.1 Given a trace or product automaton
A obtained by composing the generalized Büchi au-
tomata Ai, 1 ≤ i ≤ n+ 1, the restriction of a compu-
tation κ of A to the automaton Ai (denoted κ|Ai) is
the subsequence of κ that contains only the transitions
for which Ai is active.

Note that the restriction of a computation of AG or
A∞

T to an automaton Ai is in fact a computation of Ai.
However, the restriction can be finite, even if the the
initial computation is infinite. We can nevertheless
prove the following.

Theorem 4.1 Let κ be a computation (finite or ω-
infinite) of the global automaton AG obtained by com-
posing the automata Ai, 1 ≤ i ≤ n+1. Then, for every
Ai, there is a computation κi (finite or ω-infinite) of
the trace automaton A∞

T such that κ|Ai = κi|Ai.

Note that it is not true that there is a single compu-
tation κ′ of A∞

T such that κ|Ai = κ′|Ai for all Ai’s.
In spite of this, Theorem 4.1 lets us obtain an inter-
esting result, namely that the trace automaton can be
used for model checking in cases where only one of the
components is required to have an infinite computa-
tion. This is the case if all but one of the automata

Ai have a vacuous accepting condition, i.e. have an
empty set F . We can prove the following.

Theorem 4.2 Let Ai, 1 ≤ i ≤ n + 1 be generalized
Büchi automata all but one of which have a vacuous
accepting condition. Let AG and A∞

T be the product
and trace automata obtained by composing the au-
tomata Ai. Then, the automaton AG is nonempty
(has at least one infinite accepting computation) iff
the trace automaton A∞

T is nonempty.

Theorem 4.2 is obtained from Theorem 4.1 and from
the immediate fact that all computations of the trace
automaton are also computations of the product au-
tomaton. In practice, Theorem 4.2 enables us to use
the trace automaton for model checking in the cases
where the program does not operate under some fair-
ness hypothesis. Indeed, in those circumstances, the
automata representing the program will have vacu-
ous accepting conditions and the automaton obtained
from the formula to be checked will be the only one
with a nonempty set F .

5 Automata on (ω × n)-words

Trace automata do not adequately represent the ω-
computations of the components from which they are
built because infinite computations cannot be concate-
nated. Actually, with the help of a little abstraction,
infinite computations could very well be concatenated.
One can simply think of computations whose length is
an ordinal larger than ω. Since we are only interested
in the concatenation of a finite number of infinite com-
putations we will only study computations of length
ω×n where n ∈ ω. The definitions of Section 2 can be
quite naturally extended to words and computations
of length ω × n (for other definitions of automata on
ordinals, see [9, 8]).

A word of length ω× n over the alphabet Σ is a func-
tion w from the ordinal ω×n to Σ. We use automata
that are defined exactly as in Section 2 and simply
change the definition of a run. A run of an automaton
A = (Σ, S,∆, s0,F) on a word w of length ω × n is a
function σ from ω×n to S that satisfies the following
conditions:

1. σ(0) = s0;

2. for each successor ordinal α + 1 ∈ ω × n,
(σ(α), w(α), σ(α+ 1)) ∈ ∆;

3. for each limit ordinal λ ∈ ω×n, there is an infinite
sequence of ordinals α whose limit is λ such that
σ(α) = σ(λ).



The notions of accepting run and accepted word are
essentially unchanged. A run σ is accepting if, for each
Fj ∈ F , there is some state in Fj that repeats infinitely
often, i.e., for some s ∈ Fj there are infinitely many
i ∈ ω × n such that si = s. The ω × n-word w is
accepted by A if there is an accepting run of A over
w. The set of ω × n words accepted by A is denoted
Lω×n(A).

Checking that Lω×n(A) is nonempty can be done by
computing the strongly connected components of A.

Theorem 5.1 Let A = (Σ, S,∆, s0,F) be an automa-
ton. Then, Lω×n(A) 6= ∅ iff there is a sequence of
strongly connected components C1, . . . Cn in A such
that

• C1 is accessible from s0 and Ci+1 is accessible
from Ci, for 1 ≤ i < n and

• for each Fj ∈ F , there is some Ci such that Fj ∩
Ci 6= ∅.

The interesting aspect of the definitions we have just
given is that if we consider the trace automaton as an
automaton on words of length ω×n, then it represents
all infinite computations of the combined automata. If
we extend the notion of computation used in Section 4
to sequences of transitions of length ω × n, we can
prove the following.

Theorem 5.2 Let κ be an ω-computation of the
global automaton AG obtained by composing the au-
tomata Ai, 1 ≤ i ≤ n+1. Then, there is a computation
κ′ of length at most ω× (n+1) of the trace automaton
A∞

T such that for all 1 ≤ i ≤ n+ 1, κ|Ai = κ′|Ai.

To use the trace automaton for model checking, we
also need the converse of Theorem 5.2. However, this
does not hold in general since it requires that a com-
putation of length ω × (n+ 1) be merged into a com-
putation of length ω. For this to be possible we need
to put some restrictions on computations. Consider a
computation of length ω×(n+1). For each ω-sequence
in this computation, i.e. part of the computation cor-
responding to an interval [ω× j, ω× (j+1)[, we define
the repeating part of this ω-sequence as its suffix that
only contains states that appear infinitely often. The
rest of the ω-sequence is then its finite prefix. We call
a computation separable if for all 0 ≤ i < j ≤ n, all
transitions in the repeating part of [ω × i, ω × (i+ 1)[
are independent of all transitions in the finite prefix of
[ω×j, ω×(j+1)[. We can then show that the converse
of Theorem 5.2 holds for separable computations and
hence the following.

Theorem 5.3 Let Ai, 1 ≤ i ≤ n + 1 be generalized
Büchi automata. Let AG and A∞

T be the product and
trace automata obtained by composing the automata
Ai. Then, the automaton AG is nonempty (has at least
one accepting computation) iff the trace automaton
A∞

T has at least one separable computation of length
at most ω × (n+ 1).

Furthermore, note that Theorem 5.1 can be adapted
to separable computations by requiring that for all
1 ≤ i < j ≤ (n + 1), the transitions appearing in
Ci are independent from those appearing in the path
from Cj−1 to Cj . Combining this observation with
Theorem 5.3 we have a criterion for solving the model-
checking problem in terms of the trace automaton A∞

T .

6 Conclusions and Comparison with
Other Work

The closest work to the one presented here is certainly
that of Valmari [40]. However, while it has the same
goal it does not achieve the same results. Indeed, Val-
mari only handles a temporal logic where the opera-
tor “next” cannot appear. We handle the full logic
and, actually, we can also handle extended temporal
logics like that of [45]. Also, in [40] concurrency is
modelled by interleaving for all actions that appear
in the formula. Because in our method the automa-
ton for the formula is combined with the program,
we do not have this drawback. Moreover, to solve
the problem that trace automata do not adequately
represent the infinite behaviors of a set of processes,
Valmari has to modify the construction of the automa-
ton and actually build an automaton that will usually
have more states and transitions. We solve this prob-
lem by viewing the trace automaton as an automaton
on ω × n-words. Finally, the possibility of modelling
fairness conditions within the program is not present
in [40]. All the advantages above are linked to the
strategy we use for solving the model-checking prob-
lem which, as we have shown, is quite distinct from
Valmari’s. However, at the heart of both methods lies
an algorithm for computing an automaton that only
represents “some” interleavings of concurrent events:
Valmari uses an algorithm based on “Stubborn Sets”,
we use the construction of the “Trace Automaton”
given in [22]. This algorithm also influences the effec-
tiveness of a model-checking method. Unfortunately,
this influence is not at all as clear cut as that of the
strategy. It is quite possible that for some problems
the “Trace Automaton” algorithm is best whereas for
others the “Stubborn Sets” one is preferable.

How good really is our method? It is hard to give



a precise answer since it might be no better than in-
terleaving methods when there is very tight coupling
between the processes and dramatically better when
there is no coupling between the processes. In the
latter case, we could claim as is done in [10] that we
can check systems with astronomical numbers of (in-
terleaving semantics) states. Of course this is rather
meaningless since the trick is not to explore all states
either by treating classes of states as one state (the ap-
proach of [10]) or by completely avoiding parts of the
state space (our approach). The only real fact we can
give is that experimental results with trace automata
are very encouraging.

Finally, note that our method has the advantages of
“on the fly verification” [16, 26, 4, 24]. By this we
mean, that we build the automaton for the combina-
tion of the program and property without ever build-
ing the automaton for the program. Maybe surpris-
ingly, this automaton is often smaller than the au-
tomaton for the program alone because the property
acts as a constraint on the behavior of the program.
Our method thus has a head start over methods that
require the state graph of the program to be built.
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