Using POD and DMD for comparing CFD and experimental results in unsteady aerodynamics

<u>A. Guissart</u>, T. Andrianne, G. Dimitriadis & V.E. Terrapon

University of Liege

November 25, 2014

APS-DFD

Motivation

- Global quantities
- X Local quantities

Motivation

Higher level of comparison is needed

POD and DMD used for comparison

DMD finds single frequency modes ϕ_i^{DMD}

$$\mathbf{u}(x, y, t) = \sum_{i=1}^{N} \underbrace{a_{i}^{\text{DMD}}}_{\text{amplitude}} \underbrace{\exp\left(\lambda_{i}^{\text{DMD}}t\right)}_{\text{evolution}} \underbrace{\phi_{i}^{\text{DMD}}(x, y)}_{\substack{\text{spatial} \\ \text{mode}}}$$

POD and DMD used for comparison

DMD finds single frequency modes ϕ_i^{DMD}

$$\mathbf{u}(x, y, t) = \sum_{i=1}^{N} \underbrace{a_i^{\text{DMD}}}_{\text{amplitude}} \underbrace{\exp\left(\lambda_i^{\text{DMD}}t\right)}_{\substack{\text{time} \\ \text{evolution}}} \underbrace{\phi_i^{\text{DMD}}(x, y)}_{\substack{\text{spatial} \\ \text{mode}}}$$

⇒ Different parts of decompositions are compared

Data Collection

- 1. EFD \rightarrow Tr-PIV
- 2. CFD \rightarrow uRANS

Oscillating rectangle

Problem

- No other EFD values than velocities
- CFD data need to be validated
- ⇒ Use decomposition methods!

Oscillating rectangle

Problem

- $\overline{c_l}$ from CFD far from EFD value
- Why?
- \Rightarrow Use decomposition methods!

DMD results

EFD: 2 modes

CFD: 2 modes

444	1999	2222	N N N N	X X X X	× × × ×	美美美学	***	***	***	***				-		* * *	***	:			-	-	
177	シューク	1111	1 1 1 1	1 2 2 2	シンシン		(未 天 天	· 年 - - - - - - - - - - - - -		****	1		1 1 1			***		* * *	2 2 3				
1	11/11/1	14/14/	14/4/								-		-	-	-	-					1.6.1.	1. 1. 1.	
1	-			:	:	:	:	:	-	2	2	Ì	2	ì		-	-	-	<u>.</u>	-	-	2	•
1.	•	•	•			•	•		•		•		·	-	-	-	-	-	-	-	-	-	_
11	1	2	1	1	1	1	÷	1	1	1	÷	÷	÷	1	1	÷	÷	1	1	÷	÷	1	
Ŀ																'				•			

DMD results

EFD: 2 modes

CFD: 2 modes

In CFD reconstruction

• More important reverse flow

DMD results

EFD: 2 modes

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~														
-3333333333333333333333333333333333333														
A5553333333333333333333333333333333333														
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM														
MATTERSTRANS														
MANAGERERAN														
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA														
MAAAAA														
777.7.20														
i ginne i station i s														
1														

#### CFD: 2 modes

7	444	441			見たる	見える	外外天	朱光元	大大		3	-	-		-	2	-	;	-	1	ļ	1	1	
2											1	-	-	-		-	-	÷	1	2	1	1	1	
1	2	2			-	2	2	-								-	-	-	-	2	-	1	1	-
Ţ	^	1	÷	ł	÷	ż	ż	ż	ź	ź	ź	2	2	2	÷.	-	-	-		L	7	7	7	
÷	÷	÷	÷	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		É.	2	
•	•	•	•	•	•	•	•	•	•	•	•						-	-	-	-	-	-	-	_
														•				•					•	
1	2	2	÷	÷	1	0	0	÷	1	2	0	1	÷	2	÷	0	÷	÷	2	÷	1	÷	2	
	Ì																							

### In CFD reconstruction

- More important reverse flow
- Discrepancies on the rear part



#### CFD: 2 modes



#### In CFD reconstruction

- More important reverse flow
- Discrepancies on the rear part
- Different dynamic of reattachment

# **Conclusion and future work**

### DMD and POD are useful

- Compare and validate CFD results
- Highlight and understand potential discrepancies

- Enlarge PIV window to get the rear part
- Apply DMD on lift evolution

