Clinical microbiology

Clostridium difficile infection in elderly nursing home residents

C. Rodriguez a, *, N. Korsak a, B. Taminiau a, V. Avesani b, J. Van Broeck b, M. Delmée b, G. Daube a

a Food Science Department, FARAH, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
b Microbiology Unit, Catholic University of Louvain, Brussels, Belgium

Abstract

Age-related changes in intestinal flora and host defences, the receipt of antibiotic treatment, and the presence of underlying diseases are some of the most common risk factors associated with **Clostridium difficile** infection. Therefore, retirement care facilities for elderly people have been pinpointed as frequent sources of contamination. There is only limited data regarding the presence and epidemiology of **C. difficile** in nursing homes, and this gap in the current literature emphasises the need to gain a better understanding of the situation in order to prevent the emergence of new outbreaks among this population group.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Clostridium difficile is a well-known anaerobic Gram-positive spore forming bacterium responsible for significant antibiotic-associated diarrhoea and pseudomembranous enterocolitis. Although reporting is not mandatory, the incidence of **C. difficile** infection (CDI) in hospitals has been established at both regional and national levels, ranging from 0 to 19.1 per 10,000 patient days with an annual European economic burden estimated around €3000 million [1]. **C. difficile** related diarrhoea is frequently diagnosed among elderly residents in nursing homes and other long-term care facilities for older people [2–4]. Along with antibiotic treatment [4,5], advanced age has classically been considered to be a risk factor for **C. difficile** colonisation, and related to an increase in mortality rate [6–8].

Recent studies describe colonisation by toxigenic **C. difficile** strains as ten-times higher in nursing home residents than in the general population living outside long-term care facilities [9,10]. The deteriorating health status of nursing home residents and the typically close contact between them (including cohabitation in the same contaminated environment) promote bacterial colonisation, the development of infection and the spread of bacterial spores. In addition, the risk of **C. difficile** acquisition by nursing home residents during a hospital stay is significant [11]. Residents can also be asymptomatic carriers while still representing a potential source of contamination among other patients [9].

Here, we review the current literature data on the occurrence of **C. difficile** colonisation in nursing homes. The main factors associated with infection are also analysed, as well as the mortality rate and the genetic diversity of the isolates between different geographic areas.

2. Methods

Publications analysed were searched on PubMed (http://www.ncbi.nlm.nih.gov/pubmed) with the terms “**C. difficile** nursing homes” and “**C. difficile** elderly”. Additionally, further articles were included by reviewing the references of the articles identified.

3. Occurrence of **C. difficile** in nursing homes across different countries

A relatively low number of studies have estimated the prevalence of **C. difficile** in nursing homes and other long-term care facilities for the elderly. High isolation frequencies have been described in most of the studies conducted in USA, with up to 46% of residents testing positive for **C. difficile**. In contrast, in Canada, Europe, UK, Ireland or Australia the reported rates are much lower, varying between 0.8% and 10% (Table 1). However, it is necessary to note that sample size, age, or methodologies are not standardised among the available studies, making meaningful comparison of the results difficult. Seasonal differences should be also considered: a
higher number of *C. difficile* patients were observed during the winter months in a previous study conducted in Germany [19].

A reduced variability in the isolates from residential care facilities for elderly people was reported between different countries, with PCR ribotype 027 remaining the dominant type in nursing homes regardless of their location [10,17,20]. In an investigation of a large outbreak of *C. difficile* PCR-ribotype 027 infections in France from 2008 to 2009, elderly patients over 80 years old were found to have the main population affected. Some of these patients were probably transferred from hospitals to nursing homes (and vice versa) contributing to the spread of the strain [12]. In contrast, in a study conducted across 25 nursing homes in Germany, none of the isolates obtained were identified as PCR-ribotype 027, although this type had been largely isolated from hospitalised patients in this region. The authors hypothesised that this PCR-ribotype may be more related to CDI rather than asymptomatic carriage as in only one case did a resident develop the infection during the course of the study [9]. Other PCR-ribotypes most frequently found in nursing homes are 014 (accounting for between 8% and 30% of the isolates) and 001 (accounting for between 7% and 20% of the isolates) [9,10].

4. Factors associated with *C. difficile* colonisation in elderly people

Previous studies have highlighted certain factors that make people over 65 years old more susceptible to being colonised by *C. difficile* [4,5]. Antibiotic treatment and age-related changes in intestinal flora and host defences, as well as the presence of other underlying illness may promote *C. difficile* colonisation, the developing of the infection and (in some cases) further recurrences [21,22]. One previous study evaluating factors associated with *C. difficile* acquisition in residents of a nursing home found no apparent relationship between infection and dementia, incontinence, contact with other residents with diarrhoea or age over 82 years. However, the authors observed that previous CDI, hospital admission or antibiotic therapy seemed to be related to toxigenic *C. difficile* presence [9]. A further report identified no association between *C. difficile* carriage and gender, age over 65 years, the length of the hospital stay, previous infection with the bacterium or the use of proton pump inhibitors [13]. In another study of the epidemiology of CDI among elderly care home residents, the use of proton pump inhibitors [13]. In another study of the epidemiology of CDI among elderly care home residents, the use of proton pump inhibitors has been shown to alter gut microbiota and to decrease the colonisation resistance for pathogens such as *C. difficile*, increasing the risk of developing the infection. Nevertheless, a study conducted in hospitalised patients aged 65 years or more reported 50% of the positive culture samples as signiﬁcant independent variables associated with the infection [35]. Antibiotic treatment has been shown to alter gut microbiota and to decrease the colonisation resistance for pathogens such as *C. difficile*, increasing the risk of developing the infection. Nevertheless, a study conducted in hospitalised patients aged 65 years or more reported 50% of the positive culture samples being toxigenic [23]. In the same study, a reduction in faecal microbial diversity was observed in patients with CDI but not in asymptomatic subjects from whom *C. difficile* had been isolated.

Table 1
Summary data for the presence of *C. difficile* in nursing homes and other long-term care facilities for elderly people across different geographic areas.

<table>
<thead>
<tr>
<th>Country</th>
<th>Residence of the patients enrolled in the study</th>
<th>C. difficile colonization (%)</th>
<th>CDI case</th>
<th>Asymptomatic carriers of toxigenic C. difficile (T) or (NT) non-toxigenic carriers (%)</th>
<th>Main PCR-ribotypes identified</th>
<th>Mean aged of colonised residents</th>
<th>Study period</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>Nursing home[^a^]</td>
<td>11/240 (4.6) (0–10)</td>
<td>1</td>
<td>T 9 (81.8) NT 1 (9.1)</td>
<td>014</td>
<td>83</td>
<td>2010–2011</td>
<td>[9]</td>
</tr>
<tr>
<td>France</td>
<td>Nursing home[^a^]</td>
<td>2.39/10,000 resident-days[^d^]</td>
<td>25</td>
<td>–</td>
<td>–</td>
<td>027</td>
<td>79.8</td>
<td>2006–2009</td>
</tr>
<tr>
<td>UK</td>
<td>Scotland</td>
<td>Care home residence[^a^]</td>
<td>19/2385 (0.80)</td>
<td>19</td>
<td>–</td>
<td>–</td>
<td>≥65</td>
<td>2008–2009</td>
</tr>
<tr>
<td>Ireland</td>
<td>Cork</td>
<td>Continuing care institution for the elderly</td>
<td>10/100 (10)</td>
<td>0</td>
<td>T 7 (7) NT (3)</td>
<td>–</td>
<td>82</td>
<td>–</td>
</tr>
<tr>
<td>Australia</td>
<td>Melbourne</td>
<td>Residential aged care facility[^a^]</td>
<td>1/119 (0.84)</td>
<td>0</td>
<td>T/NT 1 (0.84)</td>
<td>–</td>
<td>79.2</td>
<td>2010</td>
</tr>
<tr>
<td>USA</td>
<td>Maryland</td>
<td>Long-term care facility for the elderly</td>
<td>119/258 (46.1)</td>
<td>119</td>
<td>–</td>
<td>–</td>
<td>78.3</td>
<td>2005–2010</td>
</tr>
<tr>
<td>New York</td>
<td>Nursing home[^a^]</td>
<td>0.52–0.67/10,000 resident-days[^d^]</td>
<td>102</td>
<td>–</td>
<td>–</td>
<td>83</td>
<td>2009–2011</td>
<td>[11]</td>
</tr>
<tr>
<td>Virginia</td>
<td>Pennsylvania</td>
<td>Long-term care veterans affairs</td>
<td>0.04–0.02/1000 resident-days[^d^]</td>
<td>225</td>
<td>NT 10 (2.04)</td>
<td>027</td>
<td>–</td>
<td>2009</td>
</tr>
<tr>
<td>Ohio</td>
<td>Nursing home[^a^]</td>
<td>1.7–2.9/10,000 resident-days[^d^]</td>
<td>66</td>
<td>–</td>
<td>–</td>
<td>77</td>
<td>2004–2009</td>
<td>[16]</td>
</tr>
<tr>
<td>Ohio</td>
<td>Rhode Island</td>
<td>Long-term care facility[^a^]</td>
<td>40/73 (54.8)</td>
<td>11</td>
<td>A 15 (47.9)</td>
<td>027</td>
<td>70</td>
<td>2006</td>
</tr>
<tr>
<td>Canada</td>
<td>Ontario</td>
<td>Nursing home[^a^]</td>
<td>11/172 (6.4)</td>
<td>5</td>
<td>NT 1 (9.1)</td>
<td>–</td>
<td>81.4–85.8</td>
<td>2008</td>
</tr>
</tbody>
</table>

[^a^] More than one setting enrolled in study.
[^b^] Variation in *C. difficile* colonisation rate among 25 nursing homes.
[^c^] Only confirmed CDI 027 cases were taken into account.
[^d^] Results obtained from a national or regional level survey.
[^e^] Data from a survey conducted in a hospital reflecting the total of patients with CDI acquired in a long-term care facility in relation to the total number of hospitalised patients developing CDI.
[^f^] Inclusion of CDI developed more than 30 days after admission.
[^g^] Data from nursing home residents obtained in a laboratory for *C. difficile* testing.
[^h^] Only patients in nursing homes with results of a urinalysis were studied.
CDI. Although this study found a decrease in the diversity of bifi-
dobacterial species in favour of an increase in Bacteroides species in
the faeces of healthy elderly people, the authors also found the
microbiota of elderly patients with CDI markedly different from
those without colonisation [24].

In a literature review of C. difficile associated small bowel ente-
eritis involving analysis of 56 cases published from 1980 to 2010, the
authors came to support the contention that immunone-
sence and severe underlying disease could play a critical role in
this infection [16].

On the other hand, a recent report defines prognostic markers
for a complicated course of CDI, studying hospitalised patients with
diarrhoea and with a positive result for the C. difficile toxin test. The
mean age of these patients was 65 years. The study concludes that
age (≥85 years), admission due to diarrhoea, diagnosis at the ICU
department, recent abdominal surgery and hypotension were in-
dependent predictors of a complicated course of C. difficile infection
[21].

5. C. difficile spores in room environments and
contamination of nursing home residents in hospital

Several studies have reported the capacity of C. difficile to persist
on the skin and in the room environment for between one and four
weeks after therapy, and on inanimate surfaces for as long as five
months [25,26]. There are few studies that refer to the presence of
C. difficile in the environment of elderly patient wards
[4,27,28]. Contaminated areas of the environment such as floors,
electronic thermometers and even the air can contribute towards
C. difficile transmission in healthcare settings [4,29]. In patient
rooms, the most commonly contaminated areas have been identi-
fied as bedside tables, bedrails and toilet floors [17,26,27].

Nursing home residents are often transferred to hospitals when
they suffer an acute clinical problem or when they require special
medical care. These situations can result in transmission of
C. difficile strains between hospitals and nursing homes. A previous
study found that approximately two-thirds of CDI cases occurred
within 30 days of nursing home admission after hospitalisation
[11]. An additional study states that the mean duration of hospital
stay in elderly patients without C. difficile diarrhea is 20 days while
75% of C. difficile infection cases in aged people occur by day 21 of a
hospital stay. The authors conclude that CDI is, for many patients,
the cause of their prolonged stay in hospital [30].

6. Mortality associated with C. difficile among elderly and
nursing home residents

Although mortality associated with CDI is estimated at around
17%, it seems that this percentage could be higher among older
people [31]. In a pooled analysis of C. difficile enteritis [16], authors
found that age was significantly higher in the 18 (32%) non-
survivors from a group of patients with a mean age of 66 years
(subjects between 60 and 76 years old). The median time between
the onset of C. difficile infection symptoms and death was 4 days.
Similar finds were reported in an epidemiology survey conducted
in Ohio where, within the total number of patients’ deaths from
CDI, mortality was consistently higher in the oldest age population
[3]. Another recent study conducted in four different nursing
homes in New York reported three deaths among 23 residents who
develop C. difficile infection after more than 30 days following

Further studies have attributed the presence of C. difficile PCR
ribotype 027 in patients between 60 and 90 years of age with an
increased likelihood of CDI related death [16,32,33]; however,
studies concerning the incidence of this strain in nursing homes are
limited. Besides the hypervirulent PCR-ribotype 027, other
C. difficile types have been linked with the death of elderly patients
living in long-term care facilities, such as PCR-ribotype 078. In a
C. difficile outbreak which occurred in Irish hospitals and nursing
homes, eight out of 15 subjects with PCR-ribotype 078 colonisation
died, and in five of the cases the bacterium directly contributed to
the death of the patients [34].

Despite these findings, other reports about CDI and related
mortality in older people have not definitively established C. difficile
as the causative agent of death [4,35]. Furthermore, in a cohort
study of community-associated CDI infection among older people
and the relationship between infection, antibiotic exposure, and
care home residence, authors reported an increased mortality
among subjects that whose infections were healthcare-onset, but
not among CDI cases in the community [2]. Similarly, in the study of
Garg et al. [19], the highest mortality was found among C. difficile
infection cases in hospital (9.4%) while the percentage of deaths
was lower in long-term care facility CDI cases (7.6%) and in com-
community acquired infections (2.3%).

7. Conclusions

There seems to be clear evidence that C. difficile colonisation and
infection is more likely in elderly patients, as many factors associ-
ated with ageing influence susceptibility. Despite the currently
limited data on the age-related changes in gut microbiota, this may
play a critical role in C. difficile colonisation. Antibiotics, as well as
specific treatments or interventions, and other individual condi-
tions that decrease immune defences appear to promote the
development of infection.

Hospitals are traditionally considered to be the main focus of
C. difficile contamination, but some studies have also highlighted
long-term care facilities as an environment predisposed for trans-
mission. The constant movement of patients from nursing homes to
hospitals and vice versa may facilitate transmission of epidemic and
non-epidemic C. difficile strains between both of the healthcare
establishments.

The severity and mortality rate of CDI appears more elevated
among nursing home residents than older people living in the
community. In addition, the hypervirulent PCR-ribotype 027 have
been described as the most prevalent strain in long-term care fa-
cilities for elderly people.

Although it is difficult to separate the increased CDI suscepti-
bility of nursing home residents from that induced by other factors
(e.g. exposure to antibiotics, hospitalisation), further studies are
required to better understand the epidemiology of C. difficile in
long-term care facilities, in both the presence and absence of an
epidemic situation.

References

[1] Jones AM, Kuijper EJ, Wilcox MH. Clostridium difficile: a European perspec-
Community-associated Clostridium difficile infection among older people
in Tayside, Scotland, is associated with antibiotic exposure and care home
residence: cohort study with nested case-control. J Antimicrob Chemother
Clostridium difficile infection in Ohio hospitals and nursing homes during
Clostridium difficile among
48–51.
[6] Castrillon BO, Harbarth S, Prendki V. Clostridium difficile infections, specific