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Definition: pattern or template matching

I Pattern or template matching is the process of

either finding any instance of an image T , called the pattern or
the template or the model, within another image I .

or finding which ones of the templates T1,T2, · · · ,TN

correspond in some way to another image I .
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Example: pattern matching
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Definition: image registration or alignment

I Image registration is the process of spatially aligning two
images of a scene so that corresponding points assume the
same coordinates.
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Objectives

I Finding the image transform or warping that would be
needed to fit or align a source image on another one.

I Counting the number of instances that matched the
pattern.

I Measuring and assessing the matching quality.
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Components

I Find, for some points in the first image, the corresponding
point in the second image

Either find the correspondence of all pixels of an image
Or only find the correspondence of some “interresting” points
of an image

I Consider the image variation/transformation/warping between
the two images:

estimate those which are of interrest to our application.
specify those to which the system should be insensitive or
invariant

I Measure the similarity between the template and its matched
instances.
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Applications

I Stereo and multi-view correspondence:

3D reconstruction
Pose estimation

I Panoramic images:

Image alignment for stitching

I Machine Vision:

Template detection and counting
Object alignment -> robot arm control, gauging
Model conformance assessment -> NDT, defect detection

I Multi-modalities correspondences:

Biomedical images alignment
Satellite images fusion

I Robot navigation

I Content Based Image Retrieval (CBIR):

Signature
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Electronic components manufacturing I
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Electronic components manufacturing II

I Wafer dicing
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Electronic components manufacturing III

I Die bonding

I Wire bonding
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Electronic components manufacturing IV
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Printed board assembly (pick & place) I

I Position of picked components

I Position of placement area

I Control of welding after the process
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Printed board assembly (pick & place) II
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Pattern matching inspection I

I Control of presence/absence

I Control of position and orientation

I Control of the component type
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Pattern matching inspection II
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Naive solution - pattern pixels distance I

I Define, inside the observed image I , all the windows Wi of the
same size (width wT x height hT ) as the template T . If
(x , y) = (ki , li ) is the center of Wi , then

Wi (x , y) = I
(
x + ki − wT

2 , y + li − hT
2

)
I For each window Wi , compute the euclidian distance between

T and Wi :

dist (T ,Wi ) =
wT−1∑
u=0

hT−1∑
v=0

[T (u, v)−Wi (u, v)]2 (1)
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Naive solution - pattern pixels distance II

I Create a distance map that contains for each position Wi the
computed distance to T

D (k, l) =

 dist
(
T ,Wi(k,l)

)
when

{
wT
2 ≤ k < wI − wT

2
hT
2 ≤ l < hI − hT

2

0 otherwise
(2)

I Find the position of the minimum in these map
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Pixel-based approach I

I The approach is to shift or warp the images relative to each
other and to look at how much the pixels agree

I A suitable similarity or dissimilarity measure must first be
chosen to compare the images

I The similarity or dissimilarity measure depend on the image
characteristics to which it is necessary to be invariant.

Lighting conditions (linear gain and offset)
Noise
“Small” rotation or scaling
Thinning
-> Define the similarity/dissimilarity measure
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Pixel-based approach II

I Then, we need to decide which kind of warping is eligible!

Translation, rotation, scaling, affine transform
-> Define the search space

I The search space is the parameter space for the eligible
warping (the set of all the parameters giving rise to an eligible
transformation).

Translation -> 2D search space
Translation + rotation -> 3D search space
Translation + rotation + isotropic scaling -> 4D search space
Affine transform -> 6D search space
Projective transform -> 8D search space

I Finally, the search technique must be devised

Trying all possible alignment (a full search) is often impractical!
So hierarchical coarse-to-fine techniques based on image
pyramids are often used.
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Other solution: feature point correspondences I

There are mainly two paradigms to compare two images:

I Pixel based:

Compare all pairs of corresponding (=located at the same
place in the image, possibly after warping one image) pixels
Then compute a global score based on the individuals
comparisons

I Feature based:

Find “informatives” feature points in each images
Then associate each feature point of one image to a feature
point of the other image
Compute the transformation/warping that enable the feature
point in the left image to fit their corresponding point in the
rigth image
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Other solution: feature point correspondences II
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Feature-based approach

I Feature points have also been referred to as critical points,
interest points, key points, extremal points, anchor points,
landmarks, control points, tie points, corners, vertices, and
junctions in the literature.

I We need to decide what is a feature point

Corners, junctions, edges, blob center, . . .
Compute a cornerness function and suppress non-maxima
Design to be invariant to some image variation

I Then we have to characterize and describe them (position,
image gradient or moment, cornerness, . . . ) to find the best
correspondance between feature points in each images

I We need to decide which kind of warping is admissible!

How to find the best correspondences
Robust methods (Ransac, ICP)
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Pixel-based versus feature based approach I

Pixel based Feature based

Pattern

information

usage

Use all pixels in the pattern in

an uniform way. -> No need

to analyze or understand the

pattern.

Find and use pattern features

(most informative part of the

pattern). -> Sensitive

operation.

Occlusion

or pose

variation

Sensitive Could be design to be

insensitive

Sub-pixel

accuracy

Interpolation of the

similarity/dissimilarity measure

Naturally accurate at the

sub-pixel level.

Admissible

warping

The choice has to be done at

the beginning of the process

(orientation and scaling)

Mostly insensitive to

differences in orientation and

scaling

Noise and

lighting

conditions

Sensitive Naturally much more

insensitive
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Pixel-based versus feature based approach II

Pixel based Feature based

Rigid

pattern

warping

Mostly limited to rigid pattern

warping

Enable non-rigid warping.

Dimensionality

of the

search

space

Mostly limited to low

dimensionality (the search

time is exponential in the

search space dimensionality)

Higher dimensionality search

space are more easily

reachable

Implementation Easy to implement, natural

implementation on GPUs

Much more difficult to

implement and/or to optimize

Complexity Complexity proportionnal to

the image size. Need specific

search strategies to reach

real-time.

Complexity roughly

proportionnal to the number

of feature points (depend

more on the content of the

scene than on the image size)
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Pixel-based approach: Similarity/dissimilarity measures

I Given two sequences of measurement

X = {xi | i = 1, · · · , n}
Y = {yi | i = 1, · · · , n}
X and Y can represent measurements from two objects or
phenomena. Here, in our case, we assume they represent
images and x i and yi are the intensities of the corresponding
pixels in the images.

I The similarity (dissimilarity) between them is a measure that
quantifies the dependency (independency) between the
sequences.
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Pixel-based approach: Similarity/dissimilarity measures

Similarity / Correlation /
Score

Dissimilarity / Distance

Pearson correlation coefficient
Tanimoto Measure

Stochastic Sign Change

Deterministic Sign Change

Minimum Ratio
Spearman’s Rho

Kendall’s Tau
Greatest Deviation
Ordinal Measure
Correlation Ratio

Energy of Joint Probability

Distribution Material
Similarity Shannon Mutual

Information
Rényi Mutual Information

Tsallis Mutual Information

F-Information Measures

L1 Norm
Median of Absolute Differences

Square L2 Norm

Median of Square Differences

Normalized Square L2 Norm

Incremental Sign Distance

Intensity-Ratio Variance

Intensity-Mapping-Ratio
Variance

Rank Distance
Joint Entropy

Exclusive F–Information

31 / 53



Pixel-based approach: Similarity/dissimilarity measures

Similarity / Correlation /
Score

Dissimilarity / Distance

Pearson correlation coefficient
Tanimoto Measure

Stochastic Sign Change
Deterministic Sign Change

Minimum Ratio
Spearman’s Rho

Kendall’s Tau
Greatest Deviation
Ordinal Measure
Correlation Ratio

Energy of Joint Probability
Distribution Material

Similarity Shannon Mutual
Information
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Pearson correlation coefficient

The correlation coefficient between sequences
X = {xi | i = 1, · · · , n} and Y = {yi | i = 1, · · · , n} is given by

r =
1
n

∑n
i=1(xi − x̄)(yi − ȳ)√

1
n

∑n
i=1(xi − x̄)2

√
1
n

∑n
i=1(yi − ȳ)2

(3)

where

x̄ =
1

n

n∑
i=1

xi and ȳ =
1

n

n∑
i=1

yi

which can also be written as

r =
1

n

n∑
i=1

(
(xi − x̄)

σx

)(
(yi − ȳ)

σy

)
(4)

or

r =
1

n
X̄ t Ȳ (5)
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Pearson correlation coefficient - FFT

I To speed-up the search step when the score is, in some way,
related to a correlation coefficient, we can use FFT algorithm:

Y represents the 2-D image inside which a 2-D template is to
be found
X represents the template padded with zeros to be the same
size as Y
The best-matching template window in the image is located at
the peak of

C [X ,Y ] = F −1 {F {X}F ∗ {Y }} (6)

I Phase correlation: the information about the displacement of
one image with respect to another is included in the phase
component of the cross-power spectrum of the images:

Cp [X ,Y ] = F −1
{

F {X}F ∗ {Y }
‖F {X}F ∗ {Y }‖

}
(7)
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Pearson correlation coefficient map

(a) A template X .
(b) An image Y containing
the template X .
(c) The correlation image
C [X ,Y ] with intensity at a
pixel showing the correlation
coefficient between the tem-
plate and the window cen-
tered at the pixel in the im-
age.
(d) The real part of im-
age Cp [X ,Y ], showing the
phase correlation result with
the location of the spike en-
circled.

(a) (b)

(c) (d)
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Spearman rank correlation or Spearman’s rho I

I The Spearman rank correlation or Spearman’s Rho (ρ)
between sequences X = {xi | i = 1, · · · , n} and
Y = {yi | i = 1, · · · , n} is given by

ρ = 1− 6
∑n

i=1 [R (xi )− R (yi )]2

n (n2 − 1)
(8)

where R (xi ) and R (yi ) represent ranks of xi and yi in images
X and Y

I Remark: To eliminate possible ties among discrete intensities
in images, the images are smoothed with a Gaussian of a
small standard deviation, such as 1 pixel, to produce unique
floating-point intensities.
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Spearman rank correlation or Spearman’s rho II

I Comparison with the Pearson correlation coefficient:

ρ is less sensitive to outliers and, thus, less sensitive to impulse
noise and occlusion.

ρ is less sensitive to nonlinear intensity difference between
images than Pearson correlation coefficient.

Spearman’s ρ consistently produced a higher discrimination
power than Pearson correlation coefficient.

Computationally, ρ is much slower than r primarily due to the
need for ordering intensities in X and Y
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Kendall’s tau I

I If xi and yi , for i = 0, ..., n, show intensities of corresponding
pixels in X and Y , then for i 6= j , two possibilities exist:

Either concordance : sign(xj=xi ) = sign(yj=yi )
Or discordance : sign(xj=xi ) = −sign(yj=yi )

I Assuming that out of possible C 2
n combinations, Nc pairs are

concordants and Nd pairs are discordants, Kendall’s τ is
defined by:

τ =
Nc − Nd

n (n − 1) /2
(9)

I If bivariate (X ,Y ) is normally distributed, Kendall’s τ is
related to Pearson correlation coefficient r by:

r = sin (πτ/2) (10)
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Kendall’s tau II

I Comparison with other similarity measures:

Pearson correlation coefficient can more finely distinguish
images that represent different scenes than Kendall’s τ

Conversely, Kendall’s τ can more finely distinguish similar
images from each other when compared to Pearson correlation
coefficient

Spearman’s ρ and Kendall’s τ have the same discrimination
power when comparing images of different scenes

Kendall’s τ is one of the costliest similarity measures
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Spearman’s rho and Kendall’s tau maps

(a) Spearman’s Rho
(b) Kendall’s Tau.
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Feature point detection

Feature points in an image carry critical information about scene
structure
-> They are widely used in image analysis.

In image registration, knowledge about corresponding points in two
images is required to spatially align the images.

It is important that detected points be independent of noise,
blurring, contrast, and geometric changes
-> the same points can be obtained in images of the same scene
taken under different environmental conditions and sensor
parameters.

A large number of point detectors have been developed throughout
the years ...
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Feature point category

I Correlation-based detectors

I Edge-based detectors

I Model-based detectors

I Uniqueness-based detectors

I Curvature-based detectors

I Laplacian-based detectors

I Gradient-based detectors

I Hough Transform-based detectors

I Symmetry-based detectors

I Filtering-based detectors

I Transform Domain detectors

I Pattern Recognition-based detectors

I Moment-based detectors

I Entropy-based detectors
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Correlation-based detectors I

I The angle between the line connecting pixel (x , y) to the ith
pixel on the smallest circle and the x-axis is θi , and the
intensity at the ith pixel is I1(θi )

I If Īj(θi ) represents the normalized intensity at θi in the jth
circle, then

C (x , y) =
n∑

i=1

m∏
j=1

Īj(θi ) (11)

is used to measure the strength of a vertex or a junction at
(x , y) .

I Pixel (x , y) is then considered a corner if C (x , y) is locally
maximum.
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Correlation-based detectors II
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Laplacian-based detectors I

I A number of detectors use either the Laplacian of Gaussian
(LoG) or the difference of Gaussians (DoG) to detect points in
an image.

The DoG operator is an approximation to the LoG operator
The best approximation to the LoG operator of standard
deviation σ is the difference of Gaussians of standard
deviations σ and 1.6σ. That is ∇2G (σ) = 1.6[G(1.6σ)−G(σ)]

σ2

I Local extrema of LoG or its approximation DoG detect
centers of bright or dark blobs in an image.

So, they are not as much influenced by noise as points
representing corners and junctions and points detected by the
LoG operator are generally more resistant to noise than points
detected by vertex and junction detectors.

I SIFT (Scale Invariant Feature Transform) used the difference
of Gaussians (DoG) to find points in an image.

46 / 53



Laplacian-based detectors II
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Pattern and image warping or transform

I Pattern or Image warping

The eligible warping defines the search space

Translation
Rotation
Isotropic / anisotropic scaling
Affine / projective transform
Non-linear warping

The insensitivity properties guide the choice of a score/distance
measure and the choice of a feature point detector

Noise
Lighting conditions
“Small” rotations or scaling
Template thinning

I Applying the warping

to the pattern or the image or both ?
or to the feature points ?

I Image resampling and sub-pixel accuracy ?
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Transform parameter space search strategy

I Similarity/Dissimilarity measure optimization

Full search
Steepest descent
Conjugate gradient
Quasi-Newton method
Levenberg-Marquardt
Simulated annealing

I Transform computation from feature points correspondence

Ransac
ICP (Iterative Closest Point)
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Multiresolution - Coarse-to-fine approach

I Compute image and pattern down-scaled pyramids.

I Proceed to a full search of the most reduced (coarser) pattern
within the most reduced image.

I Find a number of eventual candidates at the coarsest scale by
a full search.

I For each candidates at a given scale:

Upscale the image and the candidate and look for the best
matching pattern location in a neighbourhood of the
candidate.
Reduce the number of candidates
If the finer scale has not yet been reached, proceed to the next
scale level
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Hybrid approach: feature extraction in one image only

I Search for some feature points in the pattern

I Scan the transform parameter space following a given strategy:

Transform the feature points following the current eligible
warping parameters
Superimpose the transformed pattern feature points on the
reference image
At each pattern feature points location in the reference image,
check if a compatible point exists in the reference image and
measure its similarity/dissimilarity score.
Compute a global measure of similarity/dissimilarity by adding
all the individual scores.
Find the optimum of this measure on the search space.
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