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Introduction

Weierstraß function.

W (x) :=

+∞∑
n=0

an cos(bnπx), a ∈ (0, 1), ab > 1.
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Figure: Weierstraß function for a = 0.5 and b = 3

Two questions.
• Are there many such functions? Or is this example atypical?
−→ Notions of genericity

• Is it possible to characterize the local behavior of such functions?
−→ Hölder exponent and multifractal analysis

Content of the presentation.
1. Notions of genericity

a) Residuality, prevalence and lineability
b) Denjoy-Carleman classes

2. Multifractal analysis
a) Hölder regularity and multifractal spectrum
b) Multifractal formalism
c) Leaders profile method
d) Lν spaces
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Notions of genericity Residuality, prevalence and lineability

Notions of genericity

• Residuality. Let X be a Baire space. A subset M of X is residual in X if M
contains a countable intersection of dense open sets in X .

• Prevalence (Christensen, 1974 / Hunt, Sauer, Yorke, 1992). Let X be a
complete metrizable vector space. A Borel subset M of X is shy if there exists a
Borel measure µ on X with compact support such that

µ(M + x) = 0, x ∈ X.

More generally, a subset V is called shy if it is contained in a shy Borel set. The
complement of a shy set is called a prevalent set.

• Lineability (Aron, Gurariy, Seoane-Sepúlveda, 2005). Let X be a topological
vector space and µ a cardinal number. A subset M of X is (dense-)lineable if
M ∪ {0} contains an infinite dimensional vector subspace (dense) in X . If the
dimension of this subspace is µ, M is said to be µ-(dense-)lineable.
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Notions of genericity Denjoy-Carleman classes

Existence of nowhere analytic functions. An example was given by Cellérier (1890)
by the function

f(x) :=

+∞∑
n=1

sin(anx)

n!
, x ∈ R

where a is a positive integer larger than 1.

Results.

• Genericity of the set of nowhere analytic functions in C∞([0, 1]).

• Extension of these results using Gevrey classes.

Question. Similar results in the context of classes of ultradifferentiable functions?
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Notions of genericity Denjoy-Carleman classes

Denjoy-Carleman classes

An arbitrary sequence of positive real numbers M = (Mk)k∈N0
is called a weight

sequence.

Definition
Let Ω be an open subset of R and M be a weight sequence. The space E{M}(Ω) is
defined by

E{M}(Ω) :=
{
f ∈ C∞(Ω) : ∀K ⊆ Ω compact ∃h > 0 such that ‖f‖MK,h < +∞

}
,

where

‖f‖MK,h := sup
k∈N0

sup
x∈K

|Dkf(x)|
hkMk

.

If f ∈ E{M}(Ω), we say that f is M -ultradifferentiable of Roumieu type on Ω.

Particular case. The weight sequences (k!)k∈N0 and ((k!)α)k∈N0 with α > 1.
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Notions of genericity Denjoy-Carleman classes

Definition
Let Ω be an open subset of R and M be a weight sequence. The space E(M)(Ω) is
defined by

E(M)(Ω) :=
{
f ∈ C∞(Ω) : ∀K ⊆ Ω compact ,∀h > 0, ‖f‖MK,h < +∞

}
.

If f ∈ E(M)(Ω), we say that f is M -ultradifferentiable of Beurling type on Ω and we
use the representation

E(M)(Ω) = proj
←−−−
K⊆Ω

proj
←−−
h>0

EM,h(K)

to endow E(M)(Ω) with a structure of Fréchet space.

Questions.

• When do we have E{M}(Ω) ⊆ E(N)(Ω)?

• In that case, “how small” is E{M}(Ω) in E(N)(Ω)?
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Notions of genericity Denjoy-Carleman classes

General assumptions.

• We assume that any weight sequence M is logarithmically convex, i.e.

M2
k ≤Mk−1Mk+1, ∀k ∈ N .

It implies that the space E{M}(Ω) is an algebra.

• We assume that any weight sequence M is such that M0 = 1.

• We usually assume that any weight sequence M is non-quasianalytic, i.e.

+∞∑
k=1

(Mk)−1/k < +∞.

By Denjoy-Carleman theorem, it implies that there exists non-zero functions with
compact support in E{M}(R).
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Notions of genericity Denjoy-Carleman classes

Inclusions between Denjoy-Carleman classes

Notation. Given two weight sequences M and N , we write

M �N ⇐⇒ lim
k→+∞

(
Mk

Nk

) 1
k

= 0.

Proposition
Let M,N be two weight sequences and let Ω be an open subset of R. Then

M �N ⇐⇒ E{M}(Ω) ⊆ E(N)(Ω)

and in this case, the inclusion is strict.

Keys.

• If M �N , then there exists a weight sequence L such that M � L�N .

• There exists θ ∈ E{M}(R) such that |Dkθ(0)| ≥Mk for all k ∈ N0. In particular,
this function does not belong to E(M)(R).
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Notions of genericity Denjoy-Carleman classes

Construction
Definition
We say that a function is nowhere in E{M} if its restriction to any open and non-empty
subset Ω of R never belongs to E{M}(Ω).

Proposition
Assume that M and N are two weight sequences such that M �N . If M is
non-quasianalytic, there exists a function of E(N)(R) which is nowhere in E{M}.

Idea. Construct a sequence (L(p))p∈N of weight sequences such that

M � L(1) � L(2) � · · ·� L(p) � · · ·�N.

For every p ∈ N, consider a function fp ∈ E{L(p)}(R) such that |Dkfp(0)| ≥ L(p)
k ,

∀k ∈ N0 . If {xp : p ∈ N} is a dense subset of R, consider

f(x) =

+∞∑
p=1

fp(x− xp)Φp(x), x ∈ R

where Φp is a compactly supported function well chosen.
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Notions of genericity Denjoy-Carleman classes

Generic results
Proposition
Assume that N and M are two weight sequences such that M �N . If M is non
quasianalytic, the set of functions of E(N)(R) which are nowhere in E{M} is

• prevalent,

• residual,

• c-dense-lineable.

More with countable unions

Let N be a weight sequence and let (M (n))n∈N be a sequence of weight sequences
such that M (n) �N for every n ∈ N. If there is n0 ∈ N such that the weight
sequence M (n0) is non quasianalytic, the set of functions of E(N)(R) which are
nowhere in

⋃
n∈N E{M(n)} is prevalent, residual and c-dense-lineable in E(N)(R).

Idea. Construct a weight sequence P such that⋃
n∈N
E{M(n)}(Ω) ⊆ E{P}(Ω) ( E(N)(Ω).
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More with countable unions

Let N be a weight sequence and let (M (n))n∈N be a sequence of weight sequences
such that M (n) �N for every n ∈ N. If there is n0 ∈ N such that the weight
sequence M (n0) is non quasianalytic, the set of functions of E(N)(R) which are
nowhere in

⋃
n∈N E{M(n)} is prevalent, residual and c-dense-lineable in E(N)(R).

Idea. Construct a weight sequence P such that⋃
n∈N
E{M(n)}(Ω) ⊆ E{P}(Ω) ( E(N)(Ω).

C. Esser (ULg) Regularity of functions: Genericity and multifractal analysis Liège – October 22, 2014 10 / 30



Notions of genericity Denjoy-Carleman classes

Generic results
Proposition
Assume that N and M are two weight sequences such that M �N . If M is non
quasianalytic, the set of functions of E(N)(R) which are nowhere in E{M} is

• prevalent,

• residual,

• c-dense-lineable.

Idea. Construct for every t ∈ (0, 1) a weight sequence L(t) such that

M � L(t) �N and L(t) � L(s) if t < s.

Then, we have for every t ∈ (0, 1)

M � L( t2 ) � L( 2t
3 ) � L( 3t

4 ) � · · ·� L(t) �N

and we construct as before a function of E(N)(R) which is nowhere in E{M}.

More with countable unions

Let N be a weight sequence and let (M (n))n∈N be a sequence of weight sequences
such that M (n) �N for every n ∈ N. If there is n0 ∈ N such that the weight
sequence M (n0) is non quasianalytic, the set of functions of E(N)(R) which are
nowhere in

⋃
n∈N E{M(n)} is prevalent, residual and c-dense-lineable in E(N)(R).

Idea. Construct a weight sequence P such that⋃
n∈N
E{M(n)}(Ω) ⊆ E{P}(Ω) ( E(N)(Ω).

C. Esser (ULg) Regularity of functions: Genericity and multifractal analysis Liège – October 22, 2014 10 / 30



Notions of genericity Denjoy-Carleman classes

Generic results
Proposition
Assume that N and M are two weight sequences such that M �N . If M is non
quasianalytic, the set of functions of E(N)(R) which are nowhere in E{M} is

• prevalent,

• residual,

• c-dense-lineable.

More with countable unions

Let N be a weight sequence and let (M (n))n∈N be a sequence of weight sequences
such that M (n) �N for every n ∈ N. If there is n0 ∈ N such that the weight
sequence M (n0) is non quasianalytic, the set of functions of E(N)(R) which are
nowhere in

⋃
n∈N E{M(n)} is prevalent, residual and c-dense-lineable in E(N)(R).

Idea. Construct a weight sequence P such that⋃
n∈N
E{M(n)}(Ω) ⊆ E{P}(Ω) ( E(N)(Ω).

C. Esser (ULg) Regularity of functions: Genericity and multifractal analysis Liège – October 22, 2014 10 / 30



Notions of genericity Denjoy-Carleman classes

An important example of ultradifferentiable functions of Roumieu type is given by the
classes of Gevrey differentiable functions of order α > 1. They correspond to the
weight sequences

Mk := (k!)α, k ∈ N0 .

Particular case of Gevrey classes
Let α > 1. The set of functions of E((k!)α)(R) which are nowhere in E{(k!)β} for every
β ∈ (1, α), is prevalent, residual and c-dense-lineable in E((k!)α)(R).

It suffices to take the weight sequences M (n) (n ∈ N) given by

M
(n)
k := (k!)βn , k ∈ N0,

where (βn)n∈N is an increasing sequence of (1, α) that converges to α.

Proposition (Schmets, Valdivia, 1991)
Let α > 1. The set of functions of E((k!)α)(R) which are nowhere in E{(k!)β} for every
β ∈ (1, α) is residual in E((k!)α)(R).
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Notions of genericity Denjoy-Carleman classes

Other results.

• Similar results have been obtained with classes of ultradifferentiable functions
defined using weight functions and weight matrices.

Perspectives.

• What about the algebrability?

• Other notions of genericity (such as porosity)?

• More with Pringsheim singularities?
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Multifractal analysis

Content of the presentation.

1. Notions of genericity
a) Residuality, prevalence and lineability
b) Denjoy-Carleman classes

2. Multifractal analysis
a) Hölder regularity and multifractal spectrum
b) Multifractal formalism
c) Leaders profile method
d) Lν spaces
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Multifractal analysis Hölder regularity and multifractal spectrum

Hölder regularity and multifractal spectrum
Recall. Is it possible to characterize the local regularity of an irregular function?
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Multifractal analysis Hölder regularity and multifractal spectrum

Hölder regularity and multifractal spectrum
Recall. Is it possible to characterize the local regularity of an irregular function?

Definition
Let f : R→ R be a locally bounded function, α ≥ 0 and x ∈ R. The function f
belongs to the Hölder space Cα(x) if there exist a constant C > 0 and a polynomial
P of degree strictly smaller than α such that

|f(y)− P (y)| ≤ C|y − x|α

for all y in a neighborhood of x. Then, the Hölder exponent hf (x) of f at x is defined
by

hf (x) := sup{α ≥ 0 : f ∈ Cα(x)}.

Weierstraß function. hf (x) = − log a
log b , ∀x ∈ R.
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Multifractal analysis Hölder regularity and multifractal spectrum

• Since hf (x) can change widely from a point to another, we will characterize the
size of the sets of points which have the same local regularity.

• The iso-Hölder sets of f are Eh := {x ∈ R : hf (x) = h}.

Definition
The multifractal spectrum df of f is defined by

df (h) := dimHEh, ∀h ∈ [0,+∞],

with the convention that dimH ∅ = −∞.

−→ df gives a geometrical idea about the distribution of the singularities of f
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Multifractal analysis Hölder regularity and multifractal spectrum

Examples

Riemann function

1

0

1

0 1 2
− log2(1− p2) − log2(p2)− log2(1− p1) − log2(p1)

Sum of two cascades

1

0

1

0 1 2
− log2(1− p) − log2(p)

Cascade
1

0

1

0 1 γ− log2(1− p) − log2(p) htmax

Threshold of a cascade
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Multifractal analysis Multifractal formalism

Multifractal formalism
A multifractal formalism is a method which is expected to give the multifractal spectrum
of a function, from “global” quantities which are numerically computable.

Several multifractal formalisms based on a decomposition of f ∈ L2([0, 1]) in a
wavelet basis

f =
∑
j∈N0

2j−1∑
k=0

cj,kψj,k + C

have been proposed to estimate df , where the mother wavelet ψ belongs to S(R).

Characterization of the Hölder exponent using wavelet coefficients
If f is uniformly Hölder, the Hölder exponent of f at x is

hf (x) = lim inf
j→+∞

inf
k∈{0,...,2j−1}

log(|cj,k|)
log(2−j + |k2−j − x|) .

Advantage. Easy to compute and relatively stable from a numerical point of view.
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Multifractal analysis Multifractal formalism

• The Frisch-Parisi formalism (1985) and the classical use of Besov spaces lead to
a loss of information (only concave hull and increasing part of spectra can be
recovered).

• Wavelet leaders method (S. Jaffard, 2004): Modification of the Frisch-Parisi
formalism using the wavelet leaders of the function instead of wavelet coefficients.
−→ Detection of increasing and decreasing parts of concave spectra.

• Introduction of spaces of type Sν (J.M. Aubry, S. Jaffard, 2005), based on
histograms of wavelet coefficients.
−→ Detection of concave and non-concave parts of increasing spectra.

• Combination of the two previous methods to obtain the leaders profile method
and the spaces of type Lν .
−→ Detection of increasing and decreasing parts of concave and non-concave

spectra.
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Multifractal analysis Multifractal formalism

Wavelet leaders

Standard notation. For j ∈ N0, k ∈
{

0, . . . , 2j − 1
}

,

λ(j, k) :=
{
x ∈ R : 2jx− k ∈ [0, 1[

}
=

[
k

2j
,
k + 1

2j

)
,

and for all j ∈ N0, Λj denotes the set of all dyadic intervals (of [0, 1)) of length 2−j .
If λ = λ(j, k), we use both notations cj,k or cλ to denote the wavelet coefficients.

Definition
The wavelet leaders of a function f ∈ L2([0, 1]) are defined by

dλ := sup
λ′⊆3λ

|cλ′ |, λ ∈ Λj , j ∈ N0 .

−→ their decay properties are directly related with the Hölder exponent.
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Multifractal analysis Multifractal formalism

If x ∈ [0, 1), let λj(x) denote the dyadic interval of length 2−j which contains x.

Hölder regularity and wavelet leaders
If f is uniformly Hölder, the Hölder exponent of f at x is given by

hf (x) = lim inf
j→+∞

log dλj(x)

log 2−j
.

Interpretation.
dλj(x) ∼ 2−hf (x)j
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Multifractal analysis Multifractal formalism

Method based on Sν spaces

The wavelet profile νf of a locally bounded function f is defined for every h ≥ 0 by

νf (h) := lim
ε→0+

lim sup
j→+∞

log #
{
λ ∈ Λj : |cλ| ≥ 2−(h+ε)j

}
log 2j

.

Interpretation.

• There are approximatively 2νf (h)j coefficients greater in modulus than 2−hj .

Properties.

• νf is a right-continuous increasing function.

• νf is independent of the chosen wavelet basis.

• If f is uniformly Hölder,

df (h) ≤ dνf (h) := min

{
h sup
h′∈(0,h]

νf (h′)

h′
, 1

}
, ∀h ≥ 0.
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Multifractal analysis Multifractal formalism

Definition
Take 0 ≤ a < b ≤ +∞. A function g : [a, b] 7→ [0,+∞) is with increasing-visibility if g
is continuous at a and supy∈(a,x]

g(y)
y ≤

g(x)
x for all x ∈ (a, b].

In other words, a function g is with increasing-visibility if for all x ∈ (a, b], the segment
[(0, 0), (x, g(x))] lies above the graph of g on (a, x]. 1

0

1

0

Example of νf (---) and dνf (—)

−→ The passage from νf to dνf transforms the function νf into a function with
increasing-visibility.
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Multifractal analysis Multifractal formalism

Particular case

Assumption. Assume that the wavelet coefficients of f are given by cλ = µ(λ) where
µ is a finite Borel measure on [0, 1] .

Notation. Let fβ denote the function with wavelet coefficients given by cβλ = 2−βjcλ.

In this case, one has

• dfβ (h) = df (h− β) for all h ≥ β.

• νfβ (h) = νf (h− β) for all h ≥ β.

Moreover, if

inf

{
νf (x)− νf (y)

x− y : x, y ∈ [hmin, h
′
max], x < y

}
> 0,

where hmin = inf{α : νf (α) ≥ 0}, h′max = inf{α : νf (α) = 1}, then there exists
β > 0 such that the function νfβ is with increasing-visibility on [hmin, h

′
max]. In this

case, dνfβ = νfβ approximates dfβ . Therefore the increasing part of df can be
approximated by νf .
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Multifractal analysis Multifractal formalism

There is a tree-structure in the repartition of the wavelet coefficients
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Multifractal analysis Leaders profile method

Wavelet leaders density

The wavelet leaders density of f is defined for every h ≥ 0 by

ρ̃f (h) := lim
ε→0+

lim sup
j→+∞

log #
{
λ ∈ Λj : 2−(h+ε)j ≤ dλ < 2−(h−ε)j}

log 2j
.

Interpretation. There are approximatively 2ρ̃f (h)j coefficients of size 2−hj .

Heuristic argument. We consider the points x such that hf (x) = h.

• dλj(x) ∼ 2−hj and there are about 2ρ̃f (h)j such dyadic intervals.

• If we cover each singularity x by dyadic intervals of size 2−j , from the definition of
the Hausdorff dimension, there are about 2df (h)j such intervals.

=⇒ ρ̃f (h) = df (h)

Problems.

• The wavelet leaders density may depend on the chosen wavelet basis.

• The definition of the wavelet leaders density is numerically extremely unstable.
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Multifractal analysis Leaders profile method

Wavelet leaders profile
Let hs be the smallest positive real number such that ρ̃f (hs) = 1. The wavelet leaders
profile of f is defined by

ν̃f (h) :=


lim
ε→0+

lim sup
j→+∞

log #
{
λ ∈ Λj : dλ ≥ 2−(h+ε)j

}
log 2j

if h ≤ hs,

lim
ε→0+

lim sup
j→+∞

log #
{
λ ∈ Λj : dλ ≤ 2−(h−ε)j}

log 2j
if h ≥ hs.

Properties.
• ν̃f is independent of the chosen wavelet basis.
• ν̃f takes values in {−∞} ∪ [0, 1], it is increasing and right-continuous on [0, hs],

decreasing and left-continuous on [hs,+∞), ν̃f (hs) = 1 and the function

h ∈ [hs,+∞) 7→ ν̃f (h)− 1

h

is decreasing.
• Moreover, any function ν which satisfies these properties is the wavelet leaders

profile of a function.
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Multifractal analysis Leaders profile method

Leaders profile method. It is based on the estimation of the multifractal spectrum df
of f by the function ν̃f .

Results.

• Our method allows to detect some multifractal spectra that all other methods
proposed were not able to detect;

• It gives the correct multifractal spectrum for some specific functions;

• It always gives an upper bound for the multifractal spectrum;

• From a theoretical point of view, it gives as good results as the wavelet leaders
method in the concave case, and better results in the non-concave case;

• From a theoretical point of view, it gives better results than the method based on
the Sν spaces and in particular, it allows to detect spectra which are not with
increasing visibility.

• An implementation of this method has been proposed and tested on several
examples.
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Multifractal analysis Lν spaces

Lν spaces

Let ν be a function which has the same properties as any wavelet leaders profile.

Definition
The space Lν is the set of functions f ∈ L2([0, 1]) such that ν̃f ≤ ν.

This space has been endowed with a complete metrizable topology.

Results. If there is αmin > 0 such that ν(α) = −∞ if α < αmin, then

• Lν is also separable;

• The set of functions f such that ν̃f = ν is residual and dense-lineable in Lν .

Perspectives.

• Generic validity of the leaders profile method;

• More with oscillating singularities.
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