
Temporal Databases: Beyond Finite Extensions

(Position Paper)

Marianne Baudinet
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Abstract

We argue that temporal databases should not be restricted to relations with finite extensions.

Many temporal events are periodic and have no natural bounds. Moreover, such events have a

more compact representation when allowed to be unbounded. We present two formalisms for

representing and querying possibly infinite periodic data and discuss some of their properties,

including expressiveness and query evaluation complexity. Finally, we turn to implementation

issues and argue that significant extensions to existing database systems are necessary in order

to implement the frameworks we describe.

1 Position

A large body of work has so far been devoted to the problem of adding time in databases and

particularly in relational databases [BADW82, McK86, SS88, Sno90, Soo91]. Many different models

of temporal databases have been proposed, often raising and addressing different aspects of the

problem ([SA85, JS92] provide nice comparative surveys of these). Even though these approaches

seem to diverge on various points, they implicitly rely on one major assumption: a relation, be it

time-dependent, always has a finite extension. This means that even if the temporal database model

relies on an unbounded time domain, arbitrary limits must be imposed on the time range of the

database relations. For instance, if some fact is true every day at 8 a.m., its extension includes as

many time points as there are days on which the fact is true. Thus, this representation is only usable
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‡Address: Institut Montefiore, B28; 4000 Liège Sart-Tilman; Belgium. Email: pw@montefiore.ulg.ac.be

1



if the number of days is finite (or arbitrarily restricted to be finite) and, in practice, if it is not too

large. Furthermore, such a representation does not allow any exploitation of the temporal pattern of

data, for instance in the evaluation of queries or in the presentation of query answers. These reasons

lead us into believing that limiting temporal relations to finite extensions is a counterproductive

restriction. Rather, we demonstrate in this paper that using implicit representations from which

the (possibly infinite) extensions can be computed is a very promising alternative.

We consider two different implicit representations of temporal extensions: one based on repeti-

tion and constraints, and one based on deductive rules. In order to express that some information

is true every day at 8 a.m., one can write that it is true at every time point of the form t0 + 24n

where t0 corresponds to the first occurrence of 8 a.m. at which the information holds and n is

a variable ranging over the integers. Furthermore, if necessary, one can limit the range of the

variable n by introducing constraints. For instance, one can specify that the temporal extension

being considered consists of all time points x such that x is of the form t0 + 24n and such that

0 ≤ x ≤ 673. Section 3 is devoted to this representation, which was introduced in [KSW90] and

further studied in [BNW91]. Related ideas about the use of constraints in databases were presented

in [KKR90] and [Rev90].

In order to express deductively that some information is true every day at 8 a.m., one can

say that it is true at some time t0 corresponding to the first occurrence of 8 a.m. at which the

information holds, and then specify that, if the information is true at some time t, it is true at

time t+ 24 hours. This form of representation has been studied since [CI88] and [Bau89b], and is

presented in Section 4.

The main advantage of implicit representations is expressiveness. They make the representation

of infinite extensions possible and often allow for a more compact representation of finite extensions.

Expressiveness is thus one important comparison and evaluation criterion when discussing the

formalisms we have just outlined. In Section 5, we introduce the relevant notions of expressiveness

and use them to compare the two formalisms we present. But expressiveness is not the only issue.

Representing information is only useful if it can be queried with reasonable efficiency. Therefore,

a second comparison and evaluation criterion when discussing formalisms for infinite temporal

extensions is the complexity of evaluating queries. We also discuss this issue in Section 5. Finally,

in Section 6, we discuss implementation issues and argue that the formalisms we present require

significant extensions to existing database systems. We view building temporal databases that can

handle infinite extensions as one of the challenges of temporal database research for the forthcoming

years.
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2 Preliminaries

In this paper, the time domain that we use is discrete and unbounded. We do not wish to get into

philosophical arguments as to whether time is actually bounded in the past by the Big Bang and

in the future by the “Big Crunch” [JS92]. That is not our point. Rather, we consider it a useful

abstraction to adopt a model of time that is unbounded. Since we also consider time to be discrete,

we view time as isomorphic to the integers.

We are concerned with the representation of valid time [JCG+92]. We consider relations that

have any number of non-temporal data attributes and one or more temporal attributes ranging over

the temporal domain, that is, the set of integers. A temporal database is a finite collection of such

relations. The extension of the non-temporal attributes is assumed to be represented explicitly.

Our concern is the representation of the possibly infinite extensions of the temporal attributes.

3 Representing Infinite Periodic Data with Constraints

3.1 Definition of the Framework

The generalized databases of [KSW90] generalize the usual relational databases by allowing the

relations to have, in addition to the usual data attributes, one or more temporal attributes whose

values are not simply time tags, but are in fact (possibly infinite) periodic sets of time tags (of

integer values). These periodic sets, called linear repeating points, are finitely represented by their

periodicity and a value in the set. Furthermore, they may be constrained individually or related

pairwise by linear inequalities. Let us define the framework of generalized databases more precisely.

Definition 3.1 A linear repeating point (lrp) is a set

{x(n) ∈ Z | x(n) = an+ b, with a, b in Z,

and n ranging from −∞ up to +∞ in Z},

where Z denotes the set of integers. Such a set is simply denoted by an+ b. The constant a is the

periodicity and the constant b is a value in the set (for n = 0).

For instance, the lrp 5n+ 3 denotes the infinite periodic set of integers {. . . ,−7,−2, 3, 8, 13, . . .}.

Notice that when its periodicity is 0 (a = 0), an lrp simply denotes a singleton.

The constraints that may apply to the temporal attributes are conjunctions of atomic con-

straints, that is, of linear equalities or inequalities between at most two temporal attributes in
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which the coefficients of temporal attributes are 1. More specifically, if Ti and Tj are temporal

attributes, atomic constraints are of the form

Ti ≤ Tj + a, Ti = Tj + a, Ti ≤ (≥)a, or Ti = a.

These constraints allow one to “couple-up” the time values actually retained out of two periodic

sets. Let us illustrate this.

Example 3.1 The tuple of lrp’s (2n1 + 3, 2n2 + 5) constrained by the equality T2 = T1 + 2 (T1

and T2 respectively denote the first and the second temporal attribute) represents the infinite set

of tuples

{. . . , (−1, 1), (1, 3), (3, 5), . . .}.

It is thus a subset of the cartesian product (2n1 + 3)× (2n2 + 5).

Definition 3.2 Let T denote the collection of lrp’s and D a collection of nontemporal data values.

A generalized tuple of temporal arity m and data arity ℓ is an element of T m ×Dℓ, together with

constraints on the temporal components. In other words, a general tuple of temporal arity m and

data arity ℓ is a ground tuple of the form

(a1n1 + b1, . . . , amnm + bm, d1, . . . , dℓ) with constraints(T1, . . . , Tm)

where

• each aini + bi (1 ≤ i ≤ m) is an lrp (we assume that the variables ni are all distinct),

• each dk (1 ≤ k ≤ ℓ) is a data constant from D,

• constraints(T1, . . . , Tm) denotes a finite set of constraints over the temporal attributes T1, . . . , Tm.

Such a generalized tuple is in fact a finite representation of a possibly infinite set of ground tuples,

namely the set

{(t1, . . . , tm, d1, . . . , dℓ) | t1 ∈ (a1n1 + b1), . . . , tm ∈ (amnm + bm),

and constraints(t1, . . . , tm) is satisfied }.

The constraints constraints(t1, . . . , tm) in a generalized tuple thus define a subset of the cartesian

product of the lrp’s (a1n1 + b1)× . . .× (amnm + bm), namely the subset of time-point tuples that

are actually in the database.
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Example 3.2 The generalized tuple of the relation

train schedule(departure time, arrival time, origin, destination),

train schedule

40n1 + 5 40n2 + 65 liège brussels with T1 ≥ 0 ∧ T2 = T1 + 60 ,

represents the fact that there is a train from Liège to Brussels at time 5 and every 40 minutes

thereafter, each train arriving 60 minutes after having left (we assume a time granularity of one

minute here, and take time 0 to be some fixed time, say 0 o’clock some Monday morning).

The above tuple thus represents the following infinite set of time-point tuples.

{(t1, t2, liège, brussels) | t1 ∈ (40n1 + 5), t2 ∈ (40n2 + 65), t1 ≥ 0 and t2 = t1 + 60}

A relation in the generalized database framework is, as usual, a finite set of tuples of a given

schema.

Definition 3.3 A generalized relation is a finite set of generalized tuples of a given schema.

Example 3.3 The generalized relation action below describes the timing of some activities of two

robots. Its first two attributes are temporal attributes and its third and fourth attributes are usual

data attributes.

action

0 1 robot1 task1

10n1 + 2 10n2 + 6 robot1 task2 T1 = T2 − 4 ∧ T1 ≥ 0

8n1 + 5 8n2 + 7 robot2 task1 T1 = T2 − 2 ∧ T1 ≥ 8

10n1 10n2 + 3 robot2 task2 T1 = T2 − 3

It must be noted that generalized relations with an arbitrary number of temporal attributes

are allowed. Generalized relations with one temporal attribute correspond to point-based temporal

data: they allow for the representation of facts that hold periodically at time points. Generalized

relations with two temporal attributes correspond to interval-based temporal data: they allow for

the representation of facts that hold periodically over intervals. Generalized relations with more

than two temporal attributes can be useful for representing periodic data for which a beginning
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interval and an ending interval is known for instance. They are also useful as intermediate steps

in computations. For instance, when concatenating temporal intervals, the mid-point at which the

intervals are joined appears as a third temporal attribute before being projected out.

3.2 Query Languages for Generalized Databases

Generalized databases can be queried exactly like classical relational databases, using relational

algebra and calculus.

3.2.1 Relational Algebra for Generalized Databases

[KSW90] gives a detailed description of how the various relational algebra operations are computed

on generalized databases. Of all these operations, the trickiest is the projection. This is due

to the presence of the constraints that may relate temporal attributes. In a classical relational

database, the projection of a relation on some of its columns simply requires forsaking the other

columns. In a generalized database, before forsaking columns that represent temporal attributes,

its constraints have to be projected out, that is, the temporal variables denoting the temporal

attributes that are projected out must be eliminated from the system of constraints. This means

that the projection operation requires using an algorithm that allows one to eliminate variables

from an integer constraint system. Would the temporal attributes range over the reals, it would

be very simple: the algorithm would compute linear combinations of the constraints. But here, the

temporal attributes can only take integer values, and such a solution is not adequate. The solution

described in [KSW90] consists in “normalizing” each tuple of the concerned relation in such a way

that all its temporal components have the same periodicity. Only thereafter can the projection be

carried out with algorithms that are appropriate for the real numbers.

The complexity of computing the relational algebra operations is studied in [KSW90]. The

general result is that everything can be done in polynomial time when the relations are normalized.1

However, one should notice that normalizing a relation may cause a significant blow-up of the space

required to store the relation.

3.2.2 A First-Order Query Language for Generalized Databases

Once algorithms for computing the relational algebra operations are known, one can consider the

evaluation of first-order queries. The natural first-order language to use with generalized databases

1This complexity measure, called the fixed-schema complexity assumes that the schema of the relations is fixed

and only the number of tuples may vary. When the schema may also vary, all the relational algebra operations still

take polynomial time except for the difference which takes exponential time.
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is a two-sorted first-order logic. One sort is temporal points (interpreted over the integers), the

other is generic.

The language includes one interpreted predicate of temporal arity 2 and data arity 0, namely ≤,

and any number of uninterpreted predicates. In the spirit of what is done in relational databases,

function symbols are not used on the generic sort. On the temporal sort, one interpreted function

can be used, namely the successor function ( + 1). Arbitrary quantification is allowed on both

temporal and nontemporal variables.

Example 3.4 The following formula of this two-sorted first-order query language refers to the

data of Example 3.3. It expresses the fact that there are robots x and y and time instants t1 and

t2 such that, if x performs task2 over a time interval [t1, t2] of length at least 5, then y does not

perform any task over any subinterval of that time interval.

∃X∃Y ∃T1∃T2∀T3∀T4∀Z

[ (action(T1, T2, X, task2) ∧ T1 ≤ T3 ≤ T4 ≤ T2 ∧ T1 + 5 ≤ T2) ⊃ ¬action(T3, T4, Y, Z) ]

It turns out that the time complexity of evaluating such queries on a generalized database is

polynomial in the size of the database. This complexity measure is in fact the data-complexity

measure as defined by Vardi [Var82].

3.3 Extensions of the Framework

In Example 3.2, we have assumed a time granularity of one minute. However, other kinds of

temporal data may require using other basic time units. Indeed, different temporal events have

different periodicities, each of which is most easily expressed in some natural time unit (such as e.g.

hour, day, week, month, semester, year, etc.). Using the same basic unit of time for all temporal

facts of a database could thus lead to very cumbersome representations of the facts: consider

e.g. how one would represent, using a minute as the basic time unit, the occurrence of an event

every Monday of the second week of every month. [NS92] proposes an extension of the generalized

database formalism that supports natural time units and exploits the relationships between these

time units in the evaluation of relational algebra operations.

Another extension of the generalized database framework, proposed in [BNW91], introduces a

deductive query language (such as those presented in Section 4), which is further studied in [FVP92].
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4 Representing Infinite Extensions Using Deductive Rules

Deductive databases extend relational databases by allowing some relations, the intensional rela-

tions, to be defined by recursive rules in a deductive language, in addition to the usual relations

stored in the database, the extensional relations. The best known deductive language is the logic

programming language Datalog , which is based on Horn clauses [GMN84, Ull88, Ull89, GM92]. We

refer the reader to [vEK76, Llo87, Ull88] for standard definitions regarding logic programming and

Datalog .

Example 4.1 A standard illustration of Datalog is the ancestor relation. Let us assume that the

binary relation parent is given in the database (it is an extensional relation). Then, the following

two rules recursively define the intensional relation ancestor in terms of the parent relation.

ancestor(X,Y )←parent(X,Y )

ancestor(X,Y )←parent(X,Z) & ancestor(Z, Y )

These rules state that, whoever X and Y are, X is an ancestor of Y if either X is a parent of Y or

there is a person Z such that X is a parent of Z and Z is an ancestor of Y .

Queries are also expressed in the deductive language.

Example 4.2 For instance,

←ancestor(adam, U)

where U is a variable and adam a constant, requests all the persons of whom ‘adam’ is an ancestor.

The deductive approach has been extended to handle temporal data. The temporal deductive

language Datalog1S (Datalog with one successor, previously called temporal deductive databases)

has been proposed and investigated in [CI88, CI89, Cho90b, Cho90a]. Datalog1S extendsDatalog by

allowing every predicate (that is, relational symbol) to have (at most) one temporal parameter

in addition to the usual data parameters. Temporal parameters are temporal terms that are

constructed using a distinguished constant 0, variables, and the unary function symbol + 1 (the

successor function). They can be viewed as being interpreted over the natural numbers.

Example 4.3 The following rules schedule the meetings of a professor with his students. The

intensional predicate meets has one temporal and one non-temporal attribute. It is defined in
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terms of two extensional predicates meets first , which also has one temporal and one non-temporal

attribute, and follows, which has two non-temporal attributes.

meets(T,X)← meets first(T,X)

meets(T + 1, Y )← follows(X,Y ) &meets(T,X)

Let us consider an extensional database containing the following facts.

meets first(0, emma)

follows(emma, kathy)

follows(kathy , emma)

The above deductive rules can be used to derive the following infinitely many facts from the

database.

meets(0, emma)

meets(1, kathy)

meets(2, emma)

meets(3, kathy)

· · ·

Notice that these facts form a periodic set when viewed as a function of the integers, but that their

period depends on the contents of the database.

Example 4.4 Consider the following deductive rules governing the schedule of backups in a dis-

tributed system.

backup(T + 24, X)← backup(T,X)

backup(T, Y )← dependent(X,Y ) & backup(T,X)

The first rule states that a backup on a machine should be taken every 24 hours. The second rule

requires that the backups should be taken simultaneously on all dependent machines (e.g., sharing

files). Notice that, whatever database these rules are applied to, the derived facts will again be

periodic, but this time, the period will not depend on the contents of the database.

Note: A temporal-logic based extension of Datalog proposed in [AM89], namely Templog , has also

been investigated as a deductive language for representing and querying temporal data [Bau89b,

Bau89a, Bau92]. Templog and Datalog1S have been shown to be equivalent to one another for

representing and querying temporal data [Bau89a, Cho90a]. In Templog , predicates can vary with

time (that is, they can represent a different relation at every time instant), but the time point they

refer to is defined implicitly by temporal operators rather than by an explicit temporal argument,

as in Datalog1S .
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5 Comparison and Evaluation Criteria for Infinite Temporal

Databases

There are two main natural criteria for evaluating a scheme for representing infinite temporal

information. The first is what it can represent (expressiveness), the second is how hard or easy it

is to extract information from the representation (complexity). We first deal with expressiveness.

5.1 Expressiveness Issues

There are several notions and issues in expressiveness. To focus our discussion, let us consider three

typical statements about expressiveness.

1. Intervals are more expressive than points.

2. One can represent the fact that X happens the first Thursday of each month.

3. Deductive languages are more expressive than first-order languages.

We will now argue that these three statements refer to different notions of expressiveness and show

how these notions apply to the frameworks presented in Sections 3 and 4.

5.1.1 Interval-Based Approach Versus Point-Based Approach

It is common in the AI literature to see intervals studied as basic objects distinct from points. This

might seem counter to the intuition that an interval is defined by two points. Unless one deals

with very unusual models of time, this intuition is perfectly correct. What distinguishes point

and interval models are the type of temporal predicates that are used. In a point approach, the

predicates are unary (p(t)). In an interval approach, predicates are binary (p(t1, t2)); thus one

might very well have that p(t1, t2) is true without having that p(t3, t4) is true for t1 < t3 < t4 < t2.

On the other hand, in a point approach, the only meaning one can give to a predicate p being true

on an interval [t1, t2] is (∀t : t1 ≤ t ≤ t2)p(t). This of course implies that p is also true in any

interval [t3, t4] such that t1 < t3 < t4 < t2.

Of the two formalisms we have described, the one based on repeating points allows predicates

of arbitrary temporal arity. The one based on deductive rules only allows unary predicates. Thus,

from this point of view repeating points are preferable. However, practical cases where genuine

intervals are necessary are not that frequent.
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5.1.2 Data Expressiveness

The second statement above refers to what can be represented in a temporal database. If one thinks

in terms of traditional databases, this might seem like a nonissue. Indeed, traditional databases

are limited to relations with finite extensions and, of course, all finite extensions are representable.

The two formalisms we have presented, however, describe relations with infinite extensions. Now,

it is clear that for cardinality reasons, it is impossible to have a finite representation of all infinite

extensions. For instance, relations with exactly one temporal attribute ranging over the integers

have extensions that are (finite or infinite) sets of integers. There are uncountably many such sets

and hence all cannot be finitely represented.

Thus, one needs to answer the question of which fragments of the class of infinite extensions the

formalisms we have proposed actually capture. This notion is referred to as data expressiveness in

[BNW91], where it is shown that both our formalisms capture the class of periodic sets.

5.1.3 Query Expressiveness

The third statement we mentioned above refers to the queries that can be asked of a temporal

database. Again, for the usual set-theoretic reasons, no language can represent all queries. Thus

the issue of what queries a language can represent is meaningful. Note that this notion, referred to

as query expressiveness in [BNW91], is quite distinct from data expressiveness. For example, the

data expressiveness of a unary temporal relation is the sets of integers it can represent, whereas the

query expressiveness of a yes/no query language over such a relation is the sets of sets of integers

the language can define.

The query expressiveness of the two formalisms we have discussed are incomparable, though

they are both adequate for most applications. One can find a precise discussion of these issues in

[BNW91] where some characterizations of the expressiveness of our languages are given.

5.2 Query Evaluation and Complexity issues

In a database system, one wants query evaluation to be fast. This is not a property that will be

destroyed by our more expressive but less explicit representations of temporal information. There

are two ways to look at the problem: theoretical complexity results, and what one could expect for

common queries in an implemented system.

A summary of theoretical complexity results can be found in [BCW92]. Basically, these results

say that, in the general case, complexity is high (EXPTIME or PSPACE), though there are many

cases where it is PTIME. This last class of results does not mean more than ‘efficiency is not
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impossible’. There are no experiences with implemented systems, but we are quite optimistic

about the possibility of obtaining reasonable performance.

Finally, note that one major advantage of the formalisms we have presented is that they allow

the presentation of query answers in the same way as the content of the database. This can be

an asset both from a complexity and an ease of use point of view. Indeed, it can be much more

efficient to handle representations of large sets than the sets themselves, and it is certainly more

useful to know that something occurs every Monday than at the equivalent list of dates.

6 Implementations of Infinite Periodic Sets

In this section, we discuss whether infinite periodic sets can be implemented using existing database

technology. We consider the two approaches to the representation of infinite periodic sets presented

in Sections 3 and 4.

6.1 Constraint-Based Approach

The constraint-based approach uses traditional relational query languages (calculus and algebra)

but demands a considerably more general notion of attribute domain, as well as specialized algo-

rithms for evaluating queries.

A new domain of linear repeating points (lrp’s) is necessary. In this domain the following

operations need to be supported: intersection, subtraction, period multiplication, and equality test

[KSW90]. This domain may be implemented using the abstract data type facility provided by some

experimental database systems like Postgres [SK91] or Starburst [LLPS91].

Another domain that is required is that of linear arithmetic constraints with some simple

syntactic transformations of constraints including merging, splitting, and negation [KSW90]. Such

constraints are associated with every tuple, so the simplest way to implement them would be to

add an extra attribute to every temporal relation, whose values are linear arithmetic constraints.

Again, an abstract data type facility is essential to support such a construct.

Both linear repeating points and arithmetic constraints are expressions containing logical vari-

ables. Unfortunately, no extensible relational database system we are familiar with (including

Postgres and Starburst) provides support for symbolic data of this kind. In fact linear repeating

points and arithmetic constraints would probably have to be stored as strings, and operations would

have to be provided to convert back and forth between strings and an internal form on which the

syntactic transformations could more readily be performed.
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The implementations of standard operations of relational algebra have to be specialized in the

constraint-based approach. They would have to take into account the special character of temporal

attributes (containing lrp’s) and constraints. Although the demand for providing a specialization

facility for relational algebra operations seems to transcend the area of temporal databases (it may

also be useful in, e.g., spatial databases), we know of no extensible relational database system

providing it.

6.2 Deductive Approaches

Both Datalog1S and Templog are logic programming languages. Moreover, Datalog1S being a syn-

tactic subset of Prolog, it is in a limited way available to any user of a Prolog system. Nonetheless,

no Prolog system we are familiar with provides support for the finite representation of infinite query

answers [CI89, CI93], which is essential when dealing with infinite periodic sets. Moreover, the ter-

mination of standard top-down or bottom-up query evaluation in the context of Datalog1S cannot

be guaranteed [Cho90a]. A specialized version of bottom-up evaluation can be guaranteed to ter-

minate for finite-answer queries [Cho90a]. However, no existing logic programming or deductive

database system provides the means to specialize its evaluation procedure.

7 Conclusions

As can be seen from the above discussion, the problems of providing a comprehensive framework for

the implementation of infinite periodic sets are largely independent of the existence of a common

relational-style infrastructure for temporal databases à la TQuel [Sno87] (or a temporal extension of

SQL). In this implementation task, the availability of powerful extensible, relational or deductive,

database systems is crucial. We conjecture that the implementation of other advanced tempo-

ral concepts, like, e.g., indefinite temporal data, will share the above property and will only be

facilitated by the advances in the area of general extensible database systems.
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