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Abstract
Five wood mice Apodemus species occur across China, in allopatry but also in sympatry up to cases of syntopy. They all share a similar external
appearance, similar habitats of grasslands and forests and a generalist feeding behaviour. This overall similarity raises questions about the
mechanisms insuring competition avoidance and allowing the coexistence of the species. In this context, a morphometric analysis of two
characters related to feeding (mandible and molar) addressed the following issues: (1) Were the species actually different in size and ⁄ or shape of
these characters, supporting their role in resource partitioning? (2) Did this pattern of phenotypic divergence match the neutral genetic
differentiation, suggesting that differentiation might have occurred in a former phase of allopatry as a result of stochastic processes? (3) Did the
species provide evidence of character displacement when occurring in sympatry, supporting an ongoing role of competition in the interspecific
divergence? Results evidenced first that different traits, here mandibles and molars, provided discrepant pictures of the evolution of the Apodemus
group in China. Mandible shape appeared as prone to vary in response to local conditions, blurring any phylogenetic or ecological pattern,
whereas molar shape evolution appeared to be primarily driven by the degree of genetic differentiation. Molar size and shape segregated the
different species in the morphospace, suggesting that these features may be involved in a resource partitioning between Apodemus species. The
morphological segregation of the species, likely achieved by processes of differentiation in isolation promoted by the complex landscape of China,
could contribute to competition avoidance and hence explain why no evidence was found of character displacement.
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Introduction

Asiatic regions of the world, despite being still largely

understudied when compared with European areas, are more
and more emerging as biodiversity hotspots (Liu et al. 2003;
Sodhi et al. 2004). Although south-east Asia concentrates
most interest because its tropical habitats appear prone to

discover rare and sometimes highly emblematic species (e.g.
Dawson et al. 2006; Huchon et al. 2007), more temperate
regions like China also present a less emblematic but valuable

and endangered biodiversity (Amori and Gippoliti 2001; Liu
et al. 2003). How such a wealth of species, sometimes very
similar based on external criteria, emerged and was maintained

through time despite putative competition for resources is a
challenging topic bringing together evolutionary and ecolog-
ical issues.

Wood mice of the genus Apodemus (Kaup, 1829) appear as
valuable models to tackle such questions. Five species occur
across China: Apodemus agrarius (Pallas, 1771), A. draco
(Barrett-Hamilton, 1900), A. latronum (Thomas, 1911), A. pen-

insulae (Thomas, 1907) and A. uralensis (Pallas, 1811) (Fig. 1).
Their time of divergence is variable, from ca. 6 Ma for the split
betweenA. uralensis, belonging to the subgenus Sylvaemus, and

the four other species belonging to the subgenus Apodemus, to

around 2 Ma for the sister species A. draco and A. latronum.
Despite the quite ancient divergence in some cases, these species
are so remarkably similar based on external criteria that any
reliable identification requires a confirmation using molecular

markers (Giraudoux et al. 2008). Such a morphological simi-
laritymaintainedovermillions of years of evolutionmight be the
result of stabilizing selection, but this challenges the question of

how such species do coexist when occurring in sympatry and
even in syntopy. Such coexistence suggests the existence of
mechanisms insuring competition avoidance. Candidate factors

include a differentiation related to the feeding apparatus,
allowing for a differential exploitation of apparently similar
resources (Dayan and Simberloff 1994; Dayan et al. 1990; Parra
et al. 1999).

The size and shape of two characters evidently related to the
feeding behaviour were thus quantified using geometric mor-
phometrics methods: the mandible and the molar (first upper

molar, M1) on Apodemus mice from a set of six localities
across China (Fig. 1) documenting both cases of allopatry
(A. agrarius in Ben Ben Wan, A. peninsulae in Baihaba and

Rangtang, A. uralensis in Narati) and sympatry (A. agrarius
and A. peninsulae in Xiji; A. draco, latronum and peninsulae in
Maerkang).

Based on the quantification of the phenotypic traits, several
questions were addressed to elucidate the mechanisms involved
in the differentiation and coexistence of the Apodemus species
in China. (1) Were the species actually diverging in size and ⁄or
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shape of these characters, supporting their role in resource
partitioning? (2) Did this pattern of phenotypic divergence
match the expectation of neutral genetic differentiation,

suggesting that differentiation might have occurred in a former
phase of allopatry as a result of stochastic processes? This
would not preclude the fact that morphological differentiation

might contribute to the exploitation of slightly different
resources and hence contribute to favour coexistence of species
when coming later into secondary contacts. (3) Did the species
still provide evidence of character displacement when occur-

ring in sympatry, supporting an ongoing role of competition in
the interspecific divergence?

Material and Methods

Material

A total of 126 wood mice were sampled in six localities documenting
both cases of allopatry and sympatry (Table 1; Fig. 1). On these
animals, 126 first upper molars and 83 mandibles were considered for
morphometric analyses. All the animals were genetically identified
(Sakka et al. 2010) and were considered as subadult or adult based on
the fact that the third molar was erupted. This happens at around
3 weeks of age, a time corresponding to weaning.

Trapping sites encompassed a wide range of habitats, from fields and
grasslands to forests, exemplifying the ecological diversity of the
Apodemus mice. Maerkang habitat was dominated by forest. Baihaba,
Xiji and Rangtang corresponded to open landscapes (bushes, fallows,
scrubs). Narati and Ben Ben Wan presented mixed habitats with open
fields and forest patches (Giraudoux et al. 1998, 2008; Raoul et al.
2008).

Outline analysis of the mandible and first upper molar

In murine rodents, the overall morphology of the mandible and molars
is adequately described by their two-dimensional outline: regarding the
mandible, the mandibular bone is almost flat and its outline describes
the position and shape of its most prominent features, namely the
processes of muscular insertion, the condyle and tooth-bearing
alveolar region; regarding the molar, its outline close to the basis of
the crown describes the position of the main cusps without being
heavily affected by wear (Renaud 2005). For both features, outline
analysis appeared as an efficient method to describe inter- and
intraspecific variations in wood mice (Renaud and Millien 2001;
Renaud and Michaux 2003, 2007; Renaud 2005).

Mandible shape analysis
The outline of the mandible corresponds to its projection, put flat with
the lingual side down. Left mandibles were considered or mirror
images of the right one when the left one was damaged. The starting
point was defined at the meeting point of the incisor and the bone, at
the antero-dorsal edge of the diastem. This outline was sampled by 64
points at equally spaced intervals. The mandible outline being

complex, with re-entrant zones corresponding to the processes, it
was analysed using an elliptic Fourier transform (EFT), a method well
suited to the description of complex shape (Kuhl and Giardina 1982;
Navarro et al. 2004). Any Fourier analysis decomposes an initial
function of the outline in successive trigonometric functions of
decreasing wavelength: the harmonics. The EFT is based on a separate
decomposition of the incremental changes of the x and y coordinates
as a function of the cumulative length along the outline. For each
harmonic, 4 Fourier coefficients (FC) define an ellipse in the xy plane:
An and Bn for x and Cn and Dn for y. The first harmonic ellipse
corresponds to the best-fitting ellipse of the outline; its area is
considered as size estimator of the outline and is used to standardize
the other FCs for isometric size differences. Since the coefficients A1, B1

and C1 correspond to residuals after this standardization (Crampton
1995; Renaud et al. 1996), they should not be included in the
subsequent statistical analyses, to the contrary of the coefficient D1

that still retains information about the elongation of the outline
(Michaux et al. 2007).

Molar shape analysis
The two-dimensional outline of the first upper molar corresponds to its
shape towards the basis of the crown. The starting point was
tentatively located at the anteriormost part of the tooth. The outline
was described by a set of 64 points at equal distances along the outline.
The molar outline is simpler than the mandibular one and could be
described using a simpler Fourier analysis than the EFT. Yet, some
standardization properties of the EFT were used in the first place,
using a procedure combining two Fourier approaches (Renaud et al.
2006).

The molar outline was first analysed an EFT procedure. The
major axis of the first harmonic ellipse corresponds to the maximum
elongation of the outline, coinciding with the anteroposterior
elongation of the tooth. The first axis was thus used to adjust the
starting point at the anteriormost part of the tooth in a comparable
way among teeth. A reconstructed outline with an adjusted starting
point was provided by this method, providing a new set of 64 points
that were analysed using a radial Fourier transform (RFT). Using
this method, a set of radii, that is, distance of each point to the
centre of gravity of the outline, is calculated from the original
coordinates and this set is then decomposed into Fourier functions.
Each harmonic is thus described by two FCs An and Bn (Renaud
and Michaux 2003). The zero harmonic corresponds to a best-fit
circle to the outline and its value is used to standardize other FCs
for isometric size differences.

Threshold values of the Fourier analyses
Whatever Fourier method considered, the higher the rank of the
harmonic, the more detailed the description of the outline. Previous
studies showed that considering the first nine harmonics offered a
good compromise between measurement error, information content
and the number of variables to be considered (Renaud et al. 1999).
The shape of each mandible was thus described by a set of 33 FCs (4
EFT coefficients per 9 harmonics, minus A1, B1 and C1) and the
shape of each molar by a set of 18 FCs (2 RFT coefficients per 9
harmonics).

Table 1. Sampling localities of the Chinese wood mice considered in the present study. The abbreviation of each locality is provided (Code) as
well as its latitude and longitude and administrative region. The number of measures is indicated for body size (H+B, head + body length),
mandibles (Md) and first upper molars (M1) for each species present per locality

Region Locality Code Lat. Long. Species H+B Md M1

Xinjiang Baihaba Bai 48.8 86.9 A. peninsulae 16 10 16
Narati Nar 43.3 84.0 A. uralensis 34 23 34

Gansu Ben Ben Wan Bbw 34.4 104.6 A. agrarius 12 7 12
Ningxia Xiji Xij 35.9 105.6 A. agrarius 16 9 16

A. peninsulae 3 3 3
Sichuan Maerkang Mae 31.7 102.3 A. draco 17 15 17

A. latronum 14 7 14
A. peninsulae 2 – 2

Rangtang Ran 32.3 101.1 A. peninsulae 12 9 12
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Statistical analysis

Univariate statistics
For each animal, different characters were considered that delivered
several size estimates: (1) body size, estimated by the head + body
length; (2) mandible size, estimated by the area enclosed by its two-
dimensional outline; and (3) the first upper molar, also estimated by its
outline area. Relationships between these various size estimates were
investigated using general linear models. Body size was considered as
independent factor in relation to mandible and molar size; mandible
size was considered as independent factor in relation to molar size.
Analyses including all five species were first performed, with species as
covariate and including the interaction of size per species. Analyses
were then performed for each species separately. Inter- and intraspe-
cific differences were tested using analyses of variance (anova)
complemented by non-parametric Kruskal–Wallis tests.

Multivariate statistics
For either the mandible or the molar, the FCs constituted shape
variables that were analysed using multivariate statistics. The pattern
of intra- and interspecific differentiation was displayed on the axes of a
principal component analysis (PCA) performed on the variance-
covariance matrix of the FCs. Such an analysis summarizes the total
variance on a set of successive independent axes explaining a
decreasing proportion of variance. Because of the large number of
initial shape variables, the PCA was used to reduce the dimensionality
of the data set for subsequent multivariate analyses (Sheets et al.
2006). Considering as new shape axes a set of first principal axes allows
summarizing a maximum of shape variance on a minimum of
independent variables. Two sets of principal axes were considered,
cumulating more than 80% and more than 90% of the data set and
termed thereafter PC80 and PC90, respectively. Intra- and interspecific
differences were tested using multivariate analyses of variance (mano-

va, test considered: Wilks� Lambda) on the sets of FCs and on the sets
of principal axes summarizing the total variance, PC80 and PC90.

Sexual dimorphism
The occurrence of sexual dimorphism was tested using analyses of
variance (anova) on univariate size variables and using manova on
multivariate data sets (PC80 and PC90).

Congruence between data sets
Several aspects of inter-specific shape differentiation were considered:
relationship between shape and size and between mandible and molar
shape. Relationships between shape and univariate parameters were

tested using multivariate regressions, the independent variable being
the mean size per locality and per species. Given the reduced number
of items to be compared (8 group means when considering the
mandible, 9 when considering the molar), the reduced shape data set
(PC80) was the only one on which these tests could be performed. Even
so, sample size was too low to apply this approach for assessing the
relationship between the two multivariate data sets corresponding to
mandible and molar shape. Mandible and molar patterns of shape
differentiation were thus compared using correlation between matrices
of Euclidean distances, using a Mantel t-test.

Intergroup distances
Euclidean distances were further calculated among group means
(locality per species) for all characters considered: body size (head +
body length), mandible and molar size (area of the outline) and
mandible and molar shape (distances among mean Fourier coeffi-
cients). These distances were separated in three categories: distances
among intraspecific pairs (pairs involving the same species in different
localities); distances among interspecific pairs in allopatry; and
distances among interspecific pairs in sympatry. An accumulation of
morphological divergence together with neutral genetic divergence
would be supported by intraspecific distances being smaller than
interspecific distances. Character displacement would be supported by
distances between species in sympatry being larger than the same
species in allopatry (Adams et al. 2007).
Distances data sets corresponding to intraspecific, sympatric and

allopatric pairs were compared visually and in percentage of diver-
gence. Non-parametric Kruskal–Wallis tests were further used to
compare distribution among categories of distances.

Results

Sexual dimorphism

The occurrence of sexual dimorphism was tested in each
species for the body size and for the size and shape of the first

upper molar and the mandible. A difference between sexes was
evidenced in none of the species, for neither size nor shape
(Table 2). This absence of sexual dimorphism on size and
shape of phenotypic traits such as mandible and molars is in

agreement with previous studies on wood mice (Renaud 2005).
Therefore, males and females were pooled together in the
subsequent analyses.

(a) (b)

Fig. 1. Geographical and phylogenetic context of the study. (a) Map with the localities of trapping (grey dots). Symbols close to the name of the
locality indicate the sampled species. (b) Phylogenetic relationships of the field and wood mice considered. The phylogenetic reconstruction was
based on cytochrome b (cyt b) and inter retinoid protein (IRBP) nuclear genes, all previously published in the literature and downloaded from the
GenBank database (cyt b accession numbers: JF819971, JF819970, FN430770, AF159390, AY389010, AY389003. GU908394, HQ256766,
EU349767; IRBP: AB032860, AB032863, AB096853, AB096845, AB109398, AB096852, AB032857, AB033711, AB096855). These sequences
correspond to the studied Chinese Apodemus species and two representatives of the Sylvaemus subgenus. Two Mus species were used as out-
groups in the phylogenetic reconstruction. Cytochrome b and IRBP sequences were combined to improve the robustness of the phylogenetic tree.
MODELTEST 3.0 (Posada and Crandall 1998) was used to determine the most suitable model of DNA substitution for the combined cyt b and
IRBP data set studied. Phylogenetic reconstructions were performed using the maximum likelihood criterion (ML; Felsenstein 1981) implemented
in PHYML (Guindon and Gascuel 2003). Phylogenetic trees were rooted with sequences from two Mus species. The robustness of the tree was
assessed by bootstrap support (1000 random pseudoreplicates) (numbers are indicated on the nodes of the tree)
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Intra- and interspecific size variations

Relationships between size parameters
Three different measures of size were available for each animal,
regarding different traits: body, mandible and molar. A global
scaling is expected; yet, uncoupling within species may point to

different selective contexts and ⁄or constraints throughout the
animal�s life for the different characters. A significant effect of
body size on mandible size was evidenced, together with

specific differences and an interaction pointing to different
body size – mandible size relationships in the different species
(Table 3). This strong relationship was confirmed when

analysing each species separately. In contrast, molar size was
related to body size in none of the species. It was related to
mandible size in A. draco and A. uralensis.

Intraspecific size variations
Apodemus agrarius and A. peninsulae were the only two species
documented in more than one locality, thus allowing an

investigation of intraspecific variations (Fig. 2; Table 4). Body
size differences were limited in A. agrarius and could not be
evidenced in A. peninsulae. Mandible size did not display any

significant intraspecific differences, whereas molar size differed
between localities in both species (Table 4).

Interspecific size variations
The five species were significantly different in body, mandible
and molar size (Table 4), A. latronum being the largest species

whatever size estimate considered. The smallest species in body
size was A. draco, whereas A. uralensis displayed overall the
smallest mandibles and teeth (Fig. 2).

Interspecific size differences between co-occurring species
were further investigated in the two localities Xiji and
Maerkang that delivered more than one species. A. agrarius
and A. peninsulae were coexisting in Xiji; they appeared to

share similar body, mandible and molar size (Table 4). Three
species co-occur in Maerkang: A. peninsulae and the two sister
species A. draco and A. latronum. Significant differences in

body and molar size were documented; differences in mandible
size were marginal.

Patterns of intra- and interspecific differentiation in mandible

shape

The PCA on the Fourier coefficients summarized the total
variance on few successive axes. The first two PCs expressed
more than 70% of the total variance, more than 80% was
expressed when considering the first four axes and more than

90% when considering the first six axes (PC1 = 42.2%,
PC2 = 29.0%, PC3 = 8.5%, PC4 = 7.2%, PC5 = 2.7%,
PC6 = 2.5%, subsequent axes <2%). A complex pattern

of mandible shape differentiation emerged on the morpho-
space defined by the first two principal axes of a PCA on
the Fourier coefficients (Fig. 3). Variations along PC1 overall

opposed wider mandibles with developed processes and a
broad alveolar region (towards negative PC1) to slender
mandibles. Variations along PC2 mostly corresponded to a
relative development of the angular and coronoid processes.

Mandible shape was different among species (Table 4).
Intraspecific differences were overall of limited importance and
were only evidenced on reduced data sets in both A. agrarius

Table 2. Test of sexual dimorphism in the five Chinese species of wood mice A. agrarius, A. draco, A. latronum, A. peninsulae and A. uralensis for
body size (H+B: head + body length), mandibles (Md) and first upper molars (M1). Mandible and molar size was estimated by the outline area;
shape was estimated by the first principal axes extracted from the complete set of Fourier coefficients, to reduce dimensionality of the data set.
Two sets of axes were considered: summarizing more than 80% (Md, 4 PCs; M1, 5 PCs) and 90% (Md, 6 PCs; M1, 8 PCs) of the total variance.
Probabilities of anova are given for univariate size variables, of manova for multivariate shape data sets

H+B Md size Md PC80 Md PC90 M1 size M1 PC80 M1 PC90

A. agrarius 0.498 0.234 0.911 0.722 0.975 0.364 0.466
A. draco 0.100 0.302 0.521 0.763 0.998 0.912 0.659
A. latronum 0.370 0.299 0.571 0.834 0.301 0.192 0.167
A. peninsulae 0.170 0.921 0.383 0.112 0.166 0.261 0.213
A. uralensis 0.885 0.430 0.682 0.843 0.959 0.116 0.258

Table 3. Relationships between body, mandible and molar size in the five species of wood mice, tested using linear models

N

X Y

N

X Y

N

X Y

H+B Md H+B M1 Md M1

p R p R p R

Total
Size 82 0.000 0.853 126 0.089 0.895 82 0.095 0.883
Species 0.000 0.074 0.096
Size · species 0.000 0.378 0.116

Per species
A. agrarius 16 0.157 0.371 28 0.600 0.104 16 0.770 0.079
A. draco 15 0.000 0.960 17 0.129 0.383 15 0.012 0.631
A. latronum 7 0.034 0.790 14 0.945 0.020 7 0.914 0.051
A. peninsulae 21 0.004 0.595 33 0.738 0.060 21 0.909 0.026
A. uralensis 23 0.000 0.756 34 0.360 0.162 23 0.000 0.756

X, independent variable; Y, dependent variable, N, number of items; R, coefficient of correlation; p, probability in a linear model. H+B,
head+body length; Md, mandible area; M1, molar area. In bold significant probabilities
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and A. peninsulae (Table 4). A striking feature was the
importance of intra-group variability, as shown by the large
confidence intervals surrounding each mean. Such a large

variability tended to swamp out even interspecific differenti-
ation that was weak at Maerkang and could not be evidenced
at Xiji (Table 4).

(a)

(b) (c)

Fig. 2. Size variations of five Apodemus species across the different localities in China. (a) Body size, estimated by head + body length. Mandible
size (b) and first upper molar size (c), estimated by the area of their outline. Average values per locality and species are plotted (± 95% confidence
interval)

Table 4. Intraspecific and interspecific differentiation in body size (H + B, head + body length) and size and shape of the mandible (Md) and
the molar (M1). Intraspecific differentiation was investigated for species sampled at more than one locality (A. agrarius and A. peninsulae).
Interspecific differentiation was investigated between the five species and between sympatric species at localities where more than one species were
sampled (Maerkang and Xiji). Probabilities of anova and of non-parametric Kruskal–Wallis (KW) tests are provided for univariate size
parameters; for multivariate data sets, probabilities (Wilks� Lambda tests) of manova are provided, performed on either the set of Fourier
coefficients (FCs), the set of principal axes summarizing 80% of variance (PC80; Md, 4 PCs; M1, 5 PCs) and 90% of variance (PC90; Md, 6 PCs;
M1, 8 PCs). In bold significant probabilities

Size FCs PC80 PC90

anova KW manova

H + B
5 species 0.000 0.000

A. agrarius 0.131 0.006

A. peninsulae 0.494 0.353
Maerkang 0.002 0.003

Xiji 0.882 0.736
Md

5 species 0.000 0.000 0.0000 0.0000 0.0000

A. agrarius 0.185 0.101 0.2857 0.0236 0.0468

A. peninsulae 0.375 0.459 0.0753 0.0320 0.0968
Maerkang 0.077 0.045 0.5020 0.0271 0.1033
Xiji 0.217 0.116 0.5527 0.2521 0.4744

M1
5 species 0.000 0.000 0.0000 0.0000 0.0000

A. agrarius 0.002 0.003 0.0939 0.0583 0.1705
A. peninsulae 0.013 0.065 0.0002 0.0000 0.0000

Maerkang 0.000 0.000 0.0254 0.0000 0.0000

Xiji 0.412 0.502 0.7265 0.0021 0.0128
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Patterns of intra- and interspecific differentiation in molar shape

The first two axes of a PCA on the Fourier coefficients
expressed more than 70% of the total variance, whereas
subsequent axes explained each a relatively small amount

of variance (PC1 = 55.6%, PC2 = 10.0%, PC3 = 7.6%,
PC4 = 6.0%, PC5 = 4.3%, PC6 = 3.0%, PC7 = 2.9%,
PC8 = 2.4, subsequent axes <2%). Cumulating the first five

PCs expressed more than 80% and the first eight axes more
than 90%.
The differentiation in molar shape on the first two PCs

provided a clearer pattern than considering mandible shape
(Fig. 4). The intragroup variability was much reduced and a
strong interspecific differentiation emerged as the most impor-
tant signal (manova between species: p < 0.0001, on FCs as

well as the reduced data sets PC80 and PC90). The most
divergent species was A. agrarius, characterized by slender
molars, opposed at the other extreme to A. peninsulae that

displayed the broader molars. A. draco, A. uralensis and
A. latronum were intermediate in molar shape, the two latter
being close and relatively broad in shape, whereas the former

tended to be closer to A. agrarius. This strong interspecific
differentiation characterized the sympatric species in Maerkang

as well as in Xiji (Table 4). Beyond this main pattern of
interspecific differentiation, within species variations were
not significant in A. agrarius but were highly significant in

A. peninsulae.Within-species variationmaybe significant in this
species because it is the only one documented by localities far
apart, and the most distant locality (Baihaba, to the extreme

north-west of China) indeed appeared as the most divergent.

Relationship between patterns of differentiation of the different

characters

Patterns of intergroup differentiation were evaluated by mean
values per locality and per species. Multiple regressions showed

that body size differences were correlated neither with mandible
shape (multivariate regression of size vs. PC80: p = 0.096) nor
with molar shape (p = 0.446). Intergroup differences in man-

dible size did not correlate with molar shape (p = 0.879) but
were weakly related with variations in mandible shape
(p = 0.046).

Patterns of differentiation observed for mandible shape and
molar shape were not correlated (correlation among distance
matrices, Mantel t-test on PC80: R = )0.248).

(a)

(b)

Fig. 3. Shape differentiation of the mandible among Apodemus species in China. (a) First two principal components (expressing 71.8% of the
total variance) obtained by a PCA on the EFT Fourier coefficients of the mandible outline. (b) Shape changes along the axes. The white outline
corresponds to the average shape, and grey outlines to exaggerated variations along the axes (scores = 4 ⁄ )4 and 8 ⁄ )8). Average values per
locality and species are plotted (±95% confidence interval) together with the corresponding mean outline
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Size and shape differentiation of the first upper molar across the

localities

The previous results evidenced a complex pattern of size and
shape differentiation, two aspects that together describe the
whole form of a character. A combined visualization of the

differentiation in size and shape was therefore attempted,
focusing on the M1 that displayed much clearer interspecific
differences in size (Fig. 2) and shape (Fig. 4) than the

mandible.
Size was estimated by the area of the M1 and shape

variations were summarized by scores along PC1, considered

as a satisfying synthetic shape axis given the high amount of
total variance explained by this axis (56%).

In the two localities where sympatric species occur, the

combination of size and shape allowed a complete segregation
of the different species (Fig. 5). In Maerkang (Fig. 5a), molars
of A. draco and A. peninsulae were of similar size but strongly
differ in shape, whereas A. latronum, intermediate in shape,

differed in molar size. In Xiji (Fig. 5b), A. peninsulae and
A. agrarius displayed similar molar size, but were different in
shape.

Furthermore, each species seemed to occupy a stable range
of size and shape, either being found in sympatry (Maerkang,

Xiji) or alone in a locality (Fig. 5c–f). This was further
investigated by comparing allopatric and sympatric size and
shape distances.

Morphological distances

Among-group distances based on body size and on size and

shape of mandible and molars were investigated between
intraspecific pairs and interspecific pairs involving species in
sympatry or in allopatry.

Intra-specific distances were in average smaller than inter-
specific distances for size and shape (Table 5). This difference
was the most limited (10%) for mandible shape and the most

pronounced for molar size and shape (around 50%). A
difference in distribution was nevertheless only significant for
molar shape (p = 0.002) owing to a large dispersion in the set
of interspecific allopatric distances (Fig. 6).

Within interspecific distances, allopatric and sympatric pairs
were compared. No consistent pattern emerged across char-
acters, distance in sympatry tending to be larger than in

allopatry for size, but not for shape (Table 5). Yet, the
distribution of distances in allopatry vs. in sympatry differed
significantly in none of the cases. The large dispersion of

(a)

(b)

Fig. 4. Shape differentiation of the first upper molar among Apodemus species in China. (a) First two principal components (expressing 65.6% of
the total variance) obtained by a PCA on the RFT Fourier coefficients of the M1 outline. (b) Shape changes along the axes. The white outline
corresponds to the average shape, and grey outlines to exaggerated variations on the axes (scores = 2 ⁄ )2 and 4 ⁄ )4). Average values per locality
and species are plotted (± 95% confidence interval) together with the corresponding mean outline

Can tooth differentiation help to understand species coexistence? 321

J Zool Syst Evol Res (2012) 50(4), 315–327
� 2012 Blackwell Verlag GmbH



distances may be due to the involvement of different pairs
between the five species sampled. Distances between allopatric
and sympatric pairs were thus considered for A. agrarius and
A. peninsulae only (Table 5), including a sympatric case and 7

allopatric cases (5 for the mandible). The distance in sympatry
was close to the mean distance observed in allopatry for
mandible size and shape, and molar shape and smaller

(40–80%) for body size and molar size. The distance in
sympatry was the smallest of all A. agrarius – A. peninsulae
distances for body size and intermingled with distances in

allopatry in all other cases (Table 5).

Discussion

Phenotypic characters were traditionally important taxonomic
characters; despite the preponderant importance nowadays of

genetic studies for such purposes, morphological traits still
constitute a valuable component of diversity to be considered
together with genetics. Beyond practical interest for helping
identification of animals on the field (e.g. Darviche and Orsini

1982; Darviche et al. 2006), morphological traits can constitute
the most evident reason for recognizing divergent forms and
may provide useful information in the assessment of conser-

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Size and shape of the first upper molars in the six localities of sampling: Maerkang (a), Xiji (b), Baihaba (c), BenBenWan (d), Rangtang
(e) and Narati (f). The size is estimated by the area of the molar outline and the shape by the first principal component of a PCA (PC1 expressing
55.6% of the variance) on Fourier coefficients of the molar outline. Each dot corresponds to a specimen, and the symbols indicate the species
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vation priorities (e.g. Cardini and O�Higgins 2004; Cardini
et al. 2007). They also constitute a crucial aspect in evolution,
because phenotypic traits are those that allow an animal to
face its environment and as such, are those submitted to the

screening by selection. They can thus provide valuable
information about the selective context that drove evolution.

Two characters, two stories of differentiation

Different traits may be related to different functions and
depend on various genetic, developmental and environmental
factors. Hence, their patterns of differentiation may reflect
different aspects of evolution. Indeed, a discrepancy between

Table 5. Comparison of interspecific vs. intraspecific distances, and sympatric vs. allopatric distances for body size, and mandible and molar size
and shape. Allopatric: interspecific distances between pairs in allopatry; sympatric: interspecific distances between pairs in sympatry; intraspecific:
distances between localities of a same species. Euclidean distances calculated on body size (H + B), mandible (Md) and molar (M1) size, and
mandible and molar shape (distances among Fourier coefficients). How much distances between sympatric pairs were larger than distances
between allopatric pairs and how much intraspecific distances were larger than distances between interspecific allopatric pairs has been expressed
in percentage of the mean interspecific allopatric differences (Symp-Allo% and Intra-Inter%, respectively). Lower panel: values for pairs
involving A. agrarius and A. peninsulae only. Counts of cases where the distance in sympatry was larger than the distance in allopatry as expected
based on character displacements are indicated (Symp>Allo)

H + B MdSize MdShape M1size M1Shape

All pairs
Allopatric 5.97 3.13 0.052 0.32 0.029
Sympatric 7.12 4.02 0.042 0.52 0.029
Intraspecific 4.27 1.97 0.048 0.16 0.015
Symp-Allo % 19 28 )20 63 )1
Intra-Inter % )28 )37 )9 )50 )48

A. agrarius ) A. peninsulae
Allopatric 4.85 2.50 0.058 0.13 0.044
Sympatric 0.69 2.61 0.057 0.08 0.039
Symp-Allo % )86 5 )3 )39 )12
Symp>Allo # 0 ⁄ 7 2 ⁄ 5 2 ⁄ 5 3 ⁄ 7 3 ⁄ 7

(a) (b)

(c) (d)

Fig. 6. Size and shape intergroup distances based on molar and mandible outline analysis. (a) Molar shape distances, that is, Euclidean distances
between Fourier coefficients of the outline analysis. (b) Molar size distances, that is, Euclidean distance between molar outline average areas. (c)
Mandible shape distances. (d) Mandible size distances. Interspecific comparisons are separated into allopatric (black circles) and sympatric (grey
circles) pairs. Distances between pairs of the same species are represented by open circles
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results based on mandible and molar shape emerged from our
results. Intraspecific relative to interspecific variation was
large when considering mandible shape but much weaker

regarding the molar analysis. The sensitivity of the mandible
shape to environmental influences has been repetitively
evidenced (Renaud 2005; Rychlik et al. 2006). This morpho-

logical feature is prone to bone remodelling even during the
post-weaning life on the animal, thus allowing significant
differences in shape to accumulate because of plasticity
(Renaud and Auffray 2010; Renaud et al. 2010). On the

much longer timescale of the diversification of the murine
family, the most important factor driving mandible differen-
tiation appeared to be feeding ecology rather than phylogeny

(Michaux et al. 2007). Hence, both plastic response and
adaptation to local conditions over generations may contrib-
ute to the large intraspecific relative to interspecific variation

in mandible morphology across sampling localities in China,
corresponding to a wide variety of habitats, from forest to
grassland and even farmland (Giraudoux et al. 1998, 2008;

Raoul et al. 2008).
In contrast, molar shape appeared to be characterized by an

important interspecific relative to intraspecific variation. Once
erupted, molars are only prone to wear, a process only

marginally affecting the crown outline (Renaud 2005), making
them unlikely to vary in a plastic way within a generation
(Renaud 2005; Rychlik et al. 2006) and hence less sensitive to

direct environmental influences.

Molar shape, a signal of genetic and ⁄ or ecological
differentiation?

The present study encompasses different scales of differentia-

tion, from intra- to interspecific, hence ranging from less than
a million years to above 6 million years for the oldest
divergence. The importance of interspecific differences relative
to intraspecific variation suggested that molar shape differen-

tiation occurred parallel to genetic divergence during specia-
tion. How does this pattern fit with the known phylogeny of
the group? Two subgenera of Apodemus mice occur in China,

A. uralensis being the sole representative of the Sylvaemus
subgenus, whereas the other species belong to the Apodemus
subgenus (Fig. 1; Suzuki et al. 2008). Within this latter group,

A. agrarius and A. peninsulae diverged around 5 Ma ago
(Michaux et al. 2002; Suzuki et al. 2008). Finally, the sister
species A. draco and A. latronum diverged only ca. 2 Ma ago
(Suzuki et al. 2008).

As far as revealed by our sampling, this phylogenetic pattern
fits well to the observed differentiation in molar shape, the
most divergent species of the subgenus Apodemus, A. agrarius

and A. peninsulae, being also characterized by the most
differentiated molar shape, whereas the sister species A. draco
and A. latronum cluster close together in the morphospace.

Even within species, morphological differentiation seems to
occur roughly according to the pattern of genetic isolation,
because the most divergent tooth shape within the geograph-

ical variation of A. peninsulae is displayed in the most distant
locality, furthermore characterized by a divergent phylogroup
(Sakka et al. 2010).
A notable exception is constituted by A. uralensis. As only

representative of the subgenus Sylvaemus in the study, a strong
coupling between genetic and morphometric differentiation
would support the expectation of this species displaying the

most divergent molar shape. Results evidence a reverse

pattern, this species being close to the centre of the morpho-
space, together with A. draco and especially A. latronum.

This result may be due to ecological factors interfering with

patterns of genetic divergence. Among species sharing a similar
ecology, morphological differences have been shown to accu-
mulate with time together with neutral genetic differentiation.

In contrast, ecological shift can trigger a departure from this
pattern by promoting morphological response to the new
selective pressures (Polly 2001; Renaud et al. 2007; Adams
et al. 2009).

Apodemus species tend tobe generalist rodents associatedwith
forest habitats (Corbet and Hill 1992; Smith and Xie 2008), an
ecology that seems to be ancestral in the group and to have

promoted a relative morphological stability in related species
(Renaud et al. 2005). Yet, some ecological differentiation
occurred even within this group. Species like A. draco and

A. latronum are strongly associated with forests, whereas
A. peninsulae and A. agrarius are more characteristics of open
habitats (Giraudoux et al. 1998, 2008; Raoul et al. 2008;

Vaniscotte et al. 2009). The sharing by distantly related species
such as A. uralensis and the sister species A. draco and A. latro-
numof the generalist, forest-dweller ancestral habitatmight have
promoted amorphological stability either by fluctuating or even

stabilizing selection (Polly 2001) whereas the ecological shift
towards opened habitats would have triggered molar evolution
inA. agrarius andA. peninsulae. Interestingly, despite their shift

towards an apparently similar habitat, they diverged in opposite
direction regarding molar shape. If the association between
morphology and feeding behaviour appeared to be less straight-

forward than when considering mandible shape, some general
trends tended to emerge in molar shape with regard to grinding
performance. Broad teeth, compared with slender molars, have

been interpreted as offering a wider surface of occlusion and
hence allowing the grinding of more resistant matter such as
vegetative parts of plants (Renaud and Michaux 2004; Renaud
et al. 2005). If such trends can be transposed to variation among

close species, this would suggest that despite sharing similar
open habitats, A. peninsulae would favour a rather herbaceous
diet, whereas A. agrarius might tend to feed on softer material

such as grains or even animal preys (Butet and Delettre 2011).

Size, a labile trait

Size is known as a labile trait that can vary fast, in a partly
plastic way, in relation to numerous genetic (Brockmann and
Bevova 2002; Chan et al. 2012) and ecological factors (e.g.

Brown et al. 1993; Damuth 1993; Lomolino 2005). Further-
more, size is a complex multifaceted trait that includes not only
body size but also the size of each part of the animal. Whereas

body size is likely submitted to selective pressure related to
metabolism, for example, food availability or thermic require-
ments (Meiri and Dayan 2003; Meiri et al. 2005), size of the

feeding apparatus may be submitted to pressures targeted on
the size of the items to be consumed (Dayan et al. 1990; Dayan
and Simberloff 1998). Our results evidence first an overall

coupling of the size of various traits, being body size, mandible
or molar size, pointing to a global scaling allowing the size of
one morphological character to be used as a proxy for body
size. Yet, mandible size appears as more closely related to body

size than molar size, a result in agreement with previous studies
(Renaud 2005) and that is likely attributable to the part of late
growth occurring on the mandible and not on the molar. The

relative uncoupling of molar size may also point to ecological
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processes driving a differentiation related to differential food
utilization. An example is provided by the sister species
A. latronum and A. draco, close in molar shape, because of

their phylogenetic relatedness but highly different in molar
size. In this case, the divergence in molar size might contribute
to an evolutionary rapid segregation of close species in the way

they utilize the resources, thanks to the lability of size-related
traits.

Molar size and shape participating to resource partitioning

The coexistence of species sharing broadly similar ecologies,
such as the Apodemus mice in China, would be favoured by a

resource partitioning allowing a limitation of interspecific
competition (Hutchinson 1959; Schoener 1974). A different
exploitation of food resources is a major component of such a

resource partitioning. It may be achieved by feeding on items
of different size, hence selecting for different tooth size (Brown
and Lieberman 1973; Dayan et al. 1990; Parra et al. 1999) or

on items of various quality requiring different functional
properties of the feeding apparatus (Dayan and Simberloff
1994). Both together may assure a complete sorting in the way
even close species exploit apparently similar resources. The

differentiation in molar morphology could contribute to such a
resource partitioning, because species are segregated in a
morphological space combining molar size and shape, most

strikingly in the case of localities with sympatric species. Such
a pattern was already documented in a group of related fossil
rodents (Renaud et al. 1999) and therefore could constitute as

a discrete but efficient way for similar species to exploit slightly
different resources, allowing for the building and maintenance
of a high diversity of related species.

Conclusions

Different traits, here mandibles and molars, provided discrep-

ant pictures of the evolution of the Apodemus group in China.
Each trait varied according to characteristic constraints and
factors of differentiation. Mandible shape appeared prone to

vary in response to local conditions, supporting the result of
previous studies on various small mammals (Renaud 2005;
Rychlik et al. 2006). In contrast, molar shape appeared to

diverge in agreement with the expectations of a neutral genetic
differentiation, both within and among species. Adaptation to
slight differences in diet may further contribute to drive molar
evolution. This differentiation in molar morphology likely

accumulated together with time elapsed because divergence
between populations and species. In cases of secondary
contacts between differentiated species, it could contribute to

achieve a subtle but efficient partitioning of food resources.
In apparent disagreement, no evidence was found of

character displacement. Yet, character displacement is only

expected to occur between species competing for the same
resource. The divergence in molar size and shape accumulated
over time as a consequence of isolation could have contributed

to achieve a subtle resource partitioning even between related
species, avoiding their competition for the same food resource,
and hence the occurrence of character displacement. The
complex landscape of China was prone to favour such a

diversification, owing to both the numerous geographical
barriers (deserts and mountain ranges) promoting isolation
and a wide variation in climatic conditions (Zhai et al. 1999;

Giraudoux et al. 2008).

Acknowledgments

We thank Andrea Cardini and an anonymous reviewer for their
constructive comments. The collecting of samples was supported by
Grant Number RO1 TW001565 from the Fogarty International Centre
(the content is solely the authors� responsibility and does not
necessarily represent the official views of the Fogarty International
Centre or of the National Institutes of Health), the European Union
(TS3-CT94-0270) and the French–Chinese Programme of Advanced
Research (PRA E95-01). These programmes have been coordinated by
P. Giraudoux and F. Raoul, University of Franche-Comté, France.
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Résumé

La différenciation de la dent, un indice pour comprendre la coexistence
d�espèces ? Le cas des mulots en Chine

Cinq espèces de mulots du genre Apodemus sont documentées en
Chine, en allopatrie aussi bien qu�en sympatrie voire en syntopie. Elles
partagent toutes une apparence externe similaire, des habitats de
champs et forêts, et un comportement alimentaire généraliste. Les
mécanismes permettant l�évitement de la compétition pour permettre la
coexistence d�espèces aussi proches restent mal connus. Dans ce
contexte, une analyse morphométrique de deux caractères impliqués
dans l�alimentation (la mandibule et la molaire) a permis d�aborder les
questions suivantes. (1) Les espèces divergent-elles dans la taille et ⁄ ou
la forme de ces caractères, soutenant leur rôle dans la répartition des
ressources ? (2) Ce patron de divergence reflète-t-il la différenciation
génétique, suggérant la prédominance d�une divergence morphologi-
que neutre ? (3) Des phénomènes de déplacement de caractères
peuvent-ils être mis en évidence, montrant l�existence de phénomènes
de compétition actuels ? Les résultats ont mis en évidence que les deux
caractères, mandibule et molaire, montraient différents patrons de
divergence entre les espèces de mulots de Chine. La mandibule
apparait comme variant avec des facteurs environnementaux locaux
masquant les patrons phylogénétiques et écologiques. En revanche, la
différenciation de forme de la molaire semble suivre dans les grandes
lignes la divergence génétique. Taille et forme de la molaire séparent les
différentes espèces dans l�espace morphologique, suggérant une
participation à la répartition des ressources entre ces espèces, mais le
déplacement de caractère n�a pas été mis en évidence. Ceci suggère que
la différenciation des espèces s�est surtout produite suite à l�isolement
entre populations et espèces, facilité par le paysage complexe de la
Chine.
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Laonastes and the ��Lazarus Effect�� in Recent Mammals. Science
311:1456–1458.

Dayan T, Simberloff D (1994) Morphological relationships among
coexisting heteromyids: an incisive dental character. Am Nat
143:462–477.

Dayan T, Simberloff D (1998) Size patterns among competitors:
ecological character displacement and character release in mammals,
with special reference to island populations.Mammal Rev 28:99–124.

Dayan T, Simberloff D, Tchernov E, Yom-Tov Y (1990) Feline
canines: community-wide character displacement among the small
cats of Israel. Am Nat 136:39–60.

Felsenstein J (1981) Evolutionary trees from DNA sequences: a
maximum likelihood approach. J Mol Evol 17:368–376.
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