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Summary

Networks or graphs provide a natural representation of molecular biology knowledge, in particular to

model relationships between biological entities such as genes, proteins, drugs, or diseases. Because

of the effort, the cost, or the lack of the experiments necessary to the elucidation of these networks,

computational approaches for network inference have been frequently investigated in the literature.

In this thesis, we focus on supervised network inference methods. These methods exploit supervised

machine learning algorithms to train a model for identifying new interacting pairs of nodes from a

training sample of known interacting and possibly non-interacting pairs and additional measurement

data about the network nodes.

Our contributions in this area are divided into three parts. First, the thesis examines the problem

of the assessment of supervised network inference methods. Indeed, their reliable validation (in silico)

poses a number of new challenges with respect to standard classification problems, related to the fact

that pairs of objects are to be classified and to the specificities of biological networks. We perform

a critical review and assessment of protocols and measures proposed in the literature. Through

theoretical considerations and in silico experiments, we analyze in depth how important factors

influence the outcome of performance estimation. These factors include the amount of information

available for the interacting entities, the sparsity and topology of biological networks, and the lack

of experimentally verified non-interacting pairs. From this analysis, we derived specific guidelines so

as to how best exploit and evaluate machine learning techniques for network inference.

Second, we systematically investigate, theoretically and empirically, the exploitation of tree-

based methods for network inference. We consider these methods in the context of the two main

generic classification-based approaches for network inference: the local approach, which trains a

separate model for each network node, and the global approach, which trains a single model over

pairs of nodes. We present and formalize these two approaches, extending the former for the

prediction of interactions between two unseen network nodes, and discuss their specializations to

tree-based methods, highlighting their interpretability and drawing links with clustering techniques.

Extensive experiments are carried out with these methods on various biological networks that clearly

highlight that these methods are competitive with existing methods. The interpretability of the

resulting method family is illustrated on a drug-protein interaction network.

In the last part of the thesis, we built on the experience gained in the two previous parts to try to

predict at best the genetic interaction network in yeast S.cerevisiae. For that purpose, we collected

a large dataset, assembling 4 millions gene pairs that were experimentally tested in the context of

11 different studies and 23 sets of measurements to use as gene input features for the inference.

Through several cross-validation experiments on the resulting dataset, we showed that predicting

genetic interactions is indeed possible to some useful extent and that actually in some settings, the

accuracy of computational methods is not very far from that of experimental techniques.
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Résumé

Les réseaux, ou graphes, fournissent une représentation naturelle de nos connaissances de la biologie

moléculaire. Ils permettent en particulier de modéliser des relations entre des entités comme des

gènes, des protéines, des médicaments, ou des maladies. Du à la difficulté de mise œuvre, au coût,

ou simplement à la non-existence des expériences nécessaires à l’élucidation de ces réseaux, des

approches informatiques pour l’inférence de réseaux ont souvent été examinées dans la littérature.

Dans cette thèse, nous nous focalisons sur les méthodes d’inférence supervisée de réseaux. Ces

méthodes exploitent des algorithmes d’apprentissage automatique pour apprendre un modèle perme-

ttant d’identifier de nouvelles paires de noeuds en interaction, à partir d’un ensemble d’apprentissage

d’interactions connues, et de données supplémentaires mesurées sur les noeuds du réseau.

Nos contributions dans ce domaine sont divisées en trois parties. Tout d’abord, la thèse examine

le problème de l’évaluation des méthodes d’apprentissage supervisé de réseaux biologiques. En effet,

une validation (in silico) fiable pose un certain nombre de difficultés par rapport aux problèmes

de classification standard, provenant du fait que des paires d’objets doivent être classées, et des

spécificités des réseaux biologiques. Nous faisons un compte rendu critique et une évaluation des

protocoles et mesures proposés dans la littérature. A travers des considérations théoriques et des

expériences in silico, nous analysons en profondeur comment d’importants facteurs influencent le

résultat de l’estimation de la performance. Ces facteurs incluent la quantité d’information disponible

pour les entités qui interagissent, la dispersion et la topologie des réseaux biologiques, et le manque de

paires ayant été expérimentalement vérifiées comme n’interagissant pas. A partir de cette analyse,

nous avons extrait des directives spécifiques afin d’exploiter au mieux et d’évaluer les techniques

d’apprentissage automatique pour l’inférence de réseaux biologiques.

Ensuite, nous examinons systématiquement, théoriquement et empiriquement, l’exploitation des

méthodes d’arbres pour l’inférence de réseaux. Nous considérons ces méthodes dans le contexte des

deux principales approches génériques de classification pour l’inférence de réseaux : l’approche locale,

qui apprend un modèle séparé pour chaque noeud du réseau, et l’approche globale, qui apprend un

seul modèle sur toutes les paires de noeuds. Nous présentons et formalisons ces deux approches, en

étendant la première aux prédictions des interactions entre deux noeuds non vus, et discutons de

leurs spécialisations aux méthodes d’arbres, en mettant en évidence leur interprétabilité et en faisant

des liens avec les techniques de clustering. De nombreuses expériences sont réalisées avec ces

méthodes sur divers réseaux biologiques, montrant clairement que ces méthodes sont compétitives

avec celles existantes. L’interprétabilité des familles de méthodes résultantes est illustrée sur un

réseaux d’interactions médicaments-protéines.

Dans la dernière partie de la thèse, nous nous appuyons sur l’expérience acquise dans les deux

premières parties pour essayer de prédire au mieux le réseau d’interactions génétiques de la levure

S.cerevisiae. Dans ce but, nous avons collecté un large ensemble de données, comprenant 4 millions

de paires de gènes ayant été testées expérimentalement dans le contexte de 11 études différentes,
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et 23 ensembles de mesures à utiliser comme caractéristiques d’entrée pour l’inférence. A travers

plusieurs expériences de validation croisée sur l’ensemble de données résultant, nous montrons que

la prédictions des interactions génétiques est en effet possible dans une certaine mesure et que dans

certains contextes, la précision des méthodes informatiques n’est pas très loin de celle des techniques

expérimentales.



Acknowledgments

At the end of this work, I wish to sincerely thank all the people who contributed to its realization

and allow, through their support and their advice, to complete it successfully.

First of all, I thank particularly my advisor, Pierre Geurts, for all the time he has spent to guide

and supervise this research. I would like to say how much I have appreciated his great help and his

constant presence and availability. I have also been very sensitive to his generosity and kindness. He

has motivated me and encouraged me all along this five years, and this thesis would definitely not

have seen the day without him.

I also address many thanks to Louis Wehenkel, who first supervised my master’s thesis, which

was the prelude of this whole work. He is the one who let me discover the world of research and

made me want to do this PhD. Moreover he has always been present to proofread and give precious

advice, during all these years.

I am thankful to Madan Babu, who has given me a warm welcome in the Laboratory of Molecular

Biology in Cambridge during my master. He has provided me the material necessary to start this

work, and very enthusiastic advice. I am also grateful to Robert Küffner, with whom I have had the
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Chapter 1

Introduction

In this introduction, we first give the context and the motivations of our research. We then present

our main contributions and describe the organization of the manuscript.

1.1 Biological network inference

Since the beginning of the genomic revolution, detailed biological information about cellular com-

ponents has been becoming available. In 2004, the first genome sequence of human was completely

mapped (International Human Genome Mapping Consortium, 2004), and allowed to identify human

genes. Since then, the time to sequence a human genome has been decreasing exponentially until

reaching 24 hours in 2013, for a cost of hundreds of euros (Debré and Gall, 2014). Like for human,

genomes of many other species have now been sequenced, and it is thus possible to analyze the

ensemble of a genome, instead of studying single genes. Genes encode the information required to

assemble proteins. The ensemble of all proteins expressed by a genome is called the proteome. One

gene can specify more than one protein, due to alternative splicing or post-translational modifica-

tions. Human genome has been estimated to contain more than 20,000 genes, while 30,000 human

proteins have been already identified (Kim et al., 2014).

All the information gained about genes and proteins through sequencing is not sufficient however

to study cellular activities. An important step for understanding the properties of cellular systems is

indeed to find and understand the relationships that exist between their components: which proteins

regulate the expression of which gene, which proteins interact with each other to form complexes,

which drug interacts with which protein, etc. These relationships are typically modeled through

networks. (Figure 1.1)

Mathematically, a network (or graph) is an ensemble of objects, called nodes, and an ensemble

of edges connecting pairs of nodes. An edge may be directed if it links one node towards another,

or undirected if it does not assign an order to the nodes it connects. An edge can also be weighted

by a number indicating its strength. A network can be homogeneous if it connects only nodes of the

same kind, or bipartite when edges are linking nodes of two kinds. Given this flexibility, networks

are very natural as a mathematical language to model relationships between biological entities such

as genes, proteins, drugs, or diseases, and are indeed ubiquitous to model them. The semantics

of nodes and edges in biological networks can be very diverse. The most studied networks include

among others:

13



14 1.1. BIOLOGICAL NETWORK INFERENCE

Figure 1.1: Examples of networks that will be discussed in Chapter 4: From top to

bottom and left to right, a protein-protein interaction network of yeast S.cerevisiae, a

metabolic network of yeast, a regulatory network of bacteria E.coli, a regulatory network

of yeast and a drug-protein interaction network of human.
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- Protein-protein interaction networks, in which the nodes are proteins and two proteins are

connected by an undirected edge if they physically interact. Variants of this concept introduce

an edge when two proteins belong to a same protein complex, or if they belong to a same

biological pathway.

- Metabolic networks, where nodes are metabolites and each directed edge represents a bio-

chemical reaction that transforms one metabolite into another and is labeled by the enzymatic

protein that catalyzes this reaction.

- Gene regulatory networks, composed of two sets of nodes, genes and regulatory entities such

as, e.g., transcription factors (i.e., proteins) or miRNAs. Here, a directed edge from a regulator

to a gene indicates that this regulator regulates the expression of a given gene.

- Networks of drug-protein interactions, where interactions for instance denote the affinity of a

drug to a given protein.

The mapping of the biological networks relative to an organism of interest is very crucial if one wants

to understand the functioning of this organism. The elucidation of these networks is therefore one

of the main goals and challenges of systems biology.

In theory, most of these networks, but not all, can be identified from lab experiments. In

practice however, these experiments can be extremely difficult to set up and be very costly. These

difficulties, together with the very large number of potential pairs to be tested, prevent the application

of experimental techniques in a high-throughput manner to elucidate complete networks. In addition,

the results of these experiments are most of time very noisy and plagued by missing values. As a

consequence, the knowledge we have about most of these networks is very partial and can also be

very noisy. On the other hand, more and more experimental data become nevertheless available

about the biological entities involved in these networks (genes, proteins, drugs, etc.). Motivated by

the availability of these data, several computational approaches have emerged in the literature that

try to infer biological networks by integrating relevant data sources. These methods complement

nicely experimental techniques.

Network inference methods can be classified into two main families: unsupervised and supervised

methods (Maetschke et al., 2013). In order to predict interactions, unsupervised inference methods

generally derive a score expressing the confidence for a pair of nodes to interact, based on the

analysis of some experimental data related to the nodes (e.g., expression measurements for genes,

PFAM domains or phylogenetic profiles for proteins, chemical structure descriptors for drugs). More

sophisticated approaches derive a mathematical model of the interactions at play in the network and

learn the parameters of this model, that include the underlying network structure, from available

experimental data. While effective, unsupervised methods nevertheless require some strong prior

understanding of what defines an interaction, in order to design accurate scores or models. They are

also intrinsically network specific, as the same score or model can obviously not be used to predict

different kinds of interactions.

In contrast with unsupervised methods, supervised approaches provide a generic solution that

can handle in principle any kinds of networks. In addition to node-related measurements, these ap-

proaches requires some partial knowledge of the network to predict in the form of a training sample

of known interacting and non-interacting pairs of nodes. They then rely on some supervised learning

algorithm to automatically construct a model that can subsequently be exploited to identify poten-

tially interacting pairs among the remaining unknown pairs in the network. This model computes
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its predictions from a set of features defined either on each network node or directly on pairs of

nodes. In addition to being generic, by taking advantage of known interactions, supervised methods

typically perform better than unsupervised ones. They can in principle be applied to infer any kind

of networks or graphs: homogeneous, bipartite, directed or undirected, weighted or unweighted.

Supervised methods have been applied to predict several biological networks: protein-protein inter-

action networks (Park and Marcotte, 2011; Tastan et al., 2009; Yip and Gerstein, 2008), metabolic

networks (Yamanishi and Vert, 2005; Bleakley et al., 2007; Geurts et al., 2007), gene regulatory

networks (Cerulo et al., 2010; Mordelet and Vert, 2008), epistatic gene networks (Ryan et al., 2010;

Ulitsky et al., 2009), drug-protein interaction networks (Takarabe et al., 2012; Cheng et al., 2012;

Yu et al., 2012; Bleakley and Yamanishi, 2009; Yamanishi et al., 2008).

1.2 Contributions

In this thesis, we focus on the problem of the supervised inference of biological networks. Our

contributions in this domain are structured around three main questions that have not been answered

so far in the literature, or only partially:

- How to evaluate supervised methods for the inference of biological networks in a fair and

unbiased way and, as a corollary, how to best apply them to truly infer a real network?

- How to best exploit tree-based ensemble methods for supervised network inference and how

do these methods compare with existing methods from the literature?

- How well can we predict genetic interactions in yeast using supervised network inference

methods?

We motivate these three questions below in turn and detail our main contributions in the process of

answering them.

1.2.1 Performance evaluation

The problem of the validation of standard supervised learning methods has been discussed extensively

in the literature. Because both training and validation need to be performed on the basis of the same

learning sample of labeled data, special care is needed to avoid any source of bias in the validation

step. This implies for example the use of intricate and potentially nested cross-validation rounds for

tuning method parameters, perform model selection, and assess the performance of the final model.

The problem of supervised network inference can be casted as a supervised classification prob-

lem on pairs of objects and thus the validation of inference methods requires the same special care

as standard classification methods. However, since pairs, and not single objects, need to be clas-

sified, the traditional cross-validation techniques are not sufficient to get a fair and comprehensive

assessment of the performance one can expect from these methods in practical applications. In

particular, as shown by some authors, the quality of the prediction for a given pair strongly depends

on the amount of labeled pairs in the training data that involves its two nodes. It is indeed typically

much more difficult to predict pairs that involve nodes not represented in the training network. In

consequence, one needs to adapt cross-validation techniques to account for this effect. In addition,

several distinctive features of biological networks also impact the way supervised network inference

methods should be evaluated or applied. These include for example their high sparsity (that makes
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the corresponding classification problem extremely imbalanced), the lack of true negative examples

(as it is merely impossible to measure the absence of an interaction), as well as particular topological

properties of biological networks (e.g., their scale-free nature).

Although these different biases and difficulties have already been sporadically highlighted and

discussed in the literature on biological network inference, our goal in this thesis is to provide

a comprehensive and in-depth review and discussion of these problems and from this discussion to

derive specific guidelines so as to how best exploit machine learning techniques for network inference.

Our main contributions in this part of the thesis are as follows:

- The problem of supervised network inference is formalized as a problem of classification on

pairs. This general formalization encompasses most types of networks that are met in biology

(homogeneous or bipartite, directed or undirected, weighted or unweighted). (Section 2.3.1)

- We provide a critical review of the different metrics that have been used in the literature to

quantify the performance of network inference methods. From this review, we highlight the

most appropriate metrics according to different application scenarios. (Section 3.2)

- We clearly highlight the differences in model performance according to the amount of infor-

mation available in the training data about the nodes in the tested pair. We then explain how

cross-validation techniques should be adapted to assess this effect. (Section 3.3)

- We discuss the impact of the lack of negative interactions in the training data, both at the

training and at the validation stage. In particular, we show how to correct performance

metrics in order to get a more realistic assessment of the model performance in such settings.

(Section 3.4)

- We show that the heavy-tailed degree distribution often met in biological networks introduces

a positive bias in the evaluation of methods. We show how to adapt baselines for supervised

network inference in order not to overestimate the capability of inference methods to extract

meaningful information from the input features. (Section 3.5)

- We propose a simple algorithm to merge several independent rankings of disjoint sets of pairs

from estimated precision-recall curves for each of these ranking. We proof that this algorithm

optimizes the precision-recall curve of the merged ranking when precision-recall curves of the

individual rankings are perfect estimates of the true curves. (Section 3.6)

These different analyses are supported by in silico experiments on artificial (gene regulatory and

co-expression) networks.

1.2.2 Supervised network inference with tree-based methods

As already mentioned, network inference consists in learning a classifier on pairs of nodes. Mainly

two approaches have been investigated in the literature to adapt existing classification methods for

this problem (Vert, 2010). The first one, called the global approach, considers this problem as a

standard classification problem on an input feature vector obtained by combining the feature vectors

of each node from the pair. The second approach, called local, trains a different classifier for each

node separately, aiming at predicting its direct neighbors in the graph. These two approaches have

been mainly exploited with support vector machine (SVM) classifiers, in part because several efficient

kernels have been proposed to compare pairs of objects.
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In this thesis, we would like to systematically investigate, theoretically and empirically, the

exploitation of tree-based methods (Breiman et al., 1984; Breiman, 2001; Geurts et al., 2006a) in

the context of the local and global approaches for supervised biological network inference. The

choice of this particular family of methods is motivated by several interesting properties of these

methods. They are non-parametric methods that can deal with a large number of features and

samples and do not make any assumption (e.g., linearity) about the input-output relationship. Their

predictive performance, when used within ensembles, is competitive with the best classification

methods (Fernández-Delgado et al., 2014). They can be directly adapted to handle a vectorial or

a kernelized output space, which allows to propose alternative solutions for network inference, as

shown later in this thesis. Last but no least, they can also provide interpretable information about

the input-output relationship, either directly through the tree structure (in case of single trees) or in

the form of a ranking of the input features from the most to the least relevant (in case of ensembles).

This latter property is very interesting in the context of biological network inference, as it means

that these methods can provide potentially useful information about the mechanisms that underly

the interactions.

Although tree-based methods have already been used for the inference of specific biological

networks, how to best exploit them for network inference and how well they perform in comparison

with other methods on various biological networks are still open questions. Our main contributions

in this part of the thesis are as follows:

- We formalize the local and global approaches and in the process, we extend the local approach

along two lines. First, we propose an original two-step procedures that allows with this method

to make predictions for pairs of nodes that have no known connections in the training network.

Second, we propose to use in this context multi-output methods, which drastically reduces the

requirement in terms of model size of the local approach (with no significant loss in terms of

predictive performance with tree-based methods). (Section 4.2)

- We study in details the specialization of the local and global approaches to tree-based methods.

In particular, we discuss implementation and computational complexity issues. We also draw

some interesting connections between these methods and (bi-)clustering techniques that shed

some light on the assumptions behind these methods when applied for network inference.

(Section 4.3)

- We provide a systematic and large-scale evaluation of these methods on several homogeneous

and bipartite networks taken from the literature. The goal of this evaluation is to compare

the different methodological variants proposed in the thesis, as well as to compare tree-based

methods with other methods from the literature. To the best of our knowledge, no previous

study has considered simultaneously as many of these networks. (Section 4.4)

- Finally, we propose several semi-automatic procedures to exploit tree-based methods for ex-

tracting interpretable explanations about their predictions. These procedures are illustrated

on a drug-protein interaction network. (Section 4.5)

1.2.3 Predicting genetic interactions in Yeast

An important type of biological network is genetic interaction networks. There is an interaction

(epistasis) between two genes if the effect of the mutation of one of the genes is modified, negatively
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or positively, by a mutation of the other gene. The knowledge of these interactions is crucial to

understand the functions of genes and their products and more globally to elucidate the functional

and organizational principles of biological systems. The information that can be extracted from

these interactions however strongly depends on the global knowledge of the interaction network,

and not only on the knowledge of some specific individual interactions. Experimental techniques

exist that allow to measure these interactions (or absence thereof) and, in yeast S.cerevisiae about 4

millions pairs of genes have already been experimentally tested for an interaction in the context of 11

different studies. Although this number is already very impressive, these 4 millions pairs nevertheless

only cover about 10% of all the pairs that can be defined from the ∼6000 yeast genes. The use

of computational inference techniques is thus very interesting to complete these experimentally

confirmed interactions.

In this last part of the thesis, our goal is to first see how well it is possible to complete the

genetic interaction network of the yeast S.cerevisiae using supervised network inference methods,

and second to find the best way to apply supervised inference methods to actually infer this network.

Our steps to achieve this goal are as follows:

- To constitute our training set for the inference, we collected and pre-processed a very large

set of about 4 millions experimentally measured gene pairs (collected from 11 different studies

carried out between 2005 and 2013) and for each Yeast gene a vector of more than 11,000

features (from 22 different sets) to describe them. (Section 5.3)

- On this dataset, we carried out several cross-validation experiments with three main goals: (1)

evaluate the performance of inference methods, considering separately positive and negative

interactions, (2) assess the relevance of the different feature sets individually and in combina-

tion, and (3) compare the performance of computational methods with those of experimental

techniques. For this latter step, we exploited the fact that several experimental results are

available for a significant number of gene pairs, given the overlap between the different studies.

(Section 5.4)

- Finally, based on the experience gained in the rest of the thesis, we applied at best network

inference techniques to get a global prediction of the complete genetic interaction network of

the Yeast. We assessed the relevance of the predicted interactions by measuring the enrichment

of the interacting pairs in genes that share similar function. (Section 5.5)

1.3 Outline of the manuscript

The main body of the manuscript is divided into four chapters.

In Chapter 2, we provide the reader with the required background in terms of biological net-

works (Section 2.1), machine learning (Section 2.2), and network inference methods, supervised

(Section 2.3) and unsupervised (Section 2.4).

Chapter 3 is devoted to our study of the evaluation of supervised network inference methods. We

first present in Section 3.2 common evaluation measures used in the context of biological network

inference and discuss their main advantages and drawbacks. We then talk in Section 3.3 about

evaluation protocols that allow to differentiate the predicted pairs according to the number of its

nodes that are covered in the training network. We analyze the main characteristics of biological

networks that may impact the performance evaluation of the methods, namely the lack of negative
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examples (Section 3.4) and the heavy-tailed node degree distribution (Section 3.5). Finally, we

describe in Section 3.6 the new approach that we developed to merge pairs predicted with different

models and associated to different performance levels.

In Chapter 4, we explore the use of tree-based methods in the context of the local and global

approaches for supervised biological network inference. Local and global approaches are detailed in

Section 4.2 and then particularized for tree-based methods in Section 4.3. Experiments are carried

out with these methods on 10 different networks in Section 4.4, where tree-based methods are also

compared with other methods from the literature. Finally, the interpretability of these methods is

illustrated in Section 4.5 by several experiments on a drug-protein interaction network.

In Chapter 5, we provide an in-depth application of supervised inference methods for the predic-

tion of genetic interactions in yeast S.cerevisiae. After a presentation of the necessary background

about genetic interactions in Section 5.2, we present the training data, both the known set of in-

teractions and the gene input features, in Section 5.3. Various cross-validation experiments are

reported in Section 5.4. Section 5.5 concludes this chapter with an application of the best identified

methods and feature sets to infer the complete genetic network of yeast.

The thesis ends in Chapter 6 with a discussion of our main findings and several suggestions of

future research directions.

1.4 Publications and dissemination of the results

Chapter 3 is an extended version of the following published paper:

- (Schrynemackers et al., 2013) On protocols and measures for the validation of supervised

methods for the inference of biological networks, Marie Schrynemackers, Robert Küffner, and

Pierre Geurts. Frontiers in Genetics, 4(262).

With respect to this latter paper, Section 3.6 about the merging of several rankings is new and

unpublished.

Chapter 4 is based on the following manuscript available on arXiv.org and submitted for

publication:

- (Schrynemackers et al., 2014) Classifying pairs with trees for supervised biological network

inference, Marie Schrynemackers, Louis Wehenkel, M. Madan Babu, and Pierre Geurts. CoRR,

abs/1404.6074.

Section 4.5 about the interpretability is however not part of this manuscript. Results of this chapter

have furthermore been presented at the following international conferences:

- UGR meeting, Université de la Grande Région, Lultzhausen (Luxembourg), June 19-20 2012

(Oral presentation)

- MLCB 2012, workshop on Machine Learning in Computational Biology, at the twenty-sixth

annual conference on Neural Information Processing Systems (NIPS 2012), Lake Tahoe (USA),

December 7 2012 (Poster presentation)

Results in Chapter 5 are new and unpublished. The idea of inferring genetic interaction in yeast

and preliminary results on much limited data have been presented at the following conferences:

arXiv.org
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- BBC 2009, the fifth Benelux Bioinformatics Conference, Liège, December 14-15 2009

(1 page abstract in the conference proceedings and oral presentation)

- MLSB 2010, the fourth international workshop on Machine Learning in Systems Biology, at the

eleventh International Conference on Systems Biology (ICSB 2010), Edinburgh (UK), October

15-16 2010 (Poster presentation)
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Chapter 2

Background

This thesis focuses on the problem of the supervised inference of biological networks. In this

chapter, we provide the required background in terms of biological networks, supervised learning

and network inference. In Section 2.1, we first informally define biological networks, which are any

networks that relate to biological systems, and expose their main representatives in the literature

on network inference. We then introduce supervised learning in Section 2.2. The general goal of

supervised learning methods is to infer input-output relationship from a training sample of input-

output pairs. Among these methods, we describe in details decision trees and random forests

methods, that are at the heart of the approaches developed in the thesis. We also present in

some details support vector machines, that have been extensively used for network inference

and with which we will compare our results. In Section 2.3, we define formally the problem of

supervised network inference and introduce the notations that will be used throughout the thesis.

We then review the most representative works in this domain. Finally, while the thesis focuses

on supervised techniques, Section 2.4 discusses unsupervised and semi-supervised approaches to

this problem.

Contents

2.1 Biological networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Supervised network inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Unsupervised and semi-supervised biological network inference . . . . . . . . . . . 42

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

23
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Figure 2.1: Central dogma of molecular biology: genes (DNA sequence) are transcribed

into RNA sequence, which is translated into proteins. Figure modified from Bachmaier

et al. (2013)

2.1 Biological networks

As discussed in the introduction, networks are ubiquitous in biology to represent relationships between

biological entities such as genes, proteins, or enzymes. Mathematically, a network or graph1 is defined

as set V of objects, called nodes, and a set E of edges, i.e., pairs of nodes that are connected in

the graph. An edge may be directed if it links one node towards another, or undirected if it does

not differentiate the nodes it connects. It can also be weighted by a number indicating its strength.

A graph is said to be bipartite if its nodes can be divided into two sets V1 and V2 such that each

edge connect one node in V1 to one node in V2.

A biological network is any network that applies to biological systems. The semantics associated

to the nodes and edges in biological networks can be very diverse. The main players of most of these

networks are however biochemical compounds such as proteins or genes, whose behavior in living

systems is mostly governed by the famous central dogma of molecular biology. The most prominent

biological networks are defined in relation with this central dogma and it is therefore useful to

briefly remind it here. In a very simplified view, this dogma expresses that genes, encoded in DNA

sequences, are transcribed into RNA sequences which are themselves translated into proteins (see

Figure 2.1 for a schematic representation). Proteins are macromolecules which are very important

for the life of the cell, and which serve various functions. For example, some proteins are involved

in structural support and maintain cell shape, others are involved in interactions with the outside

world.

1Although some authors make a difference between a network and a graph, we will use these two terms indistinctly

in this thesis.
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To perform their functions, proteins are typically not acting alone but rather in strong interactions

with other proteins. Among the most studied biological networks, we have the so-called protein-

protein interaction network. Nodes in this network are proteins and two proteins can be connected,

with an undirected edge, for several reasons (Qi et al., 2006): first, if they directly and physically

interact or bind with each other, second if they belong to a same protein complex (they do not

directly interact but are connected through other proteins), and third, in a more abstract way, if

they belong to a same biological pathway (ie., if they participate to a common specific biological

function).

Several important networks represent the interactions of specific proteins with other biochemical

compounds. A first type of proteins of interest are enzymatic proteins. These proteins catalyze

biochemical reactions that occur in cells (Figure 2.1). These biochemical reactions are collected

into the so-called metabolic network. This network can either be seen as a directed network that

connects two chemical compounds, e.g. metabolites, if the first is transformed into the second

by a biochemical reaction. Each edge is then labeled by the enzymatic protein that catalyzes the

corresponding reaction. In the context of network inference, the metabolic network is often simplified

into an undirected network between enzymes, where two enzymes are connected if they catalyze two

successive reactions in a metabolic pathway (Yamanishi and Vert, 2005). A second type of proteins

of interest are regulatory proteins. These proteins bind to specific regulatory sequence of DNA, act

to switch genes on and off and thereby regulate the transcription of genes (Figure 2.1). These

regulations are compiled into gene regulatory networks. These networks are bipartite, with one set

of nodes corresponding to genes and the other set of nodes to regulatory proteins. There is an edge

between a protein and a gene if the former regulates the expression of the latter. The protein is

then called a transcription factor for the gene. This network can be equivalently seen as directed

network between genes, where there is a link from one gene to another if the first gene encodes a

protein that regulates the expression of the second gene. A simplified view of the same network is

the gene co-regulation network that connects two genes with an undirected edge, if they share some

transcription factors. Proteins can also interact with drugs, with drugs modulating the function of

proteins. These interactions play a key role in the context of drug discovery and they are compiled

into drug-protein interaction networks. These networks are bipartite, where nodes from the first set

are proteins and nodes from the second set are drugs.

Another kind of networks that is relative to genes are epistatic networks. Nodes in this network

are genes and there is an undirected interaction between two genes when the presence or absence of

one gene modifies the effect of another gene, positively or negatively, in terms of some phenotype

(e.g., cell fitness). More precisely, a cell is mutated by deleting a gene ga and another one is mutated

by deleting a gene gb. The two cell fitnesses are measured and from these measures, an estimation

of the fitness of a third mutated cell, where both genes ga et gb would be deleted, is computed. If

the observed fitness in this doubly mutated cell is (significantly) lower than the estimated fitness,

then we consider the interaction between genes ga and gb to be negative, and in the contrary, we

consider it to be positive. More details about this type of networks and the way these interactions

are actually measured will be provided in chapter 5.

As a last example, biological networks can also be more abstract and less directly related to

physical interactions between biochemical compounds. An example of network in this category can

be found from the OMIM (Online Mendelian Inheritance in Man) compendium (McKusick, 1998).

This network is a bipartite graph where the first set of nodes represents human genes and the second
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Figure 2.2: Example of biological network: OMIM links a human gene and a disease

if a relationship has been found between them. Figure taken from Goh et al. (2007).

set of nodes represents phenotypes (e.g. diseases). A gene and a phenotype are linked by an edge

in the network if a relationship between them have been highlighted by biologists (Figure 2.2).

2.2 Supervised learning

Machine learning is a branch of artificial intelligence which focuses on learning models from data.

Supervised learning is the dominant methodology in machine learning (Cunningham et al., 2008), in

which a model is trained from labeled data (e.g., by human) that can then be used to predict the

label of new data (Figure 2.3). More formally, the goal of supervised learning can be defined as

follows:

Given a learning sample LS composed of input-output pairs:

LS = {(x1, y1), ... , (xN , yN)} ∈ (X × Y)N

such that xi ∈ X is the input feature vector of the i-th example and yi ∈ Y is its label,

find a function f : X → Y that best approximates the unknown labels of new input

vectors.

Typically, X = Rd and Y = R or Y is discrete. If the output is quantitative, the problem is called

a regression problem and if the output is qualitative it is called a classification problem. In a binary

classification problem, typically Y = {0, 1} or Y = {−1, 1}.
To assess the quality of the predictions of a model, we need a notion of error that measures

the difference between a predicted label f (x) and the true label y for a given input x. This error

is defined through a loss function L : Y × Y → R+ that quantifies the discrepancy between two

labels and can be used to assess prediction errors. The choice of the loss function depends on the

learning problem being solved. A typical loss function for regression problems is the squared error

loss function: L(y , f (x)) = (y − f (x))2 and a typical loss function for classification problems is the

0-1 loss function: L(y , f (x)) = 1(y 6= f (x)), where 1 is the indicator notation.
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Inputs Output

X1 X2 X3 X4 Y

1.0 0.1 0.8 0.0 TRUE

0.5 0.4 1.0 0.8 FALSE

0.8 0.9 0.7 0.9 TRUE
...

...

0.7 0.8 0.7 0.4 ?

Supervised

learning Y = f (X1,X2,X3,X4)→

Figure 2.3: Supervised learning is the machine learning task of inferring a function

from labeled training data. In other words, it consists in using a set of input-output

pairs to estimate a function that can predict the output associated to new inputs

The loss function L leads to the definition of the risk for a function f , also called the generaliza-

tion error, which is the expected value of the loss function over the joint distribution of input-output

pairs: R(f ) = E[L(y , f (x))]. The risk can be estimated empirically from the learning set (or any

other set) as:

R̂(f ) =
1

N

N∑

i=1

L(yi , f (xi)).

The learning problem is then expressed as finding a classifier f in a given set F , called the hypothesis

space, that minimizes the empirical risk R̂.

Most learning algorithms depend on a complexity parameter that determines the size of the

hypothesis space. This parameter needs to be tuned to reach optimal performance. Indeed, if the

model is too simple, it will not capture the regularities of the data and will be inaccurate (high bias).

The model is then said to underfit the data. On the contrary, if the model is too complex, it will

capture all regularities in the training data and will lead to a small empirical risk. But it will also

fit the noise or the randomness of the learning set and will not generalize well to new data (high

variance). The model is then said to overfit the data. The problem of simultaneously minimizing the

bias and the variance (by tuning the complexity parameter of the model) is called the bias-variance

tradeoff.

Given this tradeoff, a typical application of supervised learning techniques on a given dataset

involves the following steps, based on cross-validation. First, the data is randomly partitioned into

three parts (assuming that the size of the dataset is large enough):

Train Validation Test

Several models are learned on the training set by changing the value of the complexity parameter.

Each of these models is assessed on the validation set and the complexity value that corresponds to

the best model is used to retrain a final model on the union of the training and validation sets. The

error of this final model is then estimated on the test set. When data is parsimonious, more reliable

error estimates can be obtained at all steps by averaging results over several random data splits.

Many algorithms were developed to solve supervised learning problems. Among the most popular

ones, we find naive bayes classifiers, k-nearest neighbors, support vector machines, neural networks,

and decision trees. For more information about them, see e.g. the following references (Hastie

et al., 2001; Bishop, 2006; Murphy, 2012). In this work, we mainly exploit decision tree algorithms
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Figure 2.4: The single-output classification tree (A) and the multi-output classification

tree (B) represent input-output models

and tree-based ensemble methods. They are thus presented in details respectively in Sections 2.2.1

and 2.2.2. Section 2.2.3 also presents kernel-based support vector machines. These methods have

been extensively used for supervised network inference, and they will be compared with tree-based

ensemble methods in Chapter 4. Finally, we describe the output kernel tree algorithm in Section 2.2.4,

which uses ensemble of trees and which will be also compared with our methods.

2.2.1 Decision trees

The decision tree method (Breiman et al., 1984; Quinlan, 1993) is a very popular supervised learning

algorithm that can handle both classification and regression problems. Its main advantages with

respect to other methods are the interpretability of the models that it produces and its non-parametric

nature. We describe successively the hypothesis space explored by this method, its learning algorithm,

and a generalization to handle multi-outputs. At the end of the section, we discuss interpretability

and tree-derived feature importance scores.

Hypothesis space. In the decision tree method, input-output models are represented by trees.

Each interior node of a tree is labeled with a test defined from the input features and each successor

branch of this node corresponds to a potential issue of the test. Typically, tree tests are binary and

based on one feature at a time. In the case of a numerical feature, they compare the value of a

feature to a discretization threshold, also called cut-point. Each terminal node or leaf is labeled with

a value of the output, i.e., a class (or a class probability distribution) in the case of classification, or

a number, in the case of regression (see Figure 2.4A for an example). To predict the output given

some input value x, the tree is traversed from the root node to a tree leaf by choosing the branches

according to the tree tests given the input x . The label associated to the leaf is then retrieved and

provided as the final output prediction for this x .

Learning stage. The tree is grown in a top-down recursive manner. Initially, the root of the tree

is associated with the N examples of the learning set: S = {(xi , yi ) with i = 1, 2, ... , N}. A new

test Xj ≤ s, i.e. a feature j ∈ {1, ... , d} and a cut-point s, is selected on the basis of the learning

set S to split this node into a left and right child. The left child is associated with the subset Sl of
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examples from S such that Xj ≤ s and the right child is associated with the subset Sr of examples

from S such that Xj > s. The same process is then repeated recursively to develop further each

of the two new successors nodes and their associated training sets. We stop splitting a node when

either the output or all features are constant for the examples within this node or when some stop

splitting criterion is satisfied. Several such criteria have been defined in the literature (Breiman

et al., 1984). In this thesis, we will only stop splitting a node when the number of examples in this

node is less than a given pre-defined parameter nmin. Finally, terminal nodes, or leaves, are labeled

according to the examples they contain and to the loss function. In the case of regression, a leaf is

often labeled with the average output value of the examples that reach this leaf, as this is the output

that minimizes square loss. In the case of classification, a leaf is often labeled with the majority

class among the examples that reach this leaf, as this is the output that minimizes 0-1 loss.

At each node split, the pair of feature j and cut-point s must be selected so that the outputs

in each of the two children are as similar as possible. More formally, an impurity function Q(·) is

defined that measures how similar the outputs are in a given subset S of examples and the optimal

test is defined as the pair (j∗, s∗) that maximizes the average impurity reduction brought by the

split:

(j∗, s∗) = max
(j ,s)

[
Q(S)− |Sl |

|S | .Q(Sl) +
|Sr |
|S | .Q(Sr )

]

= min
(j ,s)

[|Sl |.Q(Sl) + |Sr |.Q(Sr )] , (2.1)

where | · | denotes the cardinality of a subset. For a regression problem, the impurity is typically

measured by the variance of y :

Q(S) =
1

|S |
∑

(xi ,yi )∈S

(yi − ȳ)2 with ȳ =
1

|S |
∑

(xi ,yi )∈S

yi (2.2)

For a classification problem, different measures of impurity exist, including the Gini index:

Q(S) =
∑

c∈C
pc(S)(1− pc(S)) (2.3)

and the log entropy:

Q(S) = −
∑

c∈C
pc(S) log pc(S) (2.4)

where C is the set of all possible classes and pc(S) is the proportion of objects in S that are labeled

with the class c .

Computationally, (2.1) is solved by scanning all features and all possible cut-points (at most

N − 1 when S contains N examples). When implemented properly, the computational complexity

of the tree construction algorithm as described in this section can be shown to be O(dN log N)

in average, where N is the size of the learning sample and d is the number of features (Louppe,

2014). When we have chosen the impurity measure, the only parameters of the method is the

parameter nmin that adjusts the complexity of the tree. Fixing it to a too small value would lead

to a large tree that would overfit the data, while a too large value would lead, on the contrary, to

underfitting. Post-pruning algorithms also exist to automatically determine the tree complexity by

using cross-validation techniques (Breiman et al., 1984).
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Multi-output decision trees. Beyond standard classification and regression settings, decision

trees can be extended in a straightforward way to predict a vectorial output y ∈ Y = Rl (Blockeel

et al., 1998). With respect to the algorithm described above, only the leaf labeling and the impurity

function need to be adapted. Labels at tree leaves become vectors from Rl (see Figure 2.4B)

and they are computed as the average (or center of mass) of the output vectors in the subset S of

training examples that fall into the leaf:

1

|S |
∑

(xi ,yi )∈S

yi . (2.5)

The impurity function Q used to determine the optimal test at each tree node can be defined as the

average squared euclidean distance between each output vector and the center of mass:

Q(S) =
1

|S |
∑

(xi ,yi )∈S

||yi − ȳ||2 with ȳ =
1

|S |
∑

(xi ,yi )∈S

yi (2.6)

This latter expression is also equivalent to the average of the impurity in (2.2) over all ouputs.

Interpretability and feature importances. In addition to their simplicity, one important advan-

tage of decision trees with respect to other methods is their interpretability (Hastie et al., 2001).

A tree recursively partitions the input space into rectangular regions that are each described by a

conjunction of tests based on the input features that can be directly read from the tree.

Moreover, a tree allows to quantitatively assess the relative importances or contributions of the

different variables in the prediction of the output. Breiman et al. (1984) proposed to measure the

importance of a variable by the weighted sum of the impurity reductions due to the splits at all

nodes of the tree where this variable is tested. More precisely, denoting by ∆Q(N ) the impurity

reduction at node N :

∆Q(N ) = Q(SN )− |SN ,l |
|SN |

.Q(SN ,l) +
|SN ,r |
|SN |

.Q(SN ,r ), (2.7)

where SN , SN ,l and SN ,r are the set of examples associated respectively to N and its left and right

children. The importance of a variable Xi in a tree T is then computed as:

I (Xi , T ) =
∑

N∈T |v(N )=Xi

|SN |
|ST |

∆Q(N ) (2.8)

where T also denotes the set of interior nodes in the tree, S is the training set from which the tree

was grown, and v(N ) is the variable tested at node N .

2.2.2 Decision tree ensembles

A major drawback of decision trees is their very high variance (Geurts, 2002). A small change in

the training data can greatly modify the tree, in part because a modification of a test at some node

in the tree will have an impact on all its descendants. As a consequence of this high variance, the

accuracy of decision trees is typically below that of other methods.

An efficient way to improve decision trees by reducing their variance is to use them in the context

of ensemble methods. The main idea of ensemble methods is to aggregate the predictions of several

individual models, either by averaging (in the case of regression) or by a majority vote (in the case of
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classification). There exist in the literature several techniques to generate an ensemble of models to

be aggregated (see Hastie et al. (2001) for a review). In this thesis, we will focus on methods that

aggregate models generated independently of each other by introducing appropriate randomization

into the learning procedure. These methods improve generalization essentially by reducing the

variance with respect to the original non-randomized method. When applied to decision trees, these

methods are commonly referred to as Random Forests techniques (Breiman, 2001).

The theory (Hastie et al., 2001; Louppe, 2014) show that efficient variance reductions are

obtained with ensembles by combining very diverse models, i.e. models whose errors are as much

as possible uncorrelated. Several random forests techniques have been proposed in the literature to

generate randomized ensembles of decision trees. We expose here below three popular approaches,

that randomize the training set, the features that are searched at each tree node, and/or the cut-

points for numerical features. These three methods can be applied whatever the nature of the output

(classification, regression, or multi-outputs).

Bagging

In bagging (the acronym of bootstrap aggregating) (Breiman, 1996), diversity comes from the

sampling of the objects of the learning set. Given a learning set LS of size N, bagging generates M

replicate data sets, each consisting of N objects, drawn at random with replacement from LS . This

kind of sample is known as a bootstrap sample.

Random Forests

Random Forests denote both generic tree-based ensemble methods based on randomization and a

particular instance of this framework proposed by Breiman (2001). In this latter instance, diversity

comes from bootstrap sampling, like in bagging, and from a random selection of the features at each

tree node. More precisely, each tree is trained from a different subset of training objects obtained

by bootstrapping, and for each node in each tree, the best split is searched from a randomly chosen

(without replacement) set of K features (instead of the full set of d features). For a dataset with

d features, K =
√

d has been shown to be a good general default value, at least in classification

(Breiman, 2001; Geurts et al., 2006a). In bagging, correlation between the trees can happen when

few features are strong predictors and are selected in many trees. In such case, the extra level of

randomization introduced in Random Forest decorrelates the trees.

Extra-trees

In the Extra-Trees algorithm (acronym for extremely randomized trees) (Geurts et al., 2006a), there

is no bootstrap sampling, and the N objects of the learning set are used to build each tree. Diversity

comes from the randomization of the features when splitting each test node, as in Random Forests, to

which the authors have added a randomization of the cut-point. Since Extra-Trees is the supervised

learning algorithm that will be mainly used throughout this thesis, let us detail the main steps of its

node splitting procedure. Let S denote the set of objects corresponding to the node to split:

- K features {X1, ..., XK} are randomly selected, among all non-constant (in S) candidates

features;
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- K splits si , ..., sK are drawn randomly, where si = [Xi < xi ,c ]. Each cut point xi ,c , i = 1, ... , K ,

is uniformly drawn in [xS
i ,min, xS

i ,max], where xS
i ,min and xS

imax are respectively the minimum and

the maximum values of Xi in S .

- A split sΦ is selected among them so as to maximize impurity reduction as expressed in (2.1).

A tree node becomes a leaf that will not be split further if one of these three criteria is satisfied:

- |S | < nmin,

- all attributes are constant in S ,

- the output is constant in S .

Because of the randomization of the cut-point, the node splitting procedure is much simpler

than in Bagging and Random Forests for example, which makes the algorithm more efficient. It

compares also very well in terms of accuracy with these two methods (Geurts et al., 2006a; Louppe,

2014). As described, the algorithm depends on three parameters: K , nmin, and M, the number of

trees in the ensemble. The default values for these parameters are K =
√

d (where d is the total

number of features), nmin = 2 and M = 100. Unless otherwise stated, these are the default values

that we will use in our experiments throughout the thesis.

Interpretability

With ensembles, the straightforward interpretability that we had with single trees is mostly lost. It

is however still possible to compute the relative importance of the features from an ensemble, by

averaging the importance scores computed from each tree within the ensemble:

Iens(Xi ) =
1

T

T∑

t=1

I (Xi , Tt), (2.9)

where I (Xi , Tt) for each tree Tt is computed as in (2.8). The resulting ensemble importance is

typically much more stable than the importance of each individual tree. Although originally a

heuristic, this importance measure has been shown in (Louppe et al., 2013) to present interesting

theoretical properties.

2.2.3 Support vector machines

In this section we describe support vector machines (SVM), introduced by Cortes and Vapnik (1995)

to solve binary classification problems. We first consider the linear case and then show how this

method can produce a nonlinear boundary by working in a kernelized input space (Hastie et al.,

2001)

Large margin separation

Each of the N objects of the learning set is represented by a pair (x, y) where y ∈ {−1, +1} is a

binary label and x = [x1, x2, ... , xd ]T is a point from Rd . In Rd , we can define a linear classifier

through a linear function of the following form:

f (x) = 〈w, x〉+ b
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(A) (B) (C) .

1

||w||

Figure 2.5: (A) The positive and negative objects are linearly separable, and the

distance between the boundary and the closest points is equal to ||w||. This margin

will be maximized. (B) By adding some slack variable, some points are allowed to be

within the margin or on the wrong side of the boundary. (C) By choosing a polynomial

kernel of degree 2, we made the boundary nonlinear. Figure adapted from (Ben-Hur

et al., 2008)

where w ∈ Rd is the weight vector, b is the bias term, and 〈·, ·〉 denotes the scalar product between

two vectors. Function f assigns a score to each input vector x and a classifier can be obtained by

taking the sign of this score: predicted class is equal to +1 if f (x) > 0 and equal to −1 if f (x) < 0.

Such classifier divides the input space into two half spaces, where the separation is carried out by

the hyperplane defined by the equation f (x) = 〈w, x〉+ b = 0. When d = 2, this decision boundary

corresponds to a line.

When the points of the two classes are linearly separable, there are actually an infinite number

of hyperplanes, i.e., an infinite number of combinations (w, b), that realize a perfect separation.

The idea of the SVM method in this case is to look for an hyperplane, among those that perfectly

separate the data, that maximizes the margin, where the margin is defined as the distance of the

closest point to the decision boundary. This feels a very safe choice intuitively and it is also supported

by theory (Cortes and Vapnik, 1995). To simplify the mathematical formulation of the corresponding

optimization problem, one should note first that b can always be chosen such that the hyperplane is

half way between the closest positive and negative objects that are called the support vectors (the

hyperplane would not maximize the margin if it was not the case). In addition, given that the model

remains unaffected if both w and b are rescaled in a similar way, w can always be scaled such that

f (x) = ±1 for these support vectors. In this case, the distance between the decision boundary and

the closest points, i.e. the margin, is equal to 1
||w|| (see Figure 2.5A).

To find w and b that maximize the margin, we must then solve the following optimization

problem:

minimize
w,b

1

2
||w||2

subject to yi (〈w, xi 〉+ b) ≥ 1, i = 1, ... , N.
(2.10)

The inequality constraints ensure that sign[yi ] = sign[w, xi 〉+ b] (all the objects of the learning set

are correctly classified) and that ||w, xi 〉+ b|| > 1 (no point lies inside the margin).
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When the points of the two classes are not linearly separable, the above optimization problem

has no solution (as the constraints can not be all satisfied). In this case, one needs to relax the

constraints so that some points are allowed to be on the wrong side of the boundary. This is achieved

by introducing slack variables ξi :

minimize
w,b

1

2
||w||2 + C

N∑

i=1

ξi

subject to yi (〈w, xi 〉+ b) ≥ 1− ξi ,
ξi ≥ 0, ∀i .

(2.11)

The parameter C > 0 is the cost that we have to pay for misclassifications. The separable case

corresponds to C =∞. This parameter controls some bias-variance tradeoff and therefore needs to

be adjusted to the problem at hand (e.g., by cross-validation). Optimization problem (2.11) is called

the soft margin SVM, while problem (2.10) is called the hard margin SVM. Note that the soft margin

SVM is interesting also in the case of linearly separable data. It indeed allows to increase further

the margin at the expense of misclassifying a few points, which can lead to a better bias-variance

tradeoff for some problems.

Problem (2.11) is a convex optimization problem, because the objective function is quadratic

with linear inequality constraints. It can therefore be solved using the method of Lagrange multipliers.

The Lagrangian for this problem is written as:

L(w, b,α,µ) =
1

2
||w||2 + C

N∑

i=1

ξi −
∑

i

αi [yi (〈w, xi 〉+ b)− (1− ξi )]−
∑

i

µiξi (2.12)

where αi and µi are the Lagrange multipliers. The dual problem consists in maximizing L subject

to ∇w,b,α,µL = 0, αi > 0 and ξi > 0. Setting the different derivatives to zero, we get

w =
∑

i αiyixi (2.13)
∑

i αiyi = 0

µi = C − αi

which can be substituted into (2.12) to give the following dual optimization problem:

maximize
αi

L =
∑

i

αi −
1

2

∑

i

∑

j

yiyjαiαj〈xi , xj〉

subject to
∑

i

yiαi = 0,

0 ≤ αi ≤ C , ∀i .

(2.14)

The optimal values of αi can then be plugged into (2.13) to find the weight vector w solution to

(2.11). In this formulation, each parameter αi is associated to a learning sample object and the

support vectors are the objects such that αi > 0.

Nonlinear classifiers with kernels

While the soft margin SVM is introduced to address non linear separability due to noise, a classi-

fication problem can also be non linearly separable because the true decision frontier is non linear.
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A straightforward way to learn a non linear decision boundary with the SVM approach is to first

map the original data into some new vectorial space by using a non linear function defined on the

input space, φ : Rd → RD , and then to fit a linear model in this new space. The score function of

the resulting classifier will become f (x) = 〈w,φ(x)〉 + b, which remains linear with respect to the

parameters w and b but becomes non linear with respect to the inputs x. For example, a quadratic

classifier can be obtained by using the following map:

φ(x) = [x2
1 , ... , x2

d ,
√

2x1x2, ... ,
√

2x1xd , ... ,
√

2xd−1xd ,
√

2x1, ... ,
√

2xd , 1], (2.15)

which incorporates the products of all pairs of features.

Given the mapping φ, the Lagrangian from (2.14) becomes

L =
∑

i

αi −
1

2

∑

i

∑

j

yiyjαiαj〈φ(xi ),φ(xj)〉. (2.16)

From (2.13), the classification function becomes

f (x) = φ(x)Tw + b =
∑

i

αiyi 〈φ(xi ),φ(x)〉+ b. (2.17)

Thus, both the Lagrangian and the classification function involve only dot products between trans-

formed feature space vectors through the mapping φ. As a consequence, the explicit computation

of the mapping φ is not required to train an SVM model or to make predictions from it, as soon as

it is possible to compute (explicitly) dot products in this space. A kernel function K : Rd ×Rd → R
is a function that for a pair of input feature vectors, outputs a real number that can be interpreted

as a dot product corresponding to some (implicit) mapping φ:

K (x, x′) = 〈φ(x),φ(x′)〉.

This is the case as soon as K is a symmetric positive semi-definite function (Shawe-Taylor and

Cristianini, 2004). By replacing every dot products in (2.16) and (2.17) by an appropriate kernel

function, one can thus train an SVM in the corresponding feature space without having to explicitly

compute the representation of the examples in this space. This is called the kernel trick in the SVM

literature. Using kernels is especially convenient when the dimension D of the feature space is very

high (or even infinite), while dot products (i.e., kernels) in this space can be computed efficiently.

Kernels have been defined for many data types (Shawe-Taylor and Cristianini, 2004). Popular

generic choices when X = Rd are the polynomial and Gaussian kernels:

Kpolynomial(x, x′) = (〈x, x′〉+ 1)p

KGaussian(x, x′) = exp(−γ||x− x′||2).

The mapping φ corresponding to the polynomial kernel with p = 2 is given in (2.15), while the

dimension of the feature space corresponding to the Gaussian kernel can be shown to be infinite. In

what follows, we will review specific kernels that have been proposed in the context of supervised

network inference.

2.2.4 Output kernel trees

The Output kernel trees (OK3) algorithm is a generalization of multi-output trees that has been

developed by Geurts et al. (2006b). We describe it here because it has been used in (Geurts et al.,

2007) for supervised network inference (see Section 2.3.2).
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Output kernel trees are an adaption of decision trees to make (implicit) predictions in the feature

space corresponding to a kernel. It is based on the fact that the impurity function Q in (2.6) can

be written using only dot products between output vectors. Indeed, using the following expansion

of the square euclidean distance:

||y − y′||2 = 〈y, y〉+ 〈y′, y′〉 − 2〈y, y′〉,

we have:

Q(S) =
1

|S |
∑

(xi ,yi )∈S

||yi −
1

|S |
∑

(xi ,yi )∈S

yi ||2 (2.18)

=
1

|S |
∑

i∈S
〈yi , yi 〉 −

1

|S |2
∑

i ,j∈S
〈yi , yj〉, , (2.19)

(2.20)

which makes use only of dot products. Let us assume that we have a learning sample of input

vectors LS = {x1, ... , xN} and a (positive semi-definite) kernel matrix K that corresponds to dot

products between output vectors in some feature space H, where (K )i ,j = ki ,j = 〈φi ,φj〉 with

φi ∈ H, i = 1, ... , N the (unknown) output feature vectors corresponding to the learning sample

objects. Only from this information, it is thus possible to grow a tree using as an impurity function:

Q(S) =
1

|S |
∑

i∈S
〈φi ,φi 〉 −

1

|S |2
∑

i ,j∈S
〈φi ,φj〉,

=
1

|S |
∑

i∈S
ki ,i −

1

|S |2
∑

i ,j∈S
ki ,j .

Each leaf L of the resulting tree is implicitly labeled by the center of mass in H of the outputs of

the objects that fall into that leaf, i.e.:

φL =
1

|S |
∑

i∈S
φi ,

where S is the subset of objects falling into L. The latter can not be explicitly computed only

from kernel values. However, it is possible to compute dot products between two such vectors from

kernels only and therefore make kernel predictions for two new objects. Indeed, let us consider two

(new) input feature vectors x and x′ falling respectively into leaves L and L′ containing objects S

and S ′ from the learning sample. Then, a prediction of the kernel between these two objects can be

obtained as follows:

K̂ (x, x′) = 〈φL,φL′〉 =
1

|S ||S ′|
∑

i∈S

∑

j∈S ′

〈φi ,φj〉 =
1

|S ||S ′|
∑

i∈S

∑

j∈S ′

ki ,j . (2.21)

Randomization-based methods, such as Random Forests or Extra-Trees, can be easily extended

to this output kernel framework and provide here the same kind of improvement, by variance reduc-

tion, as with standard classification or regression trees (Geurts et al., 2006b).

Applications of this method are numerous. When an explicit output y is available, the method

can be used to grow a tree with an alternative loss function that can be written as the squared

distance into the feature space of some kernel. It allows also to handle prediction problems where
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the output can not easily be represented by a vector of numbers but for which it is possible to

define a kernel. To make explicit output predictions in this case, it is necessary however to solve a

pre-image problem (see Geurts et al. (2006b)). Finally, the method can also be used to generalize a

kernel over some input spaces, using predictions in the form (2.21). An application of this idea for

supervised network inference is discussed in Section 2.3.2.

2.3 Supervised network inference

In this section, we first define the problem of supervised network inference more formally and lay out

the notations for the rest of the thesis. We then review existing approaches to solve this problem.

2.3.1 Problem definition

For the sake of generality, let us assume that we have two finite sets of nodes, Ur = {n1
r , ... , n

NUr
r }

and Uc = {n1
c , ... , n

NUc
c } of respective sizes NUr and NUc . A network connecting these two sets of

nodes can then be defined by an adjacency matrix Y of size NUr × NUc , such that yij = 1 if the

nodes ni
r and nj

c are connected and yij = 0 if not. Actually, the subscripts r and c stand respectively

for row and column, referring to the rows and columns of the targeted adjacency matrix Y . Y thus

defines a bipartite graph over the two sets Ur and Uc . Standard graphs defined on only one family

of nodes, that we call homogeneous graphs, can nevertheless be obtained as special cases of this

general framework by considering only one set of nodes (i.e. U = Ur = Uc). Undirected or directed

graphs can then both be represented using a symmetric or an asymmetric adjacency matrix Y .

For example, in the case of protein-protein interaction networks, Uc = Ur is the set of all proteins

of a given organism and the adjacency matrix is symmetric. A drug-protein interaction network can

be modeled as a bipartite graph where Ur and Uc are respectively the sets of proteins and drugs

of interest, and element yij of Y is equal to 1 if protein ni
r interacts with drug nj

c , 0 otherwise.

A regulatory network can be modeled either as a bipartite graph where Uc is the set of all genes

of the organism of interest and Ur is the set of all candidate transcription factors among them or

equivalently by an homogeneous graph and an asymmetric adjacency matrix, where Uc = Ur is the

set of all genes and yij = 1 if gene ni regulates gene nj , 0 otherwise.

In addition, we assume that each node n (in both sets) is described by a feature vector, denoted

x(n), typically lying in Rp. For example, features associated to proteins/genes could include their

expression in some conditions as measured by microarrays, the presence of motifs in their promotor

region, information about their structure, etc. A feature vector x(nr , nc) can also be associated to

each pair of nodes. For example, features directly associated to pairs of proteins could code for the

association of the two proteins in another network, their binding in a ChIP-sequencing experiments,

etc.

In this context, the problem of supervised network inference can be formulated as follows:

Given a partial knowledge of the adjacency matrix Y of the target network in the form

of a learning sample of triplets:

LSp = {(nik
r , njk

c , yik jk )|k = 1, ... , NLS},

and given the feature representation of the nodes and/or pairs of nodes, find a function

f : Ur × Uc → {0, 1} that best approximates the unknown entries of the adjacency
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Inputs Ouput

[x(n1) x(n2)] y1,2

[x(n1) x(n3)] y1,3
...

...
...

[x(n2) x(n1)] y2,1

[x(n2) x(n3)] y2,3
...

...
...

[x(nN) x(nN−1)] yN,N−1

Figure 2.6: Schematic representation of one of the two main approaches to solve

the problem of supervised network inference: the global approach that solves a single

supervised learning problem by considering each pair as an object for learning a classifier.

matrix from the feature representation (on nodes or on pairs) relative to these unknown

entries.

This problem can be cast as a supervised classification problem, with the peculiarity however that

pairs of nodes, and not single nodes, need to be classified. Next, we discuss existing methods to

solve this problem.

2.3.2 Network inference methods

Mainly two approaches, global and local, have been investigated in the literature to transform the

network inference problem into one or several standard classification problems (Vert, 2010). In this

section, we start by briefly presenting these two approaches that make use of existing classification

methods, and then talk about more specific approaches that have been proposed for supervised

network inference, like output kernel trees.

Global approach

The first, more straightforward, approach, called pairwise or global, considers each pair as a single

object and then apply any existing classification method on these objects (e.g., Takarabe et al.,

2012). This approach requires a feature vector defined on pairs. When features on individual nodes

are provided, they thus need to be transformed into features on pairs (Tastan et al., 2009). Several

approaches have been proposed in the literature to achieve this, ranging from a simple concatenation

(Figure 2.6) or addition of the feature vectors of the nodes in the pair (Chen and Liu, 2005; Yu

et al., 2012) to more complex combination schemes (Yamanishi et al., 2008; Maetschke et al., 2013).

Different classification methods have been exploited in the literature: nearest neighbor algorithm

(He et al., 2010), support vector machines (Paladugu et al., 2008), logistic regression (Ulitsky et al.,

2009), tree-based methods (Wong et al., 2004; Lin et al., 2004; Chen and Liu, 2005; Qi et al., 2006;

Tastan et al., 2009; Yu et al., 2012), Markov logic network (Brouard et al., 2013), etc. In particular,

in the context of support vector machines, several kernels have been proposed to compare pairs

of objects on the basis of individual features defined on these objects and these kernels have been

applied for supervised network inference (Ben-Hur and Noble, 2005; Vert et al., 2007; Hue and Vert,

2010; Brunner et al., 2012). We describe several such kernels below.
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Special kernels for pairs. In the global approach, feature vectors of both nodes of a pair must

be combined to define a feature vector on the pair. We focus here on homogeneous graphs defined

on a single type of node. Let us denote an input feature vector for a node n by φ(n) and an input

feature vector for a pair (n1, n2) by ψ(n1, n2). These feature vectors define respectively a kernel

on nodes, i.e. K (n, n′) = 〈φ(n),φ(n′)〉, and a kernel on pairs of nodes Kψ((n1, n2), (n3, n4)) =

〈ψ(n1, n2),ψ(n3, n4)〉.
Several solutions have been proposed to derive a feature vector (or kernel) on pairs of nodes

from a feature vector (or kernel) on single nodes. Two straightforward solutions include the addition,

feature by feature, of the vectors of the two nodes in the pair, i.e. ψadd(n1, n2) = φ(n1) + φ(n2),

or their concatenation, i.e., ψconcat(n1, n2) = [φ(n1),φ(n2)]. These two feature representations

correspond respectively to the following kernels on pairs:

Kψ,add((n1, n2), (n3, n4)) = K (n1, n3) + K (n1, n4) + K (n2, n3) + K (n2, n4)

Kψ,concat((n1, n2), (n3, n4)) = K (n1, n3) + K (n2, n4),

where K denotes a kernel on nodes. The first kernel considers the pairs as undirected, while the

second considers them as directed. Note that in general, these representations are not appropriate

for supervised network inference when combined with linear SVM. Indeed, with these representations,

the linear scoring functions are respectively:

fadd(n1, n2) = 〈w,φ(n1)〉+ 〈w,φ(n2)〉+ b

fconcat(n1, n2) = 〈w1,φ(n1)〉+ 〈w2,φ(n2)〉+ b,

With these two functions, the ranking of the candidate partners of a given node n1 (resp. n2) is thus

the same whatever the node n1 (resp. n2), which means for example that the most likely partner of

all nodes is a unique node n∗ that maximizes f (n1, n∗), for any node n1.

Another solution that overcomes this limitation is the following feature representation of pairs:

ψkp(n1, n2) = φ(n1)⊗ φ(n2)

where ⊗ is the direct or Kronecker product that produces a vector whose entries are all possible

products between one feature from φ(n1) and one feature from φ(n2). If φ(n) is of dimension d ,

then ψkp(n1, n2) will be of dimension d2, which can be prohibitive in case of large d . Fortunately, the

corresponding kernel, called Kronecker product pairwise kernel (KPPK), can be computed efficiently

without needing to compute explicitly the joint feature vector ψkp(n1, n2). We have indeed:

KKPPK ({n1, n2}, {n3, n4}) = ψkp(n1, n2)Tψkp(n2, n3)

= K (n1, n3)K (n2, n4).

Interpreting kernels as similarity measures, this kernel considers two pairs as close to each other if

both the first nodes of the two pairs and the second nodes of the two pairs are close to each other.

This kernel has been used for example in (Stock et al., 2012) for network inference.

The Kronecker product pairwise kernel considers pairs to be directed (as KKPPK ((n1, n2), (n3, n4)) 6=
KKPPK ((n1, n2), (n4, n3))). A natural adaptation of this feature representation for undirected pairs

is as follows (see Ben-Hur and Noble (2005); Vert (2010) for more details):

ψtp(n1, n2) = φ(n1)⊗ φ(n2) + φ(n2)⊗ φ(n1),
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which leads to the kernel:

KTPPK ({n1, n2}, {n3, n4}) = ψtp(n1, n2)Tψtp(n2, n3) (2.22)

= 2[K (n1, n3)K (n2, n4) + K (n1, n4)K (n2, n3)]. (2.23)

This kernel is called the tensor product pairwise kernel (TPPK). Vert et al. (2007) proposed another

solution that combines node feature vectors as follows:

ψml(n1, n2) = (φ(n1)− φ(n2))⊗ (φ(n2)− φ(n1)),

which leads to the following kernel:

KMLPK ({n1, n2}, {n3, n4}) = [K (n1, n3) + K (n2, n4)− K (n1, n4)− K (n2, n3)]2

called the metric learning pairwise kernel (MLPK).

Local approach

In the second approach, called local (Mordelet and Vert, 2008; Bleakley and Yamanishi, 2009;

Vert, 2010; van Laarhoven et al., 2011; Mei et al., 2013), the network inference problem is divided

into several smaller classification problems corresponding each to a node of interest and aiming at

predicting, from the features, the nodes that are connected to this node in the network (Figure 2.7).

More precisely, each of these classification problems is defined by a learning sample containing all

nodes that are involved in a pair with the corresponding node of interest in LSp. Interestingly,

when trying to make a prediction for a given pair (ni
r , nj

c), one can aggregate the predictions of two

classifiers: the one trained for ni
r and the one trained for nj

c . Note that it is only possible to train

a classifier for a node that is involved in at least one positive and one negative interaction in LSp.

This prevents the use of the local approach to predict interactions for pairs where both nodes do

not satisfy this property. Like for the global approach, in principle, any classification method can

be used to train each of the classification models, but mainly support vector machines have been

investigated in this context (Mordelet and Vert, 2008; Bleakley and Yamanishi, 2009). Global and

local approaches are defined more formally in Section 4.2.

From experiments in the literature, there does not seem to be a clear winner between the local

and the global approach in terms of predictive accuracy. The global approach is typically more

flexible as it can handle any kinds of features and can make prediction for pairs of unseen nodes, but

it requires more computing times and resources, given that it aims to infer a network in one step.

Output kernel trees and other approaches

Besides the global and local approaches that make use of standard classification methods, other

more specific approaches have also been proposed for supervised network inference.

The Output kernel trees (OK3) algorithm, presented in Section 2.2.4, can be exploited for

supervised network inference (Geurts et al., 2007). The approach consists in defining a kernel

K (n, n′) between the nodes in the network that encodes the presence or absence of direct or indirect

connections between the nodes in the training graph. This kernel should be such that two nodes

receive a high value of K if they are close in the graph, and a small value of K if they are far away

in the graph. An example of a kernel that satisfies this condition is the diffusion kernel (Kondor and

Lafferty, 2002) that corresponds to a Gramm matrix K = exp(−βL), where L is the graph Laplacian
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For node n1:

Inputs Output

x(n2) y1,2

x(n3) y1,3
...

...

x(nN) y1,N

For node n2:

Inputs Output

x(n1) y2,1

x(n3) y2,3
...

...

x(nN) y2,N

...

Figure 2.7: Schematic representation of one of the two main approaches to solve the

problem of network inference: the local approach that solves several supervised learning

problems, each defined by a different node.

and β a parameter. From this kernel and input features defined on the nodes, an output kernel tree

can be grown using the algorithm described in Section 2.2.4. From this tree, kernel values can then

be predicted between two (new) nodes described by their input feature vectors using (2.21). A high

value of this kernel indicates that the two nodes are predicted to be close in the graph and a low

value that they are predicted to be far away. Whether there is an edge between two nodes can then

be inferred by thresholding these kernel predictions. Examples of network inference results obtained

with this algorithm are presented in Section 4.4.4. Note that in order to apply this method, a training

network needs to be known completely for a subset of nodes, as a complete kernel matrix is required

for training the output kernel tree model. In other words, and anticipating the notations introduced

in the next chapter, the method can only be used to make LS × TS and TS × TS predictions and

not LS×LS predictions. The method can also be only applied to infer homogeneous and undirected

networks.

Along the same idea of output kernel regression, Brouard et al. (2011) extended (kernel) ridge

regression to learn an approximation of an output kernel and applied it for network inference.

Other approaches exist for supervised network inference. For example, Kato et al. (2005)

formulate the problem as a matrix completion problem (with input features) and solve it using an

expectation-maximization-based approach. The problem has also been formulated as a distance

metric learning problem (Vert and Yamanishi, 2005; Yamanishi, 2009): nodes of the graph are

embedded into some euclidean space where they are close as soon as they are connected in the

training graph and a mapping is then learned from the node feature space to this euclidean space.

These approaches are similar with the output kernel regression approach discussed above, with the

difference however that in (Vert and Yamanishi, 2005; Yamanishi, 2009), the mapping is explicit
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and low-dimensional, while in (Geurts et al., 2007; Brouard et al., 2011), it is carried out implicitly

through a kernel.

While our review focused on the inference of the network from node features, it is also possible

to solve this problem by exploiting only the network itself. For example, Cheng et al. (2012) derive

a similarity measure between nodes from the network topology and then use this similarity to infer

new interactions. In a hybrid approach, some authors have also included features derived from the

(training) network topology in the global approach to improve network inference (Ulitsky et al.,

2009). Note that these approaches are limited to the prediction of new interactions between nodes

that are already known to interact with other nodes in the network. Again anticipating notations

introduced in the next chapter, these methods can only make LS × LS predictions.

Finally, we only reviewed here methods that have been proposed for the inference of biological

networks. The problem of predicting the presence or the absence of an edge between nodes in a

network however appears in many domains. This problem is often referred to as the problem of

(supervised) link prediction with common applications to social networks (Liben-Nowell and Klein-

berg, 2007; Brouard, 2013). In this latter domain, the goal is predict future relationships between

participants in a social network from the knowledge of current and past relationships and sometimes

also features describing these participants. Another related domain is collaborative filtering or rec-

ommender systems (Su and Khoshgoftaar, 2009), where the goal is to connect customers with their

potential purchases and can thus be assimilated to the inference of a bipartite graph. To the best of

our knowledge, collaborative filtering techniques have however not be very much exploited for the

inference of biological networks.

2.4 Unsupervised and semi-supervised biological network inference

This thesis focuses on the problem of supervised network inference, where a model for predicting new

interactions is trained from a sample of known interacting and non-interacting pairs of nodes and

different measurements/features on these nodes. Unsupervised techniques have also been proposed

for the inference of biological networks. By unsupervised inference, we mean any inference methods

that does not require a subset of known interacting and non-interacting pairs in order to carry out the

inference. Because no model is trained, these techniques require a strong prior biological knowledge

of what defines an interaction. This knowledge is exploited to select the most appropriate input

features to be measured on the nodes and to devise a model to identify interacting pairs from these

features. As a consequence, while supervised techniques can be applied to any kinds of networks,

unsupervised methods are network specific.

Several unsupervised methods have been proposed for example for the inference of protein-

protein interactions. Marcotte et al. (1999) observed that two interacting proteins often have

significant similarities, at the sequence level, to a protein in other organisms, i.e., their orthologs

are fused in other organisms. They used this property to infer new interactions. Other models of

interactions are based on the observation that two proteins are functionally related (in a pathway

or in a structural complex) if they have similar phylogenetic profiles or trees (Pellegrini et al., 1999;

Huynen et al., 2000), i.e., if they are present or absent in the same species. The explanation is

that interacting proteins tend to coevolve. Based on this idea, Huynen et al. (2000) first compute

the similarity between the phylogenetic profiles of two proteins using mutual information. Then,

proteins are clustered according to this similarity and proteins that fall into the smallest clusters

are predicted to interact. In a more elaborated approach, Pazos and Valencia (2001) compute the
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similarity between two proteins as the linear correlation coefficient between two matrices containing

the genetic distances between the proteins and their orthologs as obtained from a phylogenetic tree.

Pairs of proteins with the highest values of this correlation coefficient are then predicted to be

interacting pairs.

Unsupervised techniques are also very commonly applied for the inference of gene regulatory

networks (see De Smet and Marchal (2010); Maetschke et al. (2013) for recent reviews). Several

data sources can be integrated for inferring regulatory links between genes (De Smet and Marchal,

2010) but the most common source remains microarray expression data. Indeed, one expects that the

expression of a gene should be related to the expressions of its transcription factors. Several inference

methods have been proposed that are based on this hypothesis. The simplest, but nevertheless

efficient, techniques associate a score to every pair of genes based on a comparison of their expression

profiles and then infer the existence of a regulatory link between two genes by thresholding this score.

Various score measures have been proposed based for example on plain correlation (Langfelder and

Horvath, 2008), mutual information (Meyer et al., 2007; Faith et al., 2007b), or partial correlation

(de la Fuente et al., 2004). When times series of gene expressions are available, some methods learn

a more sophisticated model of the dynamics of the gene expressions for example using differential

equations (Quach et al., 2007). The network is encoded in this model through parameters and

its inference is carried out by learning these parameters from the data. Between score-based and

model-based methods, several researchers have proposed to use supervised regression techniques to

predict the expression of one target gene from the expressions of all the other genes. Inferring the

transcription factors of the target gene then reduces to the selection of the genes whose expressions

are useful to predict the expression of this target gene, which amounts at solving a feature selection

problem (in regression). Several feature selection techniques have been exploited in this context,

including Random Forests (Huynh-Thu et al., 2010) and L1-based linear regression methods (Haury

et al., 2012).

The main advantage of unsupervised methods compared to supervised methods is that they can

predict interactions without requiring a partial knowledge of the network to infer. This is especially

interesting for “new” networks or networks related to “new” organisms, for which little is known.

The drawback of these methods is of course the need for a biological model of interactions, as well

as the need to design a new method for every new network. In terms of predictive performance,

the superiority of one family of methods over the other for a given network highly depends on

the size and the quality of the training network for supervised methods and on the quality of the

biological model of interaction for unsupervised methods. Empirical comparisons between the two

approaches in the context of gene regulatory networks (Vert, 2010; Tavakkolkhah and Küffner, 2013)

and protein-protein interaction networks (Yamanishi and Vert, 2004) nevertheless tends to show that

supervised inference methods are more efficient than supervised ones.

To be complete, let us also mention the existence of semi-supervised methods. Standard super-

vised methods only exploit input features of the nodes that are involved in labeled pairs from the

learning sample. In most network inference applications however, all possible nodes (in Ur and Uc)

described by their input features are typically known at training time. Semi-supervised techniques

try to make use of all the information available at training time to improve the quality of the inferred

model. For example, Ernst et al. (2008) propose a semi-supervised approach for the inference of gene

regulatory networks. A first model is trained using a supervised learning approach, by considering

all the unlabeled pairs as negative examples. This model is used to predict an interaction score for

all the unlabeled pairs. The pairs that receive a score higher than a given threshold are then labeled
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as positive and a new model is learnt from the relabeled learning set. This process is repeated until

the labels of the pairs do not change anymore. Brouard et al. (2011) propose a semi-supervised

extension of their output kernel regression approach for network inference based on kernel ridge

regression. Their semi-supervised solution is obtained by introducing a graph-based regularizer that

enforces that nodes with similar input features should be mapped to close vectors in the output

feature space H defined by the output kernel. In these two works, the semi-supervised methods are

shown to supersede supervised ones.

2.5 Discussion

In the present chapter we explained the concept of biological networks and presented several examples

of such networks. Then we discussed the problem of supervised learning and described in some detail

the different algorithms that will be used throughout this thesis, tree-based ensemble methods and

support vector machines. Then, we provided a formal definition of the problem of supervised network

inference and reviewed methods that have been proposed in the literature to address this problem. To

be complete, we also briefly discussed unsupervised and semi-supervised network inference methods.

Now that the background has been covered, the rest of the thesis will be devoted:

- in Chapter 3, to a thorough and critical presentation of the main difficulties and pitfalls in the

evaluation and the practical application of network inference methods,

- in Chapter 4, to an adaptation of the local and global approaches in the case of tree-based

ensemble methods and their systematic comparison with other methods from the literature on

several biological networks,

- in Chapter 5, to an application of these methods for the inference of genetic interactions in

Yeast.



Chapter 3

Evaluating supervised network inference

methods

In this chapter, we examine the assessment of supervised network inference. Supervised infer-

ence infers the network from a training sample of known interacting and possibly non-interacting

entities and additional measurement data. While these methods are very effective, their reliable

validation in silico poses a challenge, since both prediction and validation need to be performed

on the basis of the same partially known network. Cross-validation techniques need to be specif-

ically adapted to classification problems on pairs of objects. We perform a critical review and

assessment of protocols and measures proposed in the literature and derive specific guidelines

how to best exploit and evaluate machine learning techniques for network inference. Through

theoretical considerations and in silico experiments, we analyze in depth how important factors

influence the outcome of performance estimation. These factors include the amount of informa-

tion available for the interacting entities, the sparsity and topology of biological networks, and

the lack of experimentally verified non-interacting pairs. Finally, we develop a new approach to

compare scores predicted with different models, associated to different performance, and that

maximizes the number of true positives.
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3.1 Introduction

Performance estimation of both unsupervised and supervised inference methods requires a gold

standard of experimentally tested interactions, i.e. pairs of entities labeled as interacting or non-

interacting. The validation of supervised methods however generally requires special care and the

application of cross validation techniques to avoid any sources of bias. Indeed both training and

validation need to be performed on the basis of the same partially labeled gold standard. The

case of supervised network inference is even more complex as it works on pairs of objects so that

the traditional cross validation techniques are not sufficient. In the chapter, we propose a critical

review of protocols and measures found in the literature for the validation of supervised network

inference methods and derive specific guidelines on how to best exploit machine learning techniques

for network inference.

In particular, our discussion of evaluation measures and protocols will account for the following

important aspects :

- Most gold standard networks used for inference are very sparse and incomplete, which makes

the resulting classification problem extremely imbalanced. This has important consequences

on the evaluation metrics, making for example ROC curves mostly inappropriate.

- The predictive performance of a method for a given interaction highly depends on how much

the two involved nodes are covered by the gold standard. It is typically much more difficult

to predict interactions of regulators that are not contained in the training network. In conse-

quence, one needs to assess performance by distinguishing four families of pairs according to

whether or not any of its two nodes are in the training data.

- Cross-validation techniques need to accommodate for the way the training network has been

experimentally obtained. At two extremes, one can distinguish sampling of pairs, where avail-

able interactions have been uniformly sampled among all possible pairs, and sampling of nodes,

where all interactions are known for a subset of nodes.

- It is often the case that no truly non interacting pairs (aka negative examples) are available

so that gold standards exclusively consist of interactions tested as positive. As a workaround,

usually all previously untested pairs are assumed negative, leading to particular problems at

the training and performance estimation stages.

- Topological properties of biological networks apparently allow for good predictions even if no

experimental data at all is used. For example, in networks with a heavy-tailed node degree

distribution, because of the preferential attachment property, connecting any node to a hub

leads to AUC scores that appear better than random guessing. This introduces a positive

bias, an overestimation of the true predictive performance, (at training and at test time) that

should be taken into account when assessing a given inference method.

- When several sets of objects have been predicted with different models, and are associated

to different performance curves, their predicted scores should not be naively compared. They

must be gathered cautiously, if we want to obtain the best global precision-recall curve.

The chapter is structured as follows. Section 3.2 discusses common metrics used to evaluate

network predictions (that are common to unsupervised and supervised inference methods). Appro-

priate ways to perform cross-validation in this context are discussed in section 3.3. The impact of
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the lack of negative examples in common biological networks is analyzed in Section 3.4. Section 3.5

discusses the positive bias on performance induced by the heavy-tailed degree distribution often met

in biological networks. Finally, Section 3.6 presents a new way to merge different sets of predictions

by taking into account their different associated performance curves.

3.2 Evaluation measures

In this section, we review and discuss evaluation measures that have been used to quantify the quality

of the predictions given by network inference methods. We focus here on statistical measures that

compare a predicted network (or subnetwork) with the true one, as in the case of supervised network

inference, some part of the true network is supposed to be available for training. In the general

context of network inference, other performance measures have been proposed based either on

functional annotations shared by genes/proteins or on topological properties of the inferred networks

(see Emmert-Streib et al., 2012, for a survey).

The prediction given by a network inference method for a given pair of nodes can typically be of

two kinds: a binary (0-1) value, coding for the presence or the absence of an interaction between the

two nodes in the predicted network, or a real value, representing some confidence score associated

to the pair: the higher the score, the higher the confidence or certainty of the model that there is an

interaction between the nodes in the pair. Depending on the supervised network inference method

used, this confidence score can have a probabilistic interpretation or not, but we will not assume it

is the case. Of course, one can always transform a confidence score into a binary prediction using

a decision threshold. The choice of an appropriate threshold is however not an easy problem in

practice.

In this section, we assume that we have an adjacency matrix (of a complete or a partial network)

and an equivalent matrix of the binary or real scores predicted by a network inference method

(Table 3.1). In both cases, our goal is to quantify the quality of the predictions with respect to

the true network represented by the adjacency matrix. Protocols to obtain these matrices will be

discussed in Section 3.3. We first discuss the case of binary predictions and then compare the receiver

operating characteristic (ROC) curves and precision-recall (PR) curves that have been predominantly

used to evaluate network inference methods that provide confidence scores. We end the section with

a brief survey of other measures and a general discussion.

3.2.1 Binary predictions

For binary predictions, a first idea would be obviously to compute the accuracy (the number of

correctly predicted pairs divided by the total number of pairs) or equivalently the error rate (one

minus the accuracy). However, network inference problems typically correspond to highly imbalanced

classification problems as non-interacting pairs often far outnumber interacting ones. Accuracy is not

appropriate in such situations because it greatly favor the majority class (high accuracy is given to

a model predicting all pairs as non-interacting pairs). Alternative measures requires to differentiate

between the possible types of errors, that are usually counted and compiled in a confusion matrix.

In the case of binary classification, this matrix is a 2 × 2 matrix where the columns and rows

represent respectively the actual and the predicted classes and each cell contains the number of

pairs corresponding to these classes (Table 3.2).
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Table 3.1: Example of adjacency matrices of a 8 × 5 network. The predicted matrix

is composed of confidence scores. By choosing a decision threshold equal to 0.75, the

predicted matrix infers perfectly the true one.

True network True adjacency matrix Predicted adjacency matrix

1

2

3

4

5

1

2

3

4

5

6

7

8




1 0 0 0 0

0 0 1 0 0

1 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

1 0 0 0 0

0 1 0 0 0







0.84 0.19 0.23 0.17 0.23

0.44 0.31 0.92 0.43 0.18

0.90 0.98 0.44 0.11 0.26

0.41 0.59 0.26 0.60 0.71

0.22 0.12 0.30 0.32 0.42

0.51 0.09 0.26 0.80 0.03

0.93 0.73 0.49 0.58 0.24

0.46 0.96 0.55 0.52 0.23




Table 3.2: A confusion matrix for a binary classification. Positive denotes an interaction

and negative denotes a non-interaction.

actual positive (P) actual negative (N)

predicted positive (predP) true positive (TP) false positive (FP)

predicted negative (predN) false negative (FN) true negative (TN)

Several metrics can be then derived from this matrix to evaluate the performance of a model,

among which:

- the true positive rate (TPR), also called the sensitivity or the recall, is equal to the number

of true positives divided by the number of actual positives: TP
TP+FN or TP

P ,

- the true negative rate (TNR), also called the specificity, is equal to the number of true

negatives divided by the number of actual negatives: TN
FP+TN or TN

N ,

- the false positive rate (FPR), corresponding to 1-specificity, is equal to the number of false

positives divided by the number of actual negatives: FP
FP+TN or FP

N ,

- the false negative rate (FNR), also called the miss, is equal to the number of false negative

divided by the number of actual negatives: FN
TP+FN or FN

P ,

- the precision is equal to the number of true positives divided by the number of predicted

positives: TP
TP+FP .

- the rate of positive predictions (RPP) is equal to the number of predicted positive divided by

the total number of examples: TP+FP
P+N or predP

P+N

- the F-score is equal to the harmonic mean of precision and recall:

F = 2 · precision · recall

precision + recall

Except for the F-score, these measures should be combined to give a global picture of the performance

of a method, e.g., sensitivity and specificity or precision and recall. In the case of confidence scores,
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Table 3.3: Example of confidence scores for a list of 10 objects. Objects are ranked

according to the values of their scores. The last three rows report respectively the false

positive rate, true positive rate, and precision for increasing values of the confidence

threshold.

Confidence scores 0.91 0.86 0.85 0.57 0.54 0.26 0.18 0.16 0.14 0.13

Rank 1 2 3 4 5 6 7 8 9 10

Actual values 1 1 0 1 0 0 1 0 0 0

FPR 0 0 1/6 1/6 1/3 1/2 1/2 2/3 5/6 1

TPR/Recall 1/4 1/2 1/2 3/4 3/4 3/4 1 1 1 1

Precision 1 1 2/3 3/4 3/5 1/2 4/7 1/2 4/9 2/5

Constants: P = 4, N = 6
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Figure 3.1: ROC curve (A) and precision-recall curve (B) for the predictions in Ta-

ble 3.3.

all these performance measures can be computed for a given threshold on the confidence scores.

Nevertheless, often, one would like to measure the performance of a method independently of the

choice of a specific threshold. Several curves are used for that purpose that are exposed below.

3.2.2 ROC curves

Receiver Operating Characteristic (ROC) curves plot the TPR as a function of the FPR, when

varying the confidence threshold (Fawcett, 2006). In concrete terms, the predictions are sorted from

the most confident to the least confident, and the threshold is varied from the maximum to the

minimum confidence score. Each value of the threshold corresponds to a different confusion matrix,

and thus a different pair of values of the TPR and FPR, and corresponds to a point of the ROC

curve.

Varying the threshold of one position in the ranked list of predictions corresponds to predicting

one more pair of nodes as interacting, i.e. an increase of predP by 1. If the pair truly interacts, then

the TPR increases by 1/P (value of one vertical step on the graph), while the FPR does not change.

On the contrary, if the pair actually does not interact, then the FPR increases by 1/N (value of one

horizontal step), while the TPR does not change (Table 3.3 and Figure 3.1A). This results in a

jagged curve, that becomes smoother and smoother when the size of the dataset increases, because

the sizes of the vertical and horizontal steps decrease respectively when P and N increases.
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The two ends of the curve are always the two points (0, 0) and (1, 1), corresponding respectively

to predP = 0 and predP = P + N. A perfect classifier would give the highest values of prediction

to the pairs that truly interact, and then would have a corresponding ROC curve passing through

the point (0, 1). The curve relative to a random classifier corresponds to the diagonal connecting

the two points (0, 0) and (1, 1) (the dotted line in Figure 3.1A).

For comparison purposes, it is often convenient to summarize a ROC curve with a single real

number. The most common such measure is the area under the ROC curve (AUROC), which is

equal to 1 for a perfect classifier and 0.5 for a random one. On the face of it, one typically assumes

that the higher the AUROC, the better the predictions.

In many network prediction tasks however, the number of interactions is much lower than the

number of non-interactions. It is therefore important to achieve a low FPR as even moderate FPR

can easily lead to much more FP predictions than TP predictions, and hence a very low precision.

To better highlight the importance of small FPR, partial AUROC values are sometimes used instead

of the full AUROC. For example, Tastan et al. (2009) propose statistics like R50, R100, R200, and

R300 that measure the area under the ROC curve until reaching a FP equal to 50, 100, 200, and

300 respectively.

Another summary statistic of a ROC curve is the Youden index Fluss et al. (2005), which is

defined as the maximal value of TPR − FPR over all possible confidence thresholds. It corresponds

to the maximal vertical distance between the ROC curve and the diagonal. The Youden index ranges

between 0 (corresponding to a random classifier) and 1 (corresponding to a perfect classifier). This

statistic was used for example in Hempel et al. (2011) to assess gene regulatory network inference

methods.

3.2.3 Precision-recall curves

Precision-recall (PR) curves plot the precision as a function of the recall (equal to the TPR), when

varying the confidence threshold. As for the ROC curve, varying the threshold of one position in

the ranked list of predictions corresponds to predicting one more pair of nodes as interacting. If the

pair truly interacts, then the recall increases by 1/P while the precision increases by FP
predP(predP+1) .

On the contrary, if the pair actually does not interact, then the recall does not change and the

precision decreases by TP
predP(predP+1) . The value of the horizontal step in PR is logically equal to the

value of the vertical step in the ROC curve. The value of the vertical step is however not constant

(Table 3.3 and Figure 3.1B).

A perfect classifier would give a PR curve passing through the point (1, 1), while a random

classifier would have an average precision equal to P
P+N (dotted line in Figure 3.1B). All PR curves

end at the point (1, P/P+N) corresponding to predicting all pairs as positive. When all pairs are

predicted as negative, recall is 0 but the precision is actually undefined. The coordinates of the first

point of the PR curve will therefore be (1/P, 1) if the most likely prediction is actually positive, and

(0, 0) otherwise. To make all PR curve defined on the full [0, 1] interval, one sometimes adds a

pseudo point to the curve at (0, 1).

The PR curve is also often summarized by the area under the curve (AUPR). The AUPR is

sometimes called MAP, for Mean Average Precision Manning et al. (2009); Tastan et al. (2009).

Like for the AUROC, one typically assumes that the higher the AUPR, the better is the classifier,

with the AUPR of a perfect classifier equal to 1 and the AUPR of a random classifier close to P/P+N.

In practice, the AUPR can be computed from the curve completed with the additional pseudo-point
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Table 3.4: We took the same example as in Table 3.3, but triplicated the number of

negative objects. The objective is to evaluate the sensitivities of the curves to the class

imbalance.

Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Actual values 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Constants: P = 4, N = 18
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Figure 3.2: ROC curve (A) and PR curve (B) for the scores in Table 3.4, where

negative examples were tripled with respect to Table 3.3. The comparison with the

curves in Figure 3.1 shows that the ROC curve is unchanged and that the PR curve

degrades, as a consequence of tripling the negatives.

or not. In the second case, one can rescale the area by dividing it by 1 − 1/P so that its values is

equal to 1 for a perfect classifier. Note that it is important to report exactly on which approach was

used to compute the AUPR as it can make a significant difference when the number of positives is

very small. For example, the AUPR of the PR curve of Figure 3.1 is equal to 0.81, 0.75, and 0.56

respectively with the pseudo-point, without the pseudo-point but with rescaling, and without the

pseudo-point and without rescaling.

3.2.4 Comparison of ROC and PR curves

It is impossible to say which curve, between ROC and PR curves, is a better way to illustrate the

performance of a model. Each curve has its own advantages, and the choice of it will depend of the

use we want to do of the predictions.

Sensitivity to class imbalance

An important difference between ROC and PR curves is their different sensitivities to the ratio be-

tween positives and negatives (class imbalance) among the tested pairs: a ROC curve is independent

of the precise value of this ratio, while a PR curve is not. To illustrate this fact, we triplicated every

negative examples in the ranked list of predictions of Table 3.3 and plotted the new ROC and PR

curves in Figure 3.2. As expected, we obtained exactly the same ROC curves, while the PR curves

are different. This happens because, at fixed recall, a large change in FP will lead to no change

in the FPR used in ROC curves (because to total number N of negatives will increase in the same

proportion), but to a large change in the precision used in PR curves (Davis and Goadrich, 2006).
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The independence with respect to the particular content of the test sample in terms of positives

and negatives is actually the main advantage of the ROC curve over the PR curve when it comes to

compare different classification methods (Fawcett, 2006). ROC curves allow to compare classifica-

tion methods whatever will be the ratio between positives and negatives expected when practically

applying the model. Because of this independence however, ROC curves do not really emphasize a

particular intervals of values of this ratio and therefore favor methods that are good for a large range

of such values. If one knows for example that the ratio between positives and negatives will be very

low when applying the classification model, then one is typically only interested in the bottom-left

part of the ROC curve. PR curves, on the other hand, provide a better picture of the performance

of a method when the ratio between positives and negatives in the test data is close to the ratio

one expects when practically applying the model.

Let us give a concrete numerical example to illustrate this idea. Yu et al. (2012) present a

ROC curve obtained from their model in which, when the TPR reaches 40%, the FPR is as low as

∼ 2%, and when the TPR is 60% the FPR is still as low as ∼ 4%. A priori, this results looks good

as it means that their model is able to find half of all positive interactions while only selecting a

small percentage of negative interactions. Assuming that there is no class imbalance and that the

network contains as much positive pairs as negative ones, these two points corresponds to 95% and

94% precisions for respectively 40% and 60% recalls. Now let us assume that there is a string class

imbalance and that the network contains 100 times more negative pairs than positive ones. Then

precision values fall to 17% and 13% respectively for 40% and 60% recalls. In this latter case, the

proposed model seems less good from the perspective of the PR curve than from the perspective of

the ROC curve.

The dependence of the PR curve on the ratio between positives and negatives can also be seen

as a drawback. First, it means that PR curves (and their associated AUPR) obtained from different

datasets can not really be compared when the ratio P/N is very different. This is a limitation if

one wants to compare the performance of a method across several networks for example. Second,

because of this dependence, it is important that the ratio of positive and negative interactions in the

subset of pairs used to validate the method is representative of the final application of the method.

Otherwise, the PR curve will not provide a realistic evaluation of the method. Note however that it

is possible to adapt a given PR curve to another ratio between positives and negatives than the one

adopted to generate it (Hue et al., 2010). Let us assume a PR curve estimated from P1 positives and

N1 positives and let us estimate from this curve a new curve corresponding to P2 = P1 positives and

N2 6= N1 negatives respectively drawn from the same distribution as the original P1 positives and

N1 negatives. For a given confidence threshold, the recall (i.e., the proportion of positives greater

than the threshold) is unchanged since P1 = P2. Denoting by TP1 and TP2 (resp. FP1 and FP2)

the number of positives (resp. negatives) with a score greater than the threshold in both cases, we

have precision1 = TP1
TP1+FP1

and precision2 = TP2
TP2+FP2

. Given that TP1 = TP2 and FP2 = N2
N1

FP1 in

average, it is easy to show that precision1 and precision2 are related as follows:

precision2 =
precision1

precision1 + N2
N1

(1− precision1)
. (3.1)

Using this formula, one can thus approximate the PR curve for an arbitrary ratio between positives

and negatives from the knowledge of at least one PR curve (corresponding to an arbitrary ratio).

Note that this PR curve can also be derived from a ROC curve and the knowledge of the actual
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Figure 3.3: Predictions on a small dataset gives an uneven precision-recall curve, which

can not be approximated by the method in (Brodersen et al., 2010). The big jumps of

the beginning of the curve result from the fact that the classifications of the top ranking

are the most weighted.

ratio P
N using the fact that, for any confidence threshold, we have:

precision =
TPR

TPR + FPR · NP
, (3.2)

and that both TPR and FPR are known from the ROC curve.

Unstability of precision-recall curve

Another drawback of the PR curve is the potential unstability of the precision for small recall values.

Indeed, for small values of predP, the vertical changes of the curve from one confidence threshold

to the next can be very huge, independently of the size of the dataset. This is obviously more

noticeable when the value of P is small because the horizontal changes are then also relatively large.

This unstability makes the estimation of the true PR curve highly imprecise (Brodersen et al., 2010).

It is however actually a direct consequence of the stronger focus put by the PR curve on the top of

the ranking with respect to the ROC curve.

Brodersen et al. (2010) propose to get around this problem by estimating the curve on the

basis of a simple distributional assumption about the decision values (see more details in their

paper). We tested this model on one small biological network: a drug-protein interaction network in

which proteins are nuclear receptors (Yamanishi et al., 2008). There are 54 drugs, 26 proteins and 90

interactions in this network. We performed a 3-fold cross-validation on pairs (see Section 3.3.1), with

a global approach and extremely randomized trees. The resulting PR curve and its approximation

using Brodersen et al. (2010)’s method are shown in Figure 3.3. The original PR curve is spiky

and uneven. The approximated curve is indeed much smoother but it does not fit at all the original

curve. The mismatch between the two curves comes from the assumption made by the method that

decision values follow two independent Gaussian distributions. This assumption is clearly violated

for this problem, as the two distributions are closer to exponential distributions than to Gaussian

distributions (figure not shown).

Davis and Goadrich (2006) present another way to make a PR curve smoother and less spiky.

For that purpose, they extended the notion of achievable curve from ROC curves to PR curves.
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Figure 3.4: Examples of interpolation between points in ROC and precision-recall

spaces. The resulting red curves are achievable curves.

In the ROC space, any point on the line segment between two points can actually be achieved by

randomly using one of the two classifiers corresponding to these two points, where each of the two

classifiers is selected with a probability proportional to its relative distance to the point on the line.

From this property, one can deduce that any points on the convex hull of a ROC curve can also be

achieved and this convex hull is thus the best legal curve that can be built from a set of ROC points

(see Figure 3.4A for an example).

Using a similar idea, one can also interpolate between two points of a PR curve, by randomly

selecting any of the two classifiers corresponding to these two points with a probability ranging

from 0 to 1. This idea can be applied to turn any PR curve into some new maximum achievable

curve that is smoother than the original curve (see Figure 3.4B for an example). Note that, while

the interpolated curve between any two points is a straight line in the case of a ROC curve, it is

non linear in the case of a PR curve. It can be approximated however by a piecewise linear curve,

as in Figure 3.4B, where each knot corresponds to a different TP value (see Davis and Goadrich

(2006), and also Section 3.6.2 for more details). Note that through this interpolation, the PR curve

can always be turned into a monotonically decreasing curve, even if it originally increases at its

beginning (as this is the case for the PR curve in Figure 3.4B). Indeed, let us suppose that the

maximum precision value pr is achieved for a recall value r , and that these precision and recall values

correspond to i examples predicted as positives. Then, a precision value pr can be achieved for every

recall values lower than r by simply assuming that the order of the i first examples in the ranking is

randomized. Every local minimum can also be removed by interpolating the curve between the left

and right local maxima that are surrounding this minimum. The decreasing nature of the maximum

achievable PR curve will be exploited later in Section 3.6.

Connexion between ROC and PR curves

Despite these differences, it is interesting to note that a deep connection exists between the ROC

and the PR spaces, in that a model dominates another model in the ROC space if and only if it

dominates the same model in the PR space (Davis and Goadrich, 2006). In practice however, it is

often the case that a model does not dominate another model over the whole ROC and PR spaces
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and it might thus happen that a method’s AUROC is greater than another method’s AUROC, while

the opposite is true concerning the AUPR.

3.2.5 Other measures and curves

ROC curves and PR curves are the most popular ways to estimate the performance of biological

network inference methods, but some other measures and curves can also be found in the literature.

Lift charts

Lift charts (or cumulative lift charts), often used in marketing (Witten and Frank, 2005), plot the

TPR, or recall, as a function of the RPP (rate of positive predictions), when varying the confidence

threshold. As an illustration, the lift chart relative to the predictions of Figure 3.1 is shown in

Figure 3.5A. A perfect classifier would give a curve going through the points (0, 0), (p/p+n, 1) and

(1, 1), while a random classifier would be equal to the diagonal connecting the two points (0, 0) and

(1, 1).

For example, Geurts (2011) used a lift chart to evaluate the performance of supervised methods

for the prediction of regulatory networks, and Yabuuchi et al. (2011) for the prediction of compound-

protein interactions. Lift charts explicitly shows the number of positive predictions (expressed as a

percentage of all possible interactions) that one needs to accept to retrieve a given percentage of

all truly positive interactions (recall). This is an important information when one is looking at the

experimental validation of the predictions: a method that dominates another in terms of lift chart

would require to experimentally test less interactions to achieve a given recall.

Note that when the number of positive examples is much smaller than the number of negative

ones, as it often happens in biological networks, there is not much difference between the ROC curve

and the lift chart. Indeed, in a lift chart, adding one more pair as predicted positive increases the

TPR by 1/P and the RPP by 1/P+N if this pair truly interacts, and does not affect the TPR and

increases RPP by 1/P+N if the pair does not interact. In the first case (true positive pair), the slope

of curve for this step is equal to (P+N)/P, which goes to infinity when N >> P. In the second case

(false positive pair), if the ratio P/N gets close to zero, the horizontal step will get close to 1/N.

These values are the same values as the ones obtained in a ROC curve. We can then conclude that

when the ratio P/N gets close to zero, the lift chart gets close the ROC curve.
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Figure 3.5: From the same example as in Table 3.4, we computed a lift chart (A)

and a DET curve (B).
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DET curves

Detection error tradeoff (DET) curves plot the two types of errors versus each other, i.e., FNR as

a function of FPR (Martin et al., 1997). In addition, the two axis are log scaled. Without this

rescaling, a DET curve would be equivalent to a ROC curve (because FNR = 1 − TPR). The

interest of the log scale is to expand the lower left part of the curve (which corresponds to the

upper left part of the corresponding ROC curve), which as argued in Martin et al. (1997) makes

the comparison between different methods easier. An example of the DET curve relative to the

predictions in Figure 3 is shown in Figure 4 (B). DET curves were used in Brunner et al. (2012)

to evaluate classification methods working on pairs of objects.

Correlation coefficient

Several authors (Niijima et al., 2011; Lapins and Wikberg, 2010; Junaid et al., 2010; Li et al., 2009)

use a correlation coefficient for the evaluation of the performance of network inference methods. In

this context, the latter is defined as

Q2 = 1−
∑n

i=1(yi − ŷi )
2

∑n
i=1(yi − ȳ)2

where the sum runs over all tested pairs, yi and ŷi are the true and predicted value corresponding

to the ith pair and ȳ is the average value of yi . Q2 values vary between 0 and 1, with Q2 = 1 for a

perfect classifier.

Average normalized rank

The average normalized rank is another way to compare the performance of different classifiers (Karni

et al., 2009; Geurts, 2011). It computes the average rank of all actual positives in the ranking of all

pairs according to their confidence score, and then divide it by the total number of pairs. Obviously

smaller is the average rank and better is the model.

3.2.6 Discussion

Biological network inference problems, as binary classification problems, are usually very much im-

balanced in favor of the negative class, as the proportion of interacting pairs among all possible

pairs is very small. Given the discussion in Section 3.2.4, this speaks in favor of the PR curve over

the ROC curve. Let us nevertheless consider three typical scenarios related to the use of supervised

network inference techniques and discuss the most appropriate use of these measures in each of

these scenarios:

- Development of new supervised network inference methods: when trying to design a new

supervised network inference method, one needs to assess its performance against existing

methods, either on a specific target biological network if the method is specialized or on several

networks if the method is generic. In this scenario, one has typically no specific application

of the method in mind and the combination of both ROC and PR curves can be a good idea.

While AUROC and AUPR summary values can be used for comparison purpose, it is always

useful to actually report full ROC and PR curves to better characterize the areas of the ROC

and PR where the new method dominates competitors.
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- Prioritize interactions for experimental validation: From a ranking of all the pairs from the most

likely to interact to the less likely to interact, a biologist may want to validate experimentally

the top-ranked pairs, i.e. the potentially new interacting pairs. More locally, he also may want

to find the nodes (e.g., genes/proteins) the most likely to interact with a specific node of

special interest for him. In this scenario, the biologist probably wants to find the best tradeoff

between the number of true interactions he will find through the experimental validation and

the cost associated to this validation. The former is measured by the recall and the latter is

typically proportional to the RPP, which suggests the use of a lift chart. In addition, if the

goal is also to minimize the rate of unsuccessful validation experiments (i.e., the precision),

then also looking at the PR curve might be a good idea.

- Global analysis of the predicted network: We may want to use the top-ranked pairs to create

a new network, or to complete an already known network, for visualization or a more global

analysis of its main statistics. These analyzes can be helpful, for example, to discover new

therapeutic indication or adverse effect of old drugs in a drug-protein-interaction network

(Cheng et al., 2012), to find new pathways in a metabolic network, to highlight clusters of

co-expressed genes in a regulatory network, or to find protein sharing similar functions in a

protein-protein interaction network. In these cases, we need to find the best possible tradeoff

between precision (not to infer wrong things) and recall (to maximize the coverage of the true

network). This tradeoff can be found from a PR curve. For example, one could derive from

the PR curve the lowest confidence threshold corresponding to a precision greater than 50%.

3.3 Evaluation protocols

Given a learning set LSp of pairs labeled as interacting or not, the goal of the application of supervised

network inference methods is to get a prediction for all pairs not present in LSp (or a subset of them

depending on the application). In addition, one would like to compute an estimate of the quality

of these predictions as measured with any of the metrics defined in the previous section. To obtain

such estimation, one could rely only on the learning set LSp as nothing is known about pairs outside

this set by construction.

Standard supervised classification methods are typically validated using cross-validation, i.e.

leaving part of the examples in the learning sample aside as a test set, training a model from the

remaining examples, and testing this model on the test set (and possibly repeat this procedure several

times and average). Applying cross-validation in the context of network inference, where we have

to classify pairs, needs special care (Park and Marcotte, 2012). Indeed, the predictive performance

of a method for a given pair highly depends on the availability in the training data of interactions

involving any of the two nodes in the tested pair; It is typically much more difficult to predict pairs

with nodes for which no example of interactions are provided in the training network.

As a consequence of this, pair predictions have to be partitioned into four sets, depending on

whether the nodes in the pair to predict are represented or not in the learning sample of pairs LSp.

Denoting by LSc (resp. LSr ) the nodes from Uc (resp. Ur ) that are present in LSp (i.e. which are

involved in some pairs in LSp) and by TSc = Uc \ LSc (resp. TSr = Ur \ LSr ) unseen nodes from

Uc (resp. Ur ), the pairs of nodes to predict (i.e., outside LSp) can be divided into the following four

families:
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Figure 3.6: Schematic representation of known and unknown pairs in the network

adjacency matrix (A) and of the two kinds of cross-validation, cross-validation on pairs

(B) and cross-validation on nodes (C). In (A): known pairs (that can be interacting or

not) are in white and unknown pairs, to be predicted, are in gray. Rows and columns

of the adjacency matrix have been rearranged to highlight the four families of unknown

pairs described in the text: LSr×LSc , LSr×TSc , TSr×LSc , and TSr×TSc . In (B),(C):

pairs from the learning fold are in white and pairs from the test fold are in blue. Pairs

in gray represent unknown pairs that do not take part to the cross-validation.

- (LSr × LSc) \ LSp: predictions of (unseen) pairs between two nodes which are represented in

the learning sample.

- LSr × TSc or TSr × LSc : predictions of pairs between one node represented in the learning

sample and one unseen node, where the unseen node can be either from Uc or from Ur .

- TSr × TSc : predictions of pairs between two unseen nodes.

These pairs are represented in the adjacency matrix in Figure 3.6A. In this representation, the rows

and columns of the adjacency matrix have been ordered, without loss of generality, in order to make

nodes from LSr and LSc appear first in the ranking and as a consequence, all four groups define

rectangular and contiguous subregions of the adjacency matrix. Such ordering is always possible

but the respective sizes of the four groups of pairs that this ordering defines is of course very much

problem dependent. Thereafter, we simplify the notations by dropping the subscript r and c and

denote the prediction sets as LS × LS , LS × TS , TS × LS and TS × TS . In the case of an

homogeneous undirected graph, only three sets can be defined as the two sets LS×TS and TS×LS

are obviously confounded.
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Typically, one expects different prediction performances for these different kinds of pairs and

in particular, that TS × TS pairs will be the most difficult to predict since less information is

available at training about the corresponding nodes. In consequence, we need ways to evaluate the

quality of the predictions of these four groups separately. Below, we first present the two main

cross-validation procedures that have been proposed in the literature to evaluate supervised network

inference methods and discuss which of these four kinds of predictions these procedures are evaluating

(Sections 3.3.1 and 3.3.2). We then proceed with some suggestions on how to practically assess

network inference methods (Section 3.3.3) and give an illustration on an artificial gene regulatory

network (Section 3.3.4).

3.3.1 Cross-validation on pairs

The most straightforward way to generate the groups needed for the cross-validation (i.e. the learning

and test sets) is to randomly select pairs from all the known pairs in LSp (see Figure 3.6B). For

example, in a specific step of a 10-fold cross-validation, 90% of all the pairs from LSp are chosen

to be in the learning set, while the remaining 10% are then part of the test set. We call such

cross-validation cross-validation on pairs. Many papers from the literature on supervised network

inference only consider this sampling method (see e.g. Qi et al., 2006; Chang et al., 2010; Yabuuchi

et al., 2011; Park and Marcotte, 2012).

With CV on pairs, each test set could in principle mix pairs from the four groups aforementioned.

If LSp is relatively dense however (i.e., there are only very few or no pairs in LSr × LSc \ LSp), the

chance to have a node in a test set pair not present in any learning set pair will be very low. The

test set will then be largely dominated by pairs from the LS × LS group. In this case, one can thus

only consider the performance evaluated by CV on pairs as representative of the performance for the

LS × LS pairs. When used to assess the global performance of a method however, CV on pairs will

in general give too optimistic estimates.

To obtain an estimate of the four kinds of predictions using CV on pairs, one could partition

the pairs in the test fold into the four groups and then estimate the performance for each group

separately. The cross-validation scheme proposed in the next section provides however a more natural

way to assess the three types of predictions involving the TS . CV on pairs should thus be reserved

for the evaluation of LS × LS pairs. For that purpose, removing pairs in the test folds that do not

belong to the LS × LS group might be useful to obtain a better estimate, especially when the size

of LSp is small with respect to the size of LSc × LSr .

3.3.2 Cross-validation on nodes

Instead of sampling pairs, several authors have proposed to sample nodes. In the general case of

a bipartite graph, the idea is to randomly split both sets LSc and LSr into two sets, respectively

denoted LS ′c and TS ′c for LSc and LS ′r and TS ′r for LSr . The model is then trained on the pairs in

(LS ′c × LS ′r ) ∩ LSp and then evaluated separately on three subsets (see Figure 3.6C):

- (LS ′c × TS ′r ) ∩ LSp that gives an estimate of the LS × TS performance,

- (TS ′c × LS ′r ) ∩ LSp that gives an estimate of the TS × LS performance,

- (TS ′c × TS ′r ) ∩ LSp that gives an estimate of the TS × TS performance.
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In addition, it might be interesting to evaluate the performance on the union of the three previous

subsets of pairs to give an idea of the overall performance of the method. Better estimates could

also be obtained by averaging results over k splits instead of one, where the different splits can

be obtained either by repeated random resampling or by partitioning the two sets into k-folds and

considering each fold in turn as a test set. In this latter case, partitioning LSc and LSr into k folds

will lead to k2 candidate (LS ′c , LS ′r ) pairs for training and (TS ′c ,TS ′r ) pairs for evaluation but one

could select only k of them arbitrarily to reduce the computational burden. The same approach can

obviously also be applied to homogeneous graphs to obtain estimate of the LS × TS and TS × TS

performances.

Cross-validation on nodes has been applied for example in Vert and Yamanishi (2005); Kato et al.

(2005); Geurts et al. (2007) for evaluating LS × TS and TS × TS performances for the prediction

of a protein-protein interaction network and an enzyme network. Yamanishi et al. (2008) performed

10-fold cross-validation on nodes to evaluate the performance of their method for predicting drug-

protein interactions. They separated the pairs in the test sets into 4 classes: new drug versus

known protein (LS ×TS), known drug versus new protein (TS × LS), new drug versus new protein

(TS × TS) and the union of all these three classes.

In some applications, one might be interested only in evaluating LS×TS or TS×LS predictions

and not TS ×TS predictions. In this case, the same procedure can be applied, except that only one

set of nodes has to be split. For example, Mordelet and Vert (2008) uses a local approach to predict

the regulatory network of the bacteria E.coli, considered as a bipartite graph connecting genes and

transcription factors. They evaluated the performance of their algorithm by performing 3-fold cross-

validation on the genes only, to measure how well one can predict the presence of an interaction

between one transcription factor for which we already know several interactions and one gene for

which no interaction is known (LS × TS). As another example, Yamanishi et al. (2010) focus

on drug-protein interaction predictions and evaluate their performances by 5-fold cross-validation

on drugs, hereby assessing how well they can predict interactions between a known protein and a

new drug. For the same problem, Bleakley and Yamanishi (2009) evaluated their local method by

leave-one-out cross-validation performed separately on drugs and then on proteins to evaluate both

LS × TS and TS × LS predictions.

3.3.3 Discussion

Cross-validation on pairs provide a natural way to estimate LS×LS predictions, while cross-validation

on nodes provide a natural way to estimate LS × TS , TS × LS , and TS × TS predictions. A

global performance assessment of a method can therefore only be obtained by combining these

two protocols. This was done only by a few authors (e.g. Yip and Gerstein, 2008; Bleakley and

Yamanishi, 2009; Takarabe et al., 2012). The necessity to evaluate all four groups is however

problem dependent. Again, when designing a new supervised network inference method, it is useful

to report performances for all families separately, as a method can work well for one family and less

good for another. If one is interested in the completion of a particular biological network, then the

need for the evaluation will depend, on the one hand, on the content of the learning sample LSp

and, on the other hand, on which kinds of predictions the end user is interested in. Indeed, if all

nodes are covered by at least one known interaction in LSp, then there is no point in evaluating

LS × TS or TS × TS predictions. If LSp corresponds to a complete rectangular submatrix of the

adjacency matrix (i.e., LSp = LSc × LSr ), then there is no point in evaluating LS × LS predictions.
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Also, for some applications, the end-user might not be interested in the extension of the network

over one of the two dimensions. For example, when inferring a regulatory network, the user might

only be interested by the prediction of new target genes for known transcription factors.

Note that all supervised network inference methods are not able to predict all four groups of

prediction. We have already mentioned that local methods can not make predictions for TS × TS

pairs. There are also methods that require a learning sample LSp containing all possible pairs among

a subset of nodes and therefore can not make LS × LS predictions (Kato et al., 2005; Yamanishi

and Vert, 2005; Geurts et al., 2007).

In addition to the four groups previously defined, it is also possible to evaluate independently

the predictions related to each individual node (to get for example an idea of the quality of the

predictions of new target genes for a given transcription factor). This can be achieved by dividing

the test folds according to one of the nodes in the pairs and then to assess performance for each

partition so obtained. In practice also, the quality of a prediction depends not only on the fact that

the nodes in the pair belong or not to the learning sample, but also on the number of pairs in the

learning sample that concern these nodes. We can indeed expect that, for a given node, the more

interactions or non-interactions are known in the learning sample for this node, the better will be

the predictions for the pairs that involve this node. Assessing each node separately can thus make

sense to better evaluate this effect. We will illustrate this idea in Section 3.3.4.

When using k-fold cross-validation to estimate ROC or PR curves, one question we have not

addressed so far is how to aggregate the results over the different folds. There are several ways to

do that. If one is interested only in AUROC or AUPR values, then one could simply average AUROC

or AUPR values over the k folds. If one wants to estimate the whole ROC or PR curves, there are

two ways to obtain them: first, by averaging the k curves to obtain a single one, second by merging

pairs from the k test folds with their confidence score and building a curve from all these pairs. In

the first case, there are several alternative ways to average ROC (and PR) curves. One of them

is to sample the x-axis in each curve and then average the k y-axis values corresponding to these

points (this is called vertical averaging in Fawcett (2006)). Merging all predictions together is easier

to implement but it assumes that the confidence scores obtained from the k different models are

comparable, which is not trivially true for all methods. Note that our own practical experience shows

that there are only very small differences between these two methods of aggregation and we usually

prefer to average the individual ROC curves not to have to address the question of the compatibility

of the confidence scores.

Finally, we have seen in section 3.2.4 that PR curves depend on the ratio between positives and

negatives. This dependence should be taken into account when performing cross-validation. If CV

on pairs and CV on nodes use uniform random sampling, resp. of pairs and of nodes, to define the

test folds, then they implicitly assume that the ratio between positives and negatives is the same

in the test fold as in the learning sample of pairs. This seems a reasonable assumption in most

situations but if one expects a different ratio among the predictions, then the procedure developed

in Section 3.2.4 can be used to correct the PR curve accordingly. We will discuss in Section 3.4 one

situation that would require such adjustment.

3.3.4 Illustration

In this section, we will illustrate the use of cross-validation with experiments on an artificial network.

An artificial network was chosen so that it is possible to accurately estimate performance and
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therefore assess the different biases discussed in the chapter. The chosen network is the artificial

regulatory network simulated in the context of the DREAM5 network inference challenge (Marbach

et al., 2012). This network is an artificial (bipartite) regulatory network, composed of 1565 genes, 178

transcription factors (TF) and 4,012 interactions, corresponding to 1.4% of all the pairs. The network

has to be inferred from 804 artificial microarray expression values obtained in various conditions and

mimicking typical real microarray compendia. To provide experiments on a homogeneous network

as well, we transformed this network into a co-regulatory network composed of 1565 genes and in

which there is an interaction between two genes if they are regulated by at least one common TF.

The resulting network is composed of 4,191,120 interactions, corresponding to 17.1% of all pairs.

We first carry out a separate evaluation of the different families of pairs, then we evaluate

performances for each gene individually, and finally we make an experiment in a more realistic

setting to assess the quality of the estimation provided by cross-validation.

Performance over the four families of predictions

We performed a 10-fold cross-validation on both the bipartite and homogeneous networks, with a

local approach using Random Forests (Breiman, 2001).

Bipartite network. For the bipartite network, we sample first on pairs, and second on genes and

on TFs. The resulting curves and areas under the curves are given in Figure 3.7AB.

On the other hand, the prediction of pairs involving a TF present in the learning set, and a new

gene (LS × TS) gives an AUPR equal to 0.02 and an AUROC equal to 0.53, and the prediction of

pairs involving a new TF and a new gene (TS × TS) gives AUPR equal to 0.02 and an AUROC

equal to 0.55. These results are barely better than a random classifier (AUPR = 0.01 and AUROC

= 0.5). Finding new interactions for a known TF is much easier than finding new interactions for a

known gene.

Homogeneous network. For the homogeneous network, we sample first on the pairs and second

on the genes. The resulting curves are shown in Figure 3.7CD. Prediction of coregulation between

two genes belonging to the learning set gives the best AUROC and AUPR. As expected prediction

of coregulation between one known gene and one new gene gives less good performance, followed

by prediction of coregulation between two new genes.

These two examples clearly highlight the fact that all pairs are not as easy to discover as the

others, and that it is thus important to distinguish them during the validation.

Per-node evaluation

As a second experiment, we computed the ROC and PR curves for each of the 178 TFs separately,

from the result of the 10-fold cross-validation on genes (bipartite graph). Figure 3.8 shows the

(average) AUROC and AUPR values for all TFs according to their degree. This plot shows that the

quality of the predictions differs greatly from one TF to another and that the number of known pairs

seems to affect this quality. For low values of degree (lower than about 20), the AUROC globally

increases when the degree increases, but for higher values the AUROC does not seem to depend on

it. On the other hand, AUPR values globally increase when the degree increases, for all values of

TF. We can conclude that the algorithm needs a minimum of known interactions to learn a good
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LS−LS
LS−TS
TS−LS
TS−TS

LS−LS
LS−TS
TS−TS

LS × LS LS × TS TS × LS TS × TS

Bipartite network (a) AUROC 0.85 0.86 0.53 0.55

(b) AUPR 0.31 0.34 0.02 0.02

Homogeneous network (c) AUROC 0.96 0.88 - 0.75

(d) AUPR 0.88 0.65 - 0.40

Figure 3.7: Top, ROC curves (A) and PR curves (B) for the four groups of predictions

obtained by 10-fold cross-validation on the DREAM5 artificial gene regulatory network.

The performance of prediction of a pair involving a gene and a TF present in the learning

set (LS × LS) is as good as the performance of prediction of a pair involving a gene

absent and a TF present in the learning set (LS × TS). On the contrary, predicting

an interaction involving a new TF is much more difficult (TS × LS and TS × TS).

Bottom, ROC curves (C) and PR curves (D) obtained by 10-fold cross-validation on

the corresponding DREAM5 co-regulatory network. Predictions on pairs involving two

genes from the learning set are the best, while predictions on pairs involving two genes

from the test set are the worst.
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model, and that above a certain threshold, there is no need to increase further the number of known

interactions to improve the AUROC.

Note that performance could also be assessed for each gene separately but given the very poor

TS × LS performances observed in the previous section, we expect also very poor results from such

experiment.

A more realistic setting

The goal of cross-validation is to estimate, from the training subnetwork, the performance one

expects on the prediction of new interactions. We carried out another experiment on the DREAM5

artificial network to evaluate the quality of the estimation obtained by cross-validation in a realistic

setting. In this setting, we assume that the known pairs are obtained by first randomly drawing 2/3

of the genes and 2/3 of the transcription factors and then randomly drawing 2/3 of all interacting

and non-interacting pairs between these genes and transcription factors (Figure 3.9). The resulting

training set thus contains (2/3)3 ' 30% of all possible pairs and the goal is to predict the remaining

70% pairs, which are divided into:

- LS × LS composed of 2/3 · 2/3 · 1/3 ' 15% of all possible pairs

- LS × TS and TS × LS composed each one of 2/3 · 1/3 ' 22% of all possible pairs

- TS × TS composed of 1/3 · 1/3 ' 11% of all possible pairs

Two validation experiments were performed. First, we evaluated the performance of the (global)

Random Forests method by cross-validation across pairs and across nodes on the 30% of known pairs

(experiment A). Second, we trained local models based on Random Forests on the known pairs and

we evaluated them on the 70% of pairs not used during training (experiment B). Experiment A is

therefore supposed to provide a cross-validation estimate of the true performance as estimated by

experiment B. The resulting ROC and PR curves obtained from these two experiments for the LS×LS

and LS×TS families are shown in Figure 3.10. As expected, for both kinds of predictions, the curves

obtained by the two experiments are very similar, with a very slight advantage to experiment B. This

small difference comes from the fact that the number of pairs in the learning set of experiment B

is 10% greater than the number of pairs in the learning sets of experiment A (because of 10-fold

cross-validation).

3.4 Lack of negative examples

In biological networks, it is common that no truly non interacting pairs are available. Indeed it

is often impossible for biologists to experimentally support the lack of an interaction between two

nodes. For example you can prove that a specific drug acts on a set of proteins, and you may want

to find other proteins being affected by this drug by using machine learning techniques, but you

cannot prove that a particular set of proteins is not affected by the drug. This lack of negative

examples leads to two main issues for supervised network inference that need to be addressed.

- Standard machine learning methods require both positive (interacting pairs) and negative

(non-interacting pairs) examples for training. It is therefore necessary to adopt strategies to

cope with this lack of negative examples at the training stage.
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Figure 3.8: AUROC (A,B) and AUPR (C,D) for each transcription factor as a function

of its degree (number of targets) on the DREAM5 network. Each value was obtained

by 10-fold cross-validation on genes. Each blue point corresponds to a particular TF

and plots its average AUC or AUPR value over the 10 folds. Each red point correspond

to the average AUC or AUPR values over all TFs of the corresponding degree. Globally,

the higher the degree, the higher are the areas under the curve and so the better are

the predictions.
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transcription factors

genes

2/3

2/3

1/3

1/3

labeled

Figure 3.9: To make sure that performance curves computed on labeled data reflect

performance that we would obtain by predicting new data, we performed two exper-

iments on the DREAM5 regulatory network, in a more realistic setting: (A) Cross-

validations across the considered labeled pairs (orange ones) and (B) prediction of

considered unlabeled pairs (white ones) from the labeled ones. Resulting curves are

found in Figure 3.10.

- Assessing the performance of a method also requires to have access to both true positive and

true negative examples, with which to confront the predictions. The impact of the lack of

negatives on performance assessment needs to be studied.

We discuss these two issues separately below and conclude with an illustration.

3.4.1 Training a model

Standard supervised machine learning methods require both positive and negative examples for

training. The most common way to get around this limitation in the presence of only positive

examples is to take as negative examples all, or a subset of, the unlabeled examples, i.e. in our

context, considering all or some pairs that have not been measured as interacting as actually non-

interacting. This approach has been adopted by most authors in the literature, e.g., in Geurts et al.

(2007); Mordelet and Vert (2008); Bauer et al. (2011); Yip and Gerstein (2008); Yamanishi et al.

(2008); Takarabe et al. (2012); van Laarhoven et al. (2011) the authors use all unlabeled pairs as

negatives and in Yip and Gerstein (2008); Yabuuchi et al. (2011); Hue et al. (2010); Chang et al.

(2010); Yu et al. (2012) they use only a subset of them. Although there is a risk that the presence

of false negatives in the learning sample will affect the performance of the machine learning method,

using only a subset of the unlabeled pairs as negative examples will however reduce very much this

risk in the context of biological networks. Indeed, the fraction of positive interactions is expected to

be very small in common biological networks, which will lead to only a very small number of false

negatives in the learning sample as soon as the size of the negative set is not too large with respect

to the size of the positive set. For example, for the protein-protein interaction network of the yeast,

it is estimated that 1 pair over 600 is actually interacting (Qi et al., 2006), which corresponds to
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LS−LS
LS−TS

LS × LS LS × TS

Experiment A (a) AUROC 0.83 0.83

(b) AUPR 0.29 0.31

Experiment B (c) AUROC 0.84 0.84

(d) AUPR 0.33 0.31

Figure 3.10: Comparison of the cross-validation estimates of the LS×LS and LS×TS

scores, ROC curve in (A) and PR curve in (B), with true score values for the same two

families of predictions, ROC curve in (C) and PR curve in (D).
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∼ 0.2% of all the possible pairs. A learning sample composed of 1000 positive and 1000 unlabeled

pairs is therefore expected to contain in average only about 2 or 3 false negatives. In addition to the

reduction of the number of false negatives, sampling the unlabeled pairs has also the advantage of

decreasing the computational cost at the training stage and of improving the class imbalance in the

training sample, which affects the performance of some classification methods (Park and Marcotte,

2011; Pandey et al., 2010).

To even further reduce the risk of incorporating false negatives in the training data, one could

also replace random sampling from the unlabeled pairs by a selection of a subset of more reliable

negative examples using some prior knowledge about the biological interactions of interest. This

approach was considered for example in Ben-Hur and Noble (2006) for protein-protein interactions,

in Ceccarelli and Cerulo (2009) for gene-transcription factor interactions, and in Yousef et al. (2008)

for microRNA-gene interactions.

Note that the presence of false negatives is not necessarily detrimental. Elkan and Noto (2008)

showed that, under the assumption that the interactions in the learning sample are selected uniformly

at random among all interactions, the presence of false negatives in the learning sample will only

affect the confidence scores by a constant factor, which will thus leave ROC and PR curves for

example unaffected. Although their assumption is quite strong, this nevertheless suggests that the

presence of false negatives might not affect too much performances. As an illustration, we run

the same experiment as in section 3.3.4 on the DREAM5 regulatory network only turning 10% of

positives into negatives when training the model. The AUROC reduces from 0.31 to 0.29 and the

AUPR from 0.85 to 0.84, showing that the presence of false negatives only very slightly affects the

performance of Random Forests.

One drawback of considering unlabeled pairs as negative pairs for training the model is that the

predictions provided by the model for these pairs will be obviously biased towards low confidence

scores. One way to obtain unbiased predictions for all unlabeled pairs is to use cross-validation:

construct a model using all known positive pairs and a random subset of the unlabeled pairs as

negatives, use this model to obtain a prediction for all unlabeled pairs not used during the training

stage, and repeat the procedure several times using different subsets of unlabeled pairs until all

unlabeled pairs have obtained at least one prediction. Based on this general scheme, Mordelet and

Vert (2013) proposed to train several models using small random subsamples of unlabeled pairs,

leading to several predictions for each unlabeled pairs that are then aggregated. This approach was

applied to the inference of gene regulatory network.

Another approach to deal with the lack of negative examples is to forget about unlabeled

examples and exploit machine learning methods, such as one-class SVM (Schölkopf et al., 2001),

that can learn a model only from the positive examples. This approach was for example adopted in

Yousef et al. (2008)) to predict miRNA-gene interactions. Machine learning literature also provides

several specific algorithms for dealing with positive and unlabeled examples, among which for example

Denis et al. (2005a); Lee and Liu (2003); Geurts (2011), that could also be used in the context of

supervised network inference. Geurts (2011) validated his method for the inference of regulatory

networks.
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3.4.2 Evaluating a model

The absence of true non interacting pairs in the training data has also an impact on the validation

of the model, as the different evaluation measures described in section 3.2 all rely on the availability

of a set of known interacting and non-interacting pairs on which to perform the cross-validation.

Like for training, the simplest way to deal with the lack of negatives for validating the model

is to consider all unlabeled pairs within the test folds (generated in the context of CV on pairs or

CV on nodes) as non-interacting pairs and then estimate ROC or PR curves under this assumption.

The presence of false negatives in the gold standard will obviously affect the estimation of the

performance.

Effect of false negatives on the curves

Let us try to estimate the effect of false negatives on the PR and ROC curves. For that purpose,

let us suppose that the ranking of the examples in a test fold is fixed and then let us compute

the change in PR and ROC curve when a proportion x of positives are turned into negatives. The

assumption under this model is that false negative examples will get confidence scores distributed

similarly as scores of positive examples. We will discuss the relevance of this assumption below.

Given this modification, the error counts in the confusion matrix are modified as follows, in

average and for a given confidence thresholds (using the notations of section 3.2):

Pnew = P − P · x = (1− x)P Nnew = N + P · x
TPnew = TP − TP · x = (1− x)TP FPnew = FP + TP · x
FNnew = FN − FN · x = (1− x)FN TNnew = TN + FN · x

From these changes, we can compute the resulting variations in TPR, FPR, and precision that define

ROC and PR curves:

TPRnew =
TPnew

Pnew
=

(1− x)TP

(1− x)P
= TPR (3.3)

FPRnew =
FPnew

Nnew
=

FP + TP · x
N + P · x > FPR (3.4)

Precnew =
TPnew

TPnew + FPnew
=

(1− x)TP

(1− x)TP + FP + TP · x = (1− x)Prec < Prec (3.5)

(3.4) is valid as soon as the ranking is better than random. Indeed, it can be shown by some

straightforward manipulations that (3.4) is equivalent to the following inequality:

TP

FP
>

P

N
,

which is verified for any classifier that is better than random (i.e., a classifier that puts more positives

above the confidence threshold than expected at random).

We can thus conclude that the TPR is not influenced by the number of false negatives, that

the FPR increases and the precision decreases when the number of false negatives increases. One

can thus expect that the introduction of false negatives will systematically degrade both the ROC

and the PR curves.
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Figure 3.11: Effect of false negatives on ROC and PR curves. We simulated false

negatives in the DREAM5 regulatory network, during the testing stage. The ratio of

false negatives does not influence the ROC curve (A), but the PR curve (B) decreases

while the ratio of positives turned into positives increases. The ratio varies from 0 to

0.9. Curves (C) show the evolution of the PR curve when the ratio P/N is set similarly

as in (B). Although the PR curve degrades also in this case, the degradation is not as

important as when false negatives are introduced.

As an illustration of the previous discussion, we did some simulations on the DREAM5 regulatory

network (see Section 3.3.4). The model was trained with Random Forests with the local approach

and we focus our experiment on the LS × LS pairs. The learning sample was kept unchanged

but in each of the 10 CV folds (CV on pairs), we randomly turned a fraction x of positives into

negatives, in order to simulate the introduction of false negatives. We tried several proportions

x ∈ {0, 0.1, 0.2, ..., 0.9} and got the curves shown in Figures 3.11AB. As expected, the PR curves

degrade when the ratio increases. More surprisingly, the ROC curves do not seem to be influenced

by the ratio of false negatives. This can be explained by the fact that in equation (3.4), TP · x

becomes negligible compared to FP and P ·x is negligible compared to N, even for small FPR values

as soon as N is large with respect to P.

Actually, there are potentially two effects that play a role in the degradation of the PR curve in

Figures 3.11B: the introduction of false negatives but also the alteration of class imbalance. Indeed,

we have seen in Section 3.2.4 that the PR curve was affected by this ratio. To try to assess both

effects separately, we also generated the PR curves obtained from the initial curve by increasing the

number of negatives in such a way that the ratio of P/N matches the ratio of P/N in the previous

experiment for x ranging from 0 to 0.9. These curves are plotted in Figures 3.11C. They are also

systematically degraded by the introduction of more negatives but the degradation is not as high as

the degradation obtained by the addition of false negatives.

We can conclude from these experiments that PR curves are much more sensitive than ROC

curves to false negatives in the true dataset. Interestingly, if we can estimate the ratio x of false

negatives, we can modify the PR curve simply by dividing the precision by 1− x , to obtain a more

realistic PR curve. Note however that this correction only applies under the assumption that false

negatives will get scores distributed similarly as positives. This assumption is not unrealistic in prac-

tice as we indeed expect that false negatives will be predicted most often as positives (since they are

in fact positives). However, it is also possible that for a given biological network, known interactions

are the strongest ones (i.e., those with the strongest experimental support) and therefore false nega-

tives will typically correspond to weaker interactions. Their scores, as predicted by network inference
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methods, can then be smaller than those of known positives. In this case, the degradation of the PR

curve will most probably be somewhere in between curves in Figures 3.11B and Figures 3.11C.

Note that even though PR curves are affected by the introduction of false negatives, this is not

really problematic when it comes to compare different inference methods on the same networks, as

all methods will be affected in the same way by these false negatives. In this case, correcting the

PR curve is not necessary.

Finally, it is useful to remind here that the ratio between positives and negatives used to

evaluate PR curves should be as close as possible to the expected ratio in the pairs to predict.

Indeed, one could be tempted to estimate performance by cross-validation on pairs on the positives

and the selected negatives (randomly or from prior knowledge). The resulting PR curves will be

however representative only for the given observed ratio between positives and negatives. If this

ratio is different from the expected one, then one should apply the PR curve correction presented in

Section 3.2.4.

Effect of false positives on the curves

False negative are common in a dataset with unlabeled data taken as negatives. Unfortunately, in

biological networks, pairs can also erroneously be labeled as positive. To evaluate the effect of these

false positives on curves, we did the same experiment as here above, but this time converting a

fraction of negatives into positives. The modifications that occur in the confusion matrix are then

the following:

Pnew = P + N · x Nnew = N − N · x = (1− x)N

TPnew = TP + FP · x FPnew = FP − FP · x = (1− x)FP

FNnew = FN + TN · x TNnew = TN − TN · x = (1− x)TN

From that, we can calculate the resulting variations of the values of the ROC and PR curves:

TPR = recall =
TP

P
TPRnew =

TP + FP · x
P + N · x < TPR

FPR =
FP

N
FPRnew =

(1− x)FP

(1− x)N
= FPR

Prec =
TP

TP + FP
Precnew =

TP + FP · x
TP + FP · x + (1− x)FP

= Prec +
FP · x

TP + FP
> Prec

Here the FPR is not influenced by the number of false positives, and the TPR increases and the

precision decreases while the number of false positives increases.

To visualize these results, we did again some experiments on the DREAM5 regulatory network.

We randomly change a fraction of negatives into positives, in order to simulate a network with a

fraction of false positives. We tried several fractions, such that the numbers of erroneous labels

are that same as the number of erroneous labeled in the precedent false negative experiment. The

resulting curves are presented in Figure 3.12. The precision increases, but is counterbalanced by

the decreasing of the recall and the PR curve finally decreases, while the number of false positives

increases. And as expected, the ROC curve decreases.

Previously we show that it is easy to modify the curves if we know the ratio x of false negatives,

because the modifications are linear. Here, it is much more difficult to adapt the curves even if we

have an idea of the number of false positives, because such variations are not linear.
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Figure 3.12: False positives. We simulated false positives in the Dream5 regulatory

network, during the testing stage. Both the ROC (left) and the PR curves (right)

decreases while the ratio of negatives changed into positives increases.

3.4.3 Illustration

To illustrate the practical impact of the absence of negatives on validation, we reproduced the

experiment of Section 3.3.4 on the DREAM5 network, this time assuming that only positive (and

unlabeled) pairs are available in the training data. More concretely, we again first randomly drew

2/3 of the genes and 2/3 of the transcription factors and then randomly drew 2/3 of the positive

pairs existing among these genes and transcription factors. This set of positive pairs then defines

our training network and the goal is to find new positive pairs among all the other ones (that are

then considered as unlabeled). The positive pairs in the training set were chosen so that they match

the positive pairs in the training set in the experiment of Section 3.3.4.

Two validation experiments were performed. First, cross-validation across pairs and nodes was

carried out on all pairs between the selected genes (2/3) and transcription factors (2/3), considering

all unlabeled pairs as negative (experiment A). Second, we randomly split the whole set of unlabeled

pairs into two subsets. We trained a model on the positive pairs and each of these subsets taken in

turn as the set of negative pairs and then used this model to obtain a prediction for the unlabeled

pairs in the other subset. The resulting predictions were then evaluated against the true network

(experiment B). Experiment A is thus supposed to provide a CV estimate of the true performance as

computed by experiment B. The resulting ROC and PR curves obtained from these two experiments

are shown in Figures 3.13 for the LS × LS and LS × TS families.

ROC curves and AUROC scores obtained from experiments A and B are very close but noticeable

differences appear in PR curves and AUPR scores. Indeed, experiment A gives higher AUPR than

experiment B for LS × LS pairs, but gives lower AUPR for LS × TS pairs. In other words, cross-

validation overestimates the AUPR for LS × LS pairs and underestimates it for LS × TS pairs.

As discussed above, these differences can be explained, on the one hand, by the presence of false

negatives in the test data generated by the cross-validation and, on the other hand, by the differences

in the ratio between positives and negatives that exist in the two families of pairs between experiments

A and B.

Assuming that both the ratio of false negatives in the training pairs and the ratio of positives

and negatives among the unlabeled pairs are known or can be estimated, PR curves and AUPR

scores obtained from experiment A can be corrected using results in sections 3.2.4 and 3.4.2, so that

they match the conditions of the application of the model in experiment B. Since these quantities
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LS−LS
LS−TS

LS × LS LS × TS

Experiment A (a) AUROC 0.82 0.83

(b) AUPR 0.19 0.20

Experiment B (c) AUROC 0.82 0.84

(d) AUPR 0.13 0.26

Figure 3.13: Comparison of the cross-validation estimates of the LS×LS and LS×TS

scores, ROC curve in (A) and PR curve in (B), with true score values for the same two

families of predictions, ROC curve in (C) and PR curve in (D), when only positive and

unlabeled pairs are available.
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Random network Heavy-tailed node degree distribution network

Figure 3.14: Comparison of two networks with 50 nodes and 57 edges each. The left

one is a random network and the right one has a heavy-tailed node degree distribution.

are known for our artificial network, we performed these corrections, first adjusting the precision to

account for the false negatives and then correcting the curve to account for the different ratio of

positives versus negatives. The corrected AUPR are respectively 0.16 and 0.26 for LS × LS and

LS × TS , which are now closer to the value obtained from experiment B.

Note that another factor that could introduce a difference between CV scores and real scores is

the composition of the training data in terms of positives and negatives, which might affect learning

algorithms. In our experiment however, the ratios of positives versus negatives in the training data

are very close (∼ 0.9% for experiment A and ∼ 1.0% for experiment B).

3.5 Impact of heavy-tailed node degree distribution

Biological networks are typically non-random. In particular, many of them have a heavy-tailed

distribution of node degrees: several nodes, called hubs, have degrees greatly higher than the average

(Stumpf and Porter, 2012) (Figure 3.14). In such networks, a new node, without consideration of

its features, is more likely to interact with a hub than with a less connected node. As a consequence,

it is possible in such network to obtain better than random interaction predictions without exploiting

the node features, by simply connecting any new node with the more connected nodes in the training

network.

3.5.1 Experiment on a simple network

More concretely, let us imagine a classifier that, for any LS × TS pair, outputs a confidence score

that is proportional to the degree of the LS node in the training network; pairs involving nodes that

are the most connected in the LS will be classified in the top of the ranking, and pairs involving less

connected nodes will be classified at the end. This classifier makes sense as soon as the network is

actually non-random. Indeed, the more connected is a node in the training network, the higher is

the chance for this node to be involved in new interactions.
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Table 3.5: Example of a heavy-tailed node degree distribution network. The LS ×TS

part is shown in first 10 rows. The degree of each LS nodes in the learning set is given

in the last row.

Tested network (LS × TS)

0 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0

Degrees in LS 5 4 3 1 2 1 3 1 6 4 4 11 2 6 2 6 3 2 2 2

Constants: P = 40, N = 160
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Figure 3.15: The degree of a node can sometimes be a good predictor for new interac-

tions. ROC (A) and PR (B) curves are obtained from predictions based on the degrees

of the nodes in the scale-free network from Table 3.5, for the original proportion of

positives (12.5%, blue curve) and a proportion of 0.1% (red curve).

To see how good the ROC and PR curves of such classifier could be, let us consider the simple

example of Table 3.5. This small network was randomly generated using the Barabasi-Albert

model (Albert and Barabasi, 2002): an algorithm for generating random scale-free networks using a

preferential attachment mechanism. It starts with an initial network of m0 nodes. From that, new

nodes are added one by one and are linked each with m existing nodes with a probability proportional

to the current degree of the nodes. We performed the algorithm with the parameter m0 = 3 and

m = 2. The LS ×LS part is not shown in the table, but the degree of each column node is reported

below the LS × TS adjacency matrix to be predicted (LS nodes correspond to columns, TS nodes

to rows). For each pair of nodes, we predict a confidence score that is directly proportional to the

degree of the LS node. The resulting ROC and PR curves are shown in Figure 3.15AB: the blue

curve is obtained with the original proportion of positives (40/200=20%). The red PR curve is

obtained by correcting the original PR curve for a more realistic ratio of 1% (using Equation (3.1)).

For the ratio of 20% of positives, both ROC and PR curves are much better than the curves

obtained from a random classifier. This result confirms that scale-freeness makes it possible to

obtain already good predictions without the need to learn a model, and ignoring node features. For
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Figure 3.16: DREAM5 regulatory network has a heavy-tailed node degree distribution.

It is compared to a random network (computed following an Erdos-Renyi model), which

has a gaussian node degree distribution.

the ratio of 1% of positives, the ROC curve remains unchanged but the PR curve is now closer to a

random PR curve (especially if one remembers that the first point is fixed arbitrarily to (0, 1)). This

latter result is related to the fact that, for small P/N ratios, the PR curve is dominated by the top

of the ranking. In this example, this top contains all interactions that involve the node of highest

degree (12th column) in an arbitrary order and therefore the corresponding precision will decrease if

the proportion of negatives increases.

That it appears possible to complete a network based only on preferential attachment shows that

using a random classifier as a baseline for assessing the performance of supervised network inference

methods is inappropriate. A network inference method that does not perform better than the simple

degree-based confidence score, which, for a given regulator, is unable to distinguish between possible

targets has to be considered random and generally useless as a predictor. As a consequence, we

believe that one should always report the performance of the degree-based confidence score as a

baseline for assessing the performance of a supervised network inference method. Note that in the

example of Table 3.5, the ranking of the interactions within each column of the adjacency matrix is

uninformative, since all these interactions share the same confidence score. If one measures separate

ROC or PR curves for each column node as discussed in Section 3.3.3 and illustrated in Section 3.3.4,

then the appropriate baseline remains the random classifier.

3.5.2 Experiments on the DREAM5 network

Let us illustrate this on the DREAM5 in-silico network. The topology of this network is based on

known transcriptional regulatory networks of model organisms such as S.cerevisiae and E.coli. 5%

of the TFs collect about 50% of all interactions and it has a heavy-tailed node degree distribution

(Figure 3.16).

Predictions using node degrees

Figure 3.17AB shows the ROC and PR curves obtained using the same 10-CV folds as in Sec-

tion 3.3.4. The LS × LS pairs are now ranked according to the sum of the degrees of the nodes,

computed in the training network, and the LS × TS and TS × LS pairs are now ranked according

to the degree of the TF and of the gene respectively. The AUROC and AUPR are respectively equal

to 0.83 and 0.14 for LS × LS , 0.83 and 0.17 for LS × TS and 0.54 and 0.02 for TS × LS . We can

conclude from these results that the degree of a TF is indeed greatly linked with the probability for
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LS−LS
LS−TS
TS−TS

LS−LS
LS−TS
TS−LS
TS−TS

LS × LS LS × TS TS × LS TS × TS

Using node degrees (a) AUROC 0.83 0.83 - 0.54

(b) AUPR 0.14 0.17 - 0.02

Feature permutation (c) AUROC 0.76 0.78 0.52 0.50

(d) AUPR 0.09 0.11 0.02 0.02

Figure 3.17: The degree of a node can sometimes be a good predictor for new inter-

actions. ROC curves (A) and PR curves (B) are obtained from predictions made on the

DREAM5 dataset using the degree of the nodes in the learning set. ROC curves (C)

and PR curves (D) are obtained from predictions made on the DREAM5 dataset when

randomly permuting the feature vectors relative to different nodes.

it to interact with a known or a new gene. On the contrary, the degree of a gene does not influence

its chance to interact with a new TF. Although better than random, it is important to note however

that the degree-based ranking of LS × TS pairs does not allow to distinguish potential targets of a

given TF since they all inherits the degree of the TF.

This experiment confirm that heavy-tailed degree distribution makes it possible to obtain already

good predictions without the need to learn a model, and ignoring node features. Using a random

classifier as a baseline for assessing the performance of supervised network inference methods is

therefore clearly inappropriate. As an illustration, on the DREAM5 network, we obtained with

the Random Forests method AUROC values of 0.85 and 0.86 and AUPR values of 0.31 and 0.34

respectively for LS×LS and LS×TS pairs (see Section 3.3.4). The AUROC values of 0.85 and 0.86,

although very good in absolute values, should be treated cautiously; they are indeed only slightly

greater than the 0.83 AUROC of the degree-based ranking. In contrast, the doubling of the more

robust AUPR value (from 0.14 and 0.17 for the degree-based random predictor to 0.31 and 0.34
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for the trained model) indicates that the Random Forests are able to capture information from the

feature vectors and indeed enable reliable predictions.

Random permutation of features

Another way to assess the importance of feature vectors in interaction prediction, is to train the model

on new training data obtained by keeping the labels of the pairs unchanged and randomly permuting

the feature vectors of the training set nodes (to decorrelate the features from the network). If the

performance of the resulting model is close to the performance of a model trained on the original

data, then one can conclude that the predictions are uninformative. We carry out this experiment

on the DREAM5 artificial regulatory network with Random Forests. Resulting ROC and PR curves

(Figure 3.17CD) are only slightly worse than those obtained by using the sum of degrees. The

AUROC and AUPR are respectively equal to 0.76 and 0.09 for LS ×LS , 0.78 and 0.11 for LS ×TS ,

0.52 and 0.02 for TS × LS and 0.50 and 0.02 for TS × TS . Nevertheless they are still significantly

better than those obtained using a random classifier, showing that the algorithm is able to do

predictions only from the known network. Scores under feature permutation can therefore be used

as another baseline for assessing the performance of a supervised network inference methods.

3.6 Merging pair rankings

The goal of supervised network inference is basically to predict new interactions from a given set

of known interactions. The prediction provided by these methods for a given pair of nodes can be

binary, i.e., equal to 1 if this pair of nodes is predicted as an interacting pair and zero otherwise.

But most of the time, supervised learning methods provide a quantitative confidence score that

reflects how confident the algorithm is about the fact that this pair interacts. This confidence score

should be high for pairs that are expected to interact and low for pairs that are expected not to

interact. All unlabeled pairs of nodes can then be ranked according to their predicted confidence

score from the most likely to interact to the less likely to interact. A biologist can then validate

experimentally the top-ranked pairs in this ranking, or use them to complete the already known

network (see Section 3.2.6).

As discussed in Section 3.3, unlabeled pairs can be divided into several families: LS × LS ,

LS × TS , TS × LS and TS × TS pairs. These families are typically not equally well predicted,

with the LS × LS pairs better predicted that the TS × TS pairs for example. Pairs can be ranked

separately in each family but in most applications, one is mainly interested in getting a ranking of all

unlabeled pairs irrespectively of their family, so as to maximize the chance to have all and only truly

interacting pairs in the top of this ranking. The most straightforward way to get this ranking is to

rank pairs according to their predicted confidence scores. While very simple, this is probably not the

best way to get a unique ranking of all unlabeled pairs, for two reasons. First, given the differences

in performance between families, confidence scores should not be treated equally from one family

to the other. Indeed, confidence scores will be more reliably predicted for LS × LS pairs than for

TS × TS pairs and therefore a LS × LS pair with some confidence score should be higher ranked

in the final ranking than a TS × TS pair with the same confidence score. Second, when using the

local approach (see Sections 2.3.2 and 4.2.2), confidence scores for each family of pairs are obtained

from different models that are trained from different sets of pairs. In general, the confidence scores

predicted by these different models are thus not strictly comparable. Depending on the supervised
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learning method used, these scores might be biased differently due to differences in the training set

composition. Since the global approach trains a single model, its confidence scores should be more

comparable from one family to the other but some bias due to the family could however also exist

in this latter approach. The generation of an optimal global ranking of all unlabeled pairs is thus a

non trivial task in general.

In this section, we present an approach to merge several individual pair rankings so as to optimize

the precision-recall curve of the resulting global ranking. To guide this merging, we assume that a

precision-recall curve can be computed or more realistically estimated (e.g., by cross-validation) for

each individual ranking. We first formalize the problem in Section 3.6.1 as maximizing the number

of true positives for any number of predicted positives. In Section 3.6.2, we introduce and present

the algorithm that deal with the considered problem and illustrate it in Section 3.6.3 with data from

the DREAM5 coregulatory network. In Section 3.6.3, we perform again an experiment on the same

network, but with the more realistic setting of Section 3.3.4. Finally we discuss the pros and cons

of our approach in Section 3.6.4.

3.6.1 Objective

To simplify the development, we restrict our discussions here to the merging of two rankings. We

will discuss extensions to more than two rankings later. We assume that we have a first ranking

of pairs associated to a first precision-recall curve, and a second ranking of pairs associated to a

second precision-recall curve (see Table 3.6 for an illustration). These two rankings are assumed to

be defined on two different non-overlapping sets of pairs. Our goal is then to obtain from these two

rankings a new global ranking of all pairs in these two rankings that interleaves the two individual

rankings (keeping the order of the pairs) in such a way that the merged ranking achieves the best

possible precision-recall curve. Considering that precision = TP/predP and recall = TP/P, this

can be equivalently formulated as follows:

Given two rankings and their associated precision-recall curves, construct a global ranking

of all pairs that maximizes the number of truly positive pairs (TP) for any number of

predicted positive pairs (predP).

Note that since the computation of the precision-recall curves for the two rankings requires to know

the true labels of all pairs, the problem might seem practically irrelevant. Although we will indeed

assume that the exact precision-recall curves for the two rankings are known in our theoretical

developments below, in practice, we will apply the resulting method in the more realistic case where

precision-recall curves have been estimated by cross-validation (see Section 3.6.3 for an illustrative

experiment).

Before digging into the problem, let us illustrate it with an example based on the DREAM5

coregulatory network. We will assume that we want to merge a set of 1000 LS × LS predicted pairs

(the first ranking) with a set of 700 TS ×TS predicted pairs (the second ranking). Precision-recall

curves related to these two families have already been presented in Section 3.3.4 and are reproduced

in Figure 3.18A. As our goal is formulated as the maximization of the number of true positives

TP for any number of positive predictions predP, we converted the two precision-recall curves into

their corresponding TP-PredP curves, with the TP on the y-axis and predP on the x-axis (see

Figure 3.18B). These curves were obtained from the precision-recall curves using the following
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Table 3.6: Pairs from a first ranking, associated to PR1 (a first precision-recall curve),

are merged with pairs from a second ranking, associated to PR2. Pairs from the merged

ranking are associated to a final precision-recall curve PRtot, which we want to be the

best possible one.

First ranking 1 2 3 4 5 6 7 8 9 10 ↔ PR1

Second ranking 1 2 3 4 5 6 7 ↔ PR2

Merged ranking 1 2 1 3 2 3 4 4 5 6 5 7 8 9 6 7 10 ↔ PRtot
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Figure 3.18: (A) Precision-recall curves obtained from a cross-validation on DREAM5

co-regulatory network, with a local approach. Curves relative to LS × LS and TS ×TS

pairs are presented. (B) The corresponding curves plotting the number of true positives

according to the number of positive predictions (TP-predP curves).

relations:

TP = recall · P

predP =
TP

precision

In practice, the number of positives P is unknown. It can however be estimated if one has an idea of

the expected percentage of interacting pairs (by multiplying this percentage with the total number

of pairs to be predicted). For this network, 17% of all pairs are interacting, which gives respectively

P = 1000 · 0.17 and P = 700 · 0.17 for the LS × LS and TS × TS curves. We discuss later the

problem of estimating P.

From the TP-predP curves, we can see, for example, that among the 200 top-ranked LS × LS

pairs, 145 are expected to be true positives and that among the 200 top-ranked TS × TS pairs, 71

are expected to be true positives (gray dots in Figure 3.18B). If the top 400 pairs of the merged

ranking are composed of the top 200 LS × LS pairs and the top 200 TS × TS pairs, then they are

expected to include 145+71 = 216 true positives. Whether it is possible to achieve a higher number

of true positives by picking in total 400 pairs at the top of the two rankings in different proportion

(e.g., 300 from LS × LS and 100 from TS × TS) is the question that we will address in the next

section.
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3.6.2 Constructing the optimal merged ranking

In this section, we first address the problem of picking the optimal number of pairs at the top of

the two rankings for a given total number predP of positively predicted pairs. From this result, will

then follow the solution of the problem of constructing the optimal global ranking.

We assume that precision-recall curves have been estimated (e.g., by cross-validation). Then,

we have also an estimated relative TP-predP curve for each of the two rankings. For each pair in the

two rankings, the corresponding curve provides the average number of TP to expect when this pair

and all its predecessors in the ranking are predicted as positives. From these curves, the objective is

to select predP1 pairs in the first ranking and predP2 pairs in the second ranking, so that :

1. they satisfy predP1 + predP2 = predPtot for a given predPtot ,

2. among all possible combinations of predP1 and predP2 that satisfy the first condition, the

resulting number of expected TP is maximized.

Before formulating the algorithm that can output the solution to this problem, we will first describe

important characteristics of the TP-predP curves, and second explain the conditions that must be

met to have an optimal picking.

TP-predP is a piecewise-linear concave-down ”curve”

Let us denote the successive points of a TP-predP curve as follows:

{(1, TP1), (2, TP2), (3, TP3), ... , (N, TPN)}.

In the development that will follow, we will assume, without loss of generality, that a TP-predP

curve satisfies the following two properties:

1. The curve is monotonically increasing, i.e., TPi+1 ≥ TPi ,∀i = 1, 2, ... , N − 1.

2. The curve is concave-down, i.e.:

TPi+1 − TPi ≥ TPi+2 − TPi+1,∀i = 1, ... , N − 2 (3.6)

The first property is trivially met as the number of true positives can not decrease when the number

predP of positive predictions increases. Viewing the TP-predP curve as a piecewise-linear curve,

the second property means that the slopes of the successive segments are monotonically decreasing

as predP increases. In practice, this property is not necessarily met. However, when it is not, it

is always possible to construct a new ranking with a strictly better TP-predP curve that satisfies

condition (3.6).

Indeed, let us suppose that there is a triplet of points {(i , TPi ), (i + 1, TPi+1), (i + 2, TPi+2)}
violating this condition. Then we flip a coin to decide which one of the pairs ranked at the i + 1

and i + 2 positions will come first in the ranking. Because of this randomization, the expected TP

at point i + 1 becomes (see Figure 3.19):

TPi +
1

2
(TPi+1 − TPi) +

1

2
(TPi+2 − TPi+1) =

TPi + TPi+2

2
,

leading to a new (linearly aligned) triplet {(i , TPi ), (i + 1, (TPi + TPi+2)/2), (i + 2, TPi+2)} now

satisfying conditions (3.6) (with equality). The operation also yields a strictly better TP-predP curve
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Figure 3.19: Every TP-predP curve can be modified to become concave-down by

interpolating their points. It is justified because any level of performance on a new line

can be achieved by flipping a weighted coin to decide between the classifiers that the

two end points represent.

than the previous one since (TPi + TPi+2)/2 > TPi+1 (because conditions (3.6) was not satisfied).

A similar randomization can be applied recursively until there are no more triplets violating condition

(3.6). This procedure will in fact construct the convex hull of the TP-predP curve (see the discussion

in Section 3.2.4 about the convex hull of the ROC curve).

Note that we can reasonably expect from a classification algorithm to produce a concave-down

TP-predP curve by itself. Indeed, we expect to find the true interactions at the top of the ranking

of pairs (predicted with a high probability to interact) and to find less and less of them when going

down through the ranking. In practice we will estimate the TP-predP curve by cross-validation,

meaning that they will be average curves over several trials. So they will be very likely already

satisfying condition (3.6) for most triplets.

The two characteristics of TP-predP curves that we presented here will now be useful to find

the conditions in which two values of predP1 and predP2 are optimal for a given value of predPtot .

Necessary and sufficient conditions for an optimal picking

Let us denote by C1 = {(1, TP1
1 ), (2, TP1

2 ), ... , (N1, TP1
N1

)} and C2 = {(1, TP2
1 ), (2, TP2

2 ), ... , (N2, TP2
N2

)}
the two TP-predP curves to be merged. The following theorem gives necessary and sufficient con-

ditions for a picking to be optimal.

Theorem 1. Assuming that the points of these two curves satisfy condition (3.6), then picking

the first i1 pairs from the first ranking and the first i2 pairs from the second ranking maximizes the

number of true positives TPi1 + TPi2 , for a number of predicted positives i1 + i2, if and only if these
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two conditions are met:

TP1
i1+1 − TP1

i1 ≤ TP2
i2 − TP2

i2−1 (if i1 < N1 − 1 and i2 > 1) (3.7)

TP2
i2+1 − TP2

i2 ≤ TP1
i1 − TP1

i1−1 (if i1 > 1 and i2 < N2 − 1) (3.8)

Proof. Let us first show that (3.7) and (3.8) are two necessary conditions. Indeed, let us assume

for example that condition (3.7) is not met (with i2 > 1 and i1 < N1 − 1). We then have:

TP1
i1+1 − TP1

i1 > TP2
i2 − TP2

i2−1

⇔ TP1
i1+1 + TP2

i2−1 > TP1
i1 + TP2

i2

which means that taking the first i1 + 1 pairs from the first ranking and the first i2 − 1 pairs from

the second ranking leads to a higher number of true positives than our initial solution, which is

impossible since the solution (i1, i2) is optimal. Symmetrically, if the second condition is not met,

we have (with i1 > 1 and i2 < N2 − 1)):

TP1
i1−1 + TP2

i2+1 > TP1
i1 + TP2

i2

which is also impossible since the solution (i1, i2) is optimal.

Let us now show by contradiction that if (3.7) and (3.8) are met, then the solution (i1, i2) is optimal.

Indeed, let us suppose that there exists a better solution (i ′1, i ′2), i.e., such that i ′1 + i ′2 = i1 + i2,

i1 6= i1, i ′2 6= i2, and TPi ′1
+ TPi ′2

> TPi1 + TPi2 . Then, either we have i ′1 < i1 and i ′2 > i2 or we have

i ′1 > i1 and i ′2 < i2. In the first case, we have TPi ′1
≤ TPi1 and TPi ′2

≥ TPi2 because the TP-predP

curves are monotonically increasing. In addition, because condition (3.6) is met, we have two upper

bounds for TPi ′1
and TPi ′2

(see Figure 3.20):

TPi ′1
≤ TPi1 − (i1 − i ′1)(TPi1 − TPi1−1)

TPi ′2
≤ TPi2 + (i ′2 − i2)(TPi2+1 − TPi2)

Summing these two inequalities, one gets:

TPi ′1
+ TPi ′2

≤ TPi1 + TPi2 − (i1 − i ′1)(TPi1 − TPi1−1 − TPi2+1 + TPi2),

≤ TPi1 + TPi2 ,

since i1 − i ′1 = i ′2 − i2 and condition (3.8) ensures that (TPi1 − TPi1−1 − TPi2+1 + TPi2) > 0. This

latter inequality is in contradiction with TP ′i1 + TP ′i2 > TPi1 + TPi2 . The case i ′1 > i1 can be proven

similarly from condition (3.7), which proofs the sufficient condition.

Generating the global ranking

Given the conditions presented in Theorem 1, one can now determine predP1 and predP2 that achieve

a specific predPtot ≤ N1 + N2 with maximal TP using the following algorithm:

i1 = 0, i2 = 0

While (i1 + i2 < predPtot)

if i1 < N1 and TPi1+1 − TPi1 > TPi2+1 − TPi2

i1 = i1 + 1
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Figure 3.20: The down concavity of TP-predP curve constraints the possible values of

TPi ′1
and TPi ′2

.

else

i2 = i2 + 1

return (i1, i2)

This algorithm can be shown to be correct because conditions (3.7) and (3.8) are two invariants of

the while-loop. This algorithm also shows that for increasing values of predPtot the selected pairs

are nested and therefore the algorithm can be trivially modified to generate directly a global ranking

of the pairs. The TP-predP curve of the resulting merged ranking can be obtained by summing the

TP values corresponding to i1 and i2 and a precision-recall curve can be obtained from this curve

assuming that the number P of positive pairs can be estimated.

Estimation of the initial TP-predP curves

As already discussed, in practice, the exact TP-predP curve of the two rankings to be merged will

be unknown (otherwise the problem would be trivial as then all true labels would be known). We

then have to rely on cross-validation techniques to estimate it. Assuming that we have an estimated

precision-recall curve, the proposed algorithm requires to derive from this curve an estimated number

of TP for any given value of predP ∈ {1, 2, ... , N} denoting by N the total number of pairs in the

ranking. Although there might exist better estimation schemes, we propose to proceed as follows:

- Each (Precision, Recall) pair is transformed into a (TP, predP) pair using the following rela-

tions:

TP = recall · P
predP =

TP

precision

- The resulting curve is sampled with linear interpolation at values of predP ∈ {1, 2, ... , N}
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The construction of the TP-predP curve thus requires to have an estimation of the expected number

P of positives among our pairs. The value of P can for example be determined by some prior

knowledge, or from the proportion of the interactions observed in the training data (assuming for

example that there will be a similar proportion of positive pairs in the test data). Interestingly, the

final merged ranking will only depend on the ratio P1/P2, not on the absolute values of P1 and P2,

where P1 and P2 are the expected numbers of positives respectively in the first and in the second

ranking. If one expects for example the same proportion of positive pairs in both rankings, then one

can construct the merged ranking without even having to estimate this proportion (it can be set

arbitrarily).

Dealing with more than two sets of predictions

Theorem 1 and the resulting algorithm can be easily generalized to the merging of three or more

pair rankings, for example to merge LS × TS , TS × LS , and TS × TS predictions as we will do

it in Section 5.5. In that case, for K different rankings, the algorithm that determines the optimal

number of pairs to pick in each ranking becomes:

i1 = 0, i2 = 0, . . . , iK = 0

While

(
K∑

k=1

ik < predPtot

)

m = arg max
k:ik<Nk

(TPk
ik+1 − TPk

ik
)

im = im + 1

return (i1, i2, ... , iK )

In this algorithm, Nk (k = 1, ... , K ) denotes the number of pairs in the kth ranking and TPk
ik

(k = 1, ... , K , ik = 1, ... , Nk) denotes the expected number of true positives at position ik in the kth

ranking. At each iteration, the algorithm selects the next pair from the ranking with the greatest

slope at its current position.

3.6.3 Illustration

True PR curves

Let us illustrate the proposed algorithm on the example discussed in Section 3.6.1 based on the

DREAM5 coregulatory network. We apply the algorithm to merge 1000 LS × LS pairs and 700

TS ×TS pairs in a global ranking that maximizes the number of TP for any number of predP. For

this experiment, we assume that we have access to the true TP-PredP curves for both rankings. We

relax this hypothesis below.

Figure 3.21 illustrates the resulting global ranking. LS × LS pairs are picked first and the 81

top pairs of the merged ranking are the 81 top LS × LS pairs. Then the algorithm starts to add

TS ×TS pairs. When we reach position 510, we have as many LS ×LS pairs as TS ×TS pairs, i.e.

205 pairs from each ranking. Finally, the end of the ranking, like the beginning, is only composed

of LS × LS pairs.

Precision-recall curves show that LS × LS pairs are better predicted than TS × TS pairs. It is

then not surprising that the pairs from the first family are found at the top and at the end of the
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Figure 3.21: The 1700 pairs of the final ranking are divided into bins of 100 pairs.

The blue and green bars represent respectively the number of LS × LS and TS × TS

pairs in each bin.
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Figure 3.22: (A) TP-predP curves for LS × LS , TS × TS and the merged ranking.

(B) Corresponding precision-recall curves.

global ranking. There are indeed more interacting pairs at the top of the LS × LS ranking than at

the top of TS ×TS ranking and, similarly, more non-interacting pairs at the bottom of the LS ×LS

ranking than at the bottom of the TS × TS ranking.

From the two TP-predP curves and from the obtained final ranking, we can generate the TP-

predP curve corresponding to the global merged ranking (Figure 3.22A). From this curve, we can

generate a new precision-recall curve (Figure 3.22B) that will give the performance we can expect

from our final ranking. Not surprisingly, the new curves are less good than the LS × LS curves, but

better than the TS × TS curves.

A more realistic setting

In the previous experiment, we exploited the true precision-recall curves corresponding to the two

rankings to be merged. In practice, only an estimated curve (e.g., using cross-validation) will be

available. To evaluate the impact of using an estimated precision-recall curve, instead of the true

one, to compute the merged ranking, we reproduced the experiment of Section 3.3.4 but on the

DREAM5 coregulary network. We first randomly drew 2/3 of the genes and then randomly drew
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Figure 3.23: To make sure that performance curves evaluated on labeled data reflect

the ones that we would obtain by predicting new data, we performed two experiments

on the DREAM5 coregulatory network, in a more realistic setting: (A) Cross-validations

across the considered labeled pairs (orange ones) and (B) prediction of considered un-

labeled pairs (white ones) from the labeled ones. Resulting curves are found in Fig-

ure 3.24.

2/3 of the pairs existing among these genes (Figure 3.23). This set of pairs defines our training

network of labeled pairs and the goal is to label and rank all the other pairs. As in Section 3.3.4,

about 30% of the pairs represent the training set, 15% the LS × LS pairs, 22% the LS × TS and

11% the TS × TS pairs.

Two validation experiments were performed. In experiment A, cross-validation is performed

across the pairs and across the genes of the labeled pairs (orange area) with a local approach. The

goal is to estimate the three PR curves corresponding respectively to the prediction of LS×LS pairs,

LS×TS pairs, and TS×TS pairs (dark blue, light blue and green curves in Figure 3.24A). TP-predP

curves are obtained from these PR curves assuming that the percentage of positive pairs is the same

in the three families and these curves are merged according to the algorithm of Section 3.6.2. The

estimated precision-recall curve of the merged ranking is shown as the red curves in Figures 3.24A

and B.

In experiment B, a model is actually trained on the labeled pairs (with a local approach) to

predict labels for the unlabeled pairs. These latter pairs are then ranked, according to their scores

and their families, and these rankings are merged according to the optimal procedure of Section 3.6.2

and this time, using the true (and not the cross-validated) TP-predP curves. The purple precision-

recall curve in Figures 3.24B represents the true curve of the resulting merged ranking, of which

the red curve is thus supposed to be an estimate using cross-validation. Both curves are very close,

which proves that using cross-validated PR curves to generate the merged ranking works very well on

this problem. To highlight the interest of an optimal merging, we also tried merging the predictions

directly using the predicted confidence scores, without taking into account performance differences

between the families. The resulting (true) precision-recall curve (orange curve in Figures 3.24B)
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Figure 3.24: (A) Cross-validations on labeled pairs and genes allow us to estimate

precision-recall curves of the different families of pairs, and to estimate the curve of the

resulting optimal global ranking, assuming the same percentage of positive pairs in each

family. (B) The red curve estimated in (A) is very close to the curve obtained when

predicting and ranking unlabeled pairs (purple curve). Curve obtained when simply

ranking the pairs according to a decreasing order of the scores (orange curve) leads to,

as expected, a less good performance.

shows that, as expected, this ranking is worse than the ranking computed by our algorithm from the

estimated precision-recall curves.

3.6.4 Discussion

The algorithm presented in this section is useful to merge different rankings belonging to different

families of pairs and associated with different performance curves. The results obtained on the

DREAM5 coregulatory network are very good: the estimated curve is very close to the true curve,

and the curve obtained with the naive ranking (based on the confidence scores) is significantly

worse than the optimal one. It has to be noted however that the conditions of this experiment are

very idealistic. Indeed, in both experiments A and B, the learning and test sets have been drawn

uniformly at random from the available data. In a real scenario, the chance will be high that the

learning and test set will not have been drawn uniformly at random but instead with some bias. The

curve obtained by the cross-validation of experiment A (which simulates uniform sampling) will thus

provide a biased estimate of the true performance obtained in experiment B, which could affect the

quality of the merged ranking. It is very difficult to assess the effect of this bias on real datasets,

for which the data distribution is unknown. Despite this, we nevertheless believe that the optimal

merging procedure proposed in this section will remain beneficial in practice with respect to a simple

merging according to confidence scores, in particular when confidence scores are expected not to be

comparable from one family to another (e.g., when using the local approach) and when there are

important performance differences between the three families.

The solution presented here was applied when the pairs are differentiated according to the family

they belong to: LS × LS , LS × TS , TS × TS , i.e. according to the number of nodes they have

in the learning and test sets. We showed in Section 3.3.4 (per-node evaluation) that the quality of

predictions can also vary from one node to another, according to their degree in the learning set.
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Our algorithm could in principle be applied also to merge rankings obtained on individual nodes.

Nevertheless, as discussed, the application of the algorithm requires an estimate of the number of

positive examples in each ranking, which means in this case an estimate of the degree of each node.

Since the degree might vary a lot from one node to another, we believe this assumption actually

excludes the application of our algorithm on a per node basis.

3.7 Conclusion

In this chapter, we discussed measures and protocols for the validation in silico of supervised methods

for the inference of biological networks, i.e. methods that infer a biological network from a training

sample of known interacting and non-interacting pairs and a set of features defined on the network

nodes (or directly on pairs of nodes). Although this problem is very close to a standard supervised

classification problem, it requires to address several important issues related to the need to classify

pairs of entities in a candidate interaction and to the nature of biological networks. We carried

out a rigorous examination of these issues that we supported by experiments on an artificial gene

regulatory network. The main guidelines that can be drawn from this examination are as follows:

- Network inference methods have been assessed mainly using precision-recall (PR) curves and

receiver operating characteristic (ROC) curves. The choice of an appropriate metric should

be dictated mainly by the application but generally PR curves are more appropriate than ROC

curves given the highly imbalanced nature of the underlying classification problem, related to

the very sparse nature of most biological networks. PR curves are also less affected by the

uninformative predictability due to the heavy-tailed node distribution of biological networks.

While PR curves are sensitive to the ratio of positives versus negatives in the test data, we

show that it is straightforward to adapt them to a new ratio.

- When validating a model, it is necessary to divide the predictions into four groups, given

that the two nodes might either be present or absent in the learning sample of interactions.

Indeed, performance is typically very different from one group to another and improves when

the number of training interactions involving the nodes in the pairs to be predicted increases.

The quality of the predictions for pairs where both nodes have interactions in the training

network can be assessed using cross-validation over pairs in the training data. The quality of

the predictions for the three other groups of pairs, where at least one node is not represented

in the training data, is best assessed by using cross-validation over nodes. Unless the inference

problem at hand makes some subgroups of predictions irrelevant, we advocate the joint use

of both kinds of cross-validation to get a more detailed assessment of the performance of an

inference method.

- We discussed the lack of experimental support for non-interacting pairs in most biological

networks. We reviewed several ways to address this problem at training time and showed

that the presence of false negatives does not really affect ROC curves but can result in an

underestimation of the PR curve. Assuming that the proportion of false negatives in the test

data is known and that false negatives are selected randomly among positives, we show that it

is possible to correct the PR curve so that it better reflect true performances. The correction

is however not necessary when one only wants to compare different methods.
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- We showed empirically that the heavy-tailed distribution of node degrees seemingly enables a

better than random inference only by exploiting the topology of the training network. As a

consequence, random guesses should not be taken as valid baselines for supervised network

inference methods, in order not to overestimate the performance. Every validation of a super-

vised inference method should always be supplemented by a reporting of the performance of

the simple degree-based score or a classifier grown from randomly permuted feature vectors.

Thereby, we provided the most comprehensive examination and discussion of issues in the evaluation

of supervised inference techniques so far. Given that the examined supervised techniques exploiting

prior information on the network are typically superior in performance to unsupervised approaches,

a reliable assessment is particularly desirable. Following the guidelines we derived will enable a more

rigorous assessment of supervised inference methods, will contribute to an improved comparability

of the different approaches in this field and will thus furthermore aid researchers in improving the

state of the art methods.

We argued, as others, that predictions within the different pair subgroups should be assessed

separately. We have also discussed ways to take into account the resulting information to obtain

better global network predictions. Indeed, most methods eventually provide a single ranking of all

pairs to be predicted. How to take into account the performance differences between the different

groups of pairs to reorganize this ranking into a better one have been developed at the end of this

chapter.

Still, there remains several open questions about supervised network inference methods and

their validation. First, with a few exceptions, most papers in the domain focus on a given type of

biological network. Yet, unlike unsupervised methods that needs some prior knowledge to derive their

confidence scores, supervised methods are most of the time generic in that they could be applied

to any network without much adaptation. A thorough empirical comparison of these methods on

several networks with different characteristics will be presented in Chapter 4, to really understand

the advantages and limitations of all these methods.

In this review, we focus on the statistical and in silico validation of network inference methods

using cross-validation techniques. Such validation helps assess the quality of the predictions and

therefore decide on a confidence threshold that best suits application needs. However, even more

important is the experimental validation of the predictions provided by network inference techniques.

Experimental validation depends on the nature of the biological network at hand and therefore a

discussion of these techniques is out of the scope of this chapter. Note nevertheless that experimental

validation will be influenced also by the lack of experimental support for non-interacting pairs and

that for some (more abstract) networks, experimental validation might be very difficult (e.g., disease-

gene networks).



Chapter 4

Tree-based methods for biological network

inference

In this chapter, we systematically investigate, theoretically and empirically, the exploitation of

tree-based ensemble methods in the context of the global and local approaches for biological

network inference. We present these two approaches, extending the later for the prediction

of interactions between two unseen network nodes, and discuss their specializations to tree-

based ensemble methods, highlighting their interpretability and drawing links with clustering

techniques. Extensive computational experiments are carried out with these methods on vari-

ous biological networks that clearly highlight that these methods are competitive with existing

methods.
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4.1 Introduction

In this chapter, we would like to systematically investigate, theoretically and empirically, the ex-

ploitation of tree-based ensemble methods in the context of the local and global approaches for

supervised biological network inference. In Section 2.3.1, we have formalized biological network

inference as the problem of classification on pairs, considering in the same framework homogeneous

graphs, defined on one kind of nodes, and bipartite graphs, linking nodes of two families. Now we

define the general local and global approaches in the context of this formalization, extending in the

process the local approach for the prediction of interactions between two unseen network nodes. The

chapter discusses in details the specialization of these approaches to tree-based ensemble methods.

In particular, we highlight their high potential in terms of interpretability and draw connections be-

tween these methods and unsupervised (bi-)clustering methods. Experiments on several biological

networks show the good predictive performance of the resulting family of methods. Both the local

and the global approaches are competitive with however an advantage for the local approach in

terms of compactness of the inferred models. The interpretability of trees and ensembles of trees

are illustrated by several experiments on a drug-protein interaction network.

The chapter is structured as follows. Section 4.2 details the global and local approaches and

Section 4.3 presents their particularization for tree ensembles. Section 4.4 relates experiments with

these methods on several homogeneous and bipartite biological networks. Section 4.5 illustrates the

interpretability of tree-based and Section 4.6 concludes and discusses future work directions.

4.2 Two different approaches

In this section, we present the two generic, local and global, approaches we have adopted for dealing

with the classification on pairs problem as stated formally in Section 2.3.1. In the presentation of

the approaches, we will assume that we have at our disposal a classification method that derives

its classification model from a class conditional probability model. Denoting by f : X → {0, 1} a

classification model (defined on some input space X ), we will denote by f p : X → [0, 1] (i.e., with

superscript p) the corresponding class conditional probability function (with f (x) = 1(f p(x) > pth)

for some user-defined threshold pth ∈ [0, 1]).

4.2.1 Global approach

The most straightforward approach for dealing with the problem of supervised network inference is

to apply a classification algorithm on the learning sample LSp of pairs to learn a function

fglob : Ur × Uc → {0, 1}

on the cartesian product of the two input spaces (resulting in the concatenation of the two input

vectors of the nodes of the pair). Predictions can then be computed straightforwardly for any new

unseen pair from the function. (Figure 4.1A)

In the case of a homogeneous graph, the output function y is symmetric, i.e.,

y(nr , nc) = y(nc , nr ), ∀nr , nc ∈ U.

We will introduce two adaptations of the approach to handle such graphs. First, for each pair

(nr , nc) in the learning sample, the pair (nc , nr ) will also be introduced in the learning sample.
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(A) (B) (C)

Figure 4.1: Schematic representation of the training data. In the global approach (A)

the features vectors are concatenated, in the local approach with single output (B) one

function is learnt for each node, and in the local approach with multi-output (C) one

function is learnt for one family of nodes and one function for the other one.

Without further constraint on the classification method, this will not ensure however that the learnt

function fglob will be symmetric in its arguments. To make it symmetric, we will compute a new

class conditional probability model f p
glob,sym from the learned one f p

glob as follows:

f p
glob,sym(x1, x2) =

f p
glob(x1, x2) + f p

glob(x2, x1)

2
.

4.2.2 Local approach

The idea of the local approach as first proposed in Bleakley et al. (2007), is to build a separate

classification model for each node, trying to predict its neighbors in the graph from the known

graph around this node. More precisely, for every node nc ∈ LSc , a new learning sample LS(nc) is

constructed from the learning sample of pairs LSp as follows:

LS(nc) = {〈nr , y(nr , nc)〉|〈nr , nc , y(nr , nc)〉 ∈ LSp}.

It can then be used to learn a classification model fnc : Ur → {0, 1}, which can be exploited to

make a prediction for any new pair (n′r , n′c) such that n′c = nc . By symmetry, the same strategy can

be adopted to learn a classification model fnr : Uc → {0, 1} for each node nr ∈ LSr . (Figure 4.1B)

These two sets of classifiers can then be exploited to make LS × TS and TS × LS types of

predictions. For pairs (nr , nc) in LSr × LSc \ LSp, two predictions can be obtained: fnc (nr ) and

fnr (nc). We propose to simply combine them by an arithmetic average of the corresponding class

conditional probability estimates:

f p
loc(nr , nc) =

f p
nc (nr ) + f p

nr (nc)

2
.

As such, the local approach is in principle not able to make directly predictions for pairs of nodes

(nr , nc) ∈ TS × TS (because LS(nr ) = LS(nc) = ∅ for nr ∈ TSr and nc ∈ TSc). We nevertheless

propose to use the following two-steps procedure to learn a classifier for a node nr ∈ TSr (see

Figure 4.2):

- First, learn all classifiers fnc for nodes nc ∈ LSc ,
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Figure 4.2: The local approach needs two steps to learn a classifier for an unseen node:

first, we predict LS × TS and TS × LS interactions, and from these predictions, we

predict TS × TS interactions.

- Then, learn a classifier f f
nr : Uc → {0, 1} from LS f (nr ) = {〈nc , fnc (nr )〉|nc ∈ LSc}, i.e., the

predictions given by the models fnc trained in the first step.

Again by symmetry, the same strategy can be applied to obtain models f f
nc for the nodes nc ∈ TSc .

A prediction is then obtained for a pair (nr , nc) in TS × TS by averaging the class conditional

probability predictions of both models f f ,p
nr and f f ,p

nc :

f p
loc(nr , nc) =

f f ,p
nr (nc) + f f ,p

nc (nr )

2
.

Besides averaging, we tried several alternative schemes to merge the two models (such as taking

the min, max, or the product of their predictions) but they did not lead to any improvement. Note

that building the learning samples LS f (nr ) and LS f (nc) requires to choose a threshold on the class

conditional probability estimates. In our experiments, we will set this threshold in such a way that

the proportion of edges versus non edges in the predicted subnetworks in LS × TS and TS × LS is

equal to the same proportion within the original learning sample of pairs. Pahikkala et al. (2014a)

also proposed recently a two-step procedure to predict interactions between two unseen nodes, with

a kernel method.

This strategy can be specialized to the case of a homogeneous graph in a straightforward way.

Only one class of classifiers fn : U → {0, 1} and f f
n : U → {0, 1} are trained for nodes in LS and

in TS respectively (using the same two-step procedure as in the asymmetric case for the second).

LS ×LS and TS ×TS predictions are still obtained by averaging two predictions, one for each node

of the pair.

4.3 Tree-based ensemble methods

Any method could be used as a base classifier for the two approaches. In this chapter, we propose

to evaluate the use of tree-based ensemble methods. We then discuss the practical implementation

of the two approaches in this context.
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L1 L2
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Figure 4.3: In the global approach, the tree growing procedure can be interpreted as

interleaving the construction of two trees.

4.3.1 Global approach

The global approach consists in building a tree from the learning sample of all pairs. Each split of

the resulting tree will be based on one of the input features coming from either one of the two input

feature vectors, x(nr ) or x(nc). The tree growing procedure can thus be interpreted as interleaving

the construction of two trees: one on the row nodes and one on the column nodes. Each leaf of

the resulting tree is thus associated with a rectangular submatrix of the graph adjacency matrix

Y (LSr , LSc) and the construction of the tree is such that the pairs in this submatrix should be, as

far as possible, either all connected or all disconnected (see Figure 4.3 for an illustration).

4.3.2 Local approach

The use of tree ensembles in the context of the local approach is straightforward. We will nevertheless

compare two variants. The first one builds a separate model for each row and column nodes as

presented in Section 4.2. The second method exploits the ability of tree-based methods to deal

with multi-outputs to build only two models, one for the row nodes and one for the column nodes

(Figure 4.1C). Assuming that the learning sample has been generated by sampling two subsets of

objets LSr = {n1
r , ... , nNr

r } and LSc = {n1
c , ... , nNc

c } and that the full adjacency matrix is observed

between these two sets, these two models are built from the following learning samples:

LS(nc) = {〈ni
r , (y(ni

r , n1
c), ... , y(ni

r , nNc
c ))〉|i = 1, ... , Nr},

LS(nr ) = {〈nj
c , (y(n1

r , nj
c), ... , y(nNr

r , nj
c))〉|j = 1, ... , Nc}.

The same multi-output approach can then be applied to build the two models required to make

TS ×TS predictions. This approach has the advantage of requiring only four tree ensemble models

in total instead of NU
r + NU

c models for the single output approach. It can however only be used

when the complete submatrix is observed for pairs in LS × LS , since tree-based ensemble method

can not cope with missing output values.
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Figure 4.4: Both the global approach (A) and the local approach with multi-output

(B) can be interpreted as carrying out a biclustering of the adjacency matrix. Note

that in the case of the global approach, the representation is only illustrative. The

adjacency submatrices corresponding to the tree leaves can not be necessarily rearranged

as contiguous rectangular submatrices covering the initial adjacency matrix.

4.3.3 Interpretability

One main advantage of tree-based methods is their interpretability, directly through the tree structure

in the case of single tree models and through feature importance rankings in the case of ensembles

(Geurts et al., 2009). Let us to compare both approaches along this criterion.

Tree structure. In the case of the global approach, as illustrated in Figure 4.4A, the tree that is

built partitions the adjacency matrix Y (LSr , LSc) into rectangular regions. These regions are defined

such that pairs in each region are either all connected or all disconnect. The region is furthermore

characterized by a path in the tree (from the root to the leaf) corresponding to tests on the input

features of both nodes of the pair.

In the case of the local multi-output approach, one of the two trees partitions the rows and

the other tree partitions the column of the matrix Y (LSr , LSc). Each partitioning is carried out

in such a way that nodes in each subpartition has a similar connectivity profiles. The resulting

partitioning of the adjacency matrix will thus follow a checkerboard structure with also only connected

or disconnected pairs in the obtained submatrix, as far as possible (Figure 4.4B).

Each submatrix will be furthermore characterized by two conjunctions of tests, one based on

row inputs and one based on column inputs. These two methods can thus be interpreted as carrying

out a biclustering (Madeira and Oliveira, 2004) of the adjacency matrix where the biclustering is

however directed by the choice of tests on the input features. These methods are to biclustering

what predictive clustering trees (Blockeel et al., 1998) are to clustering.

In the case of the local single output approach, the partitioning is more fine-grained as it can be

different from one row or column to another. However in this case, each tree gives an interpretable

characterization of the nodes which are connected to the node from which the tree was built.

Feature importance rankings. When using ensembles, the global approach provides a global

ranking of all features from the most to the less relevant. The local multi-output approach provides
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two separate rankings, one for the row features and one for the column features and the local single

output approach gives a separate ranking for each node. All variants are therefore complementary

from an interpretability point of view.

4.3.4 Implementation and computational issues

Global approach. In principle, since tree building is a batch algorithm, the global approach requires

to generate the full sample of all pairs, which may be very prohibitive for graphs defined on a large

number of nodes (e.g., the PPI network used in our experiments contains about 1000 nodes that lead

to about 1 millions pairs described by 650 attributes). Fortunately, since the tree building method

goes through the input features one by one, one can separately search for the best split on features

relative to nodes in Ur and on features relative to nodes in Uc , which does not require to generate

explicitly the full data matrix. This is an important advantage with respect to kernel-based methods

that typically requires to handle explicitly a NrNc ×NrNc Gram matrix. Since tree growing is order

O(N log(N)) for a training sample of size N, the computational complexity of the whole procedure

however remains O(NcNr (log(Nc) + log(Nr ))). The complexity of the trees (measured by the total

number of nodes) is at worst O(NcNr ) (corresponding to a fully developed tree) but in practice it is

related to the number of positive interactions in the training sample, which is typically much lower

than NcNr .

Local approach. The computational complexity of the local approach is the same as the compu-

tational complexity of the global approach, i.e. O(NcNr log(Nr ) + NrNc log(Nc)). Indeed, in the

single output approach, Nc and Nr models need to be constructed respectively from Nr samples

and Nc samples each. In the multi-output case, only two models are constructed from Nr and Nc

samples respectively, but the multi-output variant needs to go through all outputs at each tree node,

which multiplies complexity by respectively Nr and Nc for these two models. However, at worst,

the complexity of the model is O(NcNr ) for the single output approach and O(Nr + Nc) for the

multi-output approach, which potentially gives an important advantage along this criterion for the

multi-output method.

4.4 Experiments

In this section, we carried out a large scale empirical evaluation of the different methods described

in Section 4.2 on six real biological networks, three homogeneous graphs and three bipartite graphs.

Results on four additional (drug-protein) networks can be found in the supplementary material. Our

goal with these experiments is to assess the relative performances of the different approaches and

to give an idea of the performance one could expect from these methods on biological networks of

different nature. Section 4.4.4 provides a comparison with existing methods from the literature.

4.4.1 Datasets

The first three networks correspond to homogeneous indirect graphs and the last seven to bipartite

graphs. The main characteristics of the datasets are summarized in Table 4.1.
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Table 4.1: Summary of the ten datasets used in the experiments.

Network Network size Number of edges Number of features

Homogeneous networks PPI 984×984 2438 325

EMAP 353×353 1995 418

MN 668×668 2782 325

Bipartite networks ERN 154×1164 3293 445/445

SRN 113×1821 3663 9884/1685

DPI 1862×1554 4809 660/876

DPI-E 445×664 2926 445/664

DPI-I 210×204 1476 210/204

DPI-G 223×95 635 223/95

DPI-N 54×26 90 54/26

Protein-protein interaction network (PPI). This network has been compiled from the 2438

high confidence interactions between 984 S.cerivisiae proteins highlighted by Mering et al. (2002).

The input features used for the predictions are a set of expression data, phylogenetic profiles and

localization data that totalizes 325 features. This dataset has been used in several studies before

(Yamanishi and Vert, 2004; Kato et al., 2005; Geurts et al., 2007).

Genetic interaction network (EMAP). This network (Schuldiner et al., 2005) contains 353

S.cerivisiae genes (nodes) connected with 1995 negative epistatic interactions (edges). Inputs con-

sists in measures of growth fitness of yeast cells relative to deletion of each gene separately, and in

418 different environments. (Hillenmeyer et al., 2008).

Metabolic network (MN). This network (Yamanishi and Vert, 2005) is composed of 668 S.cerivisiae

enzymes (nodes) connected by 2782 edges. There is an edge between two enzymes when these two

enzymes catalyze successive reactions. The input feature vectors are the same as those used in the

PPI network.

E.coli regulatory network (ERN). This bipartite graph (Faith et al., 2007b) connects transcrip-

tion factors (TF) and genes of E.coli. It is composed of 1164 genes regulated by 154 TF. There is

a total of 3293 interactions. The input features (Faith et al., 2007b) are 445 expression values.

S.cerevisiae regulatory network (SRN). This network (MacIsaac et al., 2006) connects TFs and

their target genes from E.coli. It is composed of 1855 genes regulated by 113 TFs and totalizing

3737 interactions. The input features are 1685 expression values (Hughes et al., 2000; Hu et al.,

2007; Chua et al., 2006; Faith et al., 2007a). For genes, we concatenated motifs features (Brohée

et al., 2011) to the expression values.

Drug-protein interaction network (DPI). Drug-target interactions (Yamanishi et al., 2011) are

related to human and connect a drug with a protein when the drug targets the protein. This network

holds 4809 interactions involving 1554 proteins and 1862 drugs. The input features are a binary

vectors coding for the presence or absence of 660 chemical substructures for each drug, and the

presence or absence of 876 PFAM domains for each protein (Yamanishi et al., 2011).
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Four kinds of drug-protein interaction networks (DPI-*). Yamanishi et al. (2008) proposed

four different drug-protein interaction networks in which proteins belong to four pharmaceutically

useful classes: enzymes (DPI-E), ion channels (DPI-I), G-protein-coupled receptors (DPI-G) and

nuclear receptors (DPI-N). The input features for proteins are similarity with all proteins in terms of

sequence and the input features for drugs are similarity with all drugs in terms of chemical structure

(Yamanishi et al., 2008). The number of drugs in these networks are respectively 445, 210, 223 and

54, the number of proteins are 664, 204, 95 and 26 and the number of interactions are 2926, 1476,

635 and 90.

4.4.2 Protocol

Pairs can be divided into four families, according to the number of nodes in the pair that are

represented in the learning sample (see Section 3.3). Since prediction performances are expected to

differ between the different families of pairs, predictions will then be evaluated separately.

In our experiments, LS × LS performances in each network are measured by 10 fold cross-

validation (CV) across the pairs of nodes, as explained in Section 3.3.1. For robustness, results are

averaged over 10 runs of 10 fold CV. LS × TS , TS × LS and TS × TS predictions are assessed

by performing a 10 times 10 fold CV across the nodes, as explained in Section 3.3.2. The different

algorithms return class conditional probability estimates. To assess our models independently of

a particular choice of discretization threshold Pth on these estimates, we vary this threshold and

output in each case the resulting precision-recall curve and the resulting ROC curve. Methods

are then compared according to the total area under these curves, denoted AUPR and AUROC

respectively (the higher the AUPR and the AUROC, the better), averaged over the 10 folds and

the 10 CV runs. For all our experiments, we use ensembles of 100 extremely randomized trees with

default parameter setting (Geurts et al., 2006a).

Realistic baseline. As highlighted in Section 3.5, in biological networks, nodes of high degree

have a higher chance to be connected to any new node. In our context, this means that we can

expect that the degree of a node will be a good predictor to infer new interactions involving this

node. We want to assess the importance of this effect and provide a more realistic baseline than the

usual random guess performance. To reach this goal, we evaluate the AUROC and AUPR scores

when using the sum of the degrees of each node in a pair to rank LS ×LS pairs and when using the

degree of the nodes belonging to the LS to rank TS × LS or LS × TS pairs. AUROC and AUPR

scores will be evaluated using the same protocol as here above. As there is no information about

the degrees of nodes in TS × TS pairs, we will use random guessing as a baseline for the scores

of these predictions (corresponding to an AUROC of 0.5 and an AUPR equal to the proportion of

interactions among all nodes pairs).

4.4.3 Results

We discuss successively the results on the three homogeneous graphs and then on the seven bipartite

graphs.
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Table 4.2: Areas under curves for homogeneous networks.

Precision-Recall (AUPR) ROC (AUC)

LS-LS LS-TS TS-TS LS-LS LS-TS TS-TS

PPI Global 0.41 0.22 0.10 0.88 0.84 0.76

Local so 0.28 0.21 0.11 0.85 0.82 0.73

Local mo - 0.22 0.11 - 0.83 0.72

Baseline 0.13 0.02 0.00 0.73 0.74 0.50

EMAP Global 0.49 0.36 0.23 0.90 0.85 0.78

Local so 0.45 0.35 0.24 0.90 0.84 0.79

Local mo - 0.35 0.23 - 0.85 0.80

Baseline 0.30 0.13 0.03 0.87 0.80 0.50

MN Global 0.71 0.40 0.09 0.95 0.85 0.69

Local so 0.57 0.38 0.09 0.92 0.83 0.68

Local mo - 0.45 0.14 - 0.85 0.71

Baseline 0.05 0.04 0.01 0.75 0.70 0.50
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Figure 4.5: Precision-recall curves for PPI network

Homogeneous graphs

AUPR and AUROC values are summarized in Table 4.2 for the three methods: global, local single

output, and local multiple output. The last row on each dataset is the baseline result obtained as

described in Section 4.4.2. Figures 4.5, 4.6 and 4.7 shows the precision-recall curves obtained by

the different approaches on PPI, EMAP and MN, for the three different protocols.

To improve the TS × TS results, we tried to merge the predictions of the pairs in different

ways: instead of taking the average of the two predictions, we tried taking the minimum value, the

maximum value or the product of the two values, but the performance did not increase.

In terms of absolute AUPR and AUC values, LS × LS pairs are clearly the easiest to predict,

followed by LS×TS pairs and TS×TS pairs. This ranking was expected from previous discussions.

Baseline results in the case of LS × LS and LS × TS predictions confirm that node degrees are

very informative: baseline AUC values are much greater than 0.5 and baseline AUPR values are

also significantly higher than the proportion of interactions among all pairs (which are 0.005, 0.03,

and 0.01 respectively for PPI, EMAP, and MN), especially in the case of LS × LS predictions.

Nevertheless, the performance of our methods are better than these baselines in all cases. On the

EMAP network, the difference in terms of AUC is very slight but the difference in terms of AUPR

is important. This is typical of highly skewed classification problems, where precision-recall curves
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Figure 4.6: Precision-recall curves for EMAP network
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Figure 4.7: Precision-recall curves for metabolic network

are known to give a more informative picture of the performance of an algorithm than ROC curves

Davis and Goadrich (2006).

All tree-based approaches are very close on LS×TS and TS×TS pairs but the global approach

has an advantage over the local one on LS × LS pairs. The difference is important on the PPI and

MN networks. For the local approach, the performance of single and multi-output approaches are

indistinguishable, except with the metabolic network where the multi-output approach gives better

results. This is in line with the better performance of the global versus the local approach on this

problem, as indeed both the global and the local multi-output approaches grow a single model that

can potentially exploit correlations between the outputs. Notice that the multi-output approach is

not feasible when we want to predict LS × LS pairs, as we are not able to deal with missing output

values in multi-output decision trees.

Bipartite graphs

AUPR and AUROC values are summarized in Table 4.3. Figures 4.8 to 4.14 show the precision-

recall curves obtained by the different approaches on ERN, SRN, DPI and the four other kinds of

DPI, for the four different protocols. 10 times 10-fold CV was used as explained in Section 4.4.2.

Nevertheless, two difficulties appeared in the experiments performed on the DPI network. First,

the dataset is larger than the others, and the 10-fold CV was replaced by 5-fold CV to reduce the

computational space et time burden. Second, the feature vectors are binary and the randomization

of the threshold (in Extra-Tree algorithm) cannot lead to diversity between the different trees of the

ensemble. So we used bootstrapping to generate the training set of each tree.

Like for the homogeneous networks, higher is the number of objects of a pair present in the

learning set, better are the predictions, i.e., AUPR and AUC values are significantly decreasing from
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Table 4.3: Areas under curves for bipartite networks.

Precision-Recall (AUPR) ROC (AUC)

LS-LS LS-TS TS-LS TS-TS LS-LS LS-TS TS-LS TS-TS

ERN (TF - gene) Global 0.78 0.76 0.12 0.08 0.97 0.97 0.61 0.64

Local so 0.76 0.76 0.11 0.10 0.96 0.97 0.61 0.66

Local mo - 0.75 0.09 0.09 - 0.97 0.61 0.65

Baseline 0.31 0.30 0.02 0.02 0.86 0.87 0.52 0.50

SRN (TF - gene) Global 0.23 0.27 0.03 0.03 0.84 0.84 0.54 0.57

Local so 0.20 0.25 0.02 0.03 0.80 0.83 0.53 0.57

Local mo - 0.24 0.02 0.03 - 0.83 0.53 0.57

Baseline 0.06 0.06 0.03 0.02 0.79 0.78 0.51 0.50

DPI (drug - protein) Global 0.14 0.05 0.11 0.01 0.76 0.71 0.76 0.67

Local so 0.21 0.11 0.08 0.01 0.85 0.72 0.72 0.57

Local mo - 0.10 0.08 0.01 - 0.72 0.71 0.60

Baseline 0.02 0.01 0.01 0.01 0.82 0.63 0.68 0.50

DPI-E (drug - protein) Global 0.86 0.79 0.32 0.21 0.97 0.93 0.83 0.80

Loc. so 0.82 0.79 0.31 0.20 0.96 0.93 0.82 0.79

Loc. mo - 0.79 0.32 0.21 - 0.93 0.82 0.78

Baseline

DPI-I (drug - protein) Global 0.85 0.79 0.31 0.21 0.97 0.93 0.78 0.73

Loc. so 0.81 0.80 0.33 0.23 0.97 0.93 0.78 0.74

Loc. mo - 0.79 0.33 0.22 - 0.93 0.79 0.74

Baseline

DPI-G (drug - protein) Global 0.67 0.53 0.32 0.16 0.95 0.85 0.86 0.81

Local so 0.60 0.53 0.33 0.18 0.95 0.84 0.85 0.80

Local mo - 0.51 0.31 0.16 - 0.84 0.85 0.81

Baseline

DPI-N (drug - protein) Global 0.45 0.29 0.35 0.13 0.84 0.60 0.79 0.66

Local so 0.43 0.27 0.36 0.12 0.86 0.59 0.80 0.65

Local mo - 0.27 0.35 0.12 - 0.59 0.80 0.66

Baseline
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Figure 4.8: Precision-recall curves for E.coli regulatory network (TF vs genes)
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Figure 4.9: Precision-recall curves for S.cerevisiae regulatory network (TF vs genes)
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Figure 4.10: Precision-recall curves for drug-protein interaction network

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

LS vs LS

 

 

Global
Local so

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

LS vs TS

 

 

Global
Local so
Local mo

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

TS vs LS

 

 
Global
Local so
Local mo

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

TS vs TS

 

 
Global
Local so
Local mo

Figure 4.11: Precision-recall curves for drug-protein (enzymes) interaction network
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Figure 4.12: Precision-recall curves for drug-protein (ion channels) interaction network
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Figure 4.13: Precision-recall curves for drug-protein (GPCR) interaction network
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Figure 4.14: Precision-recall curves for drug-protein (nuclear receptors) interaction

network

LS×LS to TS×TS predictions. On the ERN and SRN networks, performances are very different for

the two kinds of LS×TS predictions that can be defined, with much better results when generalizing

over genes (i.e., when the TF of the pair is in the learning sample). On the other hand, on the

DPI network, both kinds of LS × TS predictions are equally well predicted. These differences are

probably due in part to the relative numbers of objects of both kinds in the learning sample, as there

are much more genes than TFs on ERN and SRN and a similar number of drugs and proteins in the

DPI network. Differences are however probably also related to the intrinsic difficulty of generalizing

over each object family, as on the four additional DPI networks (see the supplementary material),

generalization over drugs is most of the time better than generalization over proteins, irrespectively

of the relative numbers of drugs and proteins in the training network. Results are most of the time

better than the baselines (based on node degrees for LS × LS and LS × TS predictions and on

random guessing for TS×TS predictions). The only exceptions are observed when generalizing over

TFs on SRN and when predicting TS × TS pairs on SRN and DPI.

The three tree-based approaches are very close to each other. Unlike on homogeneous graphs,

there is no strong difference between the global and the local approach on LS ×LS predictions: it is

slightly better in terms of AUPR on ERN and SRN but worse on DPI. The single and multi-output

approaches are also very close, both in terms of AUPR and AUC.

4.4.4 Comparison with related works

In this section, we compare our methods with several other network inference methods from the

literature. To ensure a fair comparison and avoid errors related to the reimplementation and tuning

of each of these methods, we choose to rerun our algorithms in similar settings as in related papers.

All comparison results are summarized in Table 4.4 and 4.5 and discussed below.
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Table 4.4: Comparison with related works on four networks: our results are comparable.

Publication DB Protocol Measures Their results Our results

Bleakley et al. (2007) PPI LS × TS , 5CV AUPR 0.25 0.21

MN 0.41 0.43

Geurts et al. (2007) PPI LS × TS , 10CV AUPR / ROC 0.18 / 0.91 0.22 / 0.84

TS × TS 0.09 / 0.86 0.10 / 0.76

MN LS × TS 0.18 / 0.85 0.45 / 0.85

TS × TS 0.07 / 0.72 0.14 / 0.71

Mordelet and Vert (2008) ERN LS × TS , 3CV Recall 60 / 80 0.44 / 0.18 0.38 / 0.15

Yamanishi et al. (2011) DPI LS × LS , 5CV AUROC 0.75 0.88

Tabei et al. (2012) DPI LS × LS , 5CV AUROC 0.87 0.88

LS × TS & TS × LS 0.74 0.74

These comparisons show that tree-based methods are competitive on all ten networks. Moreover,

it has to be noticed that:

- no other method has been tested over all these problems,

- we have not tuned any parameters of the Extra-trees methods. Better performances could be

achieved by changing, for example, the randomization scheme Breiman (2001), the feature

selection parameter K , or the number of trees.

Homogeneous graphs

Bleakley et al. (2007) developed and applied the local approach with support vector machines to

predict the PPI and MN networks and show that it was superior to several previous works Yamanishi

and Vert (2004); Kato et al. (2005). They only try to predict interactions between one protein

belonging to the learning set and one protein belonging to the test set (LS × TS predictions)

and used 5-fold CV. Although they exploited yeast-two-hybrid data as additional features for the

prediction of the PPI network, we obtain very similar performances with the local multi-output

approach: they got an AUPR equal to 0.25 for PPI and equal to 0.41 for MN. Applying a 5-fold

CV, we respectively got areas under the curve equal to 0.21 and 0.43 for the prediction of LS ×TS

pairs, with the multiple-output local approach.

Geurts et al. (2007) used ensembles of output kernel trees (see Section 2.2.4 for an explanation

of the algorithm) to infer the MN and PPI networks with the same input data as Bleakley et al.

(2007). They try to predict LS×TS and TS×TS interactions. Applying a (single) 10-fold CV, they

got AUPR/AUROC equal to 0.18/0.91 and 0.09/0.86 respectively for the LS-TS and TS-TS of PPI,

and equal to 0.18/0.85 and 0.07/0.72 for MN. With the global approach, we got AUPR/AUROC

equal to 0.22/0.84 and 0.10/0.76 respectively for the LS × TS and TS × TS of PPI (with the

global approach). For MN we obtain values equal to 0.45/0.85 and 0.14/0.71 for MN (with the

multiple-output local approach). We obtain thus similar or inferior results as Geurts et al. (2007) in

terms of AUC but much better results in terms of AUPR, especially on the MN data.
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Table 4.5: The areas under the curves obtained with our methods are comparable

those obtained with methods from the literature, on the four classes of DPI network.

Method Precision-Recall Method ROC

LS-LS LS-TS TS-LS LS-LS

DPI-E KRM1 0.83 0.81 0.38 DBSI3 0.78

BLM2 0.83 0.81 0.39 TBSI3 0.90

NBI3 0.97

Ours 0.87 0.79 0.32 0.97

DPI-I KRM 0.76 0.81 0.31 DBSI 0.71

BLM 0.77 0.80 0.32 TBSI 0.90

NBI 0.98

Ours 0.85 0.80 0.34 0.97

DPI-G KRM 0.67 0.62 0.41 DBSI 0.76

BLM 0.65 0.55 0.38 TBSI 0.75

NBI 0.94

Ours 0.68 0.55 0.34 0.95

DPI-N KRM 0.74 0.61 0.51 DBSI 0.79

BLM 0.58 0.35 0.40 TBSI 0.53

NBI 0.84

Ours 0.48 0.36 0.42 0.86

1 Yamanishi et al. (2008)
2 Bleakley and Yamanishi (2009)
3 Cheng et al. (2012)
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Notice that a ROC curve is generally a less good indicator of the performance than a precision-

recall curve, because the biological network are typically very unbalanced. Indeed when the number

of negative examples is much higher than the number of positive examples, a large change in the

number of false positives can lead to a small change in the false positive rate used in ROC curves,

but a large change in the precision use in precision-recall curves Davis and Goadrich (2006).

Bipartite graphs

ERN. Mordelet and Vert (2008) used SVM to predict ERN with the local approach, focusing on

the prediction of interactions between known transcription factors and new genes (LS ×TS). They

evaluated their performances by the precision at 60% and 80% recall respectively, estimated by

3-fold CV. To avoid a bias in their results, they ensure that all genes belonging to a same operon

are always in the same fold. Adopting the same evaluation protocol, we got a recall of 37.8% for

a prediction of 60% and a recall of 15% for a prediction of 80% (with the multiple-output local

approach). Our results are very close although slightly less good.

DPI. The DPI network was predicted in Yamanishi et al. (2011) using sparse canonical correspon-

dence analyze (SCCA). This method correlates protein domains to chemical substructures expected

to be present in their ligand. Only LS × LS predictions were considered. They tested their method

with a 5-fold CV and obtained an AUROC equal to 75%, while we got an AUROC equal to 88%

(single-output local approach). Wo obtain better results.

Tabei et al. (2012) also predicted DPI, by using the global approach and L1 regularized linear

classifiers using as input features all possible products of one drug feature and one protein feature.

They differentiate “pair-wise cross validation” (equivalent to our LS × LS predictions) from “block-

wise cross validation” (equivalent to our LS ×TS and TS × LS predictions). With 5-fold CV, they

obtained an AUROC equal to 0.87 for pair-wise CV, and equal to 0.74 for block-wise CV, while we

obtained AUROC respectively equal to 0.88 (with the single-output local approach) and 0.74 (with

the global approach). The results are thus very similar.

DPI-*. Yamanishi et al. (2008) and Bleakley and Yamanishi (2009) used SVM to predict the four

classes of drug-protein interaction network. The first one used a kernel regression-based method

(KRM): a global approach in which they integrated the chemical and genomic spaces into a unified

space. The second one used bipartite local models (BLM) and then did not predict TS × TS

interactions. We compared the AUPR of these two methods with ours, in a 10 times 10-fold CV

(Table 4.5). Extra-Trees (E-T) is comparable to the other methods, sometimes giving better results

(for DPI-I) and sometimes giving less good results (for DPI-N).

Cheng et al. (2012) developed three different supervised inference methods, which they tested

on the four DPI datasets. The methods are drug-based similarity inference (DBSI), target-based

similarity inference (TBSI) and network-based inference (NBI). The last one only use network topol-

ogy similarity to infer new targets for known drugs. NBI gives the best performance of the three

but has the disadvantage to only be able to predict LS × LS pairs. Extra-Trees give better or equal

results than these three methods, in terms of AUROC, when doing 10 times 10-fold CV (Table 4.5).
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4.5 Illustration of interpretability of trees

One advantage of tree-based methods is their interpretability. In this section we will illustrate this

interpretability by carrying out some experiments on a drug-protein interaction network. Note that

our goal with these experiments is merely to propose and illustrate several semi-automatic procedures

to extract interpretable information from tree-based models. We will not try to assess the biological

relevance of our findings.

The dataset we will use for the illustration contains 4809 interactions involving 1862 drugs

and 1554 proteins, which gives a proportion of interactions equal to 0.17%. Common chemical

substructures are often shared by drugs that bind a given protein, and common function sites (e.g.,

PFAM domains) are often shared by proteins that are bound by a given drug (Yamanishi et al.,

2011). Input data used to perform predictions is therefore composed of:

- a binary vector coding for the presence or the absence of 660 chemical substructures for each

drug,

- a binary vector coding for the presence or the absence of 876 PFAM domains for each protein.

We first discuss interpretability in the case of single decision trees built using the local or the global

approach (Section 4.5.1). We then show how to extract information from ensembles, first in the form

of biclusters (Section 4.5.2) and second in the form of pair-based feature rankings (Section 4.5.3).

4.5.1 Interpretability of single decision trees

As discussed in Section 4.3.3, the local approach with multi-output trees yields a checkerboard

structured biclustering of the adjacency matrix, while the global approach yields an unconstrained

biclustering of the same matrix. In both cases, each bicluster is defined by a subset of row nodes

(drugs) and a subset of column nodes (proteins) and by construction is such that pairs defined

by these two subsets are either highly connected or highly disconnected. We illustrate below both

methods on the DPI network.

Local approach with two multiple-output trees

With the local approach and multi-output trees, two single trees are built: the first one partitions

the row nodes (the drugs) and the other partitions the column nodes (the proteins). The drugs

that end in a same leaf form a cluster of drugs, and the proteins that end in a same leaf form

a cluster of proteins. If we look at the network through its adjacency matrix, each pair of drug

and protein clusters define a rectangular subregion of the adjacency matrix and the rectangular

regions corresponding to all pairs can be arranged as a checkerboard (see Figure 4.4B). Each of

these rectangular regions, or biclusters, corresponds to a bipartite subnetwork of the global network.

Because of the way the two trees are built, we expect that the resulting subnetworks have either

significantly many or significantly few drug-protein interactions. Indeed, drugs (resp. proteins) that

fall in the same leaf are assumed to have very similar connectivity profiles with all proteins (resp.

drugs), i.e., the corresponding rows (resp. columns) in the adjacency matrix are expected to be

similar. Putting together these two constraints (similar rows and similar columns), the rectangular

subregion of the adjacency matrix defined by a cluster of drugs and a cluster of proteins should

thus either contain many 1s or many 0s. Each cluster of drugs/proteins furthermore corresponds

to a path in one of the tree, i.e. a conjunction of tests based on the input features. Given the
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Figure 4.15: The adjacency matrix of the drug-protein interaction network is parti-

tioned into clusters by the two single multi-output trees. Rows represent drugs, while

columns represent proteins. Each pair of clusters is expected to be either very con-

nected, or not. The 47 submatrices with p-values lower than 10−7 are highlighted in

red. In total, they contain a proportion of interactions equal to 2%.

nature of the features for this particular network, clusters of drugs are thus characterized by the

absence or presence of some chemical substructures (those that are tested along the tree path),

while similarly clusters of proteins are characterized by the absence or presence of some PFAM

domains. To understand the model, one should thus look at the subnetworks defined by the two

trees that contain a significantly high number of interactions and extract from the tree the chemical

substructures and PFAM domains that characterize these subnetworks.

Figure 4.15 shows the checkerboard partition of the adjacency matrix obtained on the drug-

protein interaction network. The grey level of each submatrix represents the ratio of interactions

among all pairs in the submatrix. To obtain this partition, we arbitrarily stop splitting a node in

each tree if the number of drugs or proteins it contains goes below 10% of the total number of

drugs or proteins. This corresponds to using a value of nmin = 186 for the drugs and nmin = 155

for the proteins (see Section 2.2.1). Applying some pruning is necessary to get meaningful clusters.

Indeed, if one lets the algorithm grow fully developed trees, most tree leaves, and therefore clusters,

will typically contain only one or very few nodes (since most drugs and proteins have different

connectivity profiles).

The partition of Figure 4.15 highlights the very unbalanced nature of the grown trees. If the

trees were balanced, given our choice of nmin we would have obtained about 10 clusters/leafs per
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dimension, while we have obtained much more leaves, in particular in the tree grown for the proteins

(52 for the drugs and 475 for the proteins). This is a consequence of the difficulty of the task:

several tree splits only separate a few drugs/proteins from the rest of the drugs/proteins in the

corresponding tree node and many splits are thus required to reach the 10% size limit.

We observe also that most subregions contain a large majority of 0s. This is not surprising.

Indeed, given the very sparse nature of the network, we did not expect to find subnetworks where

all drugs are interacting with all proteins. We nevertheless expect that some of them will contain

proportionally more interactions than the global network and some of them proportionally less inter-

actions than the global network. As the goal is mainly to understand what defines the interactions

(not the non-interactions), the most interesting subnetworks are those which are proportionally more

connected than the global network. To identify them in our illustrative problem, we computed a

p-value for each subnetwork that measures whether it is significantly connected or not with respect

to a randomly selected subnetwork of the same size. This p-value can be estimated by random

permutations: we randomly draw 107 windows of the same size (i.e., with the same numbers of

drugs and proteins) in the adjacency matrix, and count how many of these windows contain at least

the same number of connections as the target window. By dividing the resulting number by 107,

we obtain the probability to have a more connected window by chance from the global network. We

computed the p-values relative to all submatrices on the drug-protein network. The 47 regions that

obtained an estimated p-value lower than 10−7 are highlighted in red in Figure 4.15. These are

thus the subregions for which we did not find any random subregions of the same size with an equal

number or more connections. In total, these 47 regions contain a proportion of interactions equal

to 2%, which is more than 12 times higher than the proportion of interactions in the global network

(i.e., 0.17%).

To illustrate the feature-based characterization of the submatrices, let us analyze the significant

submatrix with the highest number of interactions. This submatrix is located in the green rectangle

in Figure 4.15 between the drugs numbered 835 and 1014 and the proteins numbered 6 and 94.

Figure 4.16 shows a zoom of this submatrix, where interactions are represented by black dots.

One counts in this submatrix 152 interactions between 180 drugs and 89 proteins, which gives a

proportion of interactions almost 6 times greater than in the global network.

The path in the tree relative to drugs that leads to this submatrix is composed of a succession

of tests based on the presence or absence of the following drug substructures (in their order of

appearance in the path):

1. SC1C(N)CCCC1

2. >= 1 Co

3. N-S-C:C

4. >= 1 saturated or aromatic nitrogen-containing ring size 8’

5. >= 1 unsaturated non-aromatic carbon-only ring size 10’ ’C(∼Br)(∼H)

6. >= 1 any ring size 7

7. >= 1 saturated or aromatic carbon-only ring size 6

8. C(∼C)(∼H)(∼N)

9. O-C:C-O-[]1]

10. N-H

11. Nc1cc(Cl)ccc1

12. O-C:C-O
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Figure 4.16: The submatrix having the greatest number of interaction, among those

with a p-value smaller than 10−7, is characterized in the text.
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In this list, the two substructures in bold are the substructures present in the 180 drugs of the

subnetwork, while the others are absent in all of them. Similarly, the path in the tree relative to

the proteins is composed of a succession of tests based on the presence or absence of the following

three PFAM domains:

1. Eukaryotic-type carbonic anhydrase

2. Oestrogen receptor

3. 7 transmembrane receptor (rhodopsin family)

The bold PFAM domain is the domain present in the 89 proteins of the subnetwork, while the

two others are absent in all of them. The features in these two lists, particularly the bold ones,

are expected to explain the significantly high proportion of drug-protein interactions within the

cluster: a drug with one or more saturated or aromatic carbon-only ring of size 6 and which contains

C(∼C)(∼H)(∼N) as a substructure is more likely to interact with a protein from the rhodopsin

family than any random protein.

Global approach with one single-output tree

The global approach with single tree can also be interpreted as carrying out a biclustering of the

adjacency matrix. Only one tree is built in this case, which classifies drug-protein pairs. Each leaf

of this tree corresponds to a subset of pairs from the learning sample. As features are defined either

on drugs or on proteins (not on pairs), each leaf also corresponds to a cluster of drugs and a cluster

of proteins and all pairs that involve drugs and proteins from these clusters fall into that leaf. Like

for the local approach, each leaf thus also delimits a rectangular subregion of the adjacency matrix

and this region is therefore characterized by a path in the tree, and consequently by a conjunction

of tests based on drug or protein features (see Figure 4.4A). Given the way the tree is built, each

leaf subregion is also expected to contain either significantly many or significantly few drug-protein

interactions.

Figure 4.17 shows the resulting partitioned adjacency matrix, where again the grey level of

each submatrix represents the percentage of interactions it contains. To obtain this partition, we

arbitrarily stopped splitting a node of the tree if the number of pairs within it went below 1% of the

total number of pairs (i.e., nmin = 28935). As a result, the matrix is divided into 691 rectangular

subregions. Note that in the case of the global approach, it is not possible anymore to represent the

resulting partitioning of the adjacency matrix as a checkerboard, where each row corresponds to a

unique proteins and each column to a unique drug. Indeed, each new split cuts the corresponding

subregion of the adjacency matrix either horizontally (when it is based on a drug feature) or vertically

(when it is based on a protein feature) but there is no guarantee that the left and right successors

of a split will be cut in the same way. However, given the hierarchical nature of the partitioning,

the rectangular subregions defined by all tree leaves can be arranged so that they exactly cover the

adjacency matrix. This is the representation used in Figure 4.17, which is obtained by recursively

reordering the rows and columns of the subregions according to the tree splits.

As in the case of the local approach, we are mainly interested in the leaves corresponding to

drugs and proteins that are significantly highly connected. We therefore again computed for each

submatrix an interaction p-value using the same permutation scheme as for the local approach.

Subregions with a p-value smaller than 10−7 are highlighted in green in Figure 4.17. We only

found four regions that meet this criterion, which is much fewer than the 47 regions found with the
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Figure 4.17: The adjacency matrix of the drug-protein interaction network is parti-

tioned into clusters, due to one global single tree. Rows represent drugs, while columns

represent proteins. The pairs of each clusters are expected to be either very connected,

or not. The four submatrices with p-values lower than 10−7 are red surrounded, and

have a proportion of interaction equal to 0.9%.
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Figure 4.18: One of the four submatrices that got a p-value lower than 10−7, and

which is characterized in the text.

local approach. We also observed a very important difference in terms of the number of subregions

defined by both methods, despite that fact that their nmin values were matched: 691 subregions are

found with the global approach and 24700 subregions with the local one. These differences can be

explained by the more flexible nature of the global approach that can define unconstrained partitions,

while the local approach can only define checkerboard-structured partitions.

These four regions of small p-value contain in total 0.9% of all interactions. One of these regions

appears to be found also in the clustering obtained with the local approach, and is characterized

here below. It is located in bottom left corner of Figure 4.17. A detailed view of this submatrix can

be found in Figure 4.18. It counts 109 interactions between 44 drugs and 89 proteins, which gives

a proportion of interactions 5 times greater than the proportion in the global network. Analyzing

the tree path that leads to the corresponding leaf, this subregion is defined by all drugs that contain

SC1C(N)CCCC1 as a chemical substructure and all proteins, from the rhodopsin family, that has

the 7 transmembrane receptor PFAM domain.

4.5.2 Clustering with ensembles of trees

In Section 4.5.1, we used single trees to partition the adjacency matrix. Yet we know that single

trees suffer from high variance and may not be the ideal method to obtain interpretable results. In

this section, we propose a way to obtain from an ensemble of trees a clustering of the drugs and

proteins as well as a characterization of the corresponding subnetworks in terms of the input features.

The procedure is explained and illustrated below using the drug-protein interaction network.

Partitioning the matrix

To obtain a checkerboard partitioning of the adjacency matrix from an ensemble of trees, we propose

to proceed as follows. Two ensembles of (100) multi-output trees are grown respectively for the

drugs and the proteins using the local approach. From the ensemble relative to the drugs (resp.

proteins), one can derive a proximity measure between two drugs (resp. proteins) by counting the

number of times the two drugs (resp. proteins) fall in the same leaf over the 100 trees in the

ensemble and by normalizing this count by the total number of trees in the ensemble (Breiman,

2001). From this proximity, a distance between drugs/proteins can be computed as one minus the
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proximity. Using this distance measure, one can build two distance matrices, one 1862×1862 matrix

for the drugs and one 1554× 1554 matrix for the proteins and these matrices can be used as inputs

of the k-medoids algorithm to obtain a clustering respectively of drugs and proteins. Just as in

the local approach with single multi-output trees, these two clusterings then define a checkerboard

partitioning of the adjacency matrix. Because the ensemble proximity is such that two drugs (resp.

proteins) are close if they have similar connectivity patterns with all proteins (resp. drugs), each

subregion of this partitioning should contain either strongly or weakly connected pairs

Proteins

D
ru
gs

Figure 4.19: The adjacency matrix of the drug-protein interaction network is parti-

tioned into clusters, using a proximity measure derived from ensembles of multi-output

trees. The pairs in each clusters are expected to be either very connected or not. The

ten regions highlighted in red are the ones with the smallest interaction p-values esti-

mated by random permutations. Together, they contain a proportion of interactions

equal to 1.4%

Figure 4.19 shows the checkerboard structure obtained with this procedure using the k-medoids

algorithm to find 20 clusters for the drugs and 20 clusters for the proteins. Trees were grown using

the same nmin thresholds as in the experiment of Figure 4.15. The clusters of drugs are almost all

of the same size, while clusters of proteins are much more unbalanced in sizes, with some very small

(as observed in Figure 4.15 with single trees) and some very large clusters.

The grey level of each submatrix represents the ratio of interactions within it. To identify

significantly connected submatrices, we computed an interaction p-value for each of them as we did

in Section 4.5.1. The 10 regions corresponding to p-values smaller than 10−7 are highlighted in red
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in Figure 4.19. In total, they contain a proportion of 1.4% interacting pairs, which is more than 8

times higher than the proportion in the global network.

Figure 4.20 shows a graphical representation of the whole network. The drugs correspond to

the black nodes and the proteins to the grey nodes. Interactions that are not included in one of

the ten submatrices with lower p-values, are represented by light grey edges. The interactions from

the ten submatrices are highlighted with different colors. We can see that, mostly, the edges from a

same cluster of interactions are located in a same region of the graph, showing that the drugs and

the proteins that make it up are indeed highly connected.

Note that the proximity measure proposed above can be shown to be a dot-product into some

euclidean space (Breiman, 2001). Indeed, let us encode the ith drug/protein with a vector of the

following form:

vi = [[l i1,1, l i1,2, ... , l i1,n1
], [l i2,1, l i2,2, ... , l i2,n2

], ... , [l iT ,1, l iT ,2, ... , l iT ,nT
]]> (4.1)

where T is the number of trees in the ensemble, nk is the number of leaves in the kth trees, and l ik,l

is equal to 1/
√

T if drug/protein i falls into leaf k of the lth tree, 0 otherwise. Then, the proximity

between two drugs/proteins is equal to the dot-product v>i vj between their corresponding vectors

vi and vj and their distance is the euclidean squared distance between these vectors ||vi − vj ||2. An

alternative to the application of the k-medoids algorithm used above is thus to apply k-means on this

vectorial representation. Finally, note that Geurts et al. (2006a) have proposed another proximity

measure that uses the same encoding as in (4.1) but with l ik,l taken as 1/
√

TNk,l when drug/protein

i falls into the kth leaf of the lth tree, where Nk,l is the total number of learning sample examples

falling into the same leaf. This proximity measure gives more weights to leaves that contain fewer

examples. Both measures coincide in the case of fully grown trees with only one example per leaf.

Characterizing the regions

The clustering proposed above is based on the ensemble of trees and thus the fact that a drug/protein

belongs to a specific cluster is a direct consequence of its input feature values. For interpretability

reason, it is thus interesting to try to characterize each cluster from the point of the view of the

input features. Unlike with single trees (see Section 4.5.1), this is not as straightforward as looking

at the features that are used along some tree path, because all drugs or proteins in a given cluster

do not end automatically in the same leaf in a given tree and also because we now have an ensemble

of different trees and not a single tree. Feature importance scores as described in Section 2.2.2 only

give a global measure of the importance of a feature, while we are looking here for a more local

cluster-specific characterization.

To answer this question, we propose in this section a way to derive local feature importance

scores relative to a subset of objects (drugs or proteins). Given an ensemble of trees and a subset

of objects S , local feature importance scores are computed as follows:

• For a given object o in S and a tree T , we compute the importance of a feature Xi , denoted

I (Xi , o, T ), as the sum of weighted impurity reductions (as computed in Equation 2.7) over

all nodes in the path traversed by o in T where Xi is used as the splitting feature. Impurity

reductions are computed on the basis of the training sample from which the ensemble was

grown.
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Figure 4.20: A graphical representation of the drug-protein interaction network. The

ten subnetworks with the lowest p-values are highlighted by colored edges.
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Figure 4.21: The submatrix having the highest proportion of interactions, among those

with a p-value lower than 10−7 in Figure 4.19. This submatrix is characterized in the

text.

• These importances are then averaged over all objects in S and all trees in the ensemble to

obtain the importance of feature Xi relative to the subset S :

I (Xi , S) =
1

T

T∑

t=1

1

|S |
∑

o∈S
I (Xi , o, Tt) (4.2)

Intuitively, a feature will be important according to this modified local measure if it is used in a lot

of paths traversed by objects from the subset S and if, in these paths, it leads to important weighted

impurity reductions. Note that when S is taken as the whole learning sample, this measure does

not coincide with the global feature importance score defined in Section 2.2.2. This property could

have been obtained by summing unweighted instead of weighted impurity reductions in the first step

above but we believe that this would have given too much importance to splits at deep nodes in the

tree in the case of small subsets of objects S .

Let us illustrate this cluster-specific feature importance measure on the drug-protein interaction

network. We focus on the submatrix with the higher proportion of interactions, among the ten

submatrices with a p-value lower than 10−7. This submatrix is highlighted in green in Figure 4.19

and its edges are in light green in Figure 4.20. A detailed view of this submatrix can be found in

Figure 4.21. It contains 19 interactions between 25 drugs and 21 proteins, corresponding to 3.6% of

interactions. Feature importance scores for the drug and protein features were derived respectively

for the subsets of 25 drugs and 21 proteins using the procedure above. Given the multi-output

setting, we use the average variance over all outputs as our impurity measure (see Equation 2.6).

392 chemical substructures (drug features) obtained an importance higher than zero for the

cluster of 25 drugs. We list here only the ten most important ones (in decreasing order of impor-

tance):

1. SC1C(N)CCCC1

2. >= 1 saturated or aromatic nitrogen-containing ring size 8

3. C(∼F)(∼F)

4. N-S

5. S(=O)(=O)

6. O=C-C-C-C-C(=O)-C

7. C(∼C)(∼C)(∼C)(∼C)
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8. Sc1c(N)cccc1

9. C(∼Br)(∼H)

10. CC1CC(O)CC1

For each substructure in this list, we computed its occurrence frequency in the cluster and in the

whole set of drugs. Only one substructure (C(∼C)(∼C)(∼C)(∼C), in bold in the list) appears more

frequently in the 25 drugs than in the whole set of drugs.

Concerning protein features, 158 PFAM domains have an importance higher than zero for the

cluster of 21 proteins. We list here only the ten most important ones (in decreasing order of

importance):

1. Eukaryotic-type carbonic anhydrase

2. Neurotransmitter-gated ion-channel transmembrane region

3. 7 transmembrane receptor (rhodopsin family)

4. Animal haem peroxidase

5. Neurotransmitter-gated ion-channel ligand binding domain

6. Oestrogen receptor

7. Serum albumin family

8. Serotonin (5-HT) neurotransmitter transporter, N-terminus

9. TspO/MBR family

10. Aminotransferase class I and II

The two bold PFAM domains are present in each of the 21 proteins of the cluster, while the 7 other

domains are absent in all of them. These two lists of features, and in particular the ones in bold,

are those that characterize the most this highly connected region.

Network of features

In (Yamanishi et al., 2011), the authors exploited canonical correlation analysis to find associations

between protein domains and chemical substructures that are predictive of drug-protein interactions.

Each canonical component highlights several such associations and associations corresponding to all

canonical components are compiled into a global (bipartite) network. This network contains 30,668

links between chemical substructures and protein domains that represent 5,3% of all possible links

that can exist between the 660 chemical substructures and the 876 protein domains. All these links

are expected to govern drug-protein interactions.

Similarly, each submatrix found by our method also associates chemical substructures and protein

domains, those that appear in the feature importance ranking obtained for both drug and protein

clusters. A network similar to Yamanishi et al. (2011)’s network can thus be constructed from tree

ensembles by linking chemical substructures and protein domains found in the feature importance

lists associated to all submatrices containing a significantly high number of interactions. As noted

previously, the chemical structures or protein domains with non zero importance for a given cluster

are not always present in the drugs and proteins within the cluster. We thus filter the links so as to

only keep the ones that involve features that are more present in the drug or proteins of the cluster

than in the whole set of drugs or proteins.

We applied this idea from the partitioning found in Figure 4.19. The network built from the

ten clusters with the smallest p-values (< 10−7) contains 3086 interactions. It corresponds to 0.5%

of all possible links between the 660 chemical substructures and the 876 protein domains. From
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these 3086 interactions, 992 (32%) can also be found in Yamanishi et al. (2011)’s network (see

Figure 4.22), while 2094 are new. The intersection with Yamanishi et al. (2011)’s network is very

significant, as assessed with a hypergeometric test (p-value< 10−100). The network can obviously

be enlarged by considering clusters with p-values higher than 10−7.

As in (Yamanishi et al., 2011), a weight can be associated to an edge in this network by

computing the product of the importance value associated to the chemical substructure and the

protein domain that it connects. In Figure 4.22, we present the network obtained when keeping

only the 17 edges with a weight higher than the arbitrary chosen threshold 6 · 10−6. From these

17 interactions, 6 can also be found in Yamanishi et al. (2011)’s network (intersection p-value=

1.43 · 10−5).

4.5.3 Pair-based feature ranking

A main goal of network inference methods is to rank new pairs from the most likely to the least likely

to interact. When using single trees, one gets directly an explanation of the predictions in terms of

the features that are tested along the path followed in the tree, either by the pair (in the case of the

global approach) or by each of its nodes (in the case of the local approach). With an ensemble of

trees, this feature is lost but it is nevertheless possible to obtain a ranking of the features according

to their importance for making a specific pair prediction. To obtain such ranking, one can indeed use

the local importance measure defined in Equation 4.2 using as the subset S a singleton containing

one node from the pair (in the case of the local approach) or one pair (in the case of the global

approach).

Let us illustrate this possibility on the drug-protein interaction network. We ranked the drug-

protein pairs with a local approach using single-output tree ensembles. To get a prediction for all

pairs of the network, we performed a 5-fold cross-validation on pairs. 8 pairs were predicted with

the highest probability to interact (i.e. 1), and they are listed here above:

Drug Protein Interaction

5,6,7,8-Tetrahydrobiopterin NOS3 1

6-Mercaptopurine IMDH1 1

6-Mercaptopurine PUR1 1

Epothilone B TBA2 1

Epothilone B TBA6 1

Hydrochlorothiazide CAH4 1

Thioguanine IMDH2 0

Tretinoin RXRG 1

Only one pair is actually not interacting, or has not been discovered as interacting yet.

We focus on the interaction between 5,6,7,8-Tetrahydrobiopterin and NOS3 (Figure 4.23).

This interaction allows the production of nitric oxide (NO), which is important in regulation of

blood pressure and blood flow. For this particular pair, we ranked both chemical substructures and

protein domains according to their local importances for predicting this particular pair. To compute

these importance scores, we used the two ensembles (one for 5,6,7,8-Tetrahydrobiopterin and one

for NOS3) grown from the learning fold (among the five) that did not contain this particular pair.

The 10 more important chemical substructures are the following:

1. C(∼C)(∼C)(∼H)(∼N)
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Figure 4.22: Each cluster is associated with a list of drug features and a list of protein

features. Only are kept the features more present in the drugs and proteins of the

cluster than in other clusters. The result can be represented as a network that connects

chemical substructures and protein domains. The network in this figure was constructed

from the 10 clusters in Figure 4.19 that have a p-value lower than 10−7. The weight

of an edge is obtained by computing the product of the importance value associated to

the chemical substructure and the protein domain that it connects. In the illustrated

network, only are kept the 17 edges with a weight higher than the arbitrary chosen

threshold 6 · 10−6. The 6 red lines represent edges shared by our network and a similar

network from (Yamanishi et al., 2011), corresponding to more the 35% of the 17 edges

of the network.



124 4.6. DISCUSSION

Figure 4.23: The 5,6,7,8-Tetrahydrobiopterin drug (left) and the NOS3 (endothelial

nitric oxide synthase) protein (right) have been proved to interact.

2. O=C-C-N

3. O=C-C-C-C-C-N

4. []1]-C-C-N-[]1]

5. C(-C)(-C)(=N)

6. N-C-C-N-C

7. N=C-C-C

8. >= 2 any ring size 6

9. C(∼Br)(:N)

10. C(-C)(=N)

Substructures in bold are the ones present in 5,6,7,8-Tetrahydrobiopterin. The seven PFAM domains

for which the importance is higher than zero are the following:

1. PDZ domain (also known as DHR or GLGF)

2. Nitric oxide synthase, oxygenase domain

3. ACT domain

4. FAD binding domain

5. Oxidoreductase NAD-binding domain

6. Flavodoxin

7. Biopterin-dependent aromatic amino acid hydroxylase

The domains in bold are the ones present in NOS3. These different features are the ones that led

the algorithm to give a high probability to the target pair to interact.

4.6 Discussion

We explored tree-based ensemble methods for biological network inference, both with the local

approach, which trains a separate model for each network node (single output) or each node family

(multi-output), and with the global approach, which trains a single model over pairs of nodes. We

carried out experiments on ten biological networks and compared our results with those from the

literature. These experiments show that the resulting methods are competitive with the state of the
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art in terms of predictive performance. Other intrinsic advantages of tree-based approaches include

their interpretability, through single tree structure and ensemble-derived feature importance scores,

as well as their almost parameter free nature and their reasonable computational complexity and

storage requirement.

While the local and global approaches are close in terms of accuracy, the most appealing ap-

proach in our experiments turns out to be the local multi-output method, which provides less complex

models and requires less memory at training time. All approaches remain however interesting because

of their complementarity in terms of interpretability. A potential advantage of the global approach

that was not explored in this chapter is the possibility to define features on pairs of nodes that might

make a difference in some applications (Lin et al., 2004; Qi et al., 2005; Tabei et al., 2012). With

the introduction of such features, one would loose however the possibility with tree-based methods

of not generating explicitly all pairs when training the model.

As two side contributions, we extended the local approach for the prediction of edges between

two unseen nodes and proposed the use of multiple output models in this context. The two-step

procedure used to obtain this kind of predictions provides similar results as the global approach,

although it trains the second model on the first model’s predictions. It would be interesting to

investigate other prediction schemes and evaluate this approach in combination with other supervised

learning methods such as SVMs. The main benefits of using multiple output models is to reduce

model sizes and potentially computing times, as well as to reduce variance, and therefore improving

accuracy, by exploiting potential correlations between the outputs. It would be interesting to apply

other multi-output or multi-label supervised learning methods (Tsoumakas and Katakis, 2007) within

the local approach.

We focused on the evaluation and comparison of our methods on various biological networks. To

the best of our knowledge, no other study has considered simultaneously as many of these networks.

Our protocol defines an experimental testbed to evaluate new supervised network inference methods.

Given our methodological focus, we have not tried to obtain the best possible predictions on each

and every one of these networks. Obviously, better performances could be obtained in each case by

using up-to-date training networks, by incorporating other feature sets, and by (cautiously) tuning

the main parameters of tree-based ensemble methods. Such adaptation and tuning would not change

however our main conclusions about relative comparisons between methods.

Our experiments, like others (Tabei et al., 2012), show that the different families of predictions

that are defined by the two protocols are not equally well predicted, which justifies their separate

assessment, as we have already explained in Section 3.3. These discrepancies in terms of prediction

quality should be taken into account when one wants to merge the different families of pairs into a

single ranked list of novel candidate interactions from the more to the less confident as predicted by

our models. This problem was discussed and solved in Section 3.6. A limitation of our protocol is

that it assumes the presence of known positive and negative interactions. Most often in biological

networks, only positive interactions are recorded, while all unlabeled interactions are not necessarily

true negatives (a notable exception in our experiments is the EMAP dataset). In this chapter,

we considered that all unlabeled examples are negative examples. It was discussed in Section 3.4

that this approach is reasonable. It would be interesting nevertheless to design tree-based ensemble

methods that explicitly takes into account the absence of true negative examples (e.g., Denis et al.

(2005a)).

To illustrate the interpretability of trees and ensemble of trees that were explained in this chapter,

we performed several illustrative experiments on Yamanishi et al. (2011)’s drug-protein interaction
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network. We have shown that, with single trees, it was possible to obtain, both from the local and

the global approaches, a partitioning of the adjacency matrix into different regions that are expected

to be either especially connected or not. These regions can furthermore be characterized by the input

features that are tested along the path towards the corresponding leaves. We showed that a similar

partitioning, together with a feature-based explanation, can also be obtained from an ensemble of

trees by exploiting a tree-based proximity measure and by adapting feature importance scores. Using

these tools, a biologist can thus obtain an interpretable explanation about why a particular drug

or group of drugs tend to interact with a particular protein or group of proteins. This explanation

should help them understanding more deeply the nature of the interactions.

These experimentations have however also highlighted several limitations of the approach that

should be addressed as future works. First, while tree-based methods are almost parameter-free, it

is not possible to avoid setting several thresholds when it comes to extract interpretable information

using these methods (e.g., stop splitting parameters, and threshold on p-values or importance scores).

This makes the approach only semi-automatic. Tree-based methods make the hypothesis that it is

possible to partition the adjacency matrix into rectangular regions where either all pairs are connected

or no pairs are connected. In practice however, as a consequence of a departure with respect to

this hypothesis and also of the very sparse nature of the interactions, the partitioning that is obtain

contains mostly regions with unconnected pairs and that are very unbalanced in shape and sizes.

This makes the interpretation of our results difficult. Finally, each region is characterized by a list

of features but it is not always clear which features in these lists are really decisive to define the

region and explain the interactions it contains. Indeed, some of these features are mainly used

to isolate other regions during the hierarchical tree partitioning and therefore they are not directly

characteristic of the region of interest. Our approach when generating for example the network

in Figure 4.22 was to focus on properties that are more significantly present in drugs/proteins in

the cluster than in a random set but the lack of some property might also be crucial to explain

interactions.



Chapter 5

Predicting genetic interactions in yeast

In this chapter, we try to infer at best the whole genetic interaction network in yeast, with

tree-ensemble methods. Genetic interactions correspond to the modification of the action of

one gene by the expression of another gene. Several experimental techniques exist to measure

them, and we found eleven different subnetworks in the literature, that we use as gold standard

to predict the unknown interactions. Additionally, we describe the 22 features sets, related to

the genes, that are used as input in our algorithms. We present the different cross-validation

techniques that we carry out to assess our methods, and compare the predictive performance to a

new baseline based on the bias that occurs between the different subnetworks. We finally predict

new genetic interactions, and obtain a global ranking. This ranking, as well as experimentally

measured interactions, are then compare to GO terms. Through this comparison, we show that

the latter can be cleaned by cross-validation.
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5.1 Introduction

An important class of biological networks are genetic interaction networks (Mani et al., 2007). There

is an interaction between two genes when the effect of a mutation on one gene is modified by a mu-

tation on the other gene. If the effect is modified positively the interaction is called ”positive” and if

the effect is modified negatively the interaction is called ”negative”. The knowledge of these inter-

actions is very important to understand the function of the genes and their products, and globally to

elucidate functional and organizational principles of biological systems. In addition, a genetic network

may provide fundamental insights into the genetic architecture underlying the genotype-phenotype

relationship that governs genetic diseases (Costanzo et al., 2013). Experimental techniques exist

that allow to quantitatively measure these interactions. Nevertheless, these techniques are labori-

ous and costly, and only about 10% (divided into eleven different subnetworks) of all 18 millions

possible pairs between the ∼6000 genes of the yeast S.cerevisiae have been experimentally verified

so far. The use of in silico network inference techniques is thus very interesting to complete these

experimentally confirmed interactions (Wong et al., 2004; Chipman and Singh, 2009).

Building on the experience gained in the previous chapters, our goal here is first to see how well

it is possible to complete the genetic interaction network of the yeast S. cerevisiae using supervised

learning methods, and second to find the best way to apply supervised inference methods to actually

infer this network. To achieve this goal, we need first some partial knowledge of the network in

the form of a set of experimentally labeled pairs of genes and second, information about genes to

use as input features for the inference. S.cerevisiae has been extensively studied by biologists and

is therefore one of the best-understood eukaryotes at the molecular genetic level. In consequence,

plethora of information are available in public datasets to describe yeast genes. Also, as mentioned

earlier, about 10% of the possible gene pairs in yeast have been experimentally tested in the context

of various studies and are available for training supervised learning models. The yeast genetic

interaction network thus constitutes an excellent testbed for the application of supervised network

inference methods.

Several papers in the literature (e.g., Wong et al., 2004; Paladugu et al., 2008; Chipman and

Singh, 2009; Li and Luo, 2009; Pandey et al., 2010; Li et al., 2011; Zhang et al., 2012; Linden et al.,

2011; Alanis-Lobato et al., 2013) have already addressed the problem of the prediction of genetic

interactions in yeast. Most of these studies are however limited to synthetic sick and lethal (SSL)

interactions, which represent only one type of genetic interactions (the negative ones). Moreover

SSL are not quantitive but only indicate the presence or absence of an interaction, without specifying

the effect level. Only a few papers have tackled the full problem of predicting both positive and

negative interactions in a quantitative way. Among these, Ulitsky et al. (2009) and Ryan et al. (2010)

use supervised learning methods to complete missing values within known subnetworks (i.e., only

LS × LS predictions). Eronen et al. (2010) and Linden et al. (2011) estimate genetic interactions

in a larger scale exploiting matrix approximation techniques. They also focus only on LS × LS

predictions and build their predictions only from the quantitative genetic interaction matrix itself,

without incorporating any input features on genes. To our knowledge, no study has been carried

out to infer the complete yeast genetic interaction network by combining the full set of all known

interactions and a large set of yeast gene features.

This chapter is structured as follows. In Section 5.2, we describe the S.cerevisiae specie and

its main characteristics. We also define genetic interactions and review the main experimental tech-

niques to measure them. In Section 5.3, we detail the main datasets used in this study. To constitute
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our training interaction network, we collected about 4 millions pairs that were experimentally tested

in the context of 11 independent studies. As inputs for the genes, we used a total of about 11000

features obtained from 22 different sets of measurements relative to yeast genes. In Section 5.4, we

present the results we obtained on these datasets with different cross-validation schemes. We first

study separately the performance on the 11 different subnetworks elucidated in the 11 studies and

then consider the full network of 4 millions pairs. Finally, Section 5.5 discusses the prediction of the

full genetic interaction network, using the best parameter setting identified in the previous section.

Following previous works, the quality of these predictions is assessed by checking the enrichment of

predicted positive and negative interactions in pairs of genes that participate to a same biological

function (as labeled in the Gene Ontology).

5.2 Background

In this section, we first describe the specie that will be studied in this chapter. After that, we define

more precisely (positive and negative) genetic interactions and review the different techniques to

measure them experimentally.

5.2.1 Yeast Saccharomyces cerevisiae

Saccharomyces cerevisiae is a specie of yeast, also called brewer’s yeast or baker’s yeast. It is a

eukaryotic organism which belongs to the Fungi kingdom. It is a single-cell organism, round to

ovoid, from 6 to 12 µm long and 6 to 8 µm long. It can survive and grow under two forms: one

haploid form (16 chromosomes) and one diploid form (32 chromosomes). The genome of the yeast

is composed of 6000 genes and was the first eukaryotic genome to be completely sequenced, in 1996

(Goffeau et al., 1996).

S.cerevisaie is considered as a model organism (Botstein et al., 1997), for different reasons. It

can grow on defined media, and its environment can be completely controlled. It grows rapidly, with

a 80 minutes generation time. Efficient techniques have been developed that permit any gene to

be replaced with a mutant allele or to be deleted from the genome. The yeast shares a common

life cycle and cellular architecture with higher eukaryotes, like human and plants (Mell and Burgess,

2002).

Today, the Saccharomyces Genome Database (SGD) (http://www.yeastgenome.org) pro-

vides information about every yeast gene. Since the yeast genome has been sequenced, the un-

derstanding of biological function of genes have considerably increased, and annotation of these

functions can frequently be transferable to other species. (Botstein and Fink, 2011)

5.2.2 Genetic interactions

The phenotype of a organism does not only depend on each gene individually. Effects of genes are

not independent to each others and dependance can be highlighted by genetic interaction networks.

A genetic interaction between two genes A and B is defined by the deviation between:

- the phenotype of an organism where a combination of the two genes were deleted (a double-

mutant organism’s phenotype)

- and the phenotype that would be expected from the two single-mutant organism’s phenotypes

(the expected neutral phenotype).

http://www.yeastgenome.org
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To complete the definition, we need a quantitative phenotypic measure, and a neutrality function

(Mani et al., 2007). In the case of yeast genetic interactions, the phenotypic measure is typically the

fitness, which corresponds to the growth rate of the colony size relative to the growth rate of the

wild type (Schuldiner et al., 2005; Collins et al., 2007; Fiedler et al., 2009; Costanzo et al., 2010).

One can then measure an interaction between two genes by comparing the observed colony size of

the double mutant to the expected value. If the double mutants grow more slowly or rapidly than

expected, the two genes are said to interact with each other.

The expected fitness value of a double-mutant must be computed from the fitness values of

the two corresponding single-mutants. Different neutrality functions have been used in literature to

compute it (Mani et al., 2007):

- The multiplicative function predicts that double-mutant fitness is the product of the two

single-mutant fitness. For a pair of genes (A, B) the expected fitness is:

WAB = WA ·WB ,

where WA and WB are the fitness values of the single-mutants where the genes A and B are

deleted, respectively.

- The additive function predicts that the double-mutant fitness is equal to

WAB = WA + WB − 1.

- The log function predicts that the double-mutant fitness is equal to

WAB = log2

(
(2WA − 1)(2WB − 1) + 1

)

- The minimum function predicts that the double-mutant fitness is equal to the fitness of the

less-fit single-mutant:

WAB = min(WA, WB)

In the case of yeast fitness, the expected double-mutant phenotype is typically modeled with the

multiplicative function (Costanzo et al., 2013), and we will use this neutral function in the different

examples that follow in this chapter. It has been suggested that this function is the most accurate

at identifying functional relationships (Eronen et al., 2010).

Negative interactions

As we already said, a genetic interactions is measured by computing the difference between the

measured fitness of the double-mutant and the expected fitness. If the double-mutant grows more

slowly than expected, the difference is a negative number and the interaction is called negative

interaction. In the extreme case where the combination of the two mutations leads to an inviable

organism, the interaction is called synthetic lethal, otherwise the interaction is called synthetic sick.

An illustration of such interactions is shown in Figure 5.1.

Negative interactions are often found for proteins that work in compensatory pathways, i.e. in

parallel pathways that regulate the same function (Kelley and Ideker, 2005). Indeed, in this situation,

deletion of either gene is expected to delete the function of one but not both pathway.
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Figure 5.1: Negative genetic interactions happen when the combination of the gene

mutations causes a stronger growth defect than expected. In the extreme case of

synthetic lethal interactions, the combination of the mutations leads to the death of the

organism. Figure taken from Costanzo et al. (2011).

Positives interactions

In the contrary case where the double-mutant grows more rapidly than expected, the difference

between the measured fitness of the double mutant and the expected fitness is positive and the

interaction is called positive interaction. They can be classified into different categories according

to different biological interpretation (Dixon et al., 2009) (Figure 5.2).

A masking interaction happens when the fitness of the double mutant is greater than expected,

but lower than the fitness of the two single-mutant. It often happens between genes encoding

proteins that belong to a same pathway (Fiedler et al., 2009). Indeed, the deletion of a protein

disrupts the function, and the deletion of the second protein does not cause a worse fitness.

A suppression interaction happens when two genes A and B interact in such a way that the

double-mutant fitness is greater than the lowest single-mutant fitness. It often indicates that the

protein encoded by B is the suppressor of the function of the protein encoded by A, i.e. it is a

negative regulator of a pathway associated with A. The mutation of the negative regulator B leads

to hyperactivation and accumulation of a toxic gene product. When the gene A is also deleted, it

reduces the flux through the pathway, and suppress the toxic effects (Dixon et al., 2009).

A symmetric interaction happens when the fitness of the two single mutants and the fitness of

the double-mutant are all equal to each other. It is currently observed when the proteins encoded

by the genes belong to a same complex.

The different types of negative and positive interactions are illustrated in Figure 5.3. These

classes of interactions are useful to understand the organization of molecular pathways in an organism

(Collins et al., 2010).

Hypothesis about the organization of an organism can also be done by comparing genetic

interaction profiles. The genetic interaction profile of a gene is a vector that contains the interactions

between this gene and all the other genes of the network. If other genes have highly correlated
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Figure 5.2: Positive interactions happen when the combination of the gene mutations

causes a lighter growth defect than expected. They can be divided into three categories

(masking, suppression or symmetric interactions), according to fitness of the double-

mutant compared to the fitness of the two single-mutant. Figures taken from Costanzo

et al. (2011).

profiles, it may signify that their encoded proteins act coherently in a biochemical pathway (Collins

et al., 2007).

5.2.3 Experimental techniques

In this section, we review the different experimental techniques that are found in the literature to

measure genetic interactions in yeast S.cerevisiae. These different techniques differ in experimental

designs, data pre-processing, and/or interaction scoring schemes (Linden et al., 2011). Our goal in

this section is not to be exhaustive or to go into all the details but only to give a brief overview of

the techniques behind the genetic interaction datasets we will exploit in the next sections.

Synthetic genetic array (SGA) methodology

The SGA methodology (Tong et al., 2001) is a high-throughput procedure for the systematic con-

struction of double-mutants. In each screen, a query strain containing a mutation is crossed to an

array of deletions mutants. The strains are mated and diploid strains (cells that contain two versions

of each gene) are generated. Meiosis and sporulation (cellular division that produces haploid cells

from diploid cells) give cells carrying zero, one, or two mutations. Several selection steps are then

carried out to select haploid cells that carry two mutations. All double-mutant strains correspond-

ing to a given query gene deletion are grown simultaneously on the same plate. Growth rates are

monitored by analyzing the colony sizes.

Essential genes are those genes that are necessary for the survival of the organism. They cannot

be deleted without leading to the death of the cell. This is problematic to measure interaction

involving such genes. To address this issue, a technique called DAmP (decreased abundance by
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Figure 5.3: Positive and negative interactions happen when the measured double-

mutant fitness differs from the expected one. In this example, WA = 0.8, WB varies

from 0 to 1 (x-axis) and WA,B varies from 0 to 1 (y -axis). The dark green zone

represents negative suppression interactions, the light green zone represents the positive

masking interactions and the red zone represents the positive interactions. Figure taken

from Costanzo et al. (2013).
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mRNA perturbation) is typically used that can decrease the expression of a gene and maintain cell

viability. (Schuldiner et al., 2006)

This technique was first proposed to identify synthetic sick or lethal (SSL) interactions by

simply monitoring the inviability of the double mutants (Tong et al., 2001, 2004; Tong and Boone,

2006). Used as such, the SGA approach is limited as it does not allow to assess the interactions

in a quantitative way (only a binary score is provided for each pair) and it is restricted only to the

detection of negative interactions. The next two techniques can be seen as extensions of the original

SGA approach to address these two limitations.

Epistatic miniarray profiles (E-MAPs)

The epistatic miniarray profile (E-MAP) approach is a variation of the SGA method that allows to

detect both positive and negative interactions and that provides a quantitative measure of the level

of interaction for each tested gene pair. Since its introduction in 2005, this approach have been

used in several studies that have lead in total to the measurement of more than 1 million gene pairs

(Schuldiner et al., 2005; Collins et al., 2007; Wilmes et al., 2008; Fiedler et al., 2009; Jonikas et al.,

2009; Aguilar et al., 2010; Zheng et al., 2010; Braberg et al., 2013; Surma et al., 2013).

E-MAPs use the SGA approach to generate systematic double-mutants for a large a priori

defined set of genes. To estimate the growth phenotype, digital photographs of the arrays of mutant

yeast colonies are taken after a defined period of time. The fitness of each double-mutant is then

estimated by measuring the colony area. These raw area values are preprocessed to correct for some

artifacts that can appear during the measurements (e.g., uneven image lighting).

To compute an interaction score, the fitness of the double-mutant needs to be compared to the

expected fitness, which depends on the fitness of each single-mutant (see Section 5.2.2). To achieve

this, the fitness values are normalized in two steps.

First, all fitness values in a given plate (which contain all the double-mutants relative to one

query strain) are scaled according to the typical size of the colony on that plate, which is defined

as the mean of the colony sizes on the plate ranked between the 40th and 60th percentiles. This

scaling has two goals. First, it cancels the difference in growth condition that might exist from one

plate to another. Second, and more importantly, it relates the double-mutant fitness to the fitness

of the single-mutant corresponding to the query gene. Indeed, because most mutations in the array

have little or no growth defect, the typical colony size can be interpreted as an estimation of the

fitness of the single-mutant corresponding only to the deletion of the query gene.

The goal of the second normalization is to relate the (scaled) double-mutant fitness to the

fitness of the other single-mutant, corresponding to the deletion of the test gene. This latter fitness

is estimated by the median of the fitness of all double-mutants arising from the test gene (ie., the

double-mutant in each plate that corresponds to this test gene). The measurements are repeated

six times and the double-mutant and single-mutant fitnesses are compared to each other using a

modified t-statistic. The resulting scores, called S scores, thus take into account both the strength

and the confidence of the interaction (Collins et al., 2006).

Note that each score is actually computed twice because each gene in a pair plays once the role

of the query gene and once the role of the test gene. The final score of a pair is thus obtained as

the average of the corresponding two scores.

Typically, it has been estimated that an interaction that gets a S score lower than −2.5 can be

confidently considered as a negative interactions, and an interaction that get a S score higher than 2
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can be confidently considered as a positive interaction. Note that when the genes are located on the

same chromosome and have a low recombination frequency, the corresponding strain is considered

incorrect and is therefore removed from the analysis. E-MAPs thus typically contain about 10%

missing values (Collins et al., 2010)

In all applications of the E-MAP approach, a set of genes is first selected and all pairs defined

by these genes are systematically tested. These genes are not chosen at random but rather they are

selected because they belong to a same biological process or pathway. The main motivation of this

biased selection is to increase the signal-to-noise ratio by ensuring that the proportion of interactions

among the tested gene pairs will not be too small. Indeed, it has been estimated that the chance

to have an interaction between two randomly chosen genes is equal to 0.5%, while it can reach 5%

when the genes are chosen according to their participation to a specific biological process (Collins

et al., 2007).

SGA scores

Another approach based on the SGA method has been adopted in (Baryshnikova et al., 2010;

Costanzo et al., 2010) to estimate genetic interactions. Unlike the E-MAP, this approach has been

applied in a genome-wide manneer to test interactions between one large set of randomly selected

query genes and all yeast genes, leading to an asymmetric and rectangular interaction score matrix.

Several systematic biases associated with genome-scale SGA methodology have been identified

in (Baryshnikova et al., 2010): one plate may have a different time of incubation, the growth medium

may be uneven on the surface, a local competition for nutrient between neighbor mutant strains

can happen, or errors from robotic instrument might lead to spurious batch effects. Normalization

procedures have been developed to correct for all these biases.

After normalization, a SGA score can be computed from two single-mutant fitnesses (WA and

WB) and one double-mutant fitness (WAB) derived from normalized colony size measurements,

assuming a multiplicative expected fitness:

ε = WAB −WA ·WB .

Like in the E-MAP approach, single-mutant fitness values are derived computationally from the

normalized colony size. All fitness scores W are scaled according to the fitness of a wild type strain

and so are always comprised between 0 and 1 (since mutations always decrease the fitness with

respect to the wild type). Consequently SGA scores ε are always comprised between -1 and 1.

Each double-mutant is replicated four times and fitness values are averaged over these replicates.

Unlike in the E-MAP approach, the SGA score does not take into account the variance of the

estimated fitness over these replicates but they are instead used to associate a detection p-value

to each interaction score. Gene pairs with a p-value higher that 0.05 are considered as missing

values. Among measured pairs with a p-value lower than 0.05, one can then distinguish negative,

positive, and neutral interactions using two cutoff values. (Costanzo et al., 2010) consider as negative

interactions gene pairs with a SGA score ε < −0.12, as positive interactions gene pairs with ε > 0.16,

and as neutral all other pairs.

Genetic interaction mapping (GIM)

Unlike E-MAPs and SGA scores, the GIM (Decourty et al., 2008) approach is not based on the

SGA method. Here, the query strain is not crossed to each of the strains of an array individually,
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but is mated in a single pool combining all gene deletions of the collection. The double-mutants

are selected and grown in rich liquid medium. The tags that mark the deletions are amplified and

labeled with dyes. Finally microarrays are used to measure the abundance of double-mutants (signal

intensity Q). They are normalized and compared to microarrays obtained with the same procedure,

but performed in parallel with a reference deletion, chosen because no significant effect on growth

has been observed (signal intensity R). The normalized result is equal to log2(Q/R). A pair of genes

for which the value log2(Q/R) is lower than −1 (in at least one of the performed screens relative to

this gene) is considered as negative, included between −1 and 1 is considered as neutral, and higher

than 1 is considered as positive.

Like SGA score and unlike the E-MAP approach, the GIM approach is applied with a set of

query genes different from the genes in the deletion library, leading in this case to a rectangular

matrix of interaction scores.

5.3 Datasets

To train a supervised learning model, we need labeled training data. In our case, training examples

are pairs of genes that need to be labeled as positive, negative, or neutral interactions and to be

described by input features. In this section, we present the different datasets from which we built our

training set: in Section 5.3.1, the genetic interaction subnetworks and in Section 5.3.2, the different

gene feature sets.

5.3.1 Training networks

To define our training genetic interaction network, we collected datasets originating from 11 different

studies from the literature. These studies were published between 2005 and 2013. Altogether, the

resulting training network contains quantitative interaction scores for almost 4 millions gene pairs.

Yeast having about 6000 genes, they represent in total about 10% of all possible gene pairs. Note

that each pair of genes for which an interaction score has been measured can be classified into

one of three classes: positive, negative, and neutral. This is unlike most other biological networks

considered in Chapter 4, for which only positive and unlabeled pairs are available (see also the

discussion in Section 3.4).

We describe below each of the 11 different subnetworks, focusing on their size and how the

tested gene pairs were selected. Details of the different experimental techniques were discussed in

Section 5.2.3. We end the section with some global statistics about these subnetworks.

E-MAP

Eight genetic interaction subnetworks were experimentally measured using the E-MAP approach.

Each subnetwork corresponds to a set of genes sharing some common biological function and,

except for one study, all pairs of genes in the set have been systematically tested, leading to square

and symmetric interaction score matrices (with however missing values). Sizes of the gene sets range

from 300 to 1500.

The gene sets corresponding to each of the eight E-MAP datasets are defined as follows (in

chronological order):
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1. 424 genes acting in the early secretory pathway (Schuldiner et al., 2005). The genes in this

set are selected because their encoded proteins are located in the Golgi apparatus or in the

endoplasmic reticulum.

2. 754 genes involved in chromosome biology, i.e. in functions such as chromatin regulation,

transcription, DNA repair or replication, or chromosome segregation (Collins et al., 2007).

These genes were selected because they encode a protein from a complex known to be involved

into one of the targeted functions.

3. 552 genes involved in one or various RNA-related processes (Wilmes et al., 2008)

4. 483 genes belonging to the phosphorylation network (signaling) (Fiedler et al., 2009). Unlike

the previous sets, these genes are not restricted to a specific function but can be involved in

several processes in the cell.

5. 356 genes involved in various aspects of plasma-membrane biology (Aguilar et al., 2010)

6. 323 genes encoding general transcription factors and site-specific DNA-binding transcription

factors (Zheng et al., 2010).

7. 1487 genes including genes encoding proteins localized in mitochondria and genes encoding

proteins acting in the early secretory pathway (Hoppins et al., 2011). Only 481 genes out of

the 1487 were used as query, leading to a 1487 × 481 matrix of genetic interactions. This

matrix is called the MITO-MAP.

8. 742 genes involved in lipid metabolism, sorting, post-Golgi trafficking, and other related pro-

cesses (Surma et al., 2013)

In what follows, we will denote these eight datasets EMAP1 to EMAP8.

Other techniques

In addition to these eight E-MAP networks, we also include in our study three other networks

measured with other techniques.

SGA scores. Costanzo et al. (2010) apply the SGA score method described earlier to screen 1712

query genes, covering all biological processes. These queries (selected randomly and idependently of

their function) were crossed to 3885 array strains. This resulted in a large 3885× 1712 interaction

matrix, with however about 88% missing values.

GIM. To generate this dataset (using the GIM approach), Decourty et al. (2008) performed 73

screens with 41 different query mutations (32 duplicates) chosen within genes involved in several

RNA metabolism pathways. A subset of 3812 genes where kept in the final dataset. These genes are

those that exhibited a signal-to-noise ratio above background in more than half of the experiments.
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Table 5.1: The output datasets cover different parts of the 6717× 6717 genetic inter-

action network of the yeast S.cerevisiae.

Dataset Columns Rows Negative interactions Positive interactions Misses

EMAP1 424 424 5436 3.02% 2912 1.62% 13116 7.30%

EMAP2 743 743 22942 4.16% 10780 1.95% 187128 39.90%

EMAP3 499 499 6098 2.45% 4290 1.72% 71952 28.90%

EMAP4 451 451 4392 2.16% 2490 1.22% 26036 12.80 %

EMAP5 356 356 2510 1.98% 1042 0.82% 24768 19.54%

EMAP6 300 300 5772 6.41% 1558 1.73% 5990 6.66%

EMAP7 1487 481 18498 2.59% 9141 1.28% 42221 5.9%

EMAP8 741 741 11504 2.10% 3178 0.58% 46976 8.56%

SGA 3840 1673 67245 1.05% 6982 0.11% 5663310 88.15%

GIM 3768 41 1902 1.23% 2079 1.35% 11623 7.52%

ER 322 145 501 1.07% 2007 4.30% 3788 8.11%

ER stress. With the goal of identifying genes contributing to the process of protein folding in the

endoplasmic reticulum (ER), Jonikas et al. (2009) used the SGA methodology for the construction

of 329× 152 double-mutants corresponding to genes with a role in ER folding. Here, the phenotype

measured to highlight the genetic interaction is not the growth rate, as it was the case in the other

networks. Instead, they use the unfolded protein response (UPR) level as a quantitative phenotype, or

ER stress. The obtained interaction values are called π-scores. A π-score is considered as aggravating

when it is smaller than −0.75 and alleviating when it is higher than 0.75 (neutral otherwise).

Statistics about network datasets

One difficulty to integrate these different networks is to match gene names and also to associate

them with the feature sets that will be presented in Section 5.3.2. In this goal, we downloaded a

list of 6717 genes or open reading frames (ORFs) provided by UCSC (sacCer2, June 2008). This

genome assembly is based on sequences dated June 2008 from the Saccharomyces Genome Database

(SGD). The different datasets have then been filtered out to keep only the genes and ORFs that

appear in this list.

The main characteristics of the eleven (filtered) datasets are reported in Table 5.1, and illus-

trated in Figure 5.4. We also computed the overlap between the different datasets in Table 5.2.

Some datasets share a quite important part of their pairs with another dataset. For example, EMAP1

shares about 25% of its pairs with EMAP7 and about 25% with EMAP8. ER shares about 20% of

its pairs with EMAP1 and 25% with EMAP7.

In total, 3,893,856 pairs have been measured between 5252 genes. We built a graph where there

is an edge between two genes if at least one interaction score has been measured between them

(including negative, neutral and positive interactions) in one of the eleven output datasets. The

adjacency matrix of the resulting graph is represented in Figure 5.5. The labeled pairs represent

14.12% of the 5252×5252 matrix (including all genes for which the degree is > 0) and 8.64% of the

complete 6713 × 6713 matrix (including all the genes from the UCSC sacCer2 list). In this graph,

the minimum degree for a gene is equal to 21 and the maximum is equal to 4226 (not taking into
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Figure 5.4: The size of the eleven datasets are illustrated in this Figure. The quantities

of negative interactions are represented by red bars, positive interactions by green bars

and neutral interactions by gray bars. The second graph is a simple zoom-in of the first

graph.

Table 5.2: Overlap between the different output datasets. An element (i , j) in the

table shows the proportion of pairs in dataset i that are also measured in dataset j .

EMAP1 EMAP2 EMAP3 EMAP4 EMAP5 EMAP6 EMAP7 EMAP8 SGA GIM ER

EMAP1 0.44% 0.02% 0.26% 2.71% 0.02% 24.83% 26.41% 4.30% 0% 4.73%

EMAP2 0.20% 2.86% 3.36% 0.34% 3.67% 2.67% 0.61% 7.67% 1.21% 0.53%

EMAP3 0.02% 5.90% 1.56% 0.05% 1.22% 0.90% 0.06% 4.19% 1.98% 0.09%

EMAP4 0.25% 6.92% 1.56% 2.43% 1.46% 3.87% 2.19% 4.96% 0.92% 0.17%

EMAP5 4.43% 1.22% 0.08% 4.23% 0.05% 11.44% 17.75% 5.56% 0% 0.32%

EMAP6 0.03% 15.95% 2.58% 3.09% 0.06% 1.20% 0.28% 5.40% 0.70% 0.43%

EMAP7 6.20% 1.46% 0.24% 1.03% 1.75% 0.15% 6.66% 4.35% 0% 1.57%

EMAP8 8.76% 0.45% 0.02% 0.77% 3.60% 0.05% 8.84% 3.37 % 0% 6.66%

SGA 0.94% 3.67% 0.97% 1.15% 0.74% 0.59% 3.81% 2.22% 0% 0.51% 0.38%

GIM 0% 3.18% 2.51% 1.17% 0% 0.42% 0% 0% 2.78% 0%

ER 18.31% 4.46% 0.36% 0.71% 0.77% 0.84% 24.43% 8.84% 6.72% 0%
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Figure 5.5: 6713 × 6713 adjacency matrix of the genetic interaction network of the

yeast S.cerevisiae. A black point corresponds to a pair for which an interaction score

(negative, neutral or positive) has been measured in at least one of the eleven datasets.

To place most labeled pairs in the top left corner of the graph, genes are sorted on the

axes in decreasing order of the number of measured pairs in which they are involved

(i.e., their degree).

account the set of unlabeled genes). Although 4 Millions pairs have already been experimentally

checked, these statistics show that a huge amount of pairs still have to be labeled.

In addition to the network of all labeled pairs, we also computed the two networks of pairs

interacting negatively and positively. We consider that a pair interacts negatively if it is labeled

as negative in at least one dataset, without being labeled positively in another one. We got a

total of 179,482 negatively interacting pairs, which represent 4.61% of the labeled pairs. In the

same manner, we considered that a pair interacts positively if it is labeled as positive in at least

one dataset, without being labeled negatively in another one. We got a total of 54,107 positively

interacting pairs, which represent 1.39% of the labeled pairs. Pairs that are labeled as negative in

one dataset and positive in another one are considered as neutral. We found 1264 pairs with such

conflicting measurements.
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Table 5.3: Summary of all input datasets

Nr Descriptions Types of data Nb of genes Nb of variables % of misses

1 Chemo-gen. (homoz.) Real 4715 418 9.49

2 Chemo-gen. (heteroz.) Real 5289 726 3.26

3 Fitness (homoz.) Real 4625 14 0

4 Fitness (heteroz.) Real 5711 11 0

5 Chemo-gen. (Costanzo) Real 6004 11 2.57

6 Morphol. data (SCMD) Real 4693 501 0

7 Express. (deleted genes) Real 6157 300 0.44

8 TF deletion (1) Real 5970 269 1.31

9 TF deletion (2) Real 6171 212 12.41

10 Expression Real 6245 904 0

11 Histone modifications Real 6100 44 40.24

12 Protein abundances Real 4146 6 45.8

13 Localization Binary 6214 23 0

14 Upstream motifs Binary 5564 6816 0

15 Phylogenetic profiles Binary 6299 145 0

16 eQTL Binary 4715 41 0

17 Natural variations Real 5832 38 0

18 Gene essentiality Binary 6717 1 0

19 Transcription network Binary 4351 157 0

20 Kinase network Binary 1331 87 0

21 Protein complexes Binary 2668 547 0

22 Chaperons Binary 3813 128 0

23 RBP network Binary 4476 46 0

5.3.2 Input datasets

The set of input features used for the inference is composed of 22 datasets, for a total of 11319

features (4503 when excluding the upstream motifs). These datasets are summarized in Table

5.3 and discussed separately below. We divide the 22 sets into four main categories: measurements

obtained following gene deletions (6 datasets), gene expression and protein abundance measurements

(6 datasets), genetic information (6 datasets), and networks (5 datasets).

Measurements obtained after gene deletions

Chemical genomics. Hillenmeyer et al. (2008) performed chemical genomic assays on the yeast

whole-genome heterozygous and homozygous deletion collections. They quantified the growth fitness

of gene deletion strain, in the presence of chemicals or environmental stress conditions. The goal of

this experiment was to uncover phenotypes for genes of the yeast. We can distinguish two different

datasets:

- The homozygous dataset (both alleles are deleted) that contains 418 variables that represent

the different small molecules and environmental stresses. They are related to 4715 genes, all

non-essential since their homozygous deletion would be lethal.
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- The heterozygous dataset (one allele is deleted) that contains 726 variables and is related to

5289 genes.

environments

x1 x2 x3 . . .

deleted genes

g1

g2
...

Fitness. In the study of Steinmetz et al. (2002), heterozygous diploid and homozygous diploid dele-

tion strains were quantitatively measured and monitored in parallel in different medium conditions.

We can again distinguish two datasets:

- the homozygous dataset, containing 14 variables related to 4625 genes.

- the heterozygous dataset, containing 12 variables related to 5711 genes.

Chemical genomics (Costanzo). These chemical genomic assays were performed by Costanzo

et al. (2010) as described previously in (Hillenmeyer et al., 2008). The obtained fitness defect scores

were mean normalized by genes and by experiment. The dataset contains 11 variables and is related

to 6004 genes.

Morphological data (SCMD). This dataset comes from the assays in (Ohya et al., 2005). They

deleted genes and obtained quantitative morphological data of yeast mutant cells, like cell shape or

nuclear morphology of cells at a specific stage of the cell cycle. The dataset contains 501 variables

and is related to 4693 genes.

Gene expression and protein abundance

Expression with deleted genes. This dataset comes from (Hughes et al., 2000). They constructed

a reference database of gene expression profiles corresponding to 300 diverse mutations and chemical

treatments in yeast. The dataset contains 300 variables and is related to 6157 genes.

TF deletion. These data come from the two references (Hu et al., 2007) and (Chua et al., 2006).

- In the first paper, the authors grew up 269 transcription factor knockout strains and measured

gene expression of each of these strains using microarrays. The dataset contains 269 variables

and is related to 5970 genes.

- In the second paper, microarray profiling was performed in replicate in dye reversal format for

each transcription factor experiment (overexpression or deletion) and the dataset shows each

replicate separately. There are 55 overexpressed TFs and 51 deleted TFs. Then the dataset

contains 212 variables and is related to 6171 genes.

Expression data (mRNA). This dataset comes from (Faith et al., 2007a). It collects Affymetrix

expression compendia for Saccharomyces cerevisiae, totalizing 904 variables related to 6245 genes.
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Histone modifications. Histone are proteins found in the nuclei of eukaryotic cells. DNA winds

around them and histones allow, or not, the DNA to be transcribed. This dataset comes from

(O’Connor and Wyrick, 2007). They warehoused genome-wide microarray data mapping patterns

of 22 histone modifications and other chromatin features. The dataset contains 44 variables related

to 6100 genes (half of the variables is relative to promoters and the other half is relative to ORF).

Protein abundances and variation. These data come from (Newman et al., 2006). They measure

protein abundance by flow cytometry. The first two variables are the abundance measurements for

strains grown in a rich and a minimal medium. The third and fifth columns are the coefficient of

variation values for the two media, and the fourth and sixth columns are the running median of CV

values for the two media. The dataset contains then 6 variables and is related to 4146 genes.

Genetic information

Localization. The vector of features in this case consists of 23 binary values coding for the pres-

ence/absence of the protein in a given intracellular location. This data was obtained from the

experiment in (Huh et al., 2003). The dataset contains 23 variables and is related to 6214 genes.

Upstream motifs. This dataset comes from (Brohée et al., 2011). The dataset was collected

using the method in (Janky and van Helden, 2008). It contains over-represented spaced motifs

(dyads) in the upstream non-coding sequences of genes in 19 species of the class Saccharomycetes.

A total of 33,276 dyads have been collected for 5564 genes. However, we limited ourself to motifs

that appear in the upstream sequences of at least two of the 2010 genes that appear in at least one

of the first five E-MAPs. This reduces the number of motifs from 33,276 down to 6,816.

Phylogenetic profile. The existence of orthologs of a given gene in a set of species is potentially

an important source of information for the prediction of biological networks. In our experiments, we

use the phylogenetic profiles gathered by Yamanishi and Vert (2005). They were obtained from the

orthologous clusters in KEGG. Only fully sequenced genomes are taken into account. Each gene is

described by a vector of 145 binary values, each one coding for the presence or the absence of an

orthologous gene in a given organism. The dataset contains 145 variables and is related to 6299

genes.

eQTL. These data come from (Smith and Kruglyak, 2008). eQTL stands for ’expression quanti-

tative trait loci’ and are genomic loci that regulate genetic expression levels. Smith and Kruglyak

(2008) performed linkage analysis on the transcript level within glucose and ethanol conditions, and

3997 and 3489 linkages were observed in glucose and ethanol respectively. They also determined

loci that show gene-environment interactions (gxeQTL) and found 1555 linkages. They divided the

genome into 10-centimorgan-sized bins and counted the number of linkages observed in glucose,

ethanol, or gxeQTL that fell within each of the bins. The majority of linkages fell into bins with

a significant excess of linkages. Significant bins that were located immediately next to each other

were merged into a single peak to form 13, 13, and 15 peaks for glucose, ethanol, and gxeQTL

respectively. Each of the 41 variables of this dataset correspond to these peaks and are related to

4715 genes.
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Natural variations. These data come from (Liti et al., 2009). They effectively estimate the copy

number of each gene in 38 different strains. The dataset contains then 38 variables and is related

to 5832 genes.

Gene essentiality. This dataset contains only one binary feature indicating for each gene whether

it is essential or not. The list of essential genes was obtained from (Giaever et al., 2002) and is

composed of 1115 genes.

Networks

Transcription network. This dataset comes from Balaji et al. (2006) and contains 12,722 inter-

actions between transcription factors and genes. There is an interaction when the former regulates

the expression of the latter. The dataset contains one variable for each of the 157 transcription

factors and concerns 4351 genes.

Kinase network. These data come from (Ptacek et al., 2005) that identified 4064 phosphorylation

events involving 1331 proteins. The dataset contains 87 variables (protein kinases) and is related to

1331 genes.

Protein complexes. These data come from (Krogan et al., 2006). A Markov clustering algorithm

organized these interactions into 547 protein complexes averaging 4.9 subunits per complex. Then

the dataset contains 547 binary variables involving 2668 genes.

Chaperons. Chaperones are class of cellular proteins which assist folding of proteins to functional

conformation correctly and efficiently. The dataset come from ChaperoneDB1, which is a collection

of yeast chaperone interactions. It contains 128 binary variables (chaperons) related to 3813 genes.

RNA-binding proteins network. These data come from (Hogan et al., 2008). RNA-binding

proteins (RBP) play a role in the regulation of many post-transcriptional steps in gene expression.

They searched for the RNA targets of 46 proteins. They chose a 1% false discovery rate as a

criterion to distinguish targets from non-targets, for most proteins. The dataset contains 46 variables

(proteins) and is related to 4476 genes.

5.4 Cross-validation experiments

In this section, we investigate the exploitation of extremely randomized trees (Geurts et al., 2006a)

and support vector machines in the context of the global and the local approaches (see Section 4.2

for an explanation of these approaches) for the supervised inference of the genetic interactions of

the yeast. To predict negative interactions, we consider that our ”positive” examples are negative

interactions and that our ”negative” examples are the ensemble of both positive and neutral inter-

actions. Symmetrically, to predict positive interactions, we consider that our ”positive” examples

are positive interactions and that our ”negative” examples are the ensemble of negative and neutral

interactions. In both cases, unlike what we did for most networks in Chapter 4, there is no need

1http://chaperonedb.ccbr.utoronto.ca

http://chaperonedb.ccbr.utoronto.ca
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to convert the unlabeled (or missing) pairs into “negative” examples given the availability of the

neutral interactions as well as the interactions of the opposite sign. This is an ideal setting as it

avoids the introduction of false negatives in the training data (see Section 3.4).

Our ultimate goal is of course to provide predictions of interactions for pairs that have not been

measured in any of the eleven genetic interaction subnetworks. Before addressing this question in

Section 5.5, we evaluate in this section the performance of our predictive models by using cross-

validation. In Section 5.4.1, we first perform cross-validation experiments across the 11 individual

subnetworks separately. In the context of these experiments, we also carry out a first assessment

of the relevance of the 22 input datasets for predicting genetic interactions and we compare the

performance of Extra-Trees and support vector machines. In Section 5.4.2, we take benefit from

the overlap between the different subnetworks to see how well the interaction scores provided in the

context of one study can predict the interactions measured in the context of another study. This

performance provides a baseline with which we compare the results obtained in Section 5.4.1 with

supervised inference methods. Finally, in Section 5.4.3, we carry out cross-validation experiments

on the set of all measured gene pairs.

5.4.1 Cross-validation across individual networks

We first perform cross-validation on pairs (to evaluate LS × LS predictions) across individual net-

works. We start with EMAP1 and consider every of the 23 datasets in turn to predict both positive

and negative interactions. We then carry out cross-validation experiments on all other subnet-

works. In this section also, we compare extremely randomized trees with support vector machines

and evaluate the inclusion of the genetic interaction profile among the inputs to improve LS × LS

predictions.

Performance of the different input datasets

The goal of our first experiment is to assess the ability of the different input datasets to predict

genetic interactions. For that purpose, we performed 10-fold cross-validation on pairs (LS × LS)

across EMAP1, using as input every of the 23 datasets in turn. We used the Extra-Trees algorithm

with the global approach and predicted separately negative and positive interactions. For the ten

binary input datasets, we used bootstrapping to generate the training set of each tree (while Extra-

Trees are normally grown from the full dataset). Indeed, split randomization as done in the Extra-

Trees algorithm do not lead to enough diversity with binary features, which yield poor performance.

For each input dataset, we restricted our training data to the set of EMAP1 genes for which a

measurement of the tested input features was available. This filtering reduced the size of the

EMAP1 network from 424 × 424 originally to sizes ranging from 94 × 94 (for the kinase network

input dataset) to 424× 424 (gene essentiality). By doing so, we avoid having to deal with missing

values and thus get a better assessment of each feature set. It means however that our AUROC and

AUPR scores are not strictly comparable from one dataset to another, since they are not computed

from the exact same set of pairs.

Areas under ROC curves (AUROC) and precision-recall curves (AUPR) that we obtained are

shown in Figure 5.6. They allow to rank the different input datasets from the best to the worst for

predicting genetic interactions. The rankings derived from the AUROC and AUPR are very similar.

The best (resp. the worst) dataset in terms of AUROC is also the best (resp. the worst) in terms
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Table 5.4: Comparison of AUPR values resulting from the prediction of negative and

positive interactions of EMAP1, with homozygous chemo-genomic dataset. When the

positive AUPR is adapted to take into account the different between the ratios of the

two networks (in the last column), it increased but stay lower than the negative AUPR.

Negative int. Positive int. Positive int.

Ratio of interactions 3.20% 1.87% 3.20%

AUPR 0.48 0.21 0.29

of AUPR. The difference in performance between the datasets are nevertheless more important in

AUPR than in AUROC.

The vertical lines in these plots represent two baselines:

1. Plain lines represent the AUROC and AUPR obtained with random predictions. These values

are equal to 0.5 for AUROC and are equal to the proportion of interactions for AUPR (i.e..,

0.03 for the negative interactions and 0.02 for the positive ones).

2. Dotted lines represent the AUROC and AUPR obtained when using only node degrees to

predict interactions. This second baseline, which is motivated in Section 3.5, is more realistic.

For negative interactions, the AUROC and AUPR of this baseline are equal respectively to

0.85 and 0.27. For positive interactions, they are respectively equal to 0.86 and 0.11.

An input dataset that does not allow to reach the level of these baselines is not useful to predict

genetic interactions on its own (although it might still be useful when combined with another

dataset).

For negative interactions, only 9 out of the 23 datasets give better AUPR than those obtained

with node degrees (the second baseline). Among these 9, the homozygous chemo-genomic dataset

outperforms clearly the others. For positive interactions, only 4 out of the 23 datasets give AUPR

scores better than those obtained with node degrees, and no dataset gives better AUROC. In this

case, ROC curves is then unable to detect performances that are better than the baseline. Conse-

quently and according to conclusions of Chapter 3, we chose to focus on precision-recall curves in

the rest of this chapter. For positive interaction prediction, the homozygous chemo-genomic dataset

is again the most predictive.

Datasets from the first category (’measurements obtained after gene deletion’) are the most

predictive. This is not surprising since genetic interaction scores are also measured by performing

gene deletions. Among this category, heterozygous deletion collections give less good results. Mea-

surements with only one deleted allele does not seem to be sufficient to be exploited to predict

genetic interactions. Among the three other dataset families, some expression datasets are also

more informative than the baselines but no dataset stand out from the last two categories, genetic

information and networks, although the natural variation data and the protein complex network

reach much higher AUPR than the others.

When analyzing the different AUPR values of Figure 5.6, negative interactions appear to be

much easier to predict than positive interactions. However, given that the ratio of interactions

versus non-interactions is not the same in the two networks, their precision-recall curves can not

really be compared (but ROC curves can). Table 5.5 presents AUPR values adapted using the

formula presented in Section 3.2.4 to make them comparable: all the values have been modified to



CHAPTER 5. PREDICTING GENETIC INTERACTIONS IN YEAST 147

0.5 0.6 0.7 0.8 0.9

chemo−gen (hom)
chemo−gen (het)

fitness (hom)
fitness (het)

chemo−gen (cost)
SCMD

expression 1
expression 2
expression 3
expression 4

histone
prot abund
localization

motifs
phyl prof

eQTL
natural var

essentiality
trans net

kinase net
prot complex

chaperons
RBP net

AUROC

Negative interactions

0.5 0.6 0.7 0.8 0.9

chemo−gen (hom)
chemo−gen (het)

fitness (hom)
fitness (het)

chemo−gen (cost)
SCMD

expression 1
expression 2
expression 3
expression 4

histone
prot abund
localization

motifs
phyl prof

eQTL
natural var

essentiality
trans net

kinase net
prot complex

chaperons
RBP net

AUROC

Positive interactions

0 0.1 0.2 0.3 0.4

chemo−gen (hom)
chemo−gen (het)

fitness (hom)
fitness (het)

chemo−gen (cost)
SCMD

expression 1
expression 2
expression 3
expression 4

histone
prot abund
localization

motifs
phyl prof

eQTL
natural var

essentiality
trans net

kinase net
prot complex

chaperons
RBP net

AUPR

Negative interactions

0 0.1 0.2 0.3 0.4

chemo−gen (hom)
chemo−gen (het)

fitness (hom)
fitness (het)

chemo−gen (cost)
SCMD

expression 1
expression 2
expression 3
expression 4

histone
prot abund
localization

motifs
phyl prof

eQTL
natural var

essentiality
trans net

kinase net
prot complex

chaperons
RBP net

AUPR

Positive interactions

Figure 5.6: Area under the ROC (AUROC) and precision-recall curves (AUPRC) as a

function of the 23 input datasets, for LS × LS predictions in EMAP1.
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Table 5.5: As in Figure 5.6, we present the AUPR that illustrate the predictive

performance of the 23 feature sets in the prediction of EMAP1. Moreover, we adapted

the values to make them comparable between each other, using the formula presented

in Section 3.2.4.

Nr Descriptions Negative interactions Positive interactions

AUPR Adapted AUPR AUPR Adapted AUPR

1 Chemo-gen. (homoz.) 0.48 0.46 0.21 0.19

2 Chemo-gen. (heteroz.) 0.31 0.31 0.09 0.15

3 Fitness (homoz.) 0.34 0.34 0.12 0.17

4 Fitness (heteroz.) 0.16 0.15 0.06 0.10

5 Chemo-gen. (Costanzo) 0.36 0.35 0.11 0.16

6 Morphol. data (SCMD) 0.37 0.34 0.13 0.18

7 Express. (deleted genes) 0.32 0.30 0.10 0.16

8 TF deletion (1) 0.30 0.29 0.10 0.16

9 TF deletion (2) 0.32 0.31 0.10 0.16

10 Expression 0.28 0.26 0.09 0.13

11 Histone modifications 0.22 0.21 0.09 0.15

12 Protein abundances 0.12 0.11 0.06 0.10

13 Localization 0.04 0.04 0.02 0.03

14 Upstream motifs 0.09 0.08 0.06 0.09

15 Phylogenetic profiles 0.05 0.05 0.02 0.03

16 eQTL 0.07 0.07 0.02 0.03

17 Natural variations 0.25 0.24 0.09 0.15

18 Gene essentiality 0.03 0.03 0.02 0.03

19 Transcription network 0.07 0.06 0.05 0.07

20 Kinase network 0.06 0.06 0.05 0.07

21 Protein complexes 0.21 0.14 0.13 0.16

22 Chaperons 0.10 0.08 0.04 0.05

23 RBP network 0.07 0.06 0.03 0.05

be representative of a network with 3.02% of pairs interacting, i.e. the complete EMAP1 network of

negative interactions. These results confirm that negative interactions are indeed easier to predict

than positive ones. Nevertheless, there are four exceptions concerning the feature sets number 14,

19, 20 and 21 where adapted AUPR are slightly better for positive interactions than for negative

ones.

We combined several input datasets to check whether it is possible to improve the performances

obtained with the homozygous chemo-genomic dataset. We add to this dataset the three next best

predictive datasets, and performed the same cross-validation experiment as before. For the prediction

of negative interactions, the three additional datasets are SCMD, chemo-genomic (Costanzo) and

fitness (homozygous). For positive interactions, they consist in protein complex network, SCMD

and fitness (homozygous). We use as the training network the subnetwork of 353 genes among the

424 genes in EMAP1 that have values in the homozygous chemo-genomic dataset. For the three

additional datasets, we had to complete the missing values. For numerical features, we replaced
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Figure 5.7: Precision-recall curves obtained by cross-validation on pairs of genes from

EMAP1, for predicting negative and positive interactions. Blue curves are obtained

when using homozygous chemo-genomic input dataset (the best predictive one) and

magenta curves are obtained when combined the four best predictive input datasets.

Not improvement happened when adding some input set to the most predictive one.

missing values by the average feature value computed over non-missing genes. For binary features,

we filled missing values with zeroes. The resulting precision-recall curves are shown in Figure 5.7.

They show that there is no improvement when combining the best four datasets.

Performances on the different output datasets

We performed the same cross-validation experiments on the EMAP2, EMAP3, EMAP4, EMAP5 and

SGA subnetworks (see Figure 5.8 for SGA) and obtained similar results as on EMAP1. Whatever

the subnetwork, the homozygous chemo-genomic dataset always gives the best performance for

predicting genetic interactions and no significant improvement can be gained by combining several

datasets. We will therefore always use this specific dataset as input in the experiments that we will

perform in the rest of this chapter.

Figure 5.9 shows precision-recall curves obtained by cross-validation on pairs on the 11 output

datasets with both the (single output) local and global approaches and the Extra-Trees algorithm.

These results shows the performance at predicting LS × LS pairs, i.e., the performance we would

obtained when predicting missing values within each network. Note that the ratio of missing values

is very different from one network to the other. It varies from 6% in EMAP7 to 88% in SGA (see

Table 5.1). From these curves, it is clear that the global approach gives always slightly better results

than the local approach. This result is consistent with results of Chapter 4, where we already noticed

that the global approach was better than the local one for LS × LS predictions on nine out of ten

biological networks. Note that we could not test the global approach on the SGA network because

of memory problems due to the large size of this network.

On all EMAPs, negative interactions are much easier to predict than the positive ones, confirming

our previous results on EMAP1. On GIM, both kinds of interactions are equally well predicted and

on the ER network, positive interactions are better predicted than negative ones. Note that this last

network is the only one where the ratio of positive interactions (4.3%) is higher than the ratio of

negative interactions (1.1%), which might explain this difference.

Among the different EMAPs, EMAP4 seems to be the most difficult to predict. The reason

why the predictions on EMAP4 are not as good as on the other EMAPs could be explained from
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Figure 5.8: Area under the precision-recall curves (AUPRC) as a function of the 23

input datasets, for LS × LS predictions in SGA.
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Figure 5.9: Precision-recall curves obtained by cross-validation on pairs of genes from

each of the 11 output interaction networks, for predicting negative (red curves) and

positive (green curves) interactions. Full lines represent the global approach and dotted

lines the local approach. Negative interactions seem to be much easier to predict than

positive ones, except on GIM and ER, and the global approach works slightly better than

the local one, whatever the network. Due to memory constraints, the global approach

could not be applied on the larger SGA network.
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Figure 5.10: Precision-recall curves obtained by cross-validation on genes from EMAP1

and SGA, for predicting negative (red curves) and positive (green curves) interactions.

Full lines represent LS × TS predictions and dotted lines TS × TS predictions.

the particular nature of this dataset. While in all other E-MAPs, genes are selected because of

their participation to some specific biological process, in EMAP4, genes have been selected because

of their participation in the phosphorylation network. They are thus potentially involved into very

different biological processes and thus do not necessarily share common interaction profiles.

Cross-validation on genes

To measure the ability to predict LS × TS and TS × TS pairs, we repeated previous experiments

with (10-fold) cross-validation on genes instead of pairs (cfr Chapter 3). We performed this cross-

validation on EMAP1 to EMAP5, ER, GIM and SGA (see Figure 5.10 for EMAP1 and SGA). The

conclusions of this experiment are as expected. First LS × TS pairs are more difficult to predict

than LS × LS pairs, and even more so for TS × TS pairs. Second, negative interactions are better

predicted than positive ones, except for GIM and ER.

Comparison with support vector machines

We also carried out some experiments comparing extremely randomized trees with support vector

machines (SVM) in the context of the local approach. For these experiments, we used LIBSVM

Chang and Lin (2001) with a gaussian kernel and default parameter setting2. As previously, we

performed 10-fold cross-validation on pairs to estimate LS × LS performance and 10-fold cross-

validation on genes to estimate LS × TS and TS × TS performance. The resulting AUPR scores

on EMAP1 to EMAP5 are presented in Table 5.6 both for negative and positive interactions. As

already observed on other networks in Chapter 4, Extra-Trees and SVM are indistinguishable on the

four EMAPs and whatever the nature, positive or negative, of the interactions.

Use of genetic interaction profile

In the local approach, a prediction for a LS × LS pair (ga, gb) is computed as the average of the

prediction of the model trained for ga and the model trained for gb. These two models are trained

2Different parameter settings were manually explored on EMAP1 but no improvement could be obtained with

respect to the default setting.
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Table 5.6: Area under precision-recall curves for the first five EMAPs for the local

approach with Extra-Trees and support vector machines. Two cross-validations were

tried: CV on pairs and CV on genes. Both methods are very close to each other.

Negative interaction Positive interaction

LS × LS LS × TS TS × TS LS × LS LS × TS TS × TS

E-T SVM E-T SVM E-T SVM E-T SVM E-T SVM E-T SVM

EMAP1 0.43 0.43 0.34 0.35 0.19 0.18 0.17 0.15 0.12 0.08 0.03 0.03

EMAP2 0.37 0.41 0.27 0.31 0.14 0.13 0.15 0.18 0.11 0.14 0.06 0.06

EMAP3 0.32 0.32 0.25 0.24 0.13 0.12 0.20 0.20 0.13 0.14 0.11 0.09

EMAP4 0.26 0.27 0.20 0.21 0.12 0.11 0.08 0.08 0.06 0.06 0.03 0.03

EMAP5 0.32 0.28 0.23 0.22 0.13 0.14 0.12 0.09 0.07 0.07 0.05 0.04
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Figure 5.11: Precision-recall curves obtained by cross-validation on pairs for predicting

negative and positive interactions. Full gray lines represent the global approach and

dotted gray lines the local approach. Red and green curves represent the local approach

in which we add GI profiles to the chemogenomic feature set. This latter method

outperforms the other ones in term of AUPR.

only from known interactions involving ga and gb respectively and therefore their training ignores all

other interactions. This is in contrast with the global approach that consider all known interactions

at once during the training stage. This might explain why the global approach outperforms the local

one on LS × LS pairs. As a way to exploit more information when training the local model, we

propose to add the genetic interaction (GI) profile of each gene to the input features when training

the local model. When training a local model for a gene ga, the genetic interaction profile of a given

gene g 6= ga in the training set is constructed as a vector where each component corresponds to a

gene g ′ 6= g , ga and is equal to the interaction score of the pair (g , g ′) if this pair was measured

and zero otherwise. This vector is concatenated to the chemogenomic features before training the

local model. Note that this trick can only be applied for LS × LS pairs, because by definition a TS

gene does not have any available GI profile.

We experimented with this extension on several networks (see Figure 5.11 for results on

EMAP1) and found that incorporating the GI profile typically improves predictive performance.

Actually, it even leads to better results than the global approach in a number of cases.
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Figure 5.12: (A) Precision-recall curves when using four networks separately to predict

EMAP1, on their respective common pairs. (B) The same curves as in (A), but corrected

according to the different ratios of interactions. These curves must be compared with the

blue curve that was obtained by cross-validating across pairs of EMAP1 (“comput.”).

5.4.2 Computational versus experimental predictions

We showed in Table 5.2 that several networks have pairs in common. But labels attributed to these

common pairs are not systematically the same in the different networks, due to technical variation

in biological experiments. A comparison of two experimental techniques applied on the same pairs

is interesting because it will give us another baseline with which to compare the performance of our

computational predictions. To perform such comparison for two subnetworks with an intersection, we

propose to rank the common pairs according to their interaction scores in one of the two subnetworks

and then to plot the precision-recall curves obtained when considering the binary labeling of each

pair in the second subnetwork as the true label. The resulting curve will show how close the two

networks are along their common pairs.

We performed this experiment four times to predict the negative interactions in EMAP1 from

interaction scores in the four networks with which EMAP1 shares at least 3% of its pairs. These

networks are EMAP7 (25%), EMAP8 (26%), SGA (4%), and ER (5%). Resulting precision-recall

curves are shown in Figure 5.12A. For these curves to be strictly comparable, we also corrected

them to take into account the difference in the proportion of interactions in each of the tested sets of

pairs, by using the formula presented in Section 3.2.4. Indeed, for example, the ratio of interactions

in the pairs from EMAP1 that are shared by EMAP7 is equal to 5%, and in the pairs that are shared

with SGA it is equal to 14%. We adapted the curves to a common ratio equal to 3%, which is the

ratio of negative interactions in EMAP1. The modified curves are shown in Figure 5.12B.

Among the four networks, EMAP7 appears to be the closest to EMAP1, followed by EMAP8,

then SGA, and finally ER. These comparisons must be interpreted carefully due to the fact that

the set of compared pairs is not the same in every experiment. Nevertheless, this ranking was

expected: the two closest networks were generated by using the same experimental approach as

EMAP1 (Epistatic Mini-Array Profiles), and the two furthest networks were created by using a

different experimental approach (SGA approach). Moreover, the furthest network, ER, defines its

interactions on the basis of a different phenotypic measure (ER stress instead of growth rate). These

results show that interactions established by biological experiments are very dependent on the type

of experimental method.
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Table 5.7: SGA pairs were used to predict pairs from the ten other networks, along

the genes they share with SGA, for negative and positive interactions. Resulting AUPR

(”Experim.” columns) are almost always lower than AUPR obtained by cross-validating

across pairs of the different networks (”Comput.” columns), meaning that computational

techniques can do better predictions than biological experiments.

Negative interactions Positive interactions

Experim. Comput. Experim. Comput.

EMAP1 0.30 0.48 0.09 0.21

EMAP2 0.37 0.40 0.13 0.19

EMAP3 0.27 0.35 0.16 0.23

EMAP4 0.29 0.28 0.12 0.09

EMAP5 0.23 0.35 0.07 0.14

EMAP6 0.36 0.48 0.09 0.15

EMAP7 0.26 0.42 0.08 0.21

EMAP8 0.26 0.57 0.06 0.25

GIM 0.16 0.31 0.04 0.36

ER 0.03 0.25 0.04 0.48

Comparison with cross-validation over one subnetwork

It is interesting to compare these PR curves with the curve we obtained by cross-validation over

pairs on EMAP1. We included this curve in Figure 5.12 (“comput”). It corresponds to the curve

obtained with the global approach in the first graph of Figure 5.9. A comparison of this curve with

the other network curves show how computational techniques compare with experimental techniques.

Globally, looking at corrected curves, the computational predictions are better than the experimental

predictions of EMAP8, SGA, and ER. Only EMAP7 can predict EMAP1 interactions better than the

computational technique.

To confirm this result, we reproduced the same experiment with the SGA network, which is

the largest network and covers all biological processes. Given its size, this network shares a non

negligible number of pairs with the other networks (between 3% and 8% of pairs in every of them,

as shown in Table 5.2). In our experiment, SGA interaction scores are used to rank the pairs that

are common with SGA in each network separately and a precision-recall curve is computed using the

binary labels predicted by the other networks as the true labels. Resulting AUPR scores are shown

in Table 5.7. They are compared with AUPRs computed by cross-validation on pairs applied on

each of the ten networks separately, i.e. areas under the curves in Figure 5.9.

These results confirm the results on EMAP1. Computational techniques give almost always

better predictions than biological experiments and this is true for both kinds of interactions, positive

and negative. Although our computational predictions are not perfect, this experiment nevertheless

suggests that computational techniques can reach the same level of accuracy as experimental tech-

niques. Note however that we are only comparing experimental techniques with LS×LS predictions.

LS × TS and TS × TS predictions are typically less good as shown for example in Table 5.6.
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Figure 5.13: Precision-recall curves when we train a model on the ten oldest subnet-

works, and we predict the pairs of the newest subnetwork (blue curves). These curves

must be compared to those obtained when we compare two experimental techniques

(red and green curves).

Comparison with the prediction of the newest subnetwork from the oldest ones

As explained in Section 5.3.1, genes related to a given EMAP are used to share a common function.

So when we perform a cross-validation across a given EMAP, we evaluate the ability of the method to

predict interactions involving genes that share the same function than the genes in the learning set.

To represent a more realistic problem, i.e. to evaluate the prediction of interactions involving genes

that do not share the function of the genes in a training subnetwork, we propose to learn a model

using the ten oldest subnetwork and to evaluate its predictive performance using the interactions in

the newest subnetwork (i.e. EMAP8). The method used here is the local approach in which we add

GI profiles to the chemogenomic feature set.

The pairs of EMAP8 are divided into two subsets:

1. the 38,860 pairs that are also present in the ten oldest subnetworks (subset A),

2. and the 46,952 pairs that have never been measured (subset B).

We use the subset A to compare two experimental techniques applied on the same pairs. The

precision-recall curves obtained for negative and positive interactions (dotted red and green curves

in Figure 5.13) are used as a baseline with which we compare the performance of the predictions

done on the subset B (blue curves). For these curves to be strictly comparable, we also corrected

them to take into account the difference in the proportion of interactions in each of the tested sets

of pairs, by using the formula presented in Section 3.2.4. The baseline curves become then the red

and green full curves.

Now, computational techniques do not outperform experimental techniques anymore. They

remain however close to each other, while computational techniques are obviously much faster and

less expensive.

Comparison with predictions on the exact same pairs.

A limitation of the last experiment is that predictive performance is compared over two completely

distinguished sets of pairs. As an additional experiment, we trained a model on the ten oldest
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Figure 5.14: We did the same experiment as the one performed in Figure 5.14, but

this time removing the subset A (see text) from the training set and using this precise

subset as the test set to compute the PR curve.

subnetworks, but removing from them the pairs belonging to the subset A. We then trained the

model on the subset A, and obtain the blue curves in Figure 5.14. We can compare these curves

with the baseline which is computed on the same subset A, as in the previous experiment (red and

green curves). Experimental techniques perform better than computational techniques to predict

new interactions, but there are nevertheless again rather close to each other.

5.4.3 Cross-validation across the ensemble of all networks

In this section, we put the eleven networks together to form a global consensus genetic interaction

network, and perform cross-validations on pairs and on genes on this network with various input

feature sets. Our goal is two-fold: first, to confirm the main conclusions drawn in the previous

section from experiments on individual subnetworks and, second, to assess the performance we can

expect when making predictions with a model trained on all known interactions, as we will do it in

Section 5.5.

Construction of the consensus network. As explained in Section 5.4.2, some pairs are shared

by several networks, and they are not always labeled with the same values in every of them. A label

will be attributed to such a pair according to the following rule. If the pair is labelled as negative

in at least one of the networks without being labeled as positive in another one, it will be labeled

as negative in the final network. In the same way, if the pair is labeled as positive in at least one

of the networks without being labeled as negative in another one, it will be labeled as positive in

the final network. Finally, if a pair is labeled as negative in a network and positive in another, it

will not be labeled in the final network and will be treated as a missing value. The global genetic

interaction network contains finally 90,379 negative interactions (4.64% of all pairs) and 27,659

positive interactions (1.42% of all pairs) between 5252 genes.

Cross-validation on pairs with different input sets. We first performed 10-fold cross-validation

on pairs on this global network, using as inputs each of the 22 feature sets in turn. Area under

precision-recall curves are presented in Figure 5.15 for all feature sets and for negative and positive

interactions. For negative interactions, feature sets that are more predictive than the baselines
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Figure 5.15: Area under the precision-recall curves (AUPRC) as a function of the 23

input datasets, for LS × LS predictions in the ensemble of all networks.

are homozygous chemo-genomic, homozygous fitness, chemo-genomic (Costanzo), SCMD, protein

abundance, localization, essentiality, and protein complex network. The good predictive performance

of the protein complex network suggests that genetic interactions tend to appear between proteins

belonging to a same complex. For positive interactions, feature sets that are more predictive than

the second baseline are the same sets, except localization and essentiality. In a second step, we

tried to combine these input datasets to check whether it is possible to improve performance with

respect to the use of only the most predictive feature set (homozygous chemogenomic). Like in

Section 5.4.1, we filled in missing values by using the average over non-missing values for numerical

features and zeroes for binary features. Like in previous experiments, the precision-recall curves in

Figure 5.16 show that we can not get any improvement by combining several feature sets.

As illustrated in Section 4.5, one advantage of tree-based ensemble methods like Extra-Trees is

their ability to provide a measure of importance for each input variable. With the local approach,

we computed the importance of each feature in the homozygous chemo-genomic input set from the

ensemble of trees related to each gene. We then averaged all these importances for each feature

over all ensembles to finally get one importance value for each feature. Importance values for all

features, ranked from the most to the less important, are plotted in Figure 5.17 for positive and

negative interactions. Importance scores are smoothly decreasing from the most important to the

less important feature and no group of features stands out from the crowd. This suggests that the

information is spread rather uniformly over all features. The 10 most important features, both for

positive and negative interactions, are nevertheless reported in Table 5.8 for information purpose.
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Figure 5.16: Precision-recall curves obtained by cross-validation on pairs from the

ensemble of all networks, for predicting negative and positive interactions. Blue curves

are obtained when using homozygous chemo-genomic input dataset (the best predictive

one) and magenta curves are obtained when combined all input datasets that perform

better than the second baseline. Not improvement happened when adding some input

set to the most predictive one.
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Figure 5.17: We computed the importance of each variable of the chemogenomic

feature set with the local approach. No group of variables seem to distinguish clearly

from the others, showing that all conditions in which the fitnesses of the mutant cells

are measured may be important to predict genetic interactions.
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Table 5.8: Variables of chemogenomic dataset represent conditions in which the growth

fitness of the gene deletion collection is measured. These conditions are the presence

of chemicals or environmental stress conditions. Here are presented the ten conditions

that are the most important to predict negative and positive interactions.

Negative interactions

Top 10 chemogenomic variables

bleomycin: 1.13 µg/ml

papuamide B: 0.7 µg/ml

bleomycin: 1.13 µg/ml

04 05 18 02 bleomycin: 1.7 µg/ml

04 05 18 01 bleomycin: 1.7 µg/ml

myriocin: 0.2 µg/ml

latrunculin: 0.78 µm

pH7.5 FK506: 1 µg/ml

LiCl: 100 mm FK506: 1 µg/ml

latrunculin: 3 µm

Positive interactions

Top 10 chemogenomic variables

myriocin: 0.2 µg/ml

04 08 04 02 minimal media

03 06 06 01 minimal media

latrunculin: 3 µm

LiCl: 100 mm FK506: 1 µg/ml

cantharidin: 100 µm

benzaldehyde: 0.003%

03 06 06 06 minimal media

nocodazole: 10 µg/ml

bleomycin: 1.13 µg/ml

Cross-validation on genes. We then performed cross-validations on pairs and on genes on this

global network, to estimate the quality of the LS × LS , LS × TS , and TS × TS predictions (we

will exploit these results in Section 5.5). We use as inputs the homozygous chemogenomic dataset

(which reduced the size of the global network to 4689× 4689 because of missing genes in this input

dataset) and we restricted our experiment to the local approach. This approach gave previously

less good results than the global one, but the latter approach needs too much memory space to be

applied on this network due to its size. To improve LS × LS predictions, we nevertheless added the

genetic interaction profile of each gene among the inputs, as explained in Section 5.4.1.

Figure 5.18 presents the resulting precision-recall curves for negative and positive interactions.

The curves can be compared with those obtained with degree prediction for LS × LS and LS ×TS ,

and can be compared to those obtained with random prediction for TS×TS . Our results are always

significantly better than baselines, proving that our method can learn from the chemogenomic input

dataset. GI profiles significantly improve performance of LS×LS predictions, even more so than what

we already observed on EMAP1. This may come from the fact that GI profiles are here much larger,

and therefore potentially more informative, in the consensus network than in the single EMAP1.

LS × LS graphs illustrate the performance that we can expect for the prediction of the ∼ 8.5

millions pairs that are still unlabeled between the 4473 genes represented in the eleven networks.

LS ×TS graphs illustrate the performance we can expect for the prediction of the ∼ 1 million pairs

that are still unlabeled between the 4473 genes represented in the eleven networks and the 216

genes that are not represented. TS×TS graphs illustrate the performance that we can expect when

predicting the 23,220 pairs that are still unlabeled between the 216 genes not represented in the

eleven networks. These three groups of pairs and their relative sizes are illustrated in Figure 5.19.

Almost 90% of the unlabeled pairs belong to the LS × LS family.
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Figure 5.18: Precision-recall curves obtained by cross-validation on pairs and on genes

on a global network that groups the eleven single networks. We used Extra-Trees with a

local approach. Baselines for LS × LS and LS ×TS are predictions from node degrees,

and baseline for TS × TS is random prediction.
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Figure 5.19: The unlabeled pairs of the adjacency matrix of the global network (white

areas) are divided into three groups: LS×LS pairs between two known genes, LS×TS

pairs between one known gene and one unknown gene and TS ×TS pairs between two

unknown genes. The first group covers almost 90% of the unlabeled pairs.
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5.5 Predictions of unlabeled pairs

The primary goal of the application of supervised inference methods is to predict new interactions.

We demonstrated by cross-validation in Section 5.4.3 that the method is able to predict new genetic

interactions significantly better than a simple approach that would give predictions proportional to

the node degrees. For the LS × LS pairs that form largely the majority in the global network, one

might even expect better predictions than by using experimental techniques as shown in Section 5.4.2.

Supervised methods are thus clearly able to extract useful information about genetic interactions

from the chemogenomic input dataset. In this section, we first discuss how to use lessons learned

in previous sections (and chapters) to obtain a final ranking of all unlabeled gene pairs in yeast

from the most likely to the less likely to (positively or negatively) interact. In the absence of an

experimental validation of this ranking, we then perform an independent validation by confronting

this ranking with functional annotation of yeast genes available in the Gene Ontology.

5.5.1 Global ranking of the unlabeled pairs

To predict positive and negative interactions among gene pairs that are still unlabeled, we learnt a

model on pairs that were already labeled in one of the eleven networks, i.e. the consensus network

that was used in the cross-validation experiments of Section 5.4.3. The input dataset used in this

experiment is the homozygous chemogenomic set that led to the best performance overall. The

local approach was chosen because the global one leads to memory problems due to the size of the

learning set. We also added GI profiles to the features of the chemogenomic dataset because as

shown in Figure 5.18, it significantly improves LS × LS predictions. Two models are trained, one

for positive interactions and one for negative interactions.

With the resulting models, one eventually can get two numerical predictions for each unlabeled

pair, which estimate the probability for this pair to correspond to a positive and a negative interactions

respectively. All unlabeled pairs can then be ranked from the most likely to the less likely to positively

or negatively interact directly using these two predictions. From Section 3.6, we know however that

a better ranking, in terms of precision-recall curve, could be obtained by taking into account the

difference in performance between the three families of pairs, LS × LS , LS × TS , and TS × TS .

Indeed, for example, a TS × TS pair receiving a prediction of 0.8 must not necessarily be ranked

higher than a LS×LS pair receiving a prediction of 0.7 given that the LS×LS precision-recall curve

dominates the TS ×TS curve (see Figure 5.18). To obtain our final ranking, we therefore applied

the method developed in Section 3.6 that gives the ranking associated to the best precision-recall

curve. The (estimated) precision-recall curves of the two merged rankings are shown in Figure 5.20.

A prediction of the interaction network can then be obtained by selecting the pairs at the top

of these rankings. Note that LS × TS pairs are only introduced in these rankings respectively at

position 48210 for negative interactions (i.e. after 0.5% of all predicted pairs) and at position 21760

for positive interactions (i.e. after 0.2% of all predicted pairs). As an illustration, the ten top

pairs in the optimal rankings for positive and negative interactions are shown in Table 5.9 for the

predictions using only the chemogenomic feature set, and in Table 5.10 when we added the GI

profiles for LS × LS predictions. There is no common pairs in the top 10 between Table 5.9 and

Table 5.10 but the top 100 pairs however share 12 pairs for negative interactions and 2 pairs for

positive interactions, the top 1000 pairs share 20% of the pairs for negative interactions and 5%
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Figure 5.20: Red and green curves are respectively the estimated precision-recall curves

of the two merged rankings of negative and positive interactions. Their AUC are equal

to 0.41 and à.27. They are computed from the six gray curves that estimate the

performance of LS × LS , LS × TS and TS × TS (respectively from the highest to the

lowest curves). These gray curves correspond to those found in Figure 5.18.

for positive interactions and the top 10,000 pairs share 26% for negative interactions and 18% for

positive interactions.

5.5.2 Validation with Gene Ontology

With cross-validation, we can evaluate the quality of the predictions provided for the unlabeled pairs

by our supervised learning models. However, by splitting the training set into random folds, cross-

validation assumes that the unlabeled pairs are distributed similarly as the training pairs. In case

of violation of this assumption, cross-validation error estimates might not reflect faithfully the true

performance of the method. It is thus always interesting to validate the predictions by other means.

In this Section, we propose to validate our predictions but exploiting the fact that interacting genes

are often involved into the same biological processes (Baryshnikova et al., 2010). The top pairs of

our ranking should thus be enriched in pairs of genes that share similar functions and the level of

this enrichment can then be used as a measure of the quality of the ranking. Before computing

this enrichment, we first describe the Gene Ontology, which is used as reference database of gene

functional annotations.

Gene Ontology Gene Ontology (GO) (Ashburner et al., 2000) is a bioinformatics project, the goal

of which is to structure the description of genes and their product. GO is not limited to S.cerevisiae,

but is common to a wide variety of species. Indeed biological role of a protein in one organism can

often be transferred to other organisms.

The GO database is composed of terms annotating the behavior of gene products. These terms

are divided into three groups: cellular component refers to the place in the cell where a gene product

is active, biological process refers to a biological objective to which a gene product contributes and

molecular function refers to the biochemical activity of a gene product. These three terms (parent

terms) represent general concepts and are divided into terms representing more specific concepts

(children terms). These terms are themselves divided into more and more specific terms. They are

structured into a directed acyclic graph, which forms a kind of hierarchy. For example, the term
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Table 5.9: From all the known genetic interactions, we built a model to predict new

interactions. The list of the 10 pairs with the highest probability to interact is presented

for negative and positive interactions.

Top 10 pairs

predicted negative

ARL3 VPS63

YNL198C CLC1

VPS51 ARL1

VPS63 ERV14

CTK1 BCY1

IRS4 SYS1

YJL024C SYS1

SYS1 ANP1

VPS63 IRS4

CTK1 CLC

Top 10 pairs

predicted positive

MSE1 MAK10

RPS17A MAK10

MSE1 ATP7

UAF30 MAK10

YNL170W MRPL24

ATP7 GLO3

MRPL24 MAK10

RPS17A YKL053W

MSE1 YKL053W

YNL170W PPA2

Table 5.10: As in Table 5.9 we built a model to predict new interactions, but adding

GI profiles to the chemogenomic feature set.

Top 10 pairs

predicted negative

COG8 VPS1

RAV2 RGP1

JNM1 CPR6

RAD50 NUP84

ASE1 ARP1

HOC1 OPI3

ARL1 VMA2

YME1 RPO41

MDM39 COG7

RGP1 TFP1

Top 10 pairs

predicted positive

PEX3 PEX10

MGA2 LOC1

RPS17A MGA2

QRI8 RPS17A

HLJ1 RPS11A

SPT8 RIC1

LOC1 RPN4

GEF1 AIR1

CUE1 RPS17A

RPS17A SEC22
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”cellular component” is the parent term of the ”extracellular” and ”intracellular” terms. This latter

term has children terms like ”nucleus” or ”chromosome”.

Yeast genes have been annotated by GO terms. From this annotation, one can define that two

genes are functionally similar if they share some common terms in a reference list of GO terms. For

the similarity measure to be relevant, this reference list should however contain neither too general

nor too specific terms. Myers et al. (2006) proposed a list of GO terms established by experts that

can be used to measure functional similarity between genes. From this list, one can derive a graph

where each node corresponds to a gene and each edge connects two genes that share a common GO

term from the reference list. For yeast, this graph contains 513,562 edges relative to 3970 genes,

which means that 2.28% of all possible gene pairs share a function.

Functional enrichment of labeled pairs. Before assessing our predictions, we first analyzed the

labeled pairs in the eleven subnetworks from the point of view of their functional enrichment. Among

all available labeled pairs, 6.63% actually share a GO term from the reference list. Given that 2.28%

of all pairs of genes share a GO term, this clearly indicates that pairs in the eleven datasets were

not chosen at random. Indeed, if the 3,893,796 labeled pairs would have been selected at random,

the probability to observe a proportion of pairs with similar GO terms equal to 6.63% or higher

would have been less that 10−16. This result is not surprising since for example all tested genes in

the EMAPs have been precisely selected on the basis of their function. Among the labeled pairs, a

proportion of 11.31 % of the positive interactions and 12.12% of the negative interactions appear

to share a common GO term. The corresponding p-values (measuring the probability of observing

higher or equal proportions if the positive and negative pairs would have been selected randomly

among all labeled pairs) are both less that 10−16. This indeed confirms that interacting genes are

more likely to share a function than random genes.

To get a finer picture, we modified and reproduced an experiment carried out in (Baryshnikova

et al., 2010) to validate the SGA dataset. We ranked the labeled pairs according to their interaction

scores (in normal order for the positive interactions and in reverse order for the negative interactions)

and computed a precision-RPP curve from the resulting ranking by considering a pair as positive

if its genes share a GO term and as negative otherwise. RPP is the rate positive prediction and

we chose this metric instead of the recall because we found it more interpretable in this situation

(see the next paragraph). Since the genetic interaction scores are not comparable from one network

to the other, we had to rescale them to produce the merged ranking of labeled pairs. For this

rescaling, we took into account the thresholds used on each dataset to separate negative, neutral,

and positive interactions, i.e., -2.5 and 2 for the EMAPs, -0.12 and 0.16 for SGA, -1 and 1 for GIM,

and -0.75 and 0.75 for ER. Interactions scores for the EMAP were left unchanged while negative

scores for SGA, GIM, and ER were respectively multiplied by 2.5/0.12, 2.5 and 2.5/0.75, and positive

scores were respectively multiplied by 2/0.12, 2 and 2/0.75. The resulting precision-recall curves are

shown in Figure 5.21. Note that following Baryshnikova et al. (2010), we use a logarithmic scale

for the x-axis to better emphasize the beginning of the curve.

From these curves, positive interactions appear to be less functionally related than negative

interactions, or at least to involve relations more complex than those identified in GO. For negative

interactions, the enrichment seems significant. For example, for a RPP equal to 1.7 · 10−4, we got

a precision equal to 0.5 (the blue dot in the figure). This means that among the 331 pairs with the

lowest negative scores, 50% involve genes sharing a GO term, which has to be compared with 6.63%

if these pairs were selected at random from the labeled pairs. This analysis is consistent with the



CHAPTER 5. PREDICTING GENETIC INTERACTIONS IN YEAST 167

10−6 10−5 10−4 10−3 10−2 10−1 100
0

0.2

0.4

0.6

0.8

1
Experimentally labeled data

Rate of Positive Predictions (RPP)

P
re

ci
si

on

 

 
Negative interactions
Positive interactions

Figure 5.21: Pairs labeled in the eleven datasets were compared with a list of pairs

sharing a same GO term (blue curves). GO terms were used as true values, and genetic

interaction scores were used as predictions, to build precision-recall curves. These curves

estimates the functional utility of true genetic interactions.

similar analysis done in (Baryshnikova et al., 2010) on only the labeled pairs from the SGA dataset.

For positive interactions, the enrichment is much less important and the precision-recall curve is very

close to the random one, except at its very beginning.

Functional enrichment of predicted pairs. To assess the quality of our predictions for the un-

labeled pairs, we plotted the same precision-RPP curve as before, this time for the unlabeled pairs

ranked according to their predicted confidence score. We computed the precision-recall curves for

both positive and negative interactions separately, and for the model trained with the GI interaction

profile and without. The resulting four curves are shown in Figure 5.22.

As in the case of labeled pairs, negative interactions give better precision-RPP curves than

positive interactions, with or without GI. Results with GI seems to be slightly better than results

without GI. Precision-recall curves are better than random but the enrichment in GO terms is

nevertheless much less important for our predictions than for the experimentally verified pairs. Note

that the proportion of unlabeled pairs that share a GO term (1.57%) is lower than the proportion of

labeled pairs that share a GO term (6.63%). The random baseline is therefore lower here than for

the curve in Figure 5.22.

Now we make the assumption that the proportion of interacting pairs is the same in the labeled

set than in the unlabeled set (i.e. equal to 4.64% for negative interactions and 1.42% for positive

interactions). We then select, among the unlabeled pairs, the 861,350 with the highest probability to

interact negatively and the 276,930 with the highest probability to interact positively, and consider

them as interacting. 3.25% of these pairs predicted negative actually share a GO term, as well as

4.28% of the pairs predicted positive. The corresponding p-values if the negative and positive pairs

would have been selected at random among unlabeled pairs are both less that 10−16. This means

that pairs predicted to interact are more likely to share a function than random unlabeled pairs.

Cleaning the experimental predictions. Results in Section 5.4.2 clearly show that experimental

techniques are not perfect as they can produce incoherent scores when applied to the same pairs.
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Figure 5.22: Unlabeled pairs, predicted by our approach, were compared with a list of

pairs sharing a same GO term, in the same way as in Figure 5.23.
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Figure 5.23: Pairs labeled in the eleven datasets were compared with a list of pairs

sharing a same GO term (blue curves). The same experiment was performed on the

exactly same group of pairs, but with predictions obtained by cross-validation without

(green curves) and with (red curves) GI profiles added to the feature set.

In addition to providing predictions for unlabeled pairs, supervised techniques can also produce a

relabeling of the labeled pairs through cross-validation: each pair in a fold gets a prediction from the

model trained from the other folds. As a last experiment, we wanted to see whether cross-validation

could be used to somehow clean the experimental predictions. To evaluate this, we reproduce in

Figure 5.23 the curves previously plotted in Figure 5.21 (becoming blue curves in this new Figure),

to compare them with two new curves obtained by replacing the original (rescaled) interaction scores

of the labeled pairs by the predicted confidence scores obtained by 10-fold cross-validation on pairs.

The green curve is obtained using only the chemogenomic features as inputs while the red curves is

obtained when adding the GI profiles.

For negative interactions, the CV score with GI (red curve) has the highest AUPR (8.87%),

followed by the CV score without GI (green curve, 8.56%) and the original score (blue curve, 7.31%).

For small recall values however, the CV score without GI clearly dominates the two other scores.

Results are similar for positive interactions. the CV score without GI clearly dominates the two other

scores. CV score with GI is less good but it also dominates the original score. These results show

that cross-validation can indeed improve the functional enrichment among the top ranked pairs and
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therefore suggest that it could also improve the prediction of interactions. This latter conclusion

should however be taken with caution since two genes sharing a function do not necessarily interact

and vice-versa. Supervised learning might introduce a bias towards functionally related genes for

some reason, without necessarily improving the detection of genetic interactions. It is interesting

to note that adding the GI profile seems to deteriorate the functional enrichment for small recalls,

while it typically always improves the quality of the LS × LS predictions in our experiments. More

work is needed to understand this contradiction.

5.6 Conclusion

In this chapter, our goal was to predict at best genetic interactions in yeast S.cerevisiae with su-

pervised learning algorithms, and to evaluate the quality of our predictions. There is a genetic

interaction between two genes if a mutation in one gene modifies the effect of a mutation in the

other gene. Typically, genetic interactions are highlighted by the observation of some phenotype.

In most networks presented in this chapter, the measured phenotype is the fitness of the cell. If

the fitness resulting from the mutation of a gene ga is aggravated (resp. improved) by a mutation

on a gene gb, there is a negative (resp. positive) interaction between ga and gb. If the fitness is

unaffected, we say that the pair of genes is neutral. Biologists have measured several genetic inter-

action subnetworks in yeast, involving between 300 and more than 3000 genes each. We gathered

all these subnetworks to constitute our training network. Together, these subnetworks totalize about

4 millions pairs that represent ∼ 10% of all possible pairs in yeast. To use as input features for the

inference, we collected 22 different sets of features defined on yeast genes, totalizing about 11000

individual features.

We first performed several cross-validation experiments on the eleven subnetworks using ex-

tremely randomized trees with both the local and the global approaches. The main conclusions of

these experiments are as follows:

- In terms of methods, the global and the local approaches with trees are close to each other,

with however an advantage to the global approach. The latter is however too computational

demanding to be applied on the bigger subnetworks or on their union. A comparison of SVMs

and extremely randomized trees in the context of the local approach shows that both methods

are comparable.

- The 22 feature sets were evaluated individually and the best results (in terms of AUPR)

are clearly obtained with the homozygous chemo-genomic dataset that measures the growth

fitness of deletion strains in various stress conditions. Combining several feature sets does not

significantly improve with respect to using the chemo-genomic dataset alone.

- Overall, our results show that we are able to predict new interactions with a reasonable accuracy

(in all cases better than the baselines defined in Section 3.5). As expected, LS × LS pairs

are the easiest to predict and the TS × TS pairs are the most difficult to predict. Positive

interactions, which are less common than negative ones in most of the 11 subnetworks, are

more difficult to predict than negative interactions.

- Adding the genetic interaction profile within the input features allow to improve quite signifi-

cantly the performance when predicting LS × LS pairs.
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- We observed similar trends on the 11 subnetworks (and when taking their union) but some

subnetworks are nevertheless easier to predict than others.

Some pairs belong to several subnetworks and they are not necessarily labeled similarly in all

these subnetworks due to technical variations in the experimental process. In a second step, we

exploited these intersections to compare the quality of our computational predictions with the quality

of the experimental predictions of one study compared with another on their intersection. Very

interestingly, this comparison showed that in some settings computational techniques are competitive

and sometimes even better than experimental techniques. This suggests that the performance of

computational techniques is actually rather good.

Finally, we took the union of the eleven known subnetworks and we computed the predictions

of a model trained from this union for all remaining unlabeled pairs. We then ranked them from the

more to the less likely to (positively or negatively) interact as predicted by this model. We evaluated

the quality of this global ranking by confronting it with functional annotations of yeast genes available

in the Gene Ontology. More precisely, we compared the functional enrichment of gene pairs at the

top of this ranking to the functional enrichment of gene pairs at the top of the ranking of the labeled

pairs from the eleven subnetworks (again to compare computational and experimental predictions).

We found out that top (positive and negative) predictions are indeed significantly enriched in pairs of

gene sharing some function, with a stronger enrichment in the case of negative pairs. Experimental

predictions are however more enriched than computational predictions. Interestingly, we also showed

that re-predicting experimental predictions using cross-validation improved the level of functional

enrichment among the labeled pairs.

Overall, we believe our results are quite good, especially given the apparent high noise in the

experimental techniques from which we obtained our training network. An obvious next step from

a biological point of view would be now to experimentally validate the most confident predicted

interactions to confirm their relevance and the precision values estimated by cross-validation. There

remain also several possibilities to improve the quality of our predictions. Globally, positive inter-

actions seem to be more difficult to predict. This can be explained partly by the smaller number

of examples of such interactions in the training network. Also, the biological factors that underly

positive interactions have not been the subject of as many systematic studies as those behind neg-

ative interactions (Ryan et al., 2010). A better understanding of these factors could help improving

their predictions and can be an interesting future work direction. Although the global approach gave

better results than the local one, we could not use it on the complete training network of 4 millions

pairs due to computer memory problems. It would be interesting to work on the implementation of

this approach to make it applicable on the complete set of labeled pairs. It would be also interesting

to compare the results we obtained with our supervised learning approach with those obtained by

Eronen et al. (2010); Linden et al. (2011) using matrix approximation models, and maybe to combine

these methods with ours.
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Chapter 6

Conclusion

6.1 Main findings and conclusions

Networks are ubiquitous in biology. They are very important to represent and understand all cellular

activities and their elucidation is one of the main challenges of systems biology. The work presented

in this manuscript is related to the problem of the supervised inference of biological networks, i.e.,

the computational inference of these networks by applying supervised machine learning methods on

a training sample of known interacting and non-interacting pairs. We structured our contributions

on this topic around three main questions:

- How to evaluate supervised network inference methods in a fair and unbiased way and, as a

corollary, how to best apply them to truly infer a real network?

- How to best exploit tree-based ensemble methods for supervised network inference and how

do these methods compare with existing methods from the literature?

- How well can we predict genetic interactions in yeast using supervised network inference

methods?

These three questions were addressed respectively in Chapters 3, 4, and 5 of this manuscript. Our

main findings about these three questions are briefly summarized below. We refer the reader to the

conclusions of the separate chapters for more detailed discussions.

Performance evaluation. We performed in Chapter 3 an in-depth and comprehensive examination

and analysis of measures and protocols to evaluate the performance of supervised network inference

methods and models. We first reviewed metrics that have been used in the literature to quan-

tify the quality of the predictions provided by inference methods. We concluded from this review

that precision-recall curves are more appropriate than ROC curves given the very sparse nature of

most biological networks. PR curves can nevertheless be usefully complemented by other measures

depending on the targeted application. We then showed that when estimating these measures by

cross-validation, it is important to differentiate the tested pairs according to the presence or not

of its two nodes in the learning set, as this presence has an important impact on generalization

performance. This differentiation defines four groups of pairs, called respectively LS × LS , LS ×TS

or TS × LS , and TS ×TS , and we argued that a separate evaluation should be performed for each

of these four groups if one wants a detailed assessment of the performance of an inference method.
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We showed that pairs from the LS×LS group can be assessed using a cross-validation over the pairs

in the training data, while pairs from the three other groups can be assessed using a cross-validation

over the nodes.

We discussed two other issues raised during the evaluation of inference methods that are linked to

specificities of biological networks. First, the distribution of node degrees in biological networks often

has a heavy tail, which means that several nodes have a degree much higher than the average. We

showed that because of this property, it is possible to obtain better than random predictions without

exploiting the node input features. We therefore suggested two simple baselines to replace random

guesses when evaluating network inference methods: a classifier built from randomly permuted

input features and a classifier that scores each pair by the sum of the degrees of its two nodes in the

training network. A second issue in several biological networks is the lack of experimentally verified

non-interacting pairs. We showed that the common solution, i.e. considering all non positive pairs

as negative pairs, leads to an underestimation of the PR curve. Under certain conditions however,

it is possible to correct PR curves to avoid such underestimation.

Finally, we proposed a simple algorithm to merge rankings of disjoint sets of pairs, when each

of these rankings is associated with a separate precision-recall curve. When applied to merge the

individual rankings corresponding to the four groups of pairs defined earlier, this algorithm is shown,

theoretically and empirically, to produce a better global ranking of all pairs, in terms of the resulting

PR curve, than a naive merging of these rankings according to the confidence score predicted for

each pair.

Overall, we believe that following the guidelines provided in this chapter will enable a more

rigorous assessment of supervised inference methods, will contribute to an improved comparability

of the different approaches in this field, and will thus furthermore aid researchers in improving the

state-of-the-art methods.

Supervised network inference with tree-based methods. In Chapter 4, we systematically in-

vestigated the exploitation of tree-based methods for supervised network inference. The main goal of

this investigation was to understand the advantages and limitations of these methods when applied

for network inference. We considered the application of these methods both within the global and

local approaches, where the latter was extended in the process to make TS ×TS predictions and to

handle multi-output methods. Through extensive experiments on 10 different biological networks,

we showed that the global, local single output and local multi-output approaches with trees are very

close to each other in terms of predictive performance. They are also very competitive with existing

approaches from the literature. All approaches have the same computational complexity but the

local multi-output method nevertheless provides less complex models and require less memory at

training time.

Finally, we studied the interpretability of these methods. We first showed that both the global

and local multi-output methods with single trees partitions the adjacency matrix into rectangular

subregions of highly or weakly connected pairs, where each subregion is defined by a conjunction of

tests based on the input features. The partition takes the form of a checkerboard in the case of the

local approach and is unconstrained in the case of the global approach. With tree ensembles, we

showed how to obtain a similar partition of the adjacency matrix by exploiting a similarity measure

derived from the ensemble. In this case, the subregions are described by a ranked list of features.

Overall, we believe results in this chapter clearly show the relevance and competitivity of tree-

based methods for network inference. They compare favorably with other methods on a wide range of
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networks, they are essentially parameter-free (no parameters were actually tuned in our experiments),

and they can be exploited in various ways to provide interpretable results.

Predicting genetic interactions in Yeast. In Chapter 5, we built on the experience gained in

previous chapters to try to predict at best the genetic interaction network in yeast S.cerevisiae.

For that purpose, we collected a large dataset, assembling 4 millions gene pairs experimentally

tested in the context of 11 different studies and 23 sets of measurements to use as gene input

features for the inference. Through several cross-validation experiments, we showed that it was

indeed possible to predict genetic interactions with significantly better performance than with the

baselines. We observed that negative interactions are easier to predict than positive ones and that,

as expected, LS × LS pairs are better predicted than TS × TS pairs. We also found that the

homozygous chemo-genomic feature set, that quantifies the growth fitness of deletion strains in the

presence of stress conditions, was by far the most informative feature set. By exploiting the overlaps

between the 11 subnetworks of experimentally tested pairs, we were able to compare the predictions

of one experimental technique against another (that might differ due to technical variations in the

experimental process). Very interestingly, we concluded from this comparison that some experimental

techniques do not provide better predictions, when compared to another, than our computational

network inference approach, when compared to the same technique, in particular for the LS × LS

pairs.

Finally, we trained a model using the full training set of 4 millions pairs and predicted a confidence

score for positive and negative interactions for each of the remaining unlabeled gene pairs in Yeast.

As an indirect validation of this ranking, we showed that the pairs of genes with the highest predicted

probability to interact are more likely to share a common function (as derived from gene annotation

in the Gene Ontology) than randomly selected gene pairs.

Overall, the experiments carried out in this chapter show that predicting genetic interactions

in Yeast is indeed possible to some extent and also suggest that the accuracy of computational

methods is not very far from the accuracy of experimental techniques.

6.2 Limitations and future research directions

There are several limitations to our research that open interesting directions for future research. We

first discuss potential extensions of network inference methods and then open questions more related

to biological applications.

6.2.1 Methods

The local approach offers the most interesting directions for future developments. A priori, this

approach was not adapted to predict edges between two unseen nodes (i.e., TS × TS predictions)

because no model can be trained for any of the two nodes. We made this adaptation possible by

proposing to learn a second model on the predictions obtained from a first model. Despite the fact

that the second model is trained on potentially inaccurate predictions, this two-step procedure brings

the local approach to the same performance as the global approach for TS × TS predictions. It

would be now interesting to more deeply analyze this approach and also to apply it in combination

with other supervised learning methods. Recently, Pahikkala et al. (2014a) proposed a very similar

two-step procedure that they applied with kernel methods. In this context, they were able to show



176 6.2. LIMITATIONS AND FUTURE RESEARCH DIRECTIONS

a strong relationship between the two-step local approach and the global approach using the tensor

product pairwise kernel (see Equation 2.22). It would be interesting to find a similar relationship

between the global and the local approaches with trees, although given the non-parametric nature of

tree-based models, finding such connection might turn out to be much more difficult. The application

of multi-output trees in the local approach is very successful, as it reduces model size without any

loss in accuracy. Similarly, it would be very interesting to integrate other more sophisticated multi-

output or multi-label methods (Tsoumakas and Katakis, 2007) within the local approach. To the

best of our knowledge, these methods have not been used for biological network inference.

We saw in Section 2.3.2 that there exist several elegant ways to design (implicit) vectorial

representations for pairs of nodes, through kernels. In our experiments with the global approach, we

only used as inputs for a pair the concatenation of the feature vectors of the two nodes in the pair.

While this simple representation is inappropriate in the case of linear models (see Section 2.3.2), it

worked well in our experiments with tree-based methods that train non-linear models. It would be

nevertheles interesting to explore (ideally automatic) ways to incorporate more complex features on

pairs in tree-based methods. Also concerning input features, we showed in Chapter 5 that adding the

genetic interaction profiles among the input features significantly improved the quality of LS × LS

predictions. It should be interesting to investigate more systematically this idea in the context of the

networks of Chapter 4. Note that incorporating outputs among the inputs is reminiscent of some

multi-label approaches such as classifier chains (Read et al., 2009), that could be also explored here.

Most biological network inference problems are intrinsically semi-supervised, or even transduc-

tive, problems, since features values are known for all nodes involved in the unlabeled pair during

the training stage. Following some work with kernel methods (Brouard et al., 2011), it would be

interesting to design semi-supervised approaches for network inference based on tree methods, in

order to exploit all available data. Semi-supervised extensions of tree-based methods are however

very sparse in the literature (Leistner et al., 2009).

In the case of genetic interactions, experimental techniques allow to really detect non-interacting

(neutral) pairs. In most of the networks considered in Chapter 4, we only have positive and unlabeled

pairs. We got around this problem by considering (wrongly) all the unlabeled pairs as negative

examples and discussed in Section 3.4 the consequences of this choice. Nevertheless, several methods

have been proposed in the literature to take into account the lack of negative examples (Ben-Hur

and Noble, 2006; Elkan and Noto, 2008; Geurts, 2011; Mordelet and Vert, 2013), and in particular

there exist adaptations of tree-based methods to this setting (Denis et al., 2005b). It would be

interesting to consider the application of these methods in the context of network inference.

6.2.2 Biological applications

This thesis presents en engineer’s perspective on the problem of biological network inference and

it therefore focused more on methodological aspects. Several problems highlighted throughout the

thesis would deserve to be analyzed more thoroughly from a biologist’s perspective.

We illustrated the interpretability of trees on a drug-protein interaction network in Section 4.5.

We have shown that tree-based methods define clusters of drugs and proteins with either many or

few connections between them and that each cluster is furthermore characterized by specific lists of

features on drugs and on proteins. It would be very important in the future to analyze the relevance

of these lists from a biological point of view. We would like to verify, for a given cluster of pairs,

if the associated PFAM domains list (protein features) can be linked to the associated chemical
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substructures list (drug features) and how their simultaneous presences can explain the high rate of

interactions in the cluster.

Concerning the prediction of the genetic interaction network in yeast, a very important and

obvious next step would be to experimentally validate the pairs that are predicted by our methods to

be the most likely to interact, positively or negatively, in order to check the precision of our method.

This validation should be done in close collaboration with biologists.

There remain also several potential directions to improve the quality of our predictions. For

example, positive interactions have been found to be more difficult to predict than negative ones.

The reason of this difference is not clear and deserves to be studied more thoroughly. A better

understanding of this difference could help improving the quality of the predictions of these interac-

tions. A potential improvement could be to address the problem of predicting genetic interactions as

a regression problem, instead of a classification problem, by trying to predict the quantitative score

associated to each pair. This could be particularly interesting for positive interactions. Indeed, we

explained in Section 5.2.2 that positive interactions can be divided into masking, suppression, and

symmetric interactions and quantitative predictions could help distinguishing these different families.

In chapter 5, we collected a very large number of datasets of gene features and evaluated their

individual and joint predictive powers, concluding that the homozygous chemo-genomic feature set

was the most informative. Although our coverage of potential gene features is already very large, we

believe that some improvement could nevertheless still be obtained by integrating new feature sets,

defined on genes or directly on pairs of genes. In particular, features that measure effects related

to gene knockouts seems to work particularly well for predicting genetic interactions. For example,

we would like to test the dataset recently produced in (Kemmeren et al., 2014) that measures the

expression of all yeast genes resulting from the knockout of 1484 genes.

Finally, in this thesis and in most existing works in the literature, we are considering separately

the problem of the inference of several networks (protein-protein interactions, genetic interactions,

GRN...) for several organisms (S. cerevisiae, E. coli, H. sapiens...). These networks and organisms

are however strongly related and there is no doubt that better predictions could be obtained by

jointly analyzing these networks for several species or strains. Such joint analysis would require

however non trivial methodological developments to adapt existing multi-task and transfer machine

learning approaches to the network inference problem.



178 6.2. LIMITATIONS AND FUTURE RESEARCH DIRECTIONS



Bibliography

Aguilar, P. et al. (2010). A plasma-membrane e-map reveals links of the eisosome with sphingolipid metabolism

and endosomal trafficking. Nature Structural and Molecular Biology , 136, 952–963.

Alanis-Lobato, G., Cannistraci, C. V., and Ravasi, T. (2013). Exploitation of genetic interaction network

topology for the prediction of epistatic behavior. Genomics, 102, 202–208.

Albert, R. and Barabasi, A.-L. (2002). Statistical mechanics of complex networks. Reviews of modern physics,

74, 47–97.

Almaas, E., Vázquez, A., and Barabási, A.-L. (2008). Scale-free networks in biology. In F. K. ed., editor,

Biological networks. World Scientific.

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K.,

Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese,

J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., , and Sherlock, G. (2000). Gene ontology: tool for

the unification of biology. Nature Genetics, 25(1), 25–29.

Bachmaier, C., Brandes, U., and Schreiber, F. (2013). Biological networks. In Handbook of Graph Drawing

and Visualization. CRC Press.

Balaji, S., Babu, M., Iyer, L., Luscombe, N., and Aravind, L. (2006). Comprehensive analysis of combinatorial

regulation using the transcriptional regulatory network of yeast. J Mol Biol .

Baryshnikova, A., Costanzo, M., Kim, Y., Ding, H., Koh, J., Toufighi, K., Youn, J.-Y., Ou, J., Luis, B.-J. S.,

Bandyopadhyay, S., Hibbs, M., Hess, D., Gingras, A.-C., Bader, G. D., Troyanskaya, O. G., Brown, G. W.,

Andrews, B., Boone, C., and Myers, C. L. (2010). Quantitative analysis of fitness and genetic interactions

in yeast on a genome scale. Nature Methods, 7, 1017–1025.

Bauer, T., Eils, R., and Konig, R. (2011). Rip: the regulatory interaction predictor–a machine learning-based

approach for predicting target genes of transcription factors. Bioinformatics, 27, 2239–2247.

Ben-Hur, A. and Noble, W. S. (2005). Kernel methods for predicting protein-protein interactions. Bioninfor-

matics, 21, i38–i46.

Ben-Hur, A. and Noble, W. S. (2006). Choosing negative examples for the prediction of protein-protein

interactions. BMC bioinformatics, 7(Suppl 1), S2.

Ben-Hur, A., Ong, C. S., Sonnenburg, S., Scholkopf, B., and Ratsch, G. (2008). Support vector machines

and kernels for computational biology. Plos Computational Biology , 4(10).

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics).

Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Bleakley, K. and Yamanishi, Y. (2009). Supervised prediction of drug-target interactions using bipartite local

models. Bioinformatics, 25(18), 2397–2403.

179



180 BIBLIOGRAPHY

Bleakley, K., Biau, G., and Vert, J.-P. (2007). Supervised reconstruction of biological networks with local

models. Bioninformatics, 23, i57–i65.

Blockeel, H., De Raedt, L., and Ramon, J. (1998). Top-down induction of clustering trees. In Proceedings of

ICML 1998 , pages 55–63.

Botstein, D. and Fink, G. R. (2011). Yeast: An experimental organism for 21st century biology. Genetics,

189, 695–704.

Botstein, D., Chervitz, S. A., and Cherry, J. M. (1997). Yeast as a model organism. Science, 277(5330),

1259–1260.

Braberg, H., Jin, H., Moehle, E. A., Chan, Y. A., Wang, S., Shales, M., Benschop, J. J., Morris, J. H., Qiu,

C., Hu, F., Tang, L. K., Fraser, J. S., Holstege, F. C., Hieter, P., Guthrie, C., Kaplan, C. D., and Krogan,

N. J. (2013). From structure to systems: High-resolution, quantitative genetic analysis of rna polymerase

ii. Cell , 154, 775–788.

Breiman, L. (1996). Bagging predictors. Machine Learning , 24, 123–140.

Breiman, L. (2001). Random forests. Machine learning , 45(1), 5–32.

Breiman, L., Friedman, J., Olsen, R., and Stone, C. (1984). Classification and Regression Trees. Wadsworth

International.

Brem, R. B., Yvert, G., Clinton, R., and Kruglyak, L. (2002). Genetic dissection of transcriptional regulation

in budding yeast. Science, 296, 752–755.

Brodersen, K., Ong, C., Stephan, K., and Buhmann, J. (2010). The binormal assumption on precision-recall

curves. In 20th International Conference on Pattern Recognition (ICPR), pages 4263–4266.

Brohée, S., Janky, R., Abdel-Sater, F., Vanderstocken, G., André, B., and van Helden, J. (2011). Unraveling
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Debré, P. and Gall, J.-Y. L. (2014). Séquençage des génomes et médecine personnalisée : perspectives et

limites. Bulletin de l’Académie nationale de médecine.
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André, B., Arkin, A., Astromoff, A., El-Bakkoury, M., Bangham, R., Benito, R., Brachat, S., Campanaro,

S., Curtiss, M., Davis, K., Deutschbauer, A., Entian, K., Flaherty, P., Foury, F., Garfinkel, D., Gerstein, M.,

Gotte, D., Güldener, U., Hegemann, J., Hempel, S., Herman, Z., Jaramillo, D., Kelly, D., Kelly, S., Kötter,

P., LaBonte, D., Lamb, D., Lan, N., Liang, H., Liao, H., Liu, L., Luo, C., Lussier, M., Mao, R., Menard, P.,

Ooi, S., Revuelta, J., Roberts, C., Rose, M., Ross-Macdonald, P., Scherens, B., Schimmack, G., Shafer, B.,

Shoemaker, D., Sookhai-Mahadeo, S., Storms, R., Strathern, J., Valle, G., Voet, M., Volckaert, G., Wang,

C., Ward, T., Wilhelmy, J., Winzeler, E., Yang, Y., Yen, G., Youngman, E., Yu, K., Bussey, H., Boeke, J.,

Snyder, M., Philippsen, P., Davis, R., and Johnston, M. (2002). Functional profiling of the saccharomyces

cerevisiae genome. Nature, 418, 387–391.

Gillis, J. and Pavlidis, P. (2011). The impact of multifunctional genes on ”guilt by association” analysis.

PLoS ONE , 6(2).

Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J. D.,

Jacq, C., Johnston, M., Louis, E. J., Mewes, H. W., Murakami, Y., Philippsen, P., Tettelin, H., and Oliver,

S. G. (1996). Life with 6000 genes. Science, 274(5287), 546–567.

Goh, K.-I., Cusick, M. E., Valle, D., Childs, B., Vidal, M., and Barabási, A.-L. (2007). The human disease

network. PNAS , 104, 8685–90.

Gottlieb, A., Stein, G. Y., Ruppin, E., and Sharan, R. (2011). Predict: a method for inferring novel drug

indications with application to personalized medicine. Molecular Systems Biology , 7(496).

Greiner, M., Pfeiffer, D., and Smith, R. (2000). Principals and practical application of the receiver operating

characteristic analysis for diagnostic tests. Preventive Veterinary Medicine, 45, 23–41.



184 BIBLIOGRAPHY

Han, J.-D. J., Bertin, N., Hao, T., Goldberg, D. S., Berriz, G. F., Zhang, L. V., Dupuy, D., Walhout, A.

J. M., E. Cusick, M., Roth, F. P., and Vidal, M. (2004). Evidence for dynamically organized modularity in

the yeast protein-protein interaction network. Nature, 430(6995), 88–93.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning . Springer.

Haury, A.-C., Mordelet, F., Vera-Licona, P., and Vert, J.-P. (2012). Tigress: Trustful inference of gene

regulation using stability selection. BMC Systems Biology , 6, 145.

He, Z., Zhang, J., Shi, X.-H., Hu, L.-L., Kong, X., Cai, Y.-D., and Chou, K.-C. (2010). Predicting drug-target

interaction networks based on functional groups and biological features. Plos One, 5, e9603.

Hempel, S., Koseska, A., Nikoloski, Z., and Kurths, J. (2011). Unraveling gene regulatory networks from

time-resolved gene expression data – a measures comparison study. BMC Bioinformatics, 12(1), 292.

Hillenmeyer, M. et al. (2008). The chemical genomic portrait of yeast: Uncovering a phenotype for all genes.

Science, 320, 362–365.

Hogan, D. J., Riordan, D. P., Gerber, A. P., Herschlag, D., and Brown, P. O. (2008). Diverse rna-binding

proteins interact with functionally related sets of rnas, suggesting an extensive regulatory system. Plos

biology , 6, 2297–2313.

Hoppins, S., Collins, S. R., Cassidy-Stone, A., Hummel, E., DeVay, R. M., Lackner, L. L., Westermann, B.,

Schuldiner, M., Weissman, J. S., and Nunnari, J. (2011). A mitochondrial-focused genetic interaction map

reveals a scaffold-like complex required for inner membrane organization in mitochondria. The Journal of

Cell Biology , 195(2), 323–340.

Hu, Z., Killion, P. J., and Iyer, V. R. (2007). Genetic reconstruction of a functional transcriptional regulatory

network. Nature genetics, 39, 683–687.

Hue, M. and Vert, J.-P. (2010). On learning with kernels for unordered pairs. In Proceedings of the 27th

International Conference on Machine Learning , Haifa, Israel.

Hue, M., Riffle, M., Vert, J.-P., and Noble, W. S. (2010). Large-scale prediction of protein-protein interactions

from structures. BMC Bioinformatics, 11, 144.

Hughes, T., Marton, M., Jones, A., Roberts, C., Stoughton, R., Armour, C., Bennett, H., Coffey, E., Dai, H.,

He, Y., Kidd, M., King, A., Meyer, M., Slade, D., Lum, P., Stepaniants, S., Shoemaker, D., Gachotte, D.,

Chakraburtty, K., Simon, J., Bard, M., and Friend, S. (2000). Functional discovery via a compendium of

expression profiles. Cell , 102, 109–126.

Huh, W., Falvo, J., Gerke, C., Carroll, A., Howson, R., Weissman, J., and O’Shea, E. (2003). Global analysis

of protein localization in budding yeast. Nature, 425, 686–691.

Huynen, M., Snel, B., Lathe, W., and Bork, P. (2000). Predicting protein function by genomic context:

Quantitative evaluation and qualitative inferences. Genome Research, 10, 1204–1210.

Huynh-Thu, V. A., Irrthum, A., Wehenkel, L., and Geurts, P. (2010). Inferring regulatory networks from

expression data using tree-based methods. Plos One, 5(9), e12776.

International Human Genome Mapping Consortium (2004). Finishing the euchromatic sequence of the human

genome. Nature, 431, 931–945.

Ito, T., Tashiro, K., Muta, S., Ozawa, R., Chiba, T., Nishizawa, M., Yamamoto, K., Kuhara, S., and Sakaki,

Y. (2000). Toward a protein-protein interaction map of the budding yeast: A comprehensive system to

examine two-hybrid interactions in all possible combinations of between the yeast proteins. Proc. Natl.

Acad. Sci., 97, 1143–1147.



BIBLIOGRAPHY 185

Janky, R. and van Helden, J. (2008). Evaluation of phylogenetic footprint discovery for predicting bacterial

cis-regulatory elements and revealing their evolution. BMC Bioinformatics, 9.

Jarvinen, A. P., Hiissa, J., Elo, L. L., and Aittokallio, T. (2008). Predicting quantitative genetic interactions

by means of sequential matrix approximation. PLoS ONE , 3(9).

Jonikas, M. C., Collins, S. R., Denic, V., Oh, E., Quan, E. M., Schmid, V., Weibezahn, J., Schwappach, B.,

Walter, P., Weissman, J. S., and Schuldiner, M. (2009). Comprehensive characterization of genes required

for protein folding in the endoplasmic reticulum. Science, 27(5922), 1693–1697.

Junaid, M., Lapins, M., Eklund, M., Spjuth, O., and Wikberg, J. E. S. (2010). Proteochemometric modeling

of the susceptibility of mutated variants of the hiv-1 virus to reverse transcriptase inhibitors. Plos One,

5(12).

Kaneshiha, M., Goto, S., Kawashima, S., Okuno, Y., and Hattori, M. (2004). The kegg resources for

deciphering the genome. Nucleic Acids Res., 32, 277–280.

Karni, S., Soreq, H., and Sharan, R. (2009). A network-based method for predicting disease-causing genes.

Journal of computational biology , 16(2), 181–189.

Kato, T., Tsuda, K., and Kiyoshi, A. (2005). Selective integration of multiple biological data for supervised

network inference. Bioinformatics, 21(10), 2488–2495.

Kelley, R. and Ideker, T. (2005). Systematic interpretation of genetic interactions using protein networks.

Nature Biotechnology , 23(5).

Kemmeren, P., Sameith, K., van de Pasch, L. A., Benschop, J. J., Lenstra, T. L., Margaritis, T., O’Duibhir,

E., Apweiler, E., van Wageningen, S., Ko, C. W., van Heesch, S., Kashani, M. M., Ampatziadis-Michailidis,

G., Brok, M. O., Brabers, N. A., Miles, A. J., Bouwmeester, D., van Hooff, S. R., van Bakel, H., Sluiters,

E., Bakker, L. V., Snel, B., Lijnzaad, P., van Leenen, D., Koerkamp, M. J. G., and Holstege, F. C. (2014).

Large-scale genetic perturbations reveal regulatory networks and an abundance of gene-specific repressors.

Cell , 157(3), 740–752.

Kim, M.-S. et al. (2014). A draft map of the human proteome. Nature, 509, 575–581.

Kondor, R. and Lafferty, J. (2002). Diffusion kernels on graphs and other discrete input spaces. In Proc. of

the 19th International Conference on Machine Learning , pages 315–322.

Krogan, N. J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., Li, J., Pu, S., Datta, N., and

Tikuisis, A. P. (2006). Global landscape of protein complexes in the yeast saccharomyces cerevisiae.

Nature, 440(7084), 637–643.

Langfelder, P. and Horvath, S. (2008). Wgcna: an r package for weighted correlation network analysis. BMC

Bioinformatics, 9(559).

Lapins, M. and Wikberg, J. E. (2010). Kinome-wide interaction modelling using alignment-based and

alignment-independent approaches for kinase description and linear and non-linear data analysis techniques

research article. BMC Bioinformatics, 11.

Lee, W. and Liu, B. (2003). Learning with positive and unlabeled examples using weighted logistic regression.

Proceedings of the International Conference on Machine Learning , 20(1), 448.

Leistner, C., Saffari, A., Santner, J., and Bischof, H. (2009). Semi-supervised random forests. In Computer

Vision, 2009 IEEE 12th International Conference on, pages 506–513.

Li, B. and Luo, F. (2009). Predicting yeast synthetic lethal genetic interactions using protein domains. In

Bioinformatics and Biomedicine, 2009. BIBM ’09. IEEE International Conference on, pages 43–47.



186 BIBLIOGRAPHY

Li, B., Cao, W., Zhou, J., and Luo, F. (2011). Understanding and predicting synthetic lethal genetic interac-

tions in saccharomyces cerevisiae using domain genetic interactions. BMC Systems Biology , 5(73).

Li, S., Xi, L., Wang, C., Li, J., Lei, B., Liu, H., and Yao, X. (2009). A novel method for protein-ligand binding

affinity prediction and the related descriptors exploration. J Comput Chem, 30, 900–909.

Liben-Nowell, D. and Kleinberg, J. (2007). The link-prediction problem for social networks. J. Am. Soc. Inf.

Sci. Technol., 58(7), 1019–1031.

Lin, N., Wu, B., Jansen, R., Gerstein, M., and Zhao, H. (2004). Information assessment on predicting

protein-protein interactions. BMC Bioinformatics, 5, 154.

Linden, R. O., Eronen, V.-P., and Aittokallio, T. (2011). Quantitative maps of genetic interactions in yeast -

comparative evaluation and integrative analysis. BMC Systems Biology , 5(45).

Liti, G., Carter, D. M., Moses, A. M., Warringer, J., Parts, L., James, S. A., Davey, R. P., Roberts, I. N., Burt,

A., and Koufopanou, V. (2009). Population genomics of domestic and wild yeasts. Nature, 458(7236),

337–341.

Louppe, G. (2014). Understanding Random Forests. Ph.D. thesis, University of Liège.
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