

Regularity of functions: Genericity and multifractal analysis

Dissertation presented by

Céline ESSER

for the degree of Doctor in Sciences

University of Liège - Institute of Mathematics

Liège – October 22, 2014

Advisor: Françoise BASTIN (University of Liège)

$$W(x) := \sum_{n=0}^{+\infty} a^n \cos(b^n \pi x), \quad a \in (0,1), \ ab > 1.$$

Figure: Weierstraß function for a=0.5 and b=3

$$W(x) := \sum_{n=0}^{+\infty} a^n \cos(b^n \pi x), \quad a \in (0,1), \ ab > 1.$$

Two questions.

Are there many such functions? Or is this example atypical?

$$W(x) := \sum_{n=0}^{+\infty} a^n \cos(b^n \pi x), \quad a \in (0,1), \ ab > 1.$$

Two questions.

- · Are there many such functions? Or is this example atypical?
- Is it possible to characterize the local behavior of such functions?

$$W(x) := \sum_{n=0}^{+\infty} a^n \cos(b^n \pi x), \quad a \in (0,1), \ ab > 1.$$

Two questions.

- Are there many such functions? Or is this example atypical?
 Notions of genericity
- Is it possible to characterize the local behavior of such functions?

$$W(x) := \sum_{n=0}^{+\infty} a^n \cos(b^n \pi x), \quad a \in (0,1), \ ab > 1.$$

Two questions.

- Are there many such functions? Or is this example atypical?
 - --- Notions of genericity
- Is it possible to characterize the local behavior of such functions?
 - ---- Hölder exponent and multifractal analysis

$$W(x) := \sum_{n=0}^{+\infty} a^n \cos(b^n \pi x), \quad a \in (0,1), \ ab > 1.$$

Two questions.

- Are there many such functions? Or is this example atypical?
 - --- Notions of genericity
- Is it possible to characterize the local behavior of such functions?
 - → Hölder exponent and multifractal analysis

Content of the presentation.

- 1. Notions of genericity
 - a) Residuality, prevalence and lineability
 - b) Denjoy-Carleman classes
- 2. Multifractal analysis
 - a) Hölder regularity and multifractal spectrum
 - b) Multifractal formalism
 - c) Leaders profile method
 - d) \mathcal{L}^{ν} spaces

Notions of genericity

Residuality. Let X be a Baire space. A subset M of X is residual in X if M
contains a countable intersection of dense open sets in X.

Notions of genericity

- Residuality. Let X be a Baire space. A subset M of X is residual in X if M
 contains a countable intersection of dense open sets in X.
- Prevalence (Christensen, 1974 / Hunt, Sauer, Yorke, 1992). Let X be a complete metrizable vector space. A Borel subset M of X is shy if there exists a Borel measure μ on X with compact support such that

$$\mu(M+x) = 0, \quad x \in X.$$

More generally, a subset V is called shy if it is contained in a shy Borel set. The complement of a shy set is called a prevalent set.

Notions of genericity

- Residuality. Let X be a Baire space. A subset M of X is residual in X if M
 contains a countable intersection of dense open sets in X.
- Prevalence (Christensen, 1974 / Hunt, Sauer, Yorke, 1992). Let X be a complete metrizable vector space. A Borel subset M of X is shy if there exists a Borel measure μ on X with compact support such that

$$\mu(M+x) = 0, \quad x \in X.$$

More generally, a subset V is called shy if it is contained in a shy Borel set. The complement of a shy set is called a prevalent set.

• Lineability (Aron, Gurariy, Seoane-Sepúlveda, 2005). Let X be a topological vector space and μ a cardinal number. A subset M of X is (dense-)lineable if $M \cup \{0\}$ contains an infinite dimensional vector subspace (dense) in X. If the dimension of this subspace is μ , M is said to be μ -(dense-)lineable.

Existence of nowhere analytic functions. An example was given by Cellérier (1890) by the function

$$f(x) := \sum_{n=1}^{+\infty} \frac{\sin(a^n x)}{n!}, \quad x \in \mathbb{R}$$

where a is a positive integer larger than 1.

Existence of nowhere analytic functions. An example was given by Cellérier (1890) by the function

$$f(x) := \sum_{n=1}^{+\infty} \frac{\sin(a^n x)}{n!}, \quad x \in \mathbb{R}$$

where a is a positive integer larger than 1.

Results.

- Genericity of the set of nowhere analytic functions in $C^{\infty}([0,1])$.
- · Extension of these results using Gevrey classes.

Existence of nowhere analytic functions. An example was given by Cellérier (1890) by the function

$$f(x) := \sum_{n=1}^{+\infty} \frac{\sin(a^n x)}{n!}, \quad x \in \mathbb{R}$$

where a is a positive integer larger than 1.

Results.

- Genericity of the set of nowhere analytic functions in $C^{\infty}([0,1])$.
- Extension of these results using Gevrey classes.

Question. Similar results in the context of classes of ultradifferentiable functions?

Denjoy-Carleman classes

An arbitrary sequence of positive real numbers $M=(M_k)_{k\in\mathbb{N}_0}$ is called a weight sequence.

Denjoy-Carleman classes

An arbitrary sequence of positive real numbers $M=(M_k)_{k\in\mathbb{N}_0}$ is called a weight sequence.

Definition

Let Ω be an open subset of $\mathbb R$ and M be a weight sequence. The space $\mathcal E_{\{M\}}(\Omega)$ is defined by

$$\mathcal{E}_{\{M\}}(\Omega) := \big\{ f \in \mathcal{C}^{\infty}(\Omega) : \forall K \subseteq \Omega \text{ compact } \exists h > 0 \text{ such that } \|f\|_{K,h}^M < +\infty \big\},$$

where

$$||f||_{K,h}^M := \sup_{k \in \mathbb{N}_0} \sup_{x \in K} \frac{|D^k f(x)|}{h^k M_k}.$$

If $f \in \mathcal{E}_{\{M\}}(\Omega)$, we say that f is M-ultradifferentiable of Roumieu type on Ω .

Denjoy-Carleman classes

An arbitrary sequence of positive real numbers $M=(M_k)_{k\in\mathbb{N}_0}$ is called a weight sequence.

Definition

Let Ω be an open subset of $\mathbb R$ and M be a weight sequence. The space $\mathcal E_{\{M\}}(\Omega)$ is defined by

$$\mathcal{E}_{\{M\}}(\Omega):=\big\{f\in\mathcal{C}^{\infty}(\Omega):\forall K\subseteq\Omega\text{ compact }\exists h>0\text{ such that }\|f\|_{K,h}^{M}<+\infty\big\},$$

where

$$||f||_{K,h}^M := \sup_{k \in \mathbb{N}_0} \sup_{x \in K} \frac{|D^k f(x)|}{h^k M_k}.$$

If $f \in \mathcal{E}_{\{M\}}(\Omega)$, we say that f is M-ultradifferentiable of Roumieu type on Ω .

Particular case. The weight sequences $(k!)_{k\in\mathbb{N}_0}$ and $((k!)^{\alpha})_{k\in\mathbb{N}_0}$ with $\alpha>1$.

Definition

Let Ω be an open subset of $\mathbb R$ and M be a weight sequence. The space $\mathcal E_{(M)}(\Omega)$ is defined by

$$\mathcal{E}_{(M)}(\Omega):=\big\{f\in\mathcal{C}^{\infty}(\Omega):\forall K\subseteq\Omega\text{ compact },\forall h>0,\;\|f\|_{K,h}^{M}<+\infty\big\}.$$

If $f \in \mathcal{E}_{(M)}(\Omega)$, we say that f is M-ultradifferentiable of Beurling type on Ω and we use the representation

$$\mathcal{E}_{(M)}(\Omega) = \underset{K \subseteq \Omega}{\text{proj proj }} \mathcal{E}_{M,h}(K)$$

to endow $\mathcal{E}_{(M)}(\Omega)$ with a structure of Fréchet space.

Definition

Let Ω be an open subset of $\mathbb R$ and M be a weight sequence. The space $\mathcal E_{(M)}(\Omega)$ is defined by

$$\mathcal{E}_{(M)}(\Omega):=\big\{f\in\mathcal{C}^{\infty}(\Omega):\forall K\subseteq\Omega\text{ compact },\forall h>0,\;\|f\|_{K,h}^{M}<+\infty\big\}.$$

If $f \in \mathcal{E}_{(M)}(\Omega)$, we say that f is M-ultradifferentiable of Beurling type on Ω and we use the representation

$$\mathcal{E}_{(M)}(\Omega) = \underset{K \subset \Omega}{\text{proj proj }} \mathcal{E}_{M,h}(K)$$

to endow $\mathcal{E}_{(M)}(\Omega)$ with a structure of Fréchet space.

Questions.

- When do we have $\mathcal{E}_{\{M\}}(\Omega) \subseteq \mathcal{E}_{(N)}(\Omega)$?
- In that case, "how small" is $\mathcal{E}_{\{M\}}(\Omega)$ in $\mathcal{E}_{(N)}(\Omega)$?

General assumptions.

 ${f \cdot}$ We assume that any weight sequence M is logarithmically convex, i.e.

$$M_k^2 \le M_{k-1} M_{k+1}, \quad \forall k \in \mathbb{N}.$$

It implies that the space $\mathcal{E}_{\{M\}}(\Omega)$ is an algebra.

General assumptions.

ullet We assume that any weight sequence M is logarithmically convex, i.e.

$$M_k^2 \le M_{k-1} M_{k+1}, \quad \forall k \in \mathbb{N}.$$

It implies that the space $\mathcal{E}_{\{M\}}(\Omega)$ is an algebra.

• We assume that any weight sequence M is such that $M_0 = 1$.

General assumptions.

ullet We assume that any weight sequence M is logarithmically convex, i.e.

$$M_k^2 \le M_{k-1} M_{k+1}, \quad \forall k \in \mathbb{N}.$$

It implies that the space $\mathcal{E}_{\{M\}}(\Omega)$ is an algebra.

- We assume that any weight sequence M is such that $M_0 = 1$.
- We usually assume that any weight sequence M is non-quasianalytic, i.e.

$$\sum_{k=1}^{+\infty} (M_k)^{-1/k} < +\infty.$$

By Denjoy-Carleman theorem, it implies that there exists non-zero functions with compact support in $\mathcal{E}_{\{M\}}(\mathbb{R})$.

Inclusions between Denjoy-Carleman classes

Notation. Given two weight sequences M and N, we write

$$M \triangleleft N \iff \lim_{k \to +\infty} \left(\frac{M_k}{N_k}\right)^{\frac{1}{k}} = 0.$$

Inclusions between Denjoy-Carleman classes

Notation. Given two weight sequences M and N, we write

$$M \triangleleft N \iff \lim_{k \to +\infty} \left(\frac{M_k}{N_k}\right)^{\frac{1}{k}} = 0.$$

Proposition

Let M,N be two weight sequences and let Ω be an open subset of \mathbb{R} . Then

$$M \triangleleft N \iff \mathcal{E}_{\{M\}}(\Omega) \subseteq \mathcal{E}_{(N)}(\Omega)$$

and in this case, the inclusion is strict.

Inclusions between Denjoy-Carleman classes

Notation. Given two weight sequences M and N, we write

$$M \triangleleft N \iff \lim_{k \to +\infty} \left(\frac{M_k}{N_k}\right)^{\frac{1}{k}} = 0.$$

Proposition

Let M,N be two weight sequences and let Ω be an open subset of \mathbb{R} . Then

$$M \triangleleft N \iff \mathcal{E}_{\{M\}}(\Omega) \subseteq \mathcal{E}_{(N)}(\Omega)$$

and in this case, the inclusion is strict.

Keys.

- If $M \triangleleft N$, then there exists a weight sequence L such that $M \triangleleft L \triangleleft N$.
- There exists $\theta \in \mathcal{E}_{\{M\}}(\mathbb{R})$ such that $|D^k \theta(0)| \geq M_k$ for all $k \in \mathbb{N}_0$. In particular, this function does not belong to $\mathcal{E}_{(M)}(\mathbb{R})$.

Definition

We say that a function is nowhere in $\mathcal{E}_{\{M\}}$ if its restriction to any open and non-empty subset Ω of $\mathbb R$ never belongs to $\mathcal{E}_{\{M\}}(\Omega)$.

Definition

We say that a function is nowhere in $\mathcal{E}_{\{M\}}$ if its restriction to any open and non-empty subset Ω of \mathbb{R} never belongs to $\mathcal{E}_{\{M\}}(\Omega)$.

Proposition

Assume that M and N are two weight sequences such that $M \triangleleft N$. If M is non-quasianalytic, there exists a function of $\mathcal{E}_{(N)}(\mathbb{R})$ which is nowhere in $\mathcal{E}_{\{M\}}$.

Definition

We say that a function is nowhere in $\mathcal{E}_{\{M\}}$ if its restriction to any open and non-empty subset Ω of \mathbb{R} never belongs to $\mathcal{E}_{\{M\}}(\Omega)$.

Proposition

Assume that M and N are two weight sequences such that $M \triangleleft N$. If M is non-quasianalytic, there exists a function of $\mathcal{E}_{(N)}(\mathbb{R})$ which is nowhere in $\mathcal{E}_{\{M\}}$.

Idea. Construct a sequence $(L^{(p)})_{p\in\mathbb{N}}$ of weight sequences such that

$$M \lhd L^{(1)} \lhd L^{(2)} \lhd \cdots \lhd L^{(p)} \lhd \cdots \lhd N.$$

Definition

We say that a function is nowhere in $\mathcal{E}_{\{M\}}$ if its restriction to any open and non-empty subset Ω of \mathbb{R} never belongs to $\mathcal{E}_{\{M\}}(\Omega)$.

Proposition

Assume that M and N are two weight sequences such that $M \triangleleft N$. If M is non-quasianalytic, there exists a function of $\mathcal{E}_{(N)}(\mathbb{R})$ which is nowhere in $\mathcal{E}_{\{M\}}$.

Idea. Construct a sequence $(L^{(p)})_{p\in\mathbb{N}}$ of weight sequences such that

$$M \lhd L^{(1)} \lhd L^{(2)} \lhd \cdots \lhd L^{(p)} \lhd \cdots \lhd N.$$

For every $p \in \mathbb{N}$, consider a function $f_p \in \mathcal{E}_{\{L^{(p)}\}}(\mathbb{R})$ such that $|D^k f_p(0)| \ge L_k^{(p)}$, $\forall k \in \mathbb{N}_0$.

Definition

We say that a function is nowhere in $\mathcal{E}_{\{M\}}$ if its restriction to any open and non-empty subset Ω of \mathbb{R} never belongs to $\mathcal{E}_{\{M\}}(\Omega)$.

Proposition

Assume that M and N are two weight sequences such that $M \triangleleft N$. If M is non-quasianalytic, there exists a function of $\mathcal{E}_{(N)}(\mathbb{R})$ which is nowhere in $\mathcal{E}_{\{M\}}$.

Idea. Construct a sequence $(L^{(p)})_{p\in\mathbb{N}}$ of weight sequences such that

$$M \lhd L^{(1)} \lhd L^{(2)} \lhd \cdots \lhd L^{(p)} \lhd \cdots \lhd N.$$

For every $p \in \mathbb{N}$, consider a function $f_p \in \mathcal{E}_{\{L^{(p)}\}}(\mathbb{R})$ such that $|D^k f_p(0)| \geq L_k^{(p)}$, $\forall k \in \mathbb{N}_0$. If $\{x_p : p \in \mathbb{N}\}$ is a dense subset of \mathbb{R} , consider

$$f(x) = \sum_{p=1}^{+\infty} f_p(x - x_p) \Phi_p(x), \quad x \in \mathbb{R}$$

where Φ_p is a compactly supported function well chosen.

Proposition

Assume that N and M are two weight sequences such that $M \lhd N$. If M is non quasianalytic, the set of functions of $\mathcal{E}_{(N)}(\mathbb{R})$ which are nowhere in $\mathcal{E}_{\{M\}}$ is

- · prevalent,
- residual,

Proposition

Assume that N and M are two weight sequences such that $M \lhd N$. If M is non quasianalytic, the set of functions of $\mathcal{E}_{(N)}(\mathbb{R})$ which are nowhere in $\mathcal{E}_{\{M\}}$ is

- · prevalent,
- · residual,

Idea. The set of functions of $\mathcal{E}_{(N)}(\mathbb{R})$ which are nowhere in $\mathcal{E}_{\{M\}}$ is the complement of

$$\bigcup_{I\subseteq\mathbb{R}}\bigcup_{m\in\mathbb{N}}\bigcup_{s\in\mathbb{N}}\underbrace{\left\{f\in\mathcal{E}_{(N)}(\mathbb{R}):\sup_{x\in I}|D^kf(x)|\leq sm^kM_k,\;\forall k\in\mathbb{N}_0\right\}}_{\text{closed set with empty interior}}.$$

Proposition

Assume that N and M are two weight sequences such that $M \lhd N$. If M is non quasianalytic, the set of functions of $\mathcal{E}_{(N)}(\mathbb{R})$ which are nowhere in $\mathcal{E}_{\{M\}}$ is

- prevalent,
- · residual,
- · c-dense-lineable.

Proposition

Assume that N and M are two weight sequences such that $M \lhd N$. If M is non quasianalytic, the set of functions of $\mathcal{E}_{(N)}(\mathbb{R})$ which are nowhere in $\mathcal{E}_{\{M\}}$ is

- prevalent,
- · residual,
- c-dense-lineable.

Idea. Construct for every $t\in (0,1)$ a weight sequence $L^{(t)}$ such that

$$M \lhd L^{(t)} \lhd N \quad \text{ and } \quad L^{(t)} \lhd L^{(s)} \text{ if } t < s.$$

Then, we have for every $t \in (0,1)$

$$M \lhd L^{(\frac{t}{2})} \lhd L^{(\frac{2t}{3})} \lhd L^{(\frac{3t}{4})} \lhd \cdots \lhd L^{(t)} \lhd N$$

and we construct as before a function of $\mathcal{E}_{(N)}(\mathbb{R})$ which is nowhere in $\mathcal{E}_{\{M\}}$.

Proposition

Assume that N and M are two weight sequences such that $M \lhd N$. If M is non quasianalytic, the set of functions of $\mathcal{E}_{(N)}(\mathbb{R})$ which are nowhere in $\mathcal{E}_{\{M\}}$ is

- · prevalent,
- · residual,
- c-dense-lineable.

More with countable unions

Let N be a weight sequence and let $(M^{(n)})_{n\in\mathbb{N}}$ be a sequence of weight sequences such that $M^{(n)} \lhd N$ for every $n\in\mathbb{N}$. If there is $n_0\in\mathbb{N}$ such that the weight sequence $M^{(n_0)}$ is non quasianalytic, the set of functions of $\mathcal{E}_{(N)}(\mathbb{R})$ which are nowhere in $\bigcup_{n\in\mathbb{N}} \mathcal{E}_{\{M^{(n)}\}}$ is prevalent, residual and \mathfrak{c} -dense-lineable in $\mathcal{E}_{(N)}(\mathbb{R})$.

Idea. Construct a weight sequence P such that

$$\bigcup_{n\in\mathbb{N}} \mathcal{E}_{\{M^{(n)}\}}(\Omega) \subseteq \mathcal{E}_{\{P\}}(\Omega) \subsetneq \mathcal{E}_{(N)}(\Omega).$$

An important example of ultradifferentiable functions of Roumieu type is given by the classes of Gevrey differentiable functions of order $\alpha>1$. They correspond to the weight sequences

$$M_k := (k!)^{\alpha}, \quad k \in \mathbb{N}_0.$$

An important example of ultradifferentiable functions of Roumieu type is given by the classes of Gevrey differentiable functions of order $\alpha>1$. They correspond to the weight sequences

$$M_k := (k!)^{\alpha}, \quad k \in \mathbb{N}_0.$$

Particular case of Gevrey classes

Let $\alpha>1$. The set of functions of $\mathcal{E}_{((k!)^{\alpha})}(\mathbb{R})$ which are nowhere in $\mathcal{E}_{\{(k!)^{\beta}\}}$ for every $\beta\in(1,\alpha)$, is prevalent, residual and \mathfrak{c} -dense-lineable in $\mathcal{E}_{((k!)^{\alpha})}(\mathbb{R})$.

It suffices to take the weight sequences $M^{(n)}$ $(n \in \mathbb{N})$ given by

$$M_k^{(n)} := (k!)^{\beta_n}, \quad k \in \mathbb{N}_0,$$

where $(\beta_n)_{n\in\mathbb{N}}$ is an increasing sequence of $(1,\alpha)$ that converges to α .

An important example of ultradifferentiable functions of Roumieu type is given by the classes of Gevrey differentiable functions of order $\alpha>1$. They correspond to the weight sequences

$$M_k := (k!)^{\alpha}, \quad k \in \mathbb{N}_0.$$

Particular case of Gevrey classes

Let $\alpha>1$. The set of functions of $\mathcal{E}_{((k!)^{\alpha})}(\mathbb{R})$ which are nowhere in $\mathcal{E}_{\{(k!)^{\beta}\}}$ for every $\beta\in(1,\alpha)$, is prevalent, residual and \mathfrak{c} -dense-lineable in $\mathcal{E}_{((k!)^{\alpha})}(\mathbb{R})$.

It suffices to take the weight sequences $M^{(n)}$ $(n \in \mathbb{N})$ given by

$$M_k^{(n)} := (k!)^{\beta_n}, \quad k \in \mathbb{N}_0,$$

where $(\beta_n)_{n\in\mathbb{N}}$ is an increasing sequence of $(1,\alpha)$ that converges to α .

Proposition (Schmets, Valdivia, 1991)

Let $\alpha>1$. The set of functions of $\mathcal{E}_{((k!)^{\alpha})}(\mathbb{R})$ which are nowhere in $\mathcal{E}_{\{(k!)^{\beta}\}}$ for every $\beta\in(1,\alpha)$ is residual in $\mathcal{E}_{((k!)^{\alpha})}(\mathbb{R})$.

Other results.

 Similar results have been obtained with classes of ultradifferentiable functions defined using weight functions and weight matrices.

Perspectives.

- · What about the algebrability?
- · Other notions of genericity (such as porosity)?
- · More with Pringsheim singularities?

Content of the presentation.

- 1. Notions of genericity
 - a) Residuality, prevalence and lineability
 - b) Denjoy-Carleman classes

2. Multifractal analysis

- a) Hölder regularity and multifractal spectrum
- b) Multifractal formalism
- c) Leaders profile method
- d) \mathcal{L}^{ν} spaces

Hölder regularity and multifractal spectrum

Recall. Is it possible to characterize the local regularity of an irregular function?

Hölder regularity and multifractal spectrum

Recall. Is it possible to characterize the local regularity of an irregular function?

Definition

Let $f:\mathbb{R}\to\mathbb{R}$ be a locally bounded function, $\alpha\geq 0$ and $x\in\mathbb{R}$. The function f belongs to the Hölder space $C^{\alpha}(x)$ if there exist a constant C>0 and a polynomial P of degree strictly smaller than α such that

$$|f(y) - P(y)| \le C|y - x|^{\alpha}$$

for all y in a neighborhood of x. Then, the Hölder exponent $h_f(x)$ of f at x is defined by

$$h_f(x) := \sup \{ \alpha \ge 0 : f \in C^{\alpha}(x) \}.$$

Hölder regularity and multifractal spectrum

Recall. Is it possible to characterize the local regularity of an irregular function?

Definition

Let $f:\mathbb{R}\to\mathbb{R}$ be a locally bounded function, $\alpha\geq 0$ and $x\in\mathbb{R}$. The function f belongs to the Hölder space $C^{\alpha}(x)$ if there exist a constant C>0 and a polynomial P of degree strictly smaller than α such that

$$|f(y) - P(y)| \le C|y - x|^{\alpha}$$

for all y in a neighborhood of x. Then, the Hölder exponent $h_f(x)$ of f at x is defined by

$$h_f(x) := \sup \{ \alpha \ge 0 : f \in C^{\alpha}(x) \}.$$

Weierstraß function. $h_f(x) = -\frac{\log a}{\log b}, \ \forall x \in \mathbb{R}.$

- Since $h_f(x)$ can change widely from a point to another, we will characterize the size of the sets of points which have the same local regularity.
- The iso-Hölder sets of f are $E_h := \{x \in \mathbb{R} : h_f(x) = h\}.$

- Since $h_f(x)$ can change widely from a point to another, we will characterize the size of the sets of points which have the same local regularity.
- The iso-Hölder sets of f are $E_h := \{x \in \mathbb{R} : h_f(x) = h\}.$

The multifractal spectrum d_f of f is defined by

$$d_f(h) := \dim_{\mathcal{H}} E_h, \quad \forall h \in [0, +\infty],$$

with the convention that $\dim_{\mathcal{H}} \emptyset = -\infty$.

 $\longrightarrow d_f$ gives a geometrical idea about the distribution of the singularities of f

Riemann function

Sum of two cascades

Cascade

Riemann function

Sum of two cascades

Cascade

Threshold of a cascade

Multifractal formalism

A multifractal formalism is a method which is expected to give the multifractal spectrum of a function, from "global" quantities which are numerically computable.

Multifractal formalism

A multifractal formalism is a method which is expected to give the multifractal spectrum of a function, from "global" quantities which are numerically computable.

Several multifractal formalisms based on a decomposition of $f \in L^2([0,1])$ in a wavelet basis

$$f = \sum_{j \in \mathbb{N}_0} \sum_{k=0}^{2^j - 1} c_{j,k} \psi_{j,k} + C$$

have been proposed to estimate d_f , where the mother wavelet ψ belongs to $\mathcal{S}(\mathbb{R})$.

Multifractal formalism

A multifractal formalism is a method which is expected to give the multifractal spectrum of a function, from "global" quantities which are numerically computable.

Several multifractal formalisms based on a decomposition of $f \in L^2([0,1])$ in a wavelet basis

$$f = \sum_{j \in \mathbb{N}_0} \sum_{k=0}^{2^j - 1} c_{j,k} \psi_{j,k} + C$$

have been proposed to estimate d_f , where the mother wavelet ψ belongs to $\mathcal{S}(\mathbb{R})$.

Characterization of the Hölder exponent using wavelet coefficients

If f is uniformly Hölder, the Hölder exponent of f at x is

$$h_f(x) = \liminf_{j \to +\infty} \inf_{k \in \{0, \dots, 2^j - 1\}} \frac{\log(|c_{j,k}|)}{\log(2^{-j} + |k2^{-j} - x|)}.$$

Advantage. Easy to compute and relatively stable from a numerical point of view.

Liège - October 22, 2014

- The Frisch-Parisi formalism (1985) and the classical use of Besov spaces lead to a loss of information (only concave hull and increasing part of spectra can be recovered).
- Wavelet leaders method (S. Jaffard, 2004): Modification of the Frisch-Parisi formalism using the wavelet leaders of the function instead of wavelet coefficients.
 - → Detection of increasing and decreasing parts of concave spectra.

Multifractal formalism

- Wavelet leaders method (S. Jaffard, 2004): Modification of the Frisch-Parisi formalism using the wavelet leaders of the function instead of wavelet coefficients.
 - ---> Detection of increasing and decreasing parts of concave spectra.
- Introduction of spaces of type \mathcal{S}^{ν} (J.M. Aubry, S. Jaffard, 2005), based on histograms of wavelet coefficients.
 - ---> Detection of concave and non-concave parts of increasing spectra.

Multifractal formalism

- Wavelet leaders method (S. Jaffard, 2004): Modification of the Frisch-Parisi formalism using the wavelet leaders of the function instead of wavelet coefficients.
 - ---> Detection of increasing and decreasing parts of concave spectra.
- Introduction of spaces of type \mathcal{S}^{ν} (J.M. Aubry, S. Jaffard, 2005), based on histograms of wavelet coefficients.
 - ---> Detection of concave and non-concave parts of increasing spectra.

Multifractal formalism

- Wavelet leaders method (S. Jaffard, 2004): Modification of the Frisch-Parisi formalism using the wavelet leaders of the function instead of wavelet coefficients.
 - ---> Detection of increasing and decreasing parts of concave spectra.
- Introduction of spaces of type \mathcal{S}^{ν} (J.M. Aubry, S. Jaffard, 2005), based on histograms of wavelet coefficients.
 - ---> Detection of concave and non-concave parts of increasing spectra.

Multifractal formalism

- Wavelet leaders method (S. Jaffard, 2004): Modification of the Frisch-Parisi formalism using the wavelet leaders of the function instead of wavelet coefficients.
 - ---> Detection of increasing and decreasing parts of concave spectra.
- Introduction of spaces of type \mathcal{S}^{ν} (J.M. Aubry, S. Jaffard, 2005), based on histograms of wavelet coefficients.
 - ---> Detection of concave and non-concave parts of increasing spectra.
- Combination of the two previous methods to obtain the leaders profile method and the spaces of type \mathcal{L}^{ν} .
 - Detection of increasing and decreasing parts of concave and non-concave spectra.

Wavelet leaders

Standard notation. For $j \in \mathbb{N}_0, \, k \in \left\{0,\dots,2^j-1\right\}$,

$$\lambda(j,k) := \left\{ x \in \mathbb{R} : 2^j x - k \in [0,1[\right\} = \left[\frac{k}{2^j}, \frac{k+1}{2^j} \right), \right\}$$

and for all $j \in \mathbb{N}_0$, Λ_j denotes the set of all dyadic intervals (of [0,1)) of length 2^{-j} . If $\lambda = \lambda(j,k)$, we use both notations $c_{j,k}$ or c_{λ} to denote the wavelet coefficients.

Wavelet leaders

Standard notation. For $j \in \mathbb{N}_0, \, k \in \left\{0, \dots, 2^j - 1\right\}$,

$$\lambda(j,k) := \left\{ x \in \mathbb{R} : 2^j x - k \in [0,1[\right\} = \left[\frac{k}{2^j}, \frac{k+1}{2^j} \right), \right.$$

and for all $j\in\mathbb{N}_0$, Λ_j denotes the set of all dyadic intervals (of [0,1)) of length 2^{-j} . If $\lambda=\lambda(j,k)$, we use both notations $c_{j,k}$ or c_λ to denote the wavelet coefficients.

Definition

The wavelet leaders of a function $f \in L^2([0,1])$ are defined by

$$d_{\lambda} := \sup_{\lambda' \subset 3\lambda} |c_{\lambda'}|, \quad \lambda \in \Lambda_j, \ j \in \mathbb{N}_0.$$

→ their decay properties are directly related with the Hölder exponent.

If $x \in [0,1)$, let $\lambda_j(x)$ denote the dyadic interval of length 2^{-j} which contains x.

If $x \in [0,1)$, let $\lambda_j(x)$ denote the dyadic interval of length 2^{-j} which contains x.

If $x \in [0,1)$, let $\lambda_j(x)$ denote the dyadic interval of length 2^{-j} which contains x.

If $x \in [0,1)$, let $\lambda_j(x)$ denote the dyadic interval of length 2^{-j} which contains x.

Hölder regularity and wavelet leaders

If f is uniformly Hölder, the Hölder exponent of f at x is given by

$$h_f(x) = \liminf_{j \to +\infty} \frac{\log d_{\lambda_j(x)}}{\log 2^{-j}}.$$

Interpretation.

$$d_{\lambda_j(x)} \sim 2^{-h_f(x)j}$$

Method based on $\mathcal{S}^{ u}$ spaces

The wavelet profile ν_f of a locally bounded function f is defined for every $h \geq 0$ by

$$\nu_f(h) := \lim_{\varepsilon \to 0^+} \limsup_{j \to +\infty} \frac{\log \# \left\{ \lambda \in \Lambda_j \ : \ |c_\lambda| \ge 2^{-(h+\varepsilon)j} \right\}}{\log 2^j}.$$

Interpretation.

• There are approximatively $2^{\nu_f(h)j}$ coefficients greater in modulus than 2^{-hj} .

Method based on $\mathcal{S}^{ u}$ spaces

The wavelet profile ν_f of a locally bounded function f is defined for every $h \geq 0$ by

$$\nu_f(h) := \lim_{\varepsilon \to 0^+} \limsup_{j \to +\infty} \frac{\log \# \left\{ \lambda \in \Lambda_j \ : \ |c_\lambda| \geq 2^{-(h+\varepsilon)j} \right\}}{\log 2^j}.$$

Interpretation.

• There are approximatively $2^{\nu_f(h)j}$ coefficients greater in modulus than 2^{-hj} .

Properties.

- ν_f is a right-continuous increasing function.
- ν_f is independent of the chosen wavelet basis.
- If f is uniformly Hölder,

$$d_f(h) \le d^{\nu_f}(h) := \min \left\{ h \sup_{h' \in (0,h]} \frac{\nu_f(h')}{h'}, 1 \right\}, \quad \forall h \ge 0.$$

Take $0 \leq a < b \leq +\infty$. A function $g:[a,b] \mapsto [0,+\infty)$ is with increasing-visibility if g is continuous at a and $\sup_{y \in (a,x]} \frac{g(y)}{y} \leq \frac{g(x)}{x}$ for all $x \in (a,b]$.

In other words, a function g is with increasing-visibility if for all $x \in (a,b]$, the segment [(0,0),(x,g(x))] lies above the graph of g on (a,x].

Example of ν_f (---) and d^{ν_f} (---)

Take $0 \leq a < b \leq +\infty$. A function $g:[a,b] \mapsto [0,+\infty)$ is with increasing-visibility if g is continuous at a and $\sup_{y \in (a,x]} \frac{g(y)}{y} \leq \frac{g(x)}{x}$ for all $x \in (a,b]$.

In other words, a function g is with increasing-visibility if for all $x \in (a,b]$, the segment [(0,0),(x,g(x))] lies above the graph of g on (a,x].

Example of ν_f (---) and d^{ν_f} (---)

Take $0 \leq a < b \leq +\infty$. A function $g:[a,b] \mapsto [0,+\infty)$ is with increasing-visibility if g is continuous at a and $\sup_{y \in (a,x]} \frac{g(y)}{y} \leq \frac{g(x)}{x}$ for all $x \in (a,b]$.

In other words, a function g is with increasing-visibility if for all $x \in (a,b]$, the segment [(0,0),(x,g(x))] lies above the graph of g on (a,x].

Example of ν_f (---) and d^{ν_f} (---)

Take $0 \leq a < b \leq +\infty$. A function $g:[a,b] \mapsto [0,+\infty)$ is with increasing-visibility if g is continuous at a and $\sup_{y \in (a,x]} \frac{g(y)}{y} \leq \frac{g(x)}{x}$ for all $x \in (a,b]$.

In other words, a function g is with increasing-visibility if for all $x \in (a,b]$, the segment [(0,0),(x,g(x))] lies above the graph of g on (a,x].

Example of ν_f (---) and d^{ν_f} (---)

Take $0 \leq a < b \leq +\infty$. A function $g:[a,b] \mapsto [0,+\infty)$ is with increasing-visibility if g is continuous at a and $\sup_{y \in (a,x]} \frac{g(y)}{y} \leq \frac{g(x)}{x}$ for all $x \in (a,b]$.

In other words, a function g is with increasing-visibility if for all $x \in (a,b]$, the segment [(0,0),(x,g(x))] lies above the graph of g on (a,x].

— The passage from u_f to $d^{
u_f}$ transforms the function u_f into a function with

increasing-visibility.

Particular case

Assumption. Assume that the wavelet coefficients of f are given by $c_{\lambda}=\mu(\lambda)$ where μ is a finite Borel measure on [0,1].

Notation. Let f_{β} denote the function with wavelet coefficients given by $c_{\lambda}^{\beta}=2^{-\beta j}c_{\lambda}$.

Particular case

Assumption. Assume that the wavelet coefficients of f are given by $c_{\lambda}=\mu(\lambda)$ where μ is a finite Borel measure on [0,1].

Notation. Let f_β denote the function with wavelet coefficients given by $c_\lambda^\beta=2^{-\beta j}c_\lambda.$ In this case, one has

- $d_{f_{\beta}}(h) = d_f(h \beta)$ for all $h \ge \beta$.
- $\nu_{f_{\beta}}(h) = \nu_f(h \beta)$ for all $h \ge \beta$.

Particular case

Assumption. Assume that the wavelet coefficients of f are given by $c_{\lambda}=\mu(\lambda)$ where μ is a finite Borel measure on [0,1].

Notation. Let f_{β} denote the function with wavelet coefficients given by $c_{\lambda}^{\beta}=2^{-\beta j}c_{\lambda}$. In this case, one has

- $d_{f_{\beta}}(h) = d_f(h \beta)$ for all $h \ge \beta$.
- $\nu_{f_{\beta}}(h) = \nu_f(h \beta)$ for all $h \ge \beta$.

Moreover, if

$$\inf \left\{ \frac{\nu_f(x) - \nu_f(y)}{x - y} : x, y \in [h_{\min}, h'_{\max}], \ x < y \right\} > 0,$$

where $h_{\min}=\inf\{\alpha: \nu_f(\alpha)\geq 0\}, \, h'_{\max}=\inf\{\alpha: \nu_f(\alpha)=1\},$ then there exists $\beta>0$ such that the function ν_{f_β} is with increasing-visibility on $[h_{\min},h'_{\max}]$. In this case, $d^{\nu_{f_\beta}}=\nu_{f_\beta}$ approximates d_{f_β} . Therefore the increasing part of d_f can be approximated by ν_f .

Multifractal formalism

There is a tree-structure in the repartition of the wavelet coefficients

The wavelet leaders density of f is defined for every $h \ge 0$ by

$$\widetilde{\rho}_f(h) := \lim_{\varepsilon \to 0^+} \limsup_{j \to +\infty} \frac{\log \# \left\{ \lambda \in \Lambda_j : 2^{-(h+\varepsilon)j} \le d_\lambda < 2^{-(h-\varepsilon)j} \right\}}{\log 2^j}$$

Interpretation. There are approximatively $2^{\widetilde{\rho}_f(h)j}$ coefficients of size 2^{-hj} .

The wavelet leaders density of f is defined for every $h \ge 0$ by

$$\widetilde{\rho}_f(h) := \lim_{\varepsilon \to 0^+} \limsup_{j \to +\infty} \frac{\log \# \left\{ \lambda \in \Lambda_j : 2^{-(h+\varepsilon)j} \le d_\lambda < 2^{-(h-\varepsilon)j} \right\}}{\log 2^j}.$$

Interpretation. There are approximatively $2^{\widetilde{\rho}_f(h)j}$ coefficients of size 2^{-hj} .

Heuristic argument. We consider the points x such that $h_f(x) = h$.

- $d_{\lambda_j(x)} \sim 2^{-hj}$ and there are about $2^{\widetilde{
 ho}_f(h)j}$ such dyadic intervals.
- If we cover each singularity x by dyadic intervals of size 2^{-j} , from the definition of the Hausdorff dimension, there are about $2^{d_f(h)j}$ such intervals.

$$\Longrightarrow \widetilde{\rho}_f(h) = d_f(h)$$

The wavelet leaders density of f is defined for every $h \ge 0$ by

$$\widetilde{\rho}_f(h) := \lim_{\varepsilon \to 0^+} \limsup_{j \to +\infty} \frac{\log \# \left\{ \lambda \in \Lambda_j : 2^{-(h+\varepsilon)j} \le d_\lambda < 2^{-(h-\varepsilon)j} \right\}}{\log 2^j}.$$

Interpretation. There are approximatively $2^{\widetilde{\rho}_f(h)j}$ coefficients of size 2^{-hj} .

Heuristic argument. We consider the points x such that $h_f(x) = h$.

- $d_{\lambda_j(x)} \sim 2^{-hj}$ and there are about $2^{\widetilde{
 ho}_f(h)j}$ such dyadic intervals.
- If we cover each singularity x by dyadic intervals of size 2^{-j} , from the definition of the Hausdorff dimension, there are about $2^{d_f(h)j}$ such intervals.

$$\Longrightarrow \widetilde{\rho}_f(h) \ge d_f(h)$$

The wavelet leaders density of f is defined for every $h \ge 0$ by

$$\widetilde{\rho}_f(h) := \lim_{\varepsilon \to 0^+} \limsup_{j \to +\infty} \frac{\log \# \left\{ \lambda \in \Lambda_j : 2^{-(h+\varepsilon)j} \le d_\lambda < 2^{-(h-\varepsilon)j} \right\}}{\log 2^j}.$$

Interpretation. There are approximatively $2^{\widetilde{\rho}_f(h)j}$ coefficients of size 2^{-hj} .

Heuristic argument. We consider the points x such that $h_f(x) = h$.

- $d_{\lambda_i(x)} \sim 2^{-hj}$ and there are about $2^{\widetilde{\rho}_f(h)j}$ such dyadic intervals.
- If we cover each singularity x by dyadic intervals of size 2^{-j} , from the definition of the Hausdorff dimension, there are about $2^{d_f(h)j}$ such intervals.

$$\Longrightarrow \widetilde{\rho}_f(h) \ge d_f(h)$$

Problems.

- · The wavelet leaders density may depend on the chosen wavelet basis.
- The definition of the wavelet leaders density is numerically extremely unstable.

Wavelet leaders profile

Let h_s be the smallest positive real number such that $\widetilde{\rho}_f(h_s)=1$. The wavelet leaders profile of f is defined by

$$\widetilde{\nu}_f(h) := \left\{ \begin{array}{ll} \lim_{\varepsilon \to 0^+} \limsup_{j \to +\infty} \frac{\log \# \left\{ \lambda \in \Lambda_j \ : \ d_\lambda \geq 2^{-(h+\varepsilon)j} \right\}}{\log 2^j} & \text{ if } h \leq h_s, \\ \lim_{\varepsilon \to 0^+} \limsup_{j \to +\infty} \frac{\log \# \left\{ \lambda \in \Lambda_j \ : \ d_\lambda \leq 2^{-(h-\varepsilon)j} \right\}}{\log 2^j} & \text{ if } h \geq h_s. \end{array} \right.$$

Wavelet leaders profile

Let h_s be the smallest positive real number such that $\widetilde{\rho}_f(h_s)=1$. The wavelet leaders profile of f is defined by

$$\widetilde{\nu}_f(h) := \left\{ \begin{array}{ll} \lim_{\varepsilon \to 0^+} \limsup_{j \to +\infty} \frac{\log \# \left\{ \lambda \in \Lambda_j \ : \ d_\lambda \geq 2^{-(h+\varepsilon)j} \right\}}{\log 2^j} & \text{if } h \leq h_s, \\ \lim_{\varepsilon \to 0^+} \limsup_{j \to +\infty} \frac{\log \# \left\{ \lambda \in \Lambda_j \ : \ d_\lambda \leq 2^{-(h-\varepsilon)j} \right\}}{\log 2^j} & \text{if } h \geq h_s. \end{array} \right.$$

Properties.

- $\widetilde{\nu}_f$ is independent of the chosen wavelet basis.
- $\widetilde{\nu}_f$ takes values in $\{-\infty\} \cup [0,1]$, it is increasing and right-continuous on $[0,h_s]$, decreasing and left-continuous on $[h_s,+\infty)$, $\widetilde{\nu}_f(h_s)=1$ and the function

$$h \in [h_s, +\infty) \mapsto \frac{\widetilde{\nu}_f(h) - 1}{h}$$

is decreasing.

 Moreover, any function ν which satisfies these properties is the wavelet leaders profile of a function.

Leaders profile method

Results.

 Our method allows to detect some multifractal spectra that all other methods proposed were not able to detect;

Leaders profile method

Results.

- Our method allows to detect some multifractal spectra that all other methods proposed were not able to detect;
- It gives the correct multifractal spectrum for some specific functions;

Leaders profile method

Results.

- Our method allows to detect some multifractal spectra that all other methods proposed were not able to detect;
- It gives the correct multifractal spectrum for some specific functions;
- It always gives an upper bound for the multifractal spectrum;

Results.

- Our method allows to detect some multifractal spectra that all other methods proposed were not able to detect;
- It gives the correct multifractal spectrum for some specific functions;
- · It always gives an upper bound for the multifractal spectrum;
- From a theoretical point of view, it gives as good results as the wavelet leaders
 method in the concave case, and better results in the non-concave case;

Leaders profile method

Results.

- Our method allows to detect some multifractal spectra that all other methods proposed were not able to detect;
- It gives the correct multifractal spectrum for some specific functions;
- It always gives an upper bound for the multifractal spectrum;
- From a theoretical point of view, it gives as good results as the wavelet leaders
 method in the concave case, and better results in the non-concave case;
- From a theoretical point of view, it gives better results than the method based on the \mathcal{S}^{ν} spaces and in particular, it allows to detect spectra which are not with increasing visibility.

Leaders profile method

Results.

- Our method allows to detect some multifractal spectra that all other methods proposed were not able to detect;
- · It gives the correct multifractal spectrum for some specific functions;
- It always gives an upper bound for the multifractal spectrum;
- From a theoretical point of view, it gives as good results as the wavelet leaders
 method in the concave case, and better results in the non-concave case;
- From a theoretical point of view, it gives better results than the method based on the \mathcal{S}^{ν} spaces and in particular, it allows to detect spectra which are not with increasing visibility.
- An implementation of this method has been proposed and tested on several examples.

$\mathcal{L}^{ u}$ spaces

Let ν be a function which has the same properties as any wavelet leaders profile.

Definition

The space \mathcal{L}^{ν} is the set of functions $f \in L^2([0,1])$ such that $\widetilde{\nu}_f \leq \nu$.

This space has been endowed with a complete metrizable topology.

$\mathcal{L}^{ u}$ spaces

Let ν be a function which has the same properties as any wavelet leaders profile.

Definition

The space \mathcal{L}^{ν} is the set of functions $f \in L^2([0,1])$ such that $\widetilde{\nu}_f \leq \nu$.

This space has been endowed with a complete metrizable topology.

Results. If there is $\alpha_{\min}>0$ such that $\nu(\alpha)=-\infty$ if $\alpha<\alpha_{\min}$, then

- \mathcal{L}^{ν} is also separable;
- The set of functions f such that $\widetilde{\nu}_f = \nu$ is residual and dense-lineable in \mathcal{L}^{ν} .

$\mathcal{L}^{ u}$ spaces

Let ν be a function which has the same properties as any wavelet leaders profile.

Definition

The space \mathcal{L}^{ν} is the set of functions $f \in L^2([0,1])$ such that $\widetilde{\nu}_f \leq \nu$.

This space has been endowed with a complete metrizable topology.

Results. If there is $\alpha_{\min}>0$ such that $\nu(\alpha)=-\infty$ if $\alpha<\alpha_{\min}$, then

- \mathcal{L}^{ν} is also separable;
- The set of functions f such that $\widetilde{\nu}_f = \nu$ is residual and dense-lineable in $\mathcal{L}^{\nu}.$

Perspectives.

- Generic validity of the leaders profile method;
- · More with oscillating singularities.

References (Part I)

R.M. Aron, V.I. Gurariy and J.B. Seoane-Sepúlveda, *Lineability and spaceability of sets of functions on* \mathbb{R} . Proc. Amer. Math. Soc., **133**, 3, 795–803, 2005.

F. Bastin, A. Conejero, C. Esser and J.B. Seoane-Sepúlveda, *Algebrability and nowhere Gevrey differentiability*, Israel J. Math., DOI 10.1007/s11856-014-1104-1, 1–7, 2014.

F. Bastin, C. Esser and S. Nicolay, *Prevalence of "nowhere analyticity"*, Studia Math., **210**, 3, 239–246, 2012.

J.P.R. Christensen, *Topology and Borel structure*, North Holland, Amsterdam, 1974.

C. Esser, Generic results in classes of ultradifferentiable functions, J. Math. Anal. Appl., 413, 378–391, 2014.

B. R. Hunt, T. Sauer and J. A. Yorke, *Prevalence: a translation-invariant "almost every" on infinite-dimensional spaces*, Bull. Amer. Math. Soc., **27**, 2, 217–238, 1992.

A. Rainer and G. Schindl, Composition in ultradifferentiable classes, arXiv: 1210.5102v1.

J. Schmets and M. Valdivia, On the extent of the (non) quasi-analytic classes, Arch. Math., **56**, 593–600. 1991.

V. Thilliez, On quasianalytic local rings, Expo. Math., 26, 1-23, 2008.

References (Part II)

J.M. Aubry, F. Bastin and S. Dispa, *Prevalence of multifractal functions in* S^{ν} *spaces*, J. Fourier Anal. Appl., 13, 2, 2007, 175-185.

J.M. Aubry and S. Jaffard, Random Wavelet Series, Comm. Math. Phys, 227, 2002, 483-514.

F. Bastin, C. Esser and S. Jaffard, Large deviation spectra based on wavelet leaders, submitted.

F. Bastin, C. Esser and L. Simons, About new \mathcal{L}^{ν} spaces: Topological properties and comparison with S^{ν} spaces, preprint.

C. Esser, T. Kleyntssens, S. Jaffard and S. Nicolay, A multifractal formalism for non concave and non increasing spectra: the L^{ν} spaces approach, preprint.

S. Jaffard, On the Frisch-Parisi conjecture, J. Math. Pures Appl., 79, 6, 2000,525-?552.

S. Jaffard, Wavelet techniques in multifractal analysis, Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, Proc. Symp. Pure Maths., 72, 2004, 91-151.

Liège - October 22, 2014