

FINITE ELEMENT MODEL REDUCTION FOR THE DETERMINATION OF ACCURATE CONDUCTIVE LINKS AND APPLICATION TO MTG IRS BTA

<u>Lionel Jacques^{1,2}</u>, Luc Masset¹, Tanguy Thibert², Pierre Jamotton², Coraline Dalibot², Gaetan Kerschen¹

¹ Space Structures and Systems Laboratory, University of Liège ² Centre Spatial de Liège

Requirements reach classical method limits

Finite Element vs. Lumped Parameter

Global approach & proposed solutions

(2) Radiative links computation

- Reduce # of rays: quasi-Monte Carlo method (isocell, Halton)
- Reduce # of facets: super-face concept (mesh clustering)
- Parallelization: GPUs
- (3) Surface accuracy for ray-tracing
 - Quadrics fitting

(1,4,5) Conductive links, thermo-mech. analysis and user-defined compts.

- Reduce detailed FE mesh (keep conductive info. of the detailed geometry)
- Able to recover detailed T° from reduced
- Transform reduced FE model to LP model to enable user-defined comp.

Today's topic

(2) Radiative links computation

- Reduce # of rays: quasi-Monte Carlo method (isocell, Halton)
- Reduce # of facets: super-face concept (mesh clustering)
- Parallelization: GPUs
- (3) Surface accuracy for ray-tracing
 - Quadrics fitting

(1,4,5) Conductive links, thermo-mech. analysis and user-defined compts.

- Reduce detailed FE mesh (keep conductive info. of the detailed geometry)
- Able to recover detailed T° from reduced
- Transform reduced FE model to LP model to enable user-defined comp.

Outline

Mesh clustering

Mathematical reduction

Step by step procedure

Benchmarking

Conclusions

How to reduce the system accurately?

2 step process:

- FE mesh partitioning matching ESARAD mesh
- FE mesh reduction to determine the GLs

Merging meshes

Superimpose ESARAD and FE meshes

Assign skin FE to ESARAD shells

Greedy region growing

Cluster boundary smoothing

From FE clusters to GLs

Guyan (static) condensation

Split the system

$$\mathbf{KT} = \mathbf{Q}$$

With retained and condensed nodes:

$$\begin{bmatrix} \mathbf{K}_{\mathrm{RR}} & \mathbf{K}_{\mathrm{RC}} \\ \mathbf{K}_{\mathrm{RC}}^{\mathrm{T}} & \mathbf{K}_{\mathrm{CC}} \end{bmatrix} \begin{bmatrix} \mathbf{T}_{\mathrm{R}} \\ \mathbf{T}_{\mathrm{C}} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}_{\mathrm{R}} \\ \mathbf{Q}_{\mathrm{C}} = 0 \end{bmatrix}$$

Reduced system:

$$\mathbf{K}'\mathbf{T}_{\mathrm{R}}=\mathbf{Q}'$$

With

$$\mathbf{K}' = \mathbf{K}_{\mathrm{RR}} - \mathbf{K}_{\mathrm{RC}} \mathbf{K}_{\mathrm{CC}}^{-1} \mathbf{K}_{\mathrm{RC}}^{\mathrm{T}} = \mathbf{R}^{\mathrm{T}} \mathbf{K} \mathbf{R}$$
$$\mathbf{Q}' = \mathbf{Q}_{\mathrm{R}} - \mathbf{K}_{\mathrm{RC}} \mathbf{K}_{\mathrm{CC}}^{-1} \mathbf{Q}_{\mathrm{C}} = \mathbf{R}^{\mathrm{T}} \mathbf{Q} = \mathbf{Q}_{\mathrm{R}}$$
$$\mathbf{R} = \begin{bmatrix} \mathbf{I}_{\mathrm{RR}} \\ -\mathbf{K}_{\mathrm{RC}} \mathbf{K}_{\mathrm{CC}}^{-1} \end{bmatrix}$$

Condensed temperatures can be recovered: $\mathbf{T} = \mathbf{R}\mathbf{T}_{R}$

Problem of Guyan condensation

Need to select particular nodes to be retained

No (or known) heat load on condensed nodes

Heat load on selected node ≠ heat load on cluster represented by node

Not picking a representative node of the cluster but creating new nodes

A super-node = weighted (area, volume) average each node cluster

 $T_{SN} = AT$

$$T_{SN_i} = \sum_{j=1}^{N} A_{ij} T_j$$
 $\sum_{j=1}^{N} A_{ij} = 1$

Combining the relations

As done at element level in MSC Thermica[®]:

$$\begin{cases} \mathbf{KT} = \mathbf{Q} \\ \mathbf{T}_{SN} = \mathbf{AT} \end{cases} \Leftrightarrow \begin{bmatrix} \mathbf{K} & \mathbf{A}^{\mathrm{T}} \\ \mathbf{A} & \mathbf{0} \end{bmatrix} \begin{cases} \mathbf{T} \\ \mathbf{0} \end{cases} = \mathbf{M} \begin{cases} \mathbf{T} \\ \mathbf{0} \end{cases} = \begin{cases} \mathbf{Q} \\ \mathbf{T}_{SN} \end{cases}$$
$$\begin{cases} \begin{bmatrix} \mathbf{T} \\ \mathbf{0} \end{cases} = \mathbf{M}^{-1} \begin{cases} \mathbf{Q} \\ \mathbf{T}_{SN} \end{cases} = \begin{bmatrix} \mathbf{X} & \mathbf{Y}^{\mathrm{T}} \\ \mathbf{Y} & \mathbf{Z} \end{bmatrix} \begin{cases} \mathbf{Q} \\ \mathbf{T}_{SN} \end{cases}$$
$$\mathbf{YA}^{\mathrm{T}} = \mathbf{I} = \mathbf{AY}^{\mathrm{T}}$$
$$\mathbf{0} = \mathbf{YQ} + \mathbf{ZT}_{SN} \end{cases}$$

If the load is uniform over each super-node ($\mathbf{Q} = \mathbf{A}^{\mathrm{T}} \mathbf{Q}_{SN}$): $\mathbf{Y} \mathbf{Q} = \mathbf{Q}_{SN}$

$$-ZT_{SN} = Q_{SN}$$
$$K_{SN} = -Z$$

And the detailed T° can be recovered:

$$\mathbf{T} = \mathbf{X}\mathbf{Q} + \mathbf{Y}^{\mathrm{T}}\mathbf{T}_{\mathrm{SN}}$$

You need to invert M to get K_{SN} !

 $size(M) > size(K) \rightarrow very expensive + M is not sparse!$

Detailed T° not needed:

LDL decomposition of M → selective inversion of sparse matrix and only K_{SN} is computed.

Detailed T^{\circ} needed: X and Y are required (size(X)=size(K), not sparse)

- Local inversion of M for each super-node
- Global inversion for small problems.

Local inversion of M

Local inversion of M:

super-node + keep all detailed IF nodes

Guyan condensation to eliminate the detailed IF nodes

Detailed T° recovery by inverse procedure:

no need to store the full X and Y

Overall procedure

- CAD cleaning + ESARAD shells drawing
- Import .step to ESARAD
- LPM nodes numbering in ESARAD
- FE meshing cleaned CAD
- Superimposition of FE & ESARAD meshes
- FE mesh partitioning
- FE assembly and detailed K matrix computation
- Reduction of K to K_{sn}
- Export K_{sN} and super-nodal capacitances to ESATAN
- Compute the radiative links (with ESARAD or other)
- Combine radiative + conductive links and others \rightarrow solve for T_{SN}

Benchmarking

	Detailed	ESATAN	Reduced
ΔΤ	235.47K	240.23 K	235.47 К
# nodes	11897	62	62
# GLs	71033	97	1891

MANUAL GLS LEAD TO 10% ERROR

	Detailed (Solidworks)	ESATAN (manual)	Reduced
ΔΤ	107.4	123.2	107.7
# nodes	46405	280	280
# GLs	253004	402	39060

Integration of all components & run

Conductive reduction method offers:

- better accuracy
- automatic GLs computation in complex 3D nodes
- detailed T° map recovery for thermo-mech. analyses

FEM vs. LPM: Unity makes strength (Belgian motto)

2nd step to bridge the gap between structural and thermal analysis

Thank you for your attention...

Any question?

REFERENCES

- [1] T.D. Panczak, The failure of finite element codes for spacecraft thermal analysis, Proceedings of the International Conference on Environmental Systems, Monterey, USA, 1996.
- [2] MSC THERMICA User Manual, Version 4.5.1, 2012, ASTRI.UM.757138.ASTR

CONTACT

Lionel Jacques, <u>ljacques@ulg.ac.be</u> Thermal Engineer & PhD student

- University of Liège
 Space Structures and Systems Lab
 1, Chemin des Chevreuils (B52/3)
 Liege, B-4000, Belgium
 http://www.ltas-s3l.ulg.ac.be/
- Centre Spatial de Liège
 Liège Science Park
 Avenue Pré-Aily
 B-4031 Angleur Belgium
 <u>http://www.csl.ulg.ac.be</u>