An Introduction to the Additive Manufacturing of Metallic Materials - Two Case Studies on the Processing of Stainless Steel 316L and of Ti Alloy Ti-6Al-4V

A. Mertens, Université de Liège anne.mertens@ulg.ac.be http://orbi.ulg.ac.be/ This research was carried out with the help of:

- H. Paydas, S. Reginster, Q. Contrepois,
 S. Salieri, J.T. Tchuindjang, J. Lecomte-Beckers – Université de Liège
- T. Dormal, D. Gravet, O. Rigo SIRRIS, Liège
- O. Lemaire CRM, Liège

Outline

Introduction

– Additive manufacturing

- General introduction
- Laser Beam Melting Operating principles
- Specificities (1) ultra-fast thermal cycles
- Specificities (2) directional process
- Aims of the research
- Experimental procedure
- Results and discussion
 - Stainless Steel 316L
 - Ti-6Al-4V
- Summary

Introduction (1)

- "Instead of starting with a solid block of material and removing the unnecessary parts, additive manufacturing builds layer upon layer"
- Economic near-net shape process
- Complex shapes
- Small series, prototypes...
- Different materials:
 - Polymers
 - Ceramics

Metals

nttp://dharrounmodels.blogspot.be/2013

3D printed Ceramic mug, Source:

archive.html ; retrieved on

2/14]

5

05

CAD model is reassembled in physical model, layer by layer

[source: http://blog.cafefoundation.org/additive-manufacturing-for-electric-motors/; retrieved on 05/12/2014]

Introduction (2) Great diversity of additive techniques **Powder-bed**

Laser Beam Melting **Electron Beam Melting** **Powder-feed**

Laser Cladding

Introduction (3)

Diversity of microstructures and properties depending on...

- Process
- Processing parameters (substrate/powder-bed preheat, scanning strategy, power...)
- Material
- This talk will focus on one technique (LBM) and two materials (SS 316L and Ti-6AI-4V) to discuss some specific issues of l aser Claddin the additive manufacturing of metals

Tool steel AISI M4 [J.T.Tchuindjang]

Ti-6AI-4V

[Reginster et al., 2013]

Outline

Introduction

– Additive manufacturing

- General introduction
- Laser Beam Melting Operating principles
- Specificities (1) ultra-fast thermal cycles
- Specificities (2) directional process
- Aims of the research
- Experimental procedure
- Results and discussion
 - Stainless Steel 316L
 - Ti-6Al-4V
- Summary

Introduction (4) Laser Beam Melting – Operating principles

- Metallic powder is deposited layer by layer in a powder-bed...
- ... then molten locally by a laser according to the desired shape

Introduction (5)

Laser Beam Melting – Operating principles

- Processing parameters: laser power, scanning speed, layer thickness, hatch space...
- Formation of defects: porosities, inclusions, oxides...?
- Specificities of additive manufacturing for metallic materials...

"Fabrication mécanique", UCL, Louvain-la-Neuve, 17/11/2014

Outline

Introduction

– Additive manufacturing

- General introduction
- Laser Beam Melting Operating principles
- Specificities (1) ultra-fast thermal cycles
- Specificities (2) directional process
- Aims of the research
- Experimental procedure
- Results and discussion
 - Stainless Steel 316L
 - Ti-6Al-4V
- Summary

Introduction (6) Laser Beam Melting – Ultra-fast thermal cycles

Introduction (7) Laser Beam Melting – **Ultra-fast thermal cycles**

- Very high cooling rates
 - Build up of high internal stresses
 - \Rightarrow Cracks, Deformations
 - \Rightarrow Influence on mechanical properties

Out-of-equilibrium microstructures

e.g. chemical segregation at a very local scale

Microsegregation of Cr in stainless steel

Outline

Introduction

– Additive manufacturing

- General introduction
- Laser Beam Melting Operating principles
- Specificities (1) ultra-fast thermal cycles
- Specificities (2) directional process
- Aims of the research
- Experimental procedure
- Results and discussion
 - Stainless Steel 316L
 - Ti-6Al-4V
- Summary

Introduction (8) Laser Beam Melting is a **directional** process

- Formation of defects with particular orientations
- Cohesion between successive layers: a good wetting is important
 ⇒ Partial remelting of the previously solidified layer
- Cohesion between neighbouring tracks

 \Rightarrow Tracks overlap, stability of the melt pool OZ

Q.Contrepois, ULg]

Introduction (9)

Laser Beam Melting is a **directional** process

 Particular solidification processes may occur for some materials and processing conditions:

Epitaxial growth // to the direction of maximum heat conduction i.e. the newly solidified layer crystallizes in the continuity of the previously solidified layer thus forming **elongated columnar grains** (β crystals).

Introduction (10)

Microstructural and thermophysical characterisation

- Defects,
- Grains morphology
 Anisotropy(?)
- Coefficient of Thermal Expansion
- Thermal conductivity

Processing of Stainless Steel 316L and of alloy Ti6Al4V by LBM

Optimisation of processing parameters

Materials properties e.g. mechanical

Tensile behaviour Anisotropy(?)

Introduction (11)

Aims of the research

- Microstructures and mechanical properties of
 - Stainless steel 316L

- Ti6Al4V

- Correlation with the processing parameters
- How does the difference of behaviour between the two materials correlate with their thermophysical properties (CTE, Thermal conductivity...)?

Outline

- Introduction
 - Additive manufacturing
 - General introduction
 - Laser Beam Melting Operating principles
 - Specificities (1) ultra-fast thermal cycles
 - Specificities (2) directional process
 - Aims of the research

• Experimental procedure

- Results and discussion
 - Stainless Steel 316L
 - Ti-6Al-4V
- Summary

Experimental procedure (1)

• Materials:

(wt %)	Fe	С	Cr	Ni	Ti	Al	V
SS 316L	Bal.	0,019	17,30	10,90	_	_	_
Ti6Al4V	_	_	_	_	Bal.	5,91	4,20

Particle size in the range 10 - 45 μm for SS 316L and 25 - 50 μm for Ti6Al4V

• Laser Beam Melting:

- MTT SLM 250 laser melting deposition system
- Fairly similar constant processing conditions for both materials

Material	Layer thickness/µm	Focus offset/mm	Laser power/W	Scanning speed/mm s ⁻¹	Hatch spacing/µm
SS 316L	60	1	175	700	120
Ti6Al4V	30	2	175	710	120

Mertens et al., ESA SP-691, July 2012; Reginster et al, MSF **765** (2013), 413-417; Mertens et al., MSF **783-786** (2014), 898-903; Mertens et al., Powder Met. **57** (2014), 184-189; Publications available at <u>http://orbi.ulg.ac.be/</u> ¹⁹

Experimental procedure (2)

- Laser Beam Melting:
 - Samples produced in three directions (anisotropy?)
 - Ar flowing in the ox direction
 - Rotation of the scanning direction between layers
- Microstructural characterisation :
 Optical microscopy, Scanning Electron Microscopy
- Uniaxial tensile testing (anisotropy?)

Control panel

Outline

- Introduction
 - Additive manufacturing
 - General introduction
 - Laser Beam Melting Operating principles
 - Specificities (1) ultra-fast thermal cycles
 - Specificities (2) directional process
 - Aims of the research
- Experimental procedure
- Results and discussion
 - Stainless Steel 316L
 - Ti-6Al-4V
- Summary

Stainless steel 316L (1) – Tensile properties

Anisotropy between oz and (ox, oy)

Lower ductility for specimens elongated in the oz direction ⇒ Why?

Stainless steel 316L (2) – Tensile properties Anisotropy between oz and (ox, oy)

Lower ductility for specimens elongated in the oz direction Higher f_v of porosities

Stainless steel 316L (3) - microstructures What about the oz specimens? \Rightarrow Wetting defects

Deterioration of the mechanical properties for the oz specimens due to their **higher volume fraction of defects** and to their very **detrimental orientation** (i.e. perpendicular) with respect to the loading direction

Stainless steel 316L (4)

Thermal history of the (ox, oy) and oz specimens?

- All specimens were produced during one single job
- First building steps involve the production of ox, oy and oz specimens
 - Laser scanning a big overall surface for each layer
 - High overall heat input

- Later stages involve only the processing of oz specimens
 - Laser scanning a smaller surface for each layer
 - Lower overall heat input \Rightarrow Colder processing conditions
- ⇒ Need for better optimized (path-dependent) processing parameters...

Stainless steel 316L (5)

- ⇒ ...Need for better optimized (path-dependent) processing parameters
- Knowing the temperature evolution during processing
 - Not that simple: absolute measurements possible only locally
 - Models for thermal transfer

 Thermal conductivity

 \Rightarrow Thermal conductivity is strongly dependent on temperature!

Outline

- Introduction
 - Additive manufacturing
 - General introduction
 - Laser Beam Melting Operating principles
 - Specificities (1) ultra-fast thermal cycles
 - Specificities (2) directional process
 - Aims of the research
- Experimental procedure
- Results and discussion
 - Stainless Steel 316L
 - **Ti-6AI-4V**
- Summary

Ti-6Al-4V (1) – Tensile properties

- Mismatches in thermal dilatation/contraction (CTE)
- Thermal gradients

High internal stresses \Rightarrow Heat treatment at 640°C for 4 hours to improve the ductility

Ti6Al4V (2) - Thermophysical properties

Thermal expansion

SS 316L has a higher CTE than Ti-6AI-4V

Mertens et al., Powder Metallurgy (2014), **57**, 184-189 Available at <u>http://orbi.ulg.ac.be/</u>

Thermal conductivity

SS 316L has a much higher thermal conductivity than Ti-6Al-4V \Rightarrow Importance of thermal gradients in the build up of internal stresses

- in the OY and OZ samples
- Correlation with the microstructure ?

Ti-6Al-4V (4) – microstructures

- Spherical porosities due to entrapped gas < 0,5 %
- Elongated primary β grains (// OZ) in the OY sample...
- ...but not in the OX sample, suggesting that the grains are actually tilted with respect to the building direction
- Primary β grain boundaries or α/β interphase boundaries might play a role in fracture

 \Rightarrow Anisotropy in fracture behaviour could be related to the tilt in grains longest direction (?)

Anisotropy between ox and oy – Heat conduction

- Primary β grains grow following the direction of maximum heat conduction
- This direction for maximum heat conduction may become tilted with respect to the building direction

z-axis

Scanning strategy

top

x-axis

✓Scanning direction

front

Ti-6Al-4V (5)

Ti-6Al-4V (6)

Anisotropy between ox and oy – Heat conduction

OY

- Primary β grains grow following the direction of maximum heat conduction
- This direction for maximum heat conduction may become tilted with respect to the building direction
 - Scanning strategy: no, rotation!

- Scanning velocity
- Geometry of the part
- Evaporation phenomena: **Effect of Ar flow**

Summary

Stainless steel 316L

- Anisotropy between the (ox, oy) and oz direction
- "Lack of melting" defects
- No need for post-processing heat treatment
- Thermal homogeneity \uparrow

Thermal transfer ↑ Internal stresses ↓ **Higher thermal conductivity**

Ti-6Al-4V

- Anisotropy also between the ox and oy direction
- Tilt of the elongated primary β grains
- Post-processing treatment necessary to relieve internal stresses
- Thermal homogeneity ↓
 Thermal transfer ↓
 Internal stresses ↑
 Lower thermal conductivity

References

- M.L.Griffith et al., Mater. & Des. (1999), **20**, 107-113
- A.Mertens et al., Proc. ECSSMET (2012), ESA SP-691
- A.Mertens et al., Materials Science Forum (2014), 783-786, 898-903
- A.Mertens et al., Powder Met. (2014), **57**, 184-189
- T.Niendorf et al., Metall. Mater. Trans. B (2013), **44**, 794-796
- S.Reginster et al., Materials Science Forum (2013), 765, 413-417
- L.Thijs et al., Acta Mater. (2010), **58**, 3303-3312