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Abstract

As surprising as it may seem, there exist functions of C*°(R) which are
nowhere analytic. When such an unexpected object is found, a natural ques-
tion is to ask whether many similar ones may exist. A classical technique is
to use the Baire category theorem and the notion of residuality. This notion
is purely topological and does not give any information about the measure
of the set of objects satisfying such a property. In this purpose, the notion of
prevalence has been introduced. Moreover, one could also wonder whether
large algebraic structures of such objects can be constructed. This question
is formalized by the notion of lineability.

The first objective of this thesis is to go further into the study of nowhere
analytic functions. It is known that the set of nowhere analytic functions is
residual and lineable in C*([0, 1]). We prove that the set of nowhere analytic
functions is also prevalent in C°°(]0, 1]). Those results of genericity are then
generalized using Gevrey classes, which can be seen as intermediate between
the space of analytic functions and the space of infinitely differentiable func-
tions. We also study how far such results of genericity could be extended
to spaces of ultradifferentiable functions, defined using weight sequences or
using weight functions.

Our second main objective is to study the pointwise regularity of functions
via their multifractal spectrum. Computing the multifractal spectrum of a
function using directly its definition is an unattainable goal in most of the
practical cases, but there exist heuristic methods, called multifractal for-
malisms, which allow to estimate this spectrum and which give satisfactory
results in many situations. The Frisch-Parisi conjecture, classically used and
based on Besov spaces, presents two disadvantages: it can only hold for
spectra that are concave and it can only yield the increasing part of spec-
tra. Concerning the first problem, the use of S¥ spaces allows to deal with
non-concave increasing spectra. Concerning the second problem, a general-
ization of the Frisch-Parisi conjecture obtained by replacing the role played
by wavelet coefficients by wavelet leaders allows to recover the decreasing
part of concave spectra.

Our purpose in this thesis is to combine both approaches and define a new
formalism derived from large deviations based on statistics of wavelet leaders.
As expected, we show that this method yields non-concave spectra and is
not limited to their increasing part. From the theoretical point of view,
we prove that this formalism is more efficient than the previous wavelet-
based multifractal formalisms. We present the underlying function space
and endow it with a topology.






Résumé

Aussi surprenant que cela puisse paraitre, il existe des fonctions de C*(R)
qui sont nulle part analytiques. Lorsqu'un tel objet est trouvé, il est na-
turel de se demander s’il peut en exister beaucoup d’autres. Une technique
classique consiste a utiliser le théoreme de Baire et la notion de résidualité.
Cette notion est purement topologique et ne donne aucune information sur
la mesure de ’ensemble formé de tels objets. C’est pourquoi la notion de
prévalence a été introduite. En outre, on peut aussi se demander s’il est
possible de construire de larges structures algébriques formées de ces objets.
Cette question est formalisée par la notion de linéabilité.

Le premier objectif de cette these est de poursuivre I’étude de ’ensemble des
fonctions qui sont nulle part analytiques. Il a été prouvé que cet ensemble
est résiduel et linéable dans C*°([0,1]). Nous montrons qu’il est également
prévalent dans C*°([0, 1]). Ces résultats de généricité sont ensuite généralisés
en utilisant les classes de Gevrey. Elles peuvent étre considérées comme des
espaces intermédiaires entre l’espace des fonctions analytiques et 1’espace
des fonctions infiniment contintiment différentiables. Nous étudions ensuite
dans quelle mesure ces résultats peuvent s’étendre aux espaces de fonctions
ultradifférentiables, définis en utilisant des suites ou des fonctions de poids.

Notre deuxiéme objectif consiste en ’étude de la régularité ponctuelle de
fonctions via leur spectre multifractal. Dans la plupart des cas pratiques, il
est impossible de calculer le spectre multifractal d’une fonction en se basant
uniquement sur sa définition. Néanmoins, il existe des méthodes heuristiques,
appelées formalismes multifractals, qui permettent d’estimer ce spectre et qui
donnent des résultats satisfaisants dans de nombreuses situations. La conjec-
ture de Frisch-Parisi, classiquement utilisée et basée sur les espaces de Besov,
présente deux inconvénients: elle ne permet de détecter que des spectres con-
caves et ne donne une indication que sur leur partie croissante. Concernant
le premier probléme, 'utilisation des espaces S¥ meéne a des résultats pour la
détection de spectres non-concaves croissants. Pour le deuxieme probléme,
une généralisation de la conjecture de Frisch-Parisi, obtenue en remplacant
le réle joué par les coefficients d’ondelettes par les coefficients dominants,
permet de récupérer la partie décroissante de spectres concaves.

Dans cette theése, nous combinons les deux approches et définissons un nou-
veau formalisme basé sur les coefficients dominants. Comme attendu, nous
montrons que cette méthode permet d’estimer des spectres non-concaves et
n’est pas limitée a leur partie croissante. D’un point de vue théorique, nous
montrons que ce formalisme est plus efficace que deux précédents. Nous
présentons l’espace fonctionnel sous-jacent et le munissons d’une topologie.
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Introduction

In the early nineteenth century, most of the mathematicians believed that a continuous
function had derivative at a significant set of points. A.M. Ampere even attempted to
give a theoretical justification for this. It was therefore a veritable shock among the
mathematical community, when, during a presentation at the Berlin Academy in 1872,
K. Weierstrafl proved that this conjecture was false. He presented the nowadays classical
example [I40] of a function which is continuous on R but nowhere differentiable. This
function is given by

—+oo
W(z) = Z a" cos(b" )
n=0

. : 3
where a € (0,1), b is any odd integer and ab > 1+ =f.

When such a surprising object is found, a natural question is to ask whether many
similar ones can exist, or if this example is atypical. After the publication of the result
concerning the Weierstrafl function, many other mathematicians made their own con-
tributions and constructed variants of this function. In particular, in 1931, as a nice
application of the Baire category theorem, Banach [I8] and Mazurkiewicz [I10] proved
that most of the continuous functions are nowhere differentiable. More precisely, they
proved that the set of nowhere differentiable functions contains a countable union of
dense open sets of C([0, 1]); we say that such a set is residual in C(]0, 1]).

The notion of residuality gives the dominant behavior of the functions of the con-
sidered space from a topological point of view. Nevertheless, it does not provide any
information about the “measure” of such a set. In finite dimensional spaces, we say
that a property is verified almost everywhere if the set of points where it is not satisfied
has a Lebesgue measure zero. The particular role played by the Lebesgue measure is
justified by the fact that it is the only o-finite measure which is invariant by translation.
The notion of prevalence was introduced by Christensen [53] in 1972, and rediscovered
in 1992 by Hunt et al. [82], in order to generalize the notion of almost everywhere to
infinite dimensional spaces. The prevalence of the set of nowhere differentiable functions
in C(R) was obtained by Hunt [81] in 1994.

Independently of the notions of residuality and prevalence, one could also wonder
if it is possible to find large algebraic structures in the set of nowhere differentiable
functions. In this context, V.I. Gurariy introduced the concept of lineability that first
appeared in [6]. Basically, we say that a set M is lineable if M U {0} contains a infinite
dimensional vector space. The research of algebraic structures in the class of nowhere
differentiable functions has been undertaken by many authors, but the first result in this
direction is due to Gurariy [74] in 1966 who proved that the set of continuous nowhere
differentiable functions on [0,1] is lineable. A constructive proof of this result, with



INTRODUCTION

a maximal dimension for the existing subspace, was also given recently by Jiménez-
Rodriguez et al. [96].

When looking at the Weierstrafl function, a second question that can arise naturally
is to wonder whether one can characterize its local behavior. For example, given two
continuous functions which are nowhere differentiable, is it possible to see if the first
one is, at a given point, more regular than the second one? The information concerning
the local regularity of a function f at a given point xy can be obtained via its Holder
exponent hy(zg). In the case of the Weierstral function, Hardy [76] proved that its
regularity is the same at every point, and more precisely, that its Holder exponent is
equal to — llgi‘; at every point. Nevertheless, for a highly irregular function, the function
hy can be itself very irregular. In order to get a concrete idea of the distribution of the
singularities of f and their importance, one tries instead to estimate the “size” of the
iso-Holder sets E/(h) defined by

ET(h) = {xg € R : hy(x0) = h}.

Such sets can be fractal sets, therefore by “size” one usually means Hausdorff dimen-
sion. Roughly speaking, the information about the Holder-regularity of a function is
summarized by its multifractal spectrum, defined by the function

dy :[0,00] = {—o0} U[0,n] : A+ dimy(Ep).

The example of the Weierstra3 function illustrates the two problems we address
in the present thesis. In Part [} given a particular “strange” property, we study how
large the set of functions enjoying this property is. For this purpose, we will use the
notions of residuality, prevalence and lineability. These three concepts are recalled with
more details in Chapter [} In Part [[T, we introduce a new method which allows to get
information about the regularity of irregular functions, and more precisely, to estimate
their multifractal spectrum. Let us be more precise about these two parts.

The starting point of Part [ is the existence of functions which are infinitely con-
tinuously differentiable on an interval of the real line but which are nowhere analytic
on this interval. The existence of nowhere analytic functions can be surprising but is
known since the construction of du Bois Reymond [62], in 1876. A nice example is due
to Cellérier [51] in 1890, with the function defined for all z € R by

+oco . n.’E
iy = $sna"

where a is a positive integer larger than 1. Actually, a generic function in the space
C>°(]0,1]) of infinitely continuously differentiable functions on [0, 1] is nowhere analytic.
Indeed, in 1954, Morgenstern [IT5] proved that the set of nowhere analytic functions
is residual in C*°([0,1]). More recent results using the notion of lineability have been
obtained. The first result is due to Bernal-Gonzélez [33] in 2008. Besides, in Chapter [2]
we prove that the set of nowhere analytic functions is also prevalent in C*°([0,1]). Those
results of genericity are then generalized using Gevrey classes. These classes can be
seen as intermediate between the space of analytic functions and the space of infinitely
differentiable functions and are defined imposing growth conditions on the derivatives
of the functions. We give two explicit constructions of functions of C*> (][0, 1]) which
are nowhere Gevrey differentiable, that is to say which are not in a Gevrey class of any
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order at any point. We prove the residuality, the prevalence and the lineability of the set
of nowhere Gevrey differentiable functions. We go further with our main result which
consists in the construction of a dense algebra of C*°([0, 1]) whose elements are nowhere
Gevrey differentiable.

Chapter [3] aims at studying how far such results of genericity could extend to the
non-quasianalytic classes. These classes are spaces of smooth functions which contain
not, identically zero elements with compact support. There are essentially two ways
to introduce them: using weight sequences M and imposing weight conditions on the
derivatives of the function [I00], or using weight functions w and imposing conditions
on the Fourier Laplace transform of the function [38]. In both cases, we distinguish the
classes E(pry and &,y of ultradifferentiable functions of Roumieu type and the classes
Ey and &) of ultradifferentiable functions of Beurling type. Then, given a class E
of ultradifferentiable functions of Beurling type on the real line that strictly contains
another non-quasianalytic class F' of Roumieu type, we handle the question of knowing
how large the set of functions in E that are nowhere in the class F' is. In particular, we
obtain that F' is a rather small subspace of E and in this way, we complement a work of
Schmets and Valdivia [128]. Consequences for the Gevrey classes are also given. More
recently, Rainer and Schindl [120] extended the definition of ultradifferentiable classes of
functions using weight matrices. Similar results of genericity are studied in this context.

The main objective of Part [[Tis to study the pointwise regularity of functions using
their multifractal spectrum. Although the multifractal spectrum of many mathematical
functions can be directly determined from its definition, for real-life signals, it is clearly
impossible to estimate this spectrum numerically since it involves the successive deter-
mination of several intricate limits. Therefore one tries instead to estimate this spectrum
from quantities which are numerically computable. Mathematically, these quantities are
interpreted as indicating that the signal belongs to a certain family of function spaces.
Such a method is called a multifractal formalism. It never holds in complete general-
ity, but a first step in the justification of its use consists in showing that this method
yields an upper bound for the multifractal spectrum of the functions in the underlying
function space. This is the best that can be expected: usually, there are no non-trivial
minorations for the multifractal spectrum of all functions in the space. Nevertheless,
one can hope that for most of the functions in the space, that is to say for a generic
subset of the space, the inequality becomes an equality.

Several multifractal formalisms based on the wavelet coeflicients of a function have
been proposed to estimate its multifractal spectrum [3] 86 [88, [91]. The starting point
of all these methods is a wavelet characterization of the Holder exponent [91]. They
share the advantage of being easy to compute and relatively stable from a numerical
point of view. The Frisch-Parisi conjecture, classically used, gives such an estimation
based on the characterization of Besov spaces in terms of wavelet coefficients [88)], [117].
Nevertheless, it appeared that this use of Besov spaces is not sufficient to handle all
the information concerning the pointwise regularity contained in the distribution of the
wavelet coefficients [90]. In particular, it can only lead to recover the increasing and
concave hull of spectra.

In order to get a suitable context to obtain multifractal results in the non-concave
case, spaces based on large deviation estimates of the repartition of wavelet coefficients,
called 8" spaces, have then been introduced by Jaffard [90]. Although the formalism
based on these spaces allows to effectively recover non-concave spectra, the problem
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met with the Frish-Parisi approach reappears: one cannot access the decreasing part of
spectra through the S” spaces.

Concerning the estimation of the decreasing part of spectra, it appeared that more
accurate information can be obtained when relying on wavelet leaders, which are lo-
cal suprema of wavelet coefficients [94]. In this context, Oscillation spaces have been
introduced as generalization of Besov spaces using wavelet leaders [92]. They lead to
the so-called wauvelet leaders method. In particular, this method allows to recover the
increasing and decreasing parts of spectra. Nevertheless, it is still limited to concave
spectra. So, a natural idea is to combine both approaches in order to derive a multifractal
formalism which allows to recover the decreasing and non-concave parts of spectra.

In Chapter [ we recall the definitions of pointwise regularity and of Hausdorff di-
mension. We also present the notion of wavelets and the characterization of the Holder
exponents in terms of decay rates of wavelet coefficients. The formalisms based on the
Frisch-Parisi conjecture and on S&” spaces are recalled. Finally, we define the wavelet
leaders of a function and we present the associated wavelet leaders method.

Chapter [5] consists in the presentation of a new multifractal formalism, the lead-
ers profile method, based on the distribution of the wavelet leaders of the function.
We show that this method yields an upper bound for the spectrum. Since it is de-
fined through wavelet coefficients of the function, the independence from the sufficiently
smooth wavelet basis which is chosen is a natural requirement. We prove that it is
indeed the case for the leaders profile method. We illustrate then this formalism on
classical models and in particular, for thresholded wavelet cascades whose spectra have
a non-concave decreasing part. We end this chapter with a theoretical comparison of the
leaders profile method with both the wavelet leaders method and the method based on
S” spaces. In particular, we prove that this new method gives a sharper upper bound
than the previous approaches.

In Chapter [6] we present the function spaces, denoted £, which underlie the leaders
profile method. These new spaces encapsulate the information supplied by the distribu-
tion of the wavelet leaders. We endow these spaces with a topology and obtain generic
results about the form of the wavelet leaders profile of the functions in £”: we show
that the subset of functions in £” whose wavelet leaders profile is equal to v is large
in £¥. While comparing with S” spaces, the main difference is that now the profile
includes an increasing and a decreasing part, and is therefore much more realistic for
most multifractal models, but it implies that the £” spaces are not vector spaces.

Finally, in Chapter [7] we construct functions with prescribed multifractal spectra
which satisfy the leaders profile method. This construction is the first step toward the
proof of the generic validity of this new method.
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Chapter 1

Notions of genericity

Contents
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1.2 Prevalencel. . . . . . . v i i i i e e e e e e e e e e e e e e e e 8
[1.3  Algebraic genericity| . . . . . . . ..o 000 oo 10

1.1 Introduction

Historically, mathematicians have been confronted to objects which have properties that
contradict their intuition. When such an object is found, a natural question is to ask
whether many more similar ones may exist, i.e. whether the set of objects enjoying
such a property is “large” in the considered space. In general, we will say that such a
set is generic. Coming up with a concrete example of a special object can be difficult.
Therefore, it may seem that there cannot be many functions of that kind. Actually,
this statement is in general not true and a classical technique to prove that many such
objects exist is to use the Baire category theorem. This gives a definition of genericity
from a topological point of view.

Definition 1.1.1. If X is a Baire space, a subset A C X is of first category (or meager)
if it is included in a countable union of closed sets of X with empty interior. The
complement of a set of first category is called residual (or comeager) . Therefore, a set
is residual if it contains a countable intersection of dense open sets of X.

The notion of sets of first category satisfies natural properties that one could expect
for “small sets”, as presented in the following proposition.

Proposition 1.1.2.
o If A is a set of first category and if B C A, then B is of first category.
o Any countable union of sets of first category is of first category.
o If A is a set of first category, then A has empty interior.

In R"™, the notion of sets with Lebesgue measure zero is a natural way to obtain
“small sets”. However, the notion of sets of first category is purely topological and

7
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in particular, it does not give any information about the measure of such a set. For
example, the set of Liouville numbers is residual but has Lebesgue measure zero. In
contrast, the set of Diophantine numbers is of the first category but has full Lebesgue
measure in every interval [82].

In order to get a generalization of the notion of sets with Lebesgue measure zero,
Christensen [53] introduced in 1972 the notion of prevalence, rediscovered in 1992 by
Hunt et al. [82]. It is presented in the Section

Finally, given an object which satisfies a special or unexpected property, one could
also wonder if large algebraic structures of such objects can be constructed. This ques-
tion is formalized in Section where the notions of lineability and algebrability are
presented.

1.2 Prevalence

In R™ we say that a property holds almost everywhere if the set of points where it does
not hold is included in a set with Lebesgue measure zero. The Lebesgue measure plays
a particular role, due to the fact that this is the only o-finite measure which is invariant
by translation. However, in infinite dimensional spaces, such a measure does not exist
as illustrated in the following proposition.

Proposition 1.2.1. [I36] In an infinite dimensional locally convex vector space E,
there does not exist any non-zero o-finite measure i defined on the Borel sets which is
quasi-invariant, i.e. such that for every Borel subset A,

wA)=0=pu(A+z)=0 VxekFE.

Since it is not possible to find an analogous to the Lebesgue measure in infinite
dimensional spaces, one has to find another characterization of the Borel sets having a
Lebesgue measure zero.

Proposition 1.2.2. Let A be a Borel subset of R™. Then A has Lebesque measure zero
if and only if there exists a Borel probability measure u on R™ with compact support such
that p(A + ) =0 for every x € R™.

The proof of this result is straightforward. One can take p equal to the Lebesgue
measure on the unit cube. The converse implication is an application of Fubini’s theorem.

This last characterization does not refer explicitly to the Lebesgue measure and can
therefore easily be transposed in infinite dimensional spaces. This is the idea of the
definition of prevalence.

Definition 1.2.3. [53,[82] A Borel subset A in a complete metrizable topological vector
space E is shy (or Haar-nul) if there exists a Borel probability measure p on F with
compact support such that pu(A 4+ ) = 0 for every € E. Such a measure p is called
transverse to A. A subset of E is shy if it is included in a shy Borel subset. The
complement of a shy subset is called prevalent.

Remark 1.2.4. If the space FE is a Polish space, it is known that the condition on the
compact support is automatically satisfied (see [82] for example).

The following proposition gives basic properties of prevalence. It shows in particular
that the notion of shyness satisfies properties that one could expect for “small sets”.
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Proposition 1.2.5. [82] Let E be a complete metrizable topological vector space.
o I[fACFE is shy and if B C A, then B is shy.
e Any countable union of shy sets of E is shy.
o I[f AC FE is shy, then A has empty interior.
o [f AC FE is shy, then x + A is shy for every x € E.

There are two important techniques to prove that a set is prevalent. The first one is
based on the construction of a probe. In R™, the Lebesgue measure is the best possible
candidate to be transverse to a given Borel set. Therefore, when looking for a transverse
measure in an infinite-dimensional space, a natural type of measure to try is the Lebesgue
measure supported by some finite-dimensional subspace. This idea leads to the following
definition.

Definition 1.2.6. Let P be a finite-dimensional subspace of a complete metrizable
topological vector space F and let us denote by Lp the Lebesgue measure supported
by P. Then P is called a probe for a Borel subset B of E if Lp(x + B¢) = 0 for every
re L.

Therefore, a sufficient condition for a Borel subset to be prevalent is to have a probe
(it suffices to consider the Lebesgue measure on the unit ball supported by P). As a
particular case, we get the following useful result. It simply means that a proper vector
subspace which is a Borel set is always shy.

Lemma 1.2.7. If A is a non-empty Borel subset of E such that the complement of A
is a vector subspace of E, then A is prevalent.

Proof. A probe is given by the linear span of any element a of A. Indeed, since B = E\ A
is a vector subspace, for every e € E, the set

{a €R : aa+e € B}
contains only one element, so has Lebesgue measure zero. O

The second classical technique to prove that a set is prevalent is to use a stochastic
process. We assume that F is a Polish space of complex-valued functions defined on
R™. Let P be a property satisfied by some elements of E and let A denote the set of
those elements. Assume that there exists a stochastic process X defined on a probability
space (€, F,P) and with values in E such that for every f € F, f + X has almost surely
property P. Then, if A is a Borel subset of E, we get that A is prevalent. Indeed, the
measure law of the process is transverse to the complement of A.

Remark 1.2.8. In general, this technique is used in Polish spaces of functions. Indeed,
the measure law of the stochastic process is not necessarily compactly supported.

Let us end this section by mentioning that in general, there are no correspondances
between the notions of residuality and of prevalence.

Proposition 1.2.9. [I18] Every separable Banach space X can be decomposed into two
sets U and V' such that U is shy in X and V is of first category in X. In particular, U
s shy and residual in X and V is of first category and prevalent in X.
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1.3 Algebraic genericity

For the last decade there has been an increasing interest toward the search for large
algebraic structures of special objects. Given a property, we say that the subset M of
functions which satisfy it is lineable if M U {0} contains an infinite dimensional vector
space (not necessarily closed). The concept of lineability was coined by V. I. Gurariy
and it first appeared in [6]. In a more general framework we have the following.

Definition 1.3.1. [6] Let X be a vector space, M a subset of X, and s a cardinal
number.

(1) The subset M is said to be x-lineable if MU{0} contains a vector space of dimension
k. At times, we shall be referring to the set M as simply lineable if the existing
subspace is infinite dimensional.

(2) We also let A(M) be the maximum cardinality (if it exists) of such a vector space.

(3) When X is a topological vector space and when the above vector space can be
chosen to be dense in X, we shall say that M is k-dense-lineable (or, simply,
dense-lineable if « is infinite).

Remark 1.3.2.

e Let us recall that the A\(M) from Deﬁnitionmight actually not exist. It is not
difficult to provide natural examples of sets which are n-lineable for every n € N but
which are not lineable. For instance [27], let j1 < k1 < jo < -+ < kpy < g1 < -
be positive integers and let M = Um{Zijm a;x* : a; € R}. Since the sets
{Zf:jm a;x' : a; € R} (m € N) are pairwise disjoint, M is finitely (but not
infinitely) lineable in C([0, 1]), the set of continuous functions in [0, 1].

e Let us mention that, in [22], the authors introduced the lineability number of a
set M as follows

L(M) = min{x : M is not x — lineable}.

This number always exists and, whenever A(M) exists, one has L(M) = A(M)*
(the successor cardinal of A\(M)).

Since this concept appeared, it has attracted the attention of many authors who
became interested in the study of subsets of functions enjoying certain special or, as they
sometimes are called, “pathological” properties. For more details and several examples,
we refer the reader to the nice review of Bernal-Gonzalez et al. [35].

Let us also recall that, recently, Bernal-Gonzalez [34] introduced the notion of mawi-
mal lineable (and that of mazimal dense-lineable) meaning that, when keeping the above
notation, the dimension of the existing vector space is equal to dim(X).

Let us now state a necessary condition on a lineable set to be dense-lineable. We
will also present the proof of this result in order to show that it can be easily slightly
generalized. Following Aron et al. [§], we introduce the notion of strong set.

Definition 1.3.3. Let A and B be subsets of a vector space X. We say that A is
stronger than B if A+ B C A.

Proposition 1.3.4. [8] Let E be a separable metrizable topological vector space and
consider two subsets A and B of E such that A is lineable and B is dense-lineable in E.
If A is stronger than B, then A is dense-lineable.

10
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Proof. If 0 € A, then B C A and the result is direct. So we can assume that 0 ¢ A. Let
(Un)nen be a countable basis of convex balanced absorbing 0-neighborhoods in E. We
may assume that U, 41 + U1 C U, for every n € N. We know that there exist infinite
dimensional subspaces Y and Z of E satisfying Y C AU{0}, Z C BU{0} and such that
Z is dense in E. Since E is separable, we can find a countable subset {z, : n € N} of Z
dense in E. Let also {y, : n € N} be a countable linearly independent family of Y. For
every n € N, there is \,, > 0 such that \,y, € U,. We consider

W = span{\,yn + 2, : n € N}
From the construction, the set {\,yn + 2z, : n € N} is dense in F, and therefore the

same holds for W. Moreover, let w € W \ {0}. Then, there are ¢y, -+, cy not all equal
to 0 such that

N N N
W= "CaAntn+21) = D adntn + D oz € (Y \{0}) + Z.
n=1 n=1 n=1

It follows that w € (Y \{0}) +Z C A+ BU{0} C Aand W C AU {0}. Finally, W

is infinite dimensional. Indeed, assume that there are cy,--- , ¢y not all equal to 0 such
that
N
Z Cn()‘nyn + Zn) = 0.
n=1
As done before, we get that 0 € A hence a contradiction. O

Remark 1.3.5. If A is s-lineable with x > dim(N), the dense subspace can also be
chosen with dimension k. Indeed, keeping the notation of the previous proof, it suffices
to consider

W = span{\(y)y + z(y) : y € Y},

where A(y) = A\, and 2(y) = 2z, if y = yn, and A(y) = 1 and 2(y) = 0if y ¢ {y, : n € N}.
As previously, W is dense in E and W C A U {0}. Moreover, dimW = k since W
contains Y\ {y, : n € N}.

Besides asking for vector subspaces one could also study other structures, such as
algebras, which motivated the following concept.

Definition 1.3.6. [ [7] Let A be an algebra and B be a subset of A.

(1) We say that B is algebrable if there is a subalgebra C of A such that C C B U {0}
and the cardinality of any system of generators of C is infinite.

(2) When having A endowed with a topology, we would say that B is dense-algebrable
if in addition C can be taken dense in A.

(3) At times we shall say that B is x (dense)-algebrable if there exists a x-generated
(dense) subalgebra C of A with C C BU {0} (where & is some cardinal number).

Remark 1.3.7. We say that X = {z, : a € I'} is a minimal system of generators of C
if C is the algebra generated by X and if for every ag € I', z,, does not belong to the
algebra generated by X \ {zq,}.

11
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Some of the first examples of algebrable sets appeared in [5], 28]. Of course, any
algebrable set is, automatically, lineable as well. In general, the converse is false. An
example of this [27] can be the set of improper Riemann integrable functions on R (see
for example [141]) that are not Lebesgue integrable, denoted R(R) \ L£L(R). This set is
lineable (see [71]) but it is also clearly not algebrable. Indeed, for every f € R(R), either
f?2 ¢ R(R) or f2 =|f? € R(R) and, therefore, 2 € L(R).

Remark 1.3.8. As we did in Remark [I.3:2] one could also define the algebrability
number by
min{x : M is not x — algebrable}.

A strengthened notion of algebrability was introduced by Bartoszewicz and Glab
[21]. Let us recall that a subset X of a commutative algebra generates a free subalgebra
if for each polynomial P without a constant term and any zi,...,z, € X, we have
P(x1,...,2,) = 0 if and only if P = 0 (that is, the set of all elements of the form
x’fl ...xk where x1,...,2, € X and where ky,...,k, € Ny are not all equal to 0, is
linearly independent).

Remark 1.3.9. If Z = {z, : @ € I'} is a minimal system of generators of C, the set of
generators does not necessary generate a free algebra. For example, let us consider the
functions f(z) = 2% and g(x) = 23. They constitute a minimal system of generators
for the algebra formed by the polynomials of degree greater than 2, but the non-zero

polynomial P(s,t) = s3 — t? is such that P(f(z),g(z)) = 0 for every x.

Definition 1.3.10. [2I] Given a commutative algebra A and a cardinal number &, a
subset B C A is strongly k-algebrable if there exists a k-generated free algebra C contained
in BU{0}. A subset B C A is strongly algebrable if it is strongly x-algebrable for an
infinite x and it is densely strongly k-algebrable if it is strongly k-algebrable and the
respective free subalgebra is dense in A, provided that A is endowed with a topology.

Remark that there are subsets of algebra which are algebrable but not strongly
algebrable. An example is given by the subset coo of ¢o consisting of all sequences with
real terms equal to 0 from some index. This set is algebrable in ¢y but not strongly
1-algebrable [21].

Let us present now a technique, the so-called exponential-like function method, which
allows to get strong algebrability of some sets of functions defined on [0, 1]. This method
was used in [70], rediscovered in [I7] and very recently, studied in depth in [23].

Definition 1.3.11. We say that a function f : R — R is exponential-like (of range m)
whenever f is given by

m
fz)= Zaieﬁix, x € [0,1]
i=1
for some distinct non-zero real numbers fi,...,,, and some non-zero real numbers
A1y oy Q-

In [I7], the authors proved a very useful property of exponential-like functions. Let
us recall it here.

Lemma 1.3.12. [I7] For every m € N, every exponential-like function f of range m
and every ¢ € R, the preimage f~*({c}) has at most m elements. Consequently, f is
not constant in every subinterval of R. In particular, there exists a finite decomposition
of R into intervals such that f is strictly monotone in each of them.

12



1.3. ALGEBRAIC GENERICITY

Proof. We proceed by induction. If m = 1, then there are a # 0 and 8 # 0 such that
the function f is of the form f(z) = ae’®, x € [0,1]. So f is strictly monotone and the
property is obvious. Let us now assume that the property holds for all exponential-like

. 1 . o
functions of range m. Let f(z) = Z?:{ a;e’® x € [0,1], for some distinct non-zero
real numbers f1, ..., Bmt1 and some non-zero real numbers ay, ..., a,+1. Remark that

the derivative of f can be written as
() = M (Bras + g(x))

where g(z) = 2?32-1 a;ePi=P0T 4 € [0,1]. Note that g is an exponential-like function
of range m since B — B1,..., Bm+1 — B1 are distinct non-zero numbers. The induction
hypothesis gives that g~ *({—B1a1}) = (f/)~1({0}) has at most m elements and hence
f has at most m local extrema on R. This implies that for every ¢ € R, the preimage
f~1({c}) has at most m + 1 elements. O

The technique recently developed in [I7] is presented in the following proposition.
Let us recall that a Hamel basis of R is a basis of R while considered as a QQ-vector space.

Proposition 1.3.13. [17] Let F C R%Y and assume that there exists F € F such that
foF € F\ {0} for every exponential-like function f. Then F is strongly c-algebrable.
More precisely, if H is a Hamel basis of R, then the functions expo(rF), r € H, are free
generators of an algebra contained in F U {0}.

Proof. By assumption, we have that
{expo(rF):re H} C F.

Let us show first that the subalgebra generated by this set is contained in F. Consider
n € N and a polynomial P of n variables without any constant term. The function g
given by

g(x) = P(entf'@ er2F@)  eraF@)) 0 e 0, 1],

is of the form

m

m n
Yo ai(en @)k (e F@hyhie (e F@ ko =Y Tagexp | F(a) ki |
j=1

i=1 i=1

where we can assume that rq,...,r,, € H are distinct, aq,...,a,, are non-zero real
numbers and the matrix (k; j)1<i<m,1<j<n has distinct non-zero rows with k;, € No.
Since H is a Hamel basis, the non-zero real numbers Z?:1 rikij, i € {1,...,m}, are
distinct. Then, the function

m n
x €10,1) |—>Zaiexp chrjki,j
i=1 j=1

is exponential-like and the assumption gives that the function g belongs to F \ {0}.
Finally, the generated subalgebra is free since g # 0 if a4, ..., a,, are real numbers not
all equal to 0. O

Of course, the result is still valid if we consider a subset of R¥.

A set that is not lineable or algebrable can be viewed as “small” since it does not
contain a large algebraic structure. It means that being non-lineable or non-algebrable
is an algebraic notion of smallness. Those notions of smallness are different from the
topological and probabilistic ones, as illustrated in the two following examples.

13
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Example 1.3.14. Let us consider the subset A of L([0,1]) composed of functions f
such that fol f(x)dx # 0. A probe for A is given by the one-dimensional space of all
constant functions and therefore, A is prevalent in L'(]0,1]) [82]. Moreover, from its
definition, it is an open dense subset of L!([0,1]) and is therefore residual in this space.
Nevertheless, A is not lineable. Indeed, assume that there exist f, g € L'(]0,1]) linearly
independent such that span{f,g} C AU{0}. If we set

_ _fol f(z)dz
Jy 9(@)dz’

then f 4 ag is not identically 0 and does not belong to A, which is a contradiction.

Example 1.3.15. Let us consider a Hamel basis H and a sequence (&, )men of different
elements of H. We define the functions e, o € H, by setting e, (z) := exp(azx) for every
r € R, and the function f by f(x) = exp(z?) for every x € R. For every m € N,
we take kn, > 0 such that sup,cp 1) [kmea,, () f(2)] < L Let also (Pp)men be a
sequence of polynomials whose elements form a dense subset of C([0,1]). Finally, we
define k, = 1 and P, = 0 for @« € H \ {a,n : m € N}. We consider the algebra
A generated by the set {P, + kqenf : @ € H}. Then, A is a c-generated free algebra
which is dense in C([0,1]). To prove this, it suffices to use similar arguments that those
which will be developed in Lemma and Proposition as well as the linear
independence of the functions e,, see Lemma Therefore, A is densely strongly
c-algebrable. On the other hand, the set A is included in the set of functions of C(]0, 1])
which are differentiable at some points of [0, 1]. It has long been known that the set of
nowhere differentiable functions is residual in C([0, 1]). This result was proved originally
by Banach [I8] and Mazurkiewicz [I10]. Moreover, Hunt [81] proved that this set is also
prevalent in C([0,1]). Consequently, A is also shy and of first category.

14



Chapter 2

Genericity and Gevrey classes
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2.1 Introduction

In this chapter, we are interested in the class of functions which are infinitely continu-
ously differentiable on an interval of the real line but which are nowhere analytic on this
interval. Let us first recall that if f is a C* function on an open interval containing xg,
its Taylor series at x¢ is denoted by

+0 n o
7(f,a)@) = Yo L) (o,
n=0 :

We say that f is analytic at xq if T(f,x0) converges to f on an open neighborhood of
xo; if this is not the case, we say that f has a singularity at xzo. It is well known that the
set of singularities of a function is closed, since a function which is analytic at a point
is analytic in a neighborhood of this point (see [I124] for example). A standard example
of a C*° function which has a singularity at a point is given by the function defined on
R by

flz) = exp <x2) if x #0,
0 if x =0.

This function is infinitely continuously differentiable on R and its derivative of any order
at 0 is 0. Therefore, the Taylor series of this function at 0 converges at every point z,
but not to f(z) except for z = 0. Another example was given by du Bois Reymond [62]
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in 1876 with the function

+oo 2n
f(z) = ;(—1)n+1m,

where (an)nen is any sequence that converges to 0. It is the first construction of a
function whose Taylor series at 0 does not converge for any = # 0. The proof given by
du Bois Reymond was not correct but the result has been shown to be right [37].

Those two functions illustrate the two only ways a function can fail to be analytic
at a point: if f has a singularity at x(, either the radius of convergence of the series is
0 (i.e. the series only converges at xg), or the series converges in some neighborhood
of x¢ but the limit does not represent f, as small as you take the neighborhood of xg.
Following Boas [40] and Ramsamujh [I12I], we say that z( is a Pringsheim singularity
if the radius of convergence at xg is 0 and a Cauchy singularity in the other case. Let
PS(f) denote the set of Pringsheim singularities of f and CS(f) denote the set of its
Cauchy singularities. In 1893, Pringsheim [I19] proved that C'S(f) is never very large;
specifically, it cannot contain an interval. The exact structure of C'S(f) and PS(f) was
given by Zahorski [I43] in 1947.

Proposition 2.1.1. [1/53] Let A and B be two subsets of an interval (open or closed) I
of R. There exists f € C*(I) with PS(f) = A and CS(f) = B if and only if

e A is a Gs subset;
e B is a F, subset of first category;
e AUB is closed and AN B = (.

As a consequence, there exist no functions with a Cauchy singularity at each point of a
given interval. This result had already been obtained by Boas [39] in 1935. Nevertheless,
functions with a Pringsheim singularity at each point exist and in particular, functions
with a singularity at each point of an interval exist. Such a function is called nowhere
analytic on the interval. Note that in case of a closed interval [a,b], the convergence
of the Taylor series T'(f,a) and T'(f,b) is only considered on the restriction to [a,b].
The existence of nowhere analytic functions can be surprising but is known since the
construction of du Bois Reymond [62]. Many other examples can be found in [125]. A
very nice example was given by Cellérier [5I] in 1890 with the function defined for all
z € R by

= sin(a™x
flay =Y )

where a is a positive integer larger than 1. This function has Pringsheim singularities
at points of the form 2 = (27rm)/a* where m is an integer and k € N. These points are
dense in R and since the set of singularities of a function is a closed set, we get that f is
nowhere analytic on R. A similar example was given by Lerch [I03]. Let us present in
more details a last example, given by Kim and Kwon [98], which will be a nice source
of inspiration in Section [2.3] see Proposition [2.3.18|

Proposition 2.1.2. [80, [98] Consider the function ® defined on R by

e (e en (-7 fo<z<l,
() = { 0 otherwise.

16



2.1. INTRODUCTION

Then, the function ¥ defined on R by

= . ,
U(z) = ﬁq)(QJx —[27z])

j=1
is in C°(R) but is nowhere analytic.

Proof. The function ® is in C*°(R) and analytic at all points except 0 and 1. Moreover,
it is flat at those two points, that is D¥®(0) = D¥®(1) = 0 for every k € Ny. Let us set
Q;(x) := ®(2/x — [27z]) for every x € R, j € N. The behaviour of ® over the interval
[0, 1] is replicated by ®; on any interval of the form [2%, L] for all m € Z. Because of
the flatness of ® at 0 and 1, we get that ®; is in C°°(R). Moreover, Z+°° jl D*®;(z) is
uniformly convergent on R for all ke N and by Weierstrafl theorem, 1t follows that the
function ¥ belongs to C*°(R).

Let us now prove that ¥ is nowhere analytic. Assume that ¥ is analytic at a point.
Then it is analytic in a neighborhood of this point. Since the dyadic numbers form a
dense subset in R, ¥ is analytic at some zg = 37, with m an odd integer and n € N.
Since ®; is analytic at zo for j € {1,...,n — 1}, we get that the function

+
3
| —

V= '(I)j

.

n

<.
I

is also analytic at xy. However, Dk‘ff(xo) = 0 for all k¥ € Ny, which is a contradiction
with the fact that ¥ is positive in some punctered neighborhood of x. O

With those multiple examples in hands, a natural question is to ask whether the set
of nowhere analytic functions is not only a non-empty family but even generic (using
different notions). We will work in the classical context of functions defined on the
interval [0,1]. Nevertheless, the results can easily be adapted to the case of the real
line R.

In what follows, C*°([0, 1]) denotes the vector space of all complex—valuedﬂ functions
which are infinitely continuously differentiable on (0, 1) such that the derivative of any
order can be continuously extended to [0,1]. We endow the space C*([0,1]) with the
sequence (pi)ken, of semi-norms defined by

pi(f) :=sup sup |D7f(z)|
i<k z€[0,1]

or equivalently with the distance d defined by

d(f g) ,:+§2—k pk(f_g)
T2 T (-

This space is a Fréchet space.

In Section we present a brief history of the results of genericity obtained in the
context of nowhere analytic functions. Then, we show that the set of nowhere analytic
functions is prevalent. This result is already mentioned in [I34] but one of the arguments
was the fact that

A(I,z;) ={f €C>=([0,1]) : T(f,zs) converges to f on I}

1Certain results only work in the real context. This will be clearly explicited.
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(where I is a closed interval of [0,1] with x; as center point) is closed in C*([0,1]).
However, this is not possible since the set of polynomials is included in A(Z, ;) and also
dense in C*=([0, 1]).

In the Section[2.3] we define the notion of nowhere Geuvrey differentiability and we ex-
amine the set of functions which are nowhere Gevrey differentiable. In this case, we also
obtain generic results, from the three different points of view. Since analytic functions
are a particular class of Gevrey type functions, these results generalize those obtained
in the analytic case. However, we kept separated sections since analytic functions are
somehow more classical than Gevrey-type ones and since the result about nowhere ana-
lytic functions directly brings a complement to an already mentioned one in literature.
The results presented in this chapter are mainly from the articles [26] and [27].

2.2 Genericity of nowhere analytic functions

In this section, we present different results concerning the genericity of the set of nowhere
analytic functions (or even about the set of functions with a Pringsheim singularity at
each point) in C*°([0, 1]). The first result is due to Morgenstern [I15], in 1954. Several
authors gave other proofs of this result, namely Darst [59] and Cater [49].

Proposition 2.2.1. [T15] The set of nowhere analytic functions is residual in C*° ([0, 1]).

This implies in particular that this set is dense in C*°([0, 1]). A deeper result con-
cerning the set of functions with a Pringsheim singularity at each point was given by
Salzmann and Zeller [125] in 1955. Another proof of this result was given by Bernal-
Gonzélez [32] (this result was also proved by Ramsamujh [I21], but there is a gap in the
proof, as mentionned in [33]).

Proposition 2.2.2. [125] The set of functions with a Pringsheim singularity at each
point is residual in C*°([0,1]).

More recent results using the notion of genericity from the algebraic point of view
have been proved. Those results can differ depending on whether the space C* ([0, 1])
is the space of C* real-valued functions or complex-valued functions on [0, 1]. The first
result is due to Bernal-Gonzélez [33] in 2008.

Proposition 2.2.3. [33] The set of functions with a Pringsheim singularity at each point
is dense-lineable in C*°([0,1]). In the complex case, the dense-lineability is mazimal. In
the real case, the set of nowhere analytic functions is maximal dense-lineable.

In 2012, Conejero et al. [57] constructed an algebra A of real-valued functions enjoy-
ing simultaneously each of the following properties:

e A is infinitely generated,
e every non-zero element of A is nowhere analytic,
o ACC™(R),

e every non-zero element of A has infinitely many zeros in R,

for every f € Aand n € N, D™ f is also in C*°(R), nowhere analytic and possesses
infinitely many zeros in R.

18



2.2. GENERICITY OF NOWHERE ANALYTIC FUNCTIONS

Let us mention here the construction of such an algebra. It follows the construction
of Kim and Kwon [98] presented in Proposition Let H denote a Hamel basis of
R. We can assume that all the elements of H are positive. As in Proposition the
function @ is defined by

[ exp(—a ) exp(—(z-1)7%) if0<z<]l,
(@) = { 0 otherwise.

For every a € H, consider the function p, defined on R by

+o00 (o ) ) _
palx) = Z )\iu(j )<I>(2]z - [2z]).

Here, A; is defined for every j € N by

1 if |z =27,
Aj() = { 0 otherwise,

and p; = (sp)! if sx—1 < j < sg, where si is the sum of the first k positive integers.
The minimum algebra that contains the family of functions p,, o € ‘H has the desired
properties.

In particular, the following result was obtained.

Proposition 2.2.4. [57] The set of nowhere analytic functions is algebrable.

Let us finish by mentioning this last very recent result of Bartoszewicz et al. [23]
which use the exponential-like function method presented in Chapter Let us recall
first that if a function f is analytic and invertible, then its inverse is also analytic.

Proposition 2.2.5. [25] The set of nowhere analytic functions is strongly-c-algebrable
in C>=([0,1]).

Proof. Let F be a nowhere analytic function and let f be an exponential-like function.
Assume that g = f o F' is analytic at zy € [0, 1]. Then, there is a neighborhood V of
such that g is analytic in V. By Lemma there is an open subset V' C F(V) on
which f is invertible. Hence, F' = f~1 o g is analytic on F~1(U) NV as composition of
analytic functions. This is a contradiction. O

As announced, let us now prove the result concerning the prevalence of the set of
nowhere analytic functions in C*°([0, 1]).

Proposition 2.2.6. [26] The set of nowhere analytic functions on [0,1] is a prevalent
subset of C>([0,1]).

Proof. For any closed subinterval I of [0,1] and z; the center point of I, let
A(l,xr) ={f € C>=([0,1]) : T(f,xr) converges to f on I}.

Since a function which is analytic at a point is analytic in a neighborhood of this point,
the set of nowhere analytic functions is the complement of the union of all A(I,xz;) over
rational subintervals I C [0,1]. From Proposition we know that any countable
union of shy sets is shy and therefore, it is enough to prove that every A(I,x;) is shy.
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CHAPTER 2. GENERICITY AND GEVREY CLASSES

Since A(I,zr) is a proper vector subspace of C*°([0, 1]), using Lemma this will be
done if we show that it is a Borel set.
For any j,n € N, let

Fog = {7 e e=@.1): T(fan@ - sl < 1},

xzel

where

: f
T;(f,xr) Z (r—=x I)k.
=0
The definition of the topology of C"C([O7 1]) and the fact that only a finite number of
derivatives are involved directly imply that F, ; is closed in C*°({0, 1]).
Using typical properties of power series, the convergence of T'(f, ) on I is equivalent
to uniform convergence on /. Hence

ALz = () U () P

neENEkeEN j >k

and we conclude. O

To conclude this section, let us emphasise that, as far as we know, the problem
concerning the prevalence or the (dense-)algebrability of the set of functions with a
Pringsheim singularity at each point is still open.

2.3 Nowhere Gevrey differentiable functions

The Gevrey classes play an important role in the theory of the linear partial differential
equations. They were introduced in order to classify the smoothness of C* functions
according to how close they are to analytic functions. Gevrey classes are widely used
as intermediates between the space of analytic functions and the space of infinitely
differentiable functions. We refer to Rodino [I22] for an introduction to this topic. Let
us just mention the basic example which was the source of investigation of Gevrey [73],
in 1918. It is given by the heat operator in R"™, n > 2, defined by

o n—1 62

L=— -3 .
2
oz, = Gacj

A fundamental solution of this operator is given by a function E which belongs to
C>*(R™\{0}), but which is not analytic on {z € R"™ : z,, = 0}. In order to characterize
the regularity of this C* but not analytic function, he observed that for every compact
subset K of R”, there exist two constants C,h > 0 such that

sup [DYE(z)| < Ch1*l(a!)?, Va e NJ.
zeK
A generalization of this observation leads to the following definition (see for example
54, 122)).

Definition 2.3.1. For a real number s > 1 and an open subset {2 of R™, an infinitely
differentiable function f in ) is said to be Geuvrey differentiable of order s at xy € § if
there exist a compact neighborhood K of xy and two constants C, h > 0 such that

sup |[Df(z)| < Chl*l(a!)*, Va e Np.
zeK
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2.3. NOWHERE GEVREY DIFFERENTIABLE FUNCTIONS

Remark 2.3.2. Let us mention that this definition extends naturally to the case s < 1.
Nevertheless, in this case, the properties of quasianalyticity differ, see Chapter 3.1

Remark B.2.11]

Clearly, if a function is Gevrey differentiable of order s at zg, it is also Gevrey
differentiable of any order s’ > s at z9. Remark also that the case s = 1 corresponds to
analyticity (by the Cauchy’s estimate). We denote by G*() the set of functions which
are Gevrey differentiable of order s at every point of Q. Let us mention some direct
properties of this space.

Proposition 2.3.3. [122] For every s > 1 and every open subset Q of R, G*(Q) is
an algebra for the pointwise multiplication of functions. Moreover, it is closed under
differentiation.

In order to generalize the results about nowhere analyticity of the previous section,
we introduce the following notion.

Definition 2.3.4. Given an interval I of R, a function f € C*°(I) is nowhere Gevrey
differentiable on I if f is not Gevrey differentiable of order s at xg, for any x¢ € I and
s > 1, where the compact neighborhoods K are considered in 1.

The existence of a nowhere Gevrey differentiable function is provided by the following
lemma, where an explicit construction of such a function is proposed. Let us mention
that a similar approach has been proposed by Bernal-Gonzalez [32].

Lemma 2.3.5. [20] Let (\i)ken be a sequence of strictly positive numbers such that

k
Ae > (B+ D)FDT and Ay 223 NP ke N

Jj=1

and let f be the function defined on R by

+oo
flz) = che”‘km with ¢, = A\, ", ke N.
k=1

This function belongs to the class C*(R) and is nowhere Gevrey differentiable on R.

Proof. For every n,k € N, we have c; A} = )\,lc+"_k. Hence the series

—+o0
E ck)\Ze”"“z
k=1

is uniformly convergent on R. Using the Weierstrafl theorem, f belongs to C*(R).
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CHAPTER 2. GENERICITY AND GEVREY CLASSES

Moreover, for every n € N, n > 2 and « € R, we have

n—1

‘an(l‘” — Z )\;cH-l—kei)\km + )\nei)\nm + Z )\Z+1_k€i)\kz
k=1 k>n
n—1
n+l—k n+1l—k
D DL D PPV
k=1 k>n
n—1
n+l—k n+l—k
> Y NN
k=1 k>n
400
1
> M=)
7=0 )\j
2n? 1 2n?
> n —e> §n

n2" =p" ()" > Ch™(n™)* > Ch™(n)*
for n large enough. This proves that f is nowhere Gevrey differentiable on R. O

In this section, we will denote by NG the set of nowhere Gevrey differentiable func-
tions on [0,1]. We shall settle the question of how large the set NG is. First of all,
we give a direct proof of the prevalence and of the maximal dense-lineability of NG in
C>(]0,1]). To achieve this result we use any nowhere Gevrey differentiable function.
However, to tackle the problem of algebrability, a more precise knowledge of a very par-
ticular “key” function in NG is needed. Following some ideas from Chung and Chung
[54], Kim and Kwon [98], Conejero et al. [57] (see Lemma [2.3.17 and Propositions [2.1.2]
and , we construct a real-valued infinitely differentiable nowhere Gevrey differen-
tiable function. This construction allows us to prove the maximal dense-algebrability of
the set of nowhere Gevrey differentiable functions in C*°([0, 1]) (even in the real setting).

2.3.1 Prevalence and residuality of NG
Let us start by giving a characterization of NG that follows directly from its definition.

Lemma 2.3.6. [20] The set NG is the complement of

U U B

seNTIC[0,1]

where I denotes a rational subinterval of [0,1] and B(s,I) is the set of functions f of
C>([0,1]) for which there exist C,h > 0 such that

sup |D™ f(z)] < Ch™(n!)*, Vn € Ny.
xzel

The proof of the prevalence of NG in C*°([0,1]) uses the same arguments as in the
analytic case. We use the notations introduced in the previous lemma.

Proposition 2.3.7. [26] The set NG is a prevalent subset of C*([0,1]).
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2.3. NOWHERE GEVREY DIFFERENTIABLE FUNCTIONS

Proof. In a complete metric space, we know from Proposition [[.2.5] any countable union
of shy sets is shy; so the result will be proved if we show that every B(s,I) is shy. To
get this, using Lemma m it suffices to prove that B(s, I) is a proper vector subspace
of C*°([0,1]) which is also a Borel set.

It is direct to see that B(s,I) is a vector subspace of C*°([0,1]). Moreover, using
Lemma it is strictly included in C*°([0,1]). We also have

=U N {f€c°° 0.1]) = sup| D" /()] <m"H (n!)3}7

meNneNy
where
{£ec=@: swips) < m e}
zel
is closed in C*°([0, 1]). Hence B(s,I) is a Borel subset of C*°([0, 1]). O

Now, let us show that the generic result also holds in the topological sense.
Proposition 2.3.8. [20] The set NG is a residual subset of C*°([0,1]).

Proof. We use the same definition as before for the set B(s,I). So, as we have done
previously, the set of nowhere Gevrey differentiable functions of C*°([0,1]) is the com-

plement of
U U

sENIC[0,1]
where I denotes a rational subinterval of [0,1]. We also have
= U A(s, I, m)
meN

where

Als, T,m) = {f € C=((0,1]) : sup D" f(x)| < mm ()", ¥ € No}.
zel

To conclude, it suffices then to notice that the closed set A(s, I, m) is a set with empty
interior since it is included in B(s,I) which is a proper vector subspace of the locally
convex space C>([0,1]). O

Let us remark that this last proposition has already been proved by Cater [50]. Tt
can also be obtained as a special case of the following result of Bernal-Gonzélez [33]
(Lemma 2.1 and Remark 2.2).

Proposition 2.3.9. [33] For each infinite set M C Ny and each sequence (¢n)nen, Of
strictly positive numbers, the family of functions f € C*([0,1]) for which there exist
infinitely many n € M such that

max {|D" f(z)],| D" f(z)|} > cn,  Vz €[0,1]
is a residual subset of C*°(]0,1]).

Indeed, for ¢, = (n!)™ and M = Ny, this last family is contained in the set of
nowhere Gevrey differentiable functions, since for any s € N and h,C > 0, one has
(nh)™ > Ch™(n!)® for n sufficiently large.

Similarly, a generalization of Proposition can be obtained.
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CHAPTER 2. GENERICITY AND GEVREY CLASSES

Proposition 2.3.10. [26] For each sequence (Cn)nen, of strictly positive numbers, the

set
{f €c>([0,1]) : VI € [0,1], sup suprer [D" /()]

=+
n€Ny Cn oo}

is a prevalent subset of C*([0,1]).

Proof. The complement of this set can be written as the countable union over rational
subintervals I of [0,1] of the subset D; defined by

Dr = {f e c([0,1]) : sup “PeerID"(@)]

< —|—oo}.
neNy Cn

Again, in a complete metric space, we know from Proposition that any countable
union of shy sets is shy. Therefore, it suffices to show that Dj is shy for each I. This
is obtained as before, using Lemma [[.2.7] First, it is clear that Dy is a vector space.
Moreover, using Proposition with the sequence (ne,)nen,, Dr is strictly included
in C*°([0,1]). Finally, it is a Borel subset of C*°([0, 1]) since it can be written as

Dr=J N {fec=(o,1): sup | D" f(2)] < ken}

keNneNy
which is a countable union of closed sets of C*°(]0, 1]). O

Taking again ¢, = (n!)™, we see that the set mentioned in the Proposition above
is contained in the set of nowhere Gevrey differentiable functions and this proposition
generalizes Proposition [2.3.7]

2.3.2 Maximal dense-lineability of NG

The aim of this section is to prove that the set NG is dense-lineable in C*°(]0, 1]) and that
A(NG) = c¢. The dense-lineability is, of course, a consequence of the dense-algebrability
of NG in C*°([0, 1]) (next subsection). Nevertheless, the dense-lineability is here directly
obtained, using any function belonging to NG; this is the reason why we show it here
as well, to illustrate the differences that one might encounter when dealing with dense-
lineability and dense-algebrability.

In order to simplify notations, for every a € R, we introduce the function e, de-
fined by e, (z) := exp(azx), € [0,1]. Let us start by mentioning this result of linear
independence.

Lemma 2.3.11. [39] For each non empty subset A C R, the functions e,, o € A, are
linearly independant.

Proof. Assume that it is not the case. Then there exist N > 2, ¢q,...,cy € C with
ey #0and o < -+- < ay in A such that cieq, + -+ + ¢neq, = 0 on [0,1]. From
the analytic continuation principle, we obtain that the last equality holds on the whole
line R. We get that

CN = —(C1€a1_aN + -+ CN—1€aN,1—aN)

which converges to 0 as x tends to +oo. This is a contradiction and the conclusion
follows. O
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2.3. NOWHERE GEVREY DIFFERENTIABLE FUNCTIONS

Proposition 2.3.12. [27] If f is nowhere Gevrey differentiable on R, if ay,...,any € C
are not all equal to 0 and if a1 < --- < an are real numbers, then the function

N
g = Za‘jfea]‘
j=1

is nowhere Gevrey differentiable on R.

Proof. Let us first remark that

N
9=> ajfea, = fh

Jj=1

where h := Zjvzl ajeq,. We proceed by contradiction. Let us assume there are zq € [0, 1]
and s > 1 such that g is Gevrey differentiable of order s at xy. This implies that g is
Gevrey differentiable of order s in some neighborhood V' of zy. From Lemma[2.3.11] the
functions eq,,-..,€qy are linearly independent and consequently, h is not identically
equal to 0. Moreover, h is analytic on R. It follows that there is 1 € V such that
h(x1) # 0. Then, + is analytic at 1 and consequently, f = £ is Gevrey differentiable

of order s at x;. This is a contradiction. O

Next, let us show that the set NG is lineable and that its lineability dimension is the
largest possible one.

Proposition 2.3.13. [27] The set NG is lineable and A(NG) = .

Proof. Let us fix a function f € NG. We consider the subspace D defined by
D = span{fe, : a € R}.

From Proposition we just have to show that dimD = c¢. For this, it suffices
to show that the functions fe,, a € R, are linearly independent. Let us assume that
it is not the case. Then there exist c¢1,...,cy € C not all zero, and oy < --- < ay
in R such that ¢;feq, + -+ cnfeay = 0 on [0,1], ie. f(creq, + -+ cneay) =0
on [0,1]. Since the functions ey, , ..., e, are linearly independent from Lemma
there exists € [0, 1] such that cieq, () + - - + cyeay () # 0. By continuity, there
exists a subinterval J C [0,1] such that cieq, + - + cyeay # 0 on J. It follows that
f=0on J, which is impossible since f is nowhere Gevrey differentiable. O

In order to get the dense-lineability of NG, we use the condition presented in Chap-

ter [T} Proposition [.3:4]
Lemma 2.3.14. [27] If P denotes the set of polynomials, then NG is stronger than P.

Proof. Let us consider ¢ € NG and a polynomial P. We proceed by contradiction.
Assume that g + P is Gevrey differentiable of order s > 1 at x¢ € [0,1]. Since P is
analytic at xg, P is also Gevrey differentiable of order s at xg and the same holds for
g = (g9 + P) — P hence a contradiction. O

With this result in hand, we can now infer the following.

Proposition 2.3.15. [27] The set NG is c-dense-lineable in C*([0,1]).
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Proof. Tt follows directly from Proposition 2.3.13] Lemma [2.3.14] Proposition [I.3.4] and
Remark [L3.5 O

Let us end this section by showing that we can also get the strong c-algebrability of
NG using any nowhere Gevrey differentiable function. The proof of this result employs
the exponential-like function method presented in Chapter [[]and follows the lines of the
proof of Proposition [2.2.5]

Proposition 2.3.16. The set NG is strongly c-algebrable.

Proof. Let F' be a function of NG and let f be an exponential-like function. Assume
that g = f o F is Gevrey differentiable of order s > 1 at xy € [0,1]. Then, there is a
neighborhood V' of xg such that g is Gevrey differentiable of order s in V. By Lemma
there is an open subset V C F (V) on which f is invertible. Hence, F' = f~logis
Gevrey differentiable of order s on F~Y(U) NV as composition of Gevrey differentiable
functions [142]. This is a contradiction. O

2.3.3 Dense-algebrability of NG

The strategy to tackle the dense-algebrability problem will be different from that of the
previous section. Here, we shall need a very particular NG function. We achieve this
by means of a function defined as a series, in which the n!” term is built via a special
function which is Gevrey differentiable of order n on R.

For any s > 1, let fs denote the function defined on R by

fole) = exp (—xiﬁ) ifx >0,

0 otherwise.

Lemma 2.3.17. [5]|] For any s > 1, the function fs is Gevrey differentiable of order s
on R.

Let us consider the function v, defined on R by

’(/}s(x) = fs(x)fs(l - .’L‘)

Since the space of Gevrey differentiable functions of order s is an algebra (see Proposition
2.3.3), the function 1, is Gevrey differentiable of order s on R. Moreover, it is analytic
on (0,1) since f; is analytic on (0, +00). It is clear that the support of 5 is [0, 1] and we
have DP1)4(0) = DP1)s(1) = 0 for every p € Ny (i.e. ¢ is flat at 0 and 1). Consequently,
for every n > 2, there exist D,, > 0 and h,, > 0 such that

sup | DPv,, (7)] < Dy (hn)P ()", Vp€No.
zER

Keeping the previous notation, we have:

Proposition 2.3.18. [27] The function p defined by

+o0o
plx) = Z Cothn (2" — [2"2])

n=2

for every x € R, where C,, = (Dn(th”n!)”)il, is nowhere Gevrey differentiable on R.
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Proof. Because of the flatness of 1, at 0 and 1, as done in the proof of Proposition[2.1.2
the function z — v, (2"x — |2"z]) belongs to C*°(R) for every n > 2. Moreover, for
every p, from the choice of the coefficients C,,, the series

—+o0
Z Cn2™P sup | DPtp,, ()|
z€R

n=2
converges. Therefore, we obtain that the function p belongs to C*°(R).

Let us show that p is nowhere Gevrey differentiable. The set @ of all points of the
form 27"k, where m > 3 is a natural number and k is an odd number, is dense in R.
Therefore, it suffices to show that p is not Gevrey differentiable of any order at each
point of Q. On the contrary, assume that p is Gevrey differentiable of order s > 1 at
some point xg € Q. Let zyg = 27™°ky. Then for n € {2,...,mg — 1}, the function
Yn(2"x — [2"z]) is analytic at zp and hence Gevrey differentiable of order s at wo.
Consequently, the function

+00 mo—1
Omo(2) = D Cuthn(2"z — |2"2]) = plz) = D Cuthu(2"z — [2"2])

is also Gevrey differentiable of order s at xg. Since O,,, is periodic of period 27", we
can assume that xg = 0. Then, there exist € > 0, C' > 0 and h >0 such that

sup |DPO,,, (z)| < ChP(p!)®, VpeNp.

lz|<e

Since each derivative of ©,,, at 0 is equal to 0, Taylor’s formula gives that for every
z € R and every p € N, there exists a real number ¢ between 0 and x such that

_ Dp@mo (5)

Oy () = ol aP.

Then, we have
0< O (z) <CxPhP(P)* P V¥peN, VO0<uzx<e,

and it follows that
0 < Cptby (2" — [272]) < CaPhP(p!)*~*

for every p € N, n > mg and 0 < = < €. Let us fix n large enough such that n > s,
n > mg and h27"e < 1. For every p € N, we define then z, := 27 p~ (=1 For p
sufficiently large, we have 0 < x, < € and we obtain then

0.< Oty (p~ ) < ChP2 =P 2D (1),
where 1, (p~ V) = e7Pf, (1 — p~™=V). Consequently, we have

Couto (1 - p*<”*1>) < ChP2="PeP(pPpl)>~1

for every p large enough. The left-hand side converges to C,, f,(1) = Cpe™! > 0 and the
right-hand side converges to 0 when p — 400. This leads to a contradiction. O
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The following proposition improves Proposition 2:3.12} It is the second key of the
main result in this section.

Proposition 2.3.19. [27] If Fy,...,Fy are analytic on R and not all identically equal
to 0, and if p is the function from Proposition[2.3.18, then the function

N
9= EE:lQpZ
i=1
is nowhere Gevrey differentiable on R.

Proof. As previously, consider the set @ of all points of the form 27k, where m > 3 is
a natural number and k is an odd number. Since @ is dense in R, we just have to show
that g is not Gevrey differentiable of any order at each point of Q. On the contrary,
assume that g is Gevrey differentiable of order s > 1 at some point g = 270k,.

Recall that we do not necessarily have flatness of p at xy. This is the reason why we
set

mo—1 +oo
Ao (z) = Z Crtbn (2"1‘ — LQ"I‘J) and O,,,(z) := Z Crtbn (2”1: — \_2"xj)
n=2 n=my

for every « € R. Then, A,,, is analytic at o and ©,,, is flat at xg. Of course, we also
have

P = Amo + @mo

and it follows that

N N i
6@) = S F@) (A (2) + O (1))’ = 3 Fil) (
=1 = =0

=1 7 ‘7
= S @A @) + DY (1) (@) @@
= LA + X | S E@ () (@) | @)’
=1 j=1 i=j

= D Fi@) (A (@) + D ¢j(2) (O (),
i=1

where for every j € {1,...,N}

Let us fix a neighborhood V' of xy and let us show that there exists j € {1,..., N} such
that ¢; is not identically 0 in V. We proceed by contradiction. Assume that c;(z) =0
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for every j € {1,...,N} and = € V. This would mean that

L () Amo(x) -+ (V) (Amy @)NH\ / Fa() 0
01 ) Amg @) | Fala) | [0
0 0 =
(N]\il)Amo (z)
0 0 - 0 1 Fn(x) 0
for every x € V. Since Fi,...,Fn are not all identically equal to 0, there is z € V

and j € {1,..., N} such that Fj(z) # 0, which gives a contradiction since the matrix
is invertible. Let k be the smallest element of {1,..., N} for which ¢ is not identically
equal to 0 on V. Then, in this neighborhood, we have

Since Zil Fi(z)(Am, (av))Z is analytic at 2o and since g is Gevrey differentiable of order
s at xg, we have that the function

=k

is also Gevrey differentiable of order s at xg. Then, there exist € > 0, C > 0 and h >0
such that
sup |DP®,,, (z)| < ChP(p!)®, VpeNgp.
|z—z0|<e
From the flatness of ©,,, at xg, we also get that ®,,, is flat at zo. Then, by Taylor’s
formula, for every x € R and every p € N, there is £ between x and xg such that

o Dp(pmo (6)

Dy (1) = =55 w — a0)".

Consequently, we have
@y ()] < CRP(p1)* |z — o]

for every x such that |z — 2| < e and for every p € N.

Recall that the function ¢ is analytic at z¢p and not identically equal to O in a
neighborhood of xy. Thus, there exist J € Ny and dj, analytic at z¢ with dg(xq) # 0
and such that

cx (@) = (v — o)  di(x)

in a neighborhood of xy. Let us fix n € N such that n > s, n > mg and heF2™" < 1.

As before, we consider x, 1= xo + 2=7p=("=1) for every p € N. Then, on one hand,
we have -
N J=
®,, Onm
o(xp) _ dk(.’[’ ) + Z C'((E ) ( o(xp))
k J P NP (2, — x0)!
(emo (xp)) (xp ) j=k+1 p 0
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which converges to di(xg) # 0 as p goes to infinity (the second term of the sum converges
to 0 since O,,, is flat at 2¢). On the other hand, for p large enough, we have |z, —z¢| < €
and it follows that

|Prng ()] < CRP(p)* |z — o[

Moreover, for p large enough, we have 2"z, — L2”xpj =p (n=1) and fn(l — p*(”*l))
converges to f,,(1) = e~1 > 0 as p goes to infinity. Therefore, we obtain that

Ch?(p)s=t|z, —1:0\”

(Cuton (2 — 1200,))) Ty — ol
ChP(pl)s—12-np=I)p=(p=I)(n=1)

<Cne*1’fn (1 — p*"*l)) ;

n n—1
L (B) ey
(Catalt=p=m=)) N

which converges to 0 as p goes to infinity. This contradiction gives the conclusion. [

Dy (zp)
(Omy ()" (p — 20)”

Let H denote a Hamel basis of R. The “potential” candidate to obtain maximal
algebrability of NG is the minimum algebra A which contains the family of the nowhere
Gevrey functions pe,, with a € H and e, defined as previously by e,(z) = exp(az),
x € R. First of all, let us describe the structure of the elements in this algebra.

An element f of A can be written as

L J .
f= Za H pe% n(l,a)
=1 j=1

where J,L € N, gy e Rforalll € {1,...L}, v; € H for all j € {1,...J} (with v; # v;/
if j # 7') and where n(l,j) € Ny are such that n(l, j) # n(l’, j) for at least one j in case
1 #1'. For every I, we have

J J
11 (per))™ " =p™ep,  Bi:=> nll, i)y
j=1 j=1

where n; 1= Z;‘le n(l,7) € N and where 8; # [y if | # I’ because of the properties of
the data. So we have

L
F=Y apes with B # By if L £1.
=1

We are now ready to state and prove the following result.

Proposition 2.3.20. [27] The algebra A is a c-generated free algebra contained in
NG uU{0}.

Proof. Using Proposition 2.3.19 and the description of any element of A here above, we
directly get that A C NG U {0}. Using the periodicity of p and the properties of Van-
dermonde determinants, let us show that the functions p™eg, are linearly independent.
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2.3. NOWHERE GEVREY DIFFERENTIABLE FUNCTIONS

We use the same notations as above. Let us now show that, if

J _ L
f= Zal H (pew)n(ld) = Zalp"leﬁl with g # By if L £ 1
j=1 I=1

=1

is identically 0, then a; = 0 for every I.

Take xg € R such that p(xo) # 0 and consider the system obtained from the condi-
tions f(zo+1) =0 for I € {0,...,L — 1}. Using the periodicity of the function p, we
have

ai 0
as 0
Al .| =
ary, 0
where
o (w0)661$0 P2 (xo)eﬁzﬂ) - pE (xo)eﬂNﬂCo
P (xo)eﬁl(wo-&-l) pnz(mo)eﬁz(xo+l) L an(xO)eﬁN(;c0+1)
A =
P (xo)eﬁl(a:o-i-L—l) o2 (xo)eﬂz(wo+L—1) c e (xo)eﬂL(w0+L_1)

To conclude, it suffices to prove that the matrix A is non-singular. Up to the non-zero
factor p™it L (xg) e(Pit+BAL)Tothe determinant of A is equal to the determinant of
the matrix

1 1 . 1
eb ebB2 o eBL
efrl=1)  B2(L=1) . . Br(L-1)
which is a Vandermonde-type matrix. Since the e, | € {1,...,L} are different, we
conclude. O

In order to obtain the strong dense-algebrability of NG, we are now going to modify
a little bit the definition of the previous algebra as explained in what follows. First we
need some additional notations and a lemma.

Let (am)men be a sequence of real numbers. Using the continuity of the multipli-
cation by scalars, for every m, we take k,, > 0 such that d(0, kpea,,p) < L. Let also
(Prn)men be a sequence of polynomials whose elements form a dense subset of C*°([0, 1]).

Lemma 2.3.21. [27] The family Gy := { Py, + kmpea,, : m € N} is dense in C*([0,1]).

Proof. For every f € C*°([0,1]) and for every m, we have

1
d(f, Pm + kmea,,p) < d(f, Pm) +d(0, kmeq,, p) < d(f, Pm) + —.

Since there is a subsequence M (k) € N (k € N) such that limg d(f, Pyry) = 0, we
conclude. O

Now, take a sequence (o, )men of different elements of H and define k, =1, P, =0
for @ € H\ {am : m € N}. The “candidate” we are looking for is the algebra Ay
generated by

G:={P,+kapea:a€Ht}.
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Theorem 2.3.22. [27] The algebra Ag is a c-generated free dense-algebra in C*([0,1])
which is contained in NG U {0}. It follows that NG is densely strongly c-algebrable.

Proof. Since the set of generators G contains Gy, Lemma [2.3.21] provides the density.
Let us show that Ay C NG U {0}. An element f # 0 of A4 can be written as

f=> al] (P%' + k“/jewp)
j=1

=1

where J,L € N, q; € R\ {0} for all [ € {1,...L}, v; € H for all j € {1,...J} (with
v; # 7y if j # j') and where n(l, j) € Ny are such that n(l,j) # n(l’, j) for at least one
j in case | # I'. As before, we set 5 := ijl n(l,j)y; (I € {1,...,L}) and we have

B # B it L #1.
For each [ € {1,..., L}, the term

J n(l,5)
H <PW + ko, ey ,0)
j=1

is a “polynomial” (with coefficients which are analytic functions) in the “variable” p; the
“degree” of this polynomial is n; = Z;-]=1 n(l,7) € N and the coefficient of p™ is

J

o= ka;j(l’j) €8,
j=1
Let N = sup{ni,...,nr}. The function f also appears as a “polynomial” (with

coefficients which are analytic functions) in the “variable” p and the coeflicient of the
term with the highest power N is

J
Fy = Z aicy = Z ap Hk{;j(l’j) €s, -
j=1

1<I<L, ny=N 1<I<L, n=N

Since the coeflicients a; are not zero and since the [; are different, Fiy is not identically 0.
We get that f € NG using Proposition [2:3.19 and the fact that the sum of a polynomial
and a NG function is still a NG function. In particular, we have also obtained that 4,4
is a c-generated free algebra. Indeed, if

J n(l,j)
Sall (P +kens) o

=1 Jj=1

then a; = 0 for all I € {1,..., L}. Otherwise, as done previously, we would get 0 € NG,
which is impossible. O
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functions
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3.1 Introduction

Classes of ultradifferentiable functions are spaces of smooth functions which satisfy
growth conditions on their derivatives. They are usually defined using weight sequences
M or weight functions w. We distinguish the classes £y and £,y of ultradifferentiable
functions of Roumieu type and the classes £y and £, of ultradifferentiable functions
of Beurling type.

We will first work with the notion of ultradifferentiable classes defined using weight
sequences. Such spaces are called Denjoy-Carleman classes. Let F be a Denjoy-Carleman
class of ultradifferentiable functions of Beurling type on the real line R that strictly
contains another class F' of Roumieu type. In this chapter, we investigate how large
is the set of functions in the class F that are nowhere in the class F, i.e. such that
the restriction of the function to any open subset of R does not belong to this class.
Then, we handle the same question but in the context of classes of ultradifferentiable
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CHAPTER 3. CLASSES OF ULTRADIFFERENTIABLE FUNCTIONS

functions defined using weight functions, or equivalently imposing conditions on the
Fourier-Laplace transform of the function.

An arbitrary sequence of positive real numbers M = (M} )ren, is called a weight
sequence. For every weight sequence M, every compact subset K of R™ and every
h > 0, we define the space Ep 5 (K) as the space of functions f € C*°(K) such that

D f ()]
flI¥, == sup sup < 400
H ”K,h aeNp ceK hlo“M‘M
Endowed with the norm || - ||%h, the space Enr,n(K) is a Banach space.

Definition 3.1.1. Let © be an open subset of R™ and M be a weight sequence. The
space Eqp1(N) is defined by

Enny(Q) == {f €C>®(Q) : VK C Q compact Ih > 0 such that || f[|% , < +oo}.

If f € & (), we say that f is M-ultradifferentiable of Roumieu type on Q. We obtain
a locally convex topology on these spaces via the representation

Ern (Q) = proj ind Enp(K).
{M} fres A0

Fundamental examples of Roumieu spaces are given by the weight sequences (k!)ren,
and ((k!)®)gen, with s > 1. They correspond respectively to the space of real analytic
functions on ) and the space of Gevrey differentiable functions of order s on Q.

Definition 3.1.2. We say that a function is nowhere in Egpry if its restriction to any
open and non-empty subset 2 of R never belongs to 31 (€).

Let us remark that similar results to those presented in Chapter [2] can be ob-
tained with the class of functions of C*°([0,1]) which are nowhere in £(,s;. Following
Lemma we consider a sequence (Ag)ren of strictly positive numbers such that

k
Mo > /M (k+1D)ED"and - A 223 X wkeN

j=1
We construct the function f by setting
+oo
f(z) = che’)""” with ¢, = )\,1;]‘3, keN
k=1

for every x € R. This function belongs to C>*(R) and is nowhere in £gpry. Using the
same arguments as those presented in Propositions and we directly get that
the set of functions of C*°([0, 1]) which are nowhere in £y is prevalent and residual in
€°>°([0,1]). This result can also be seen as a consequence of Proposition [2.3.9 and
with ¢, = M,,n".

Let us now introduce the second type of Denjoy-Carleman classes.

Definition 3.1.3. Let © be an open subset of R™ and M be a weight sequence. The
space Ear)(2) is defined by

Ean(Q) = {f €C™(Q) : VK C Q compact ,Vh >0, ||f[|}, < +oo}.
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If f €& (Q), we say that f is M-ultradifferentiable of Beurling type on Q and we use
the representation
En)(Q) = proj proj Enn(K)
ca h>o

to endow &£ (2) with a structure of Fréchet space.

This chapter is based on the article [63] and is structured as follows. In Section
we present basic properties of Denjoy-Carleman classes and we study the existing in-
clusions between these spaces. We also introduce the notion of quasianalyticity. In
Section given two weight sequences N and M such that E;pry(R) is strictly included
in &ny(R) and such that M is non-quasianalytic, we construct a function of & n)(R)
which is nowhere in £;57y. We obtain then generic results about the set of functions of
Eny(R) which are nowhere in £{573. We extend this result using any countable union of
Roumieu classes included in xy(R). An application to the classes of Gevrey differen-
tiable functions is given. In Section [3.4] the same question is handled but working with
ultradifferentiable functions defined imposing conditions on the Fourier-Laplace trans-
form of the function. Finally, in Section we present new spaces of ultradifferentiable
functions defined with weight matrices and we generalize the results presented in the
previous sections.

3.2 Properties of Denjoy-Carleman classes

In this section, we consider that the dimension is n = 1. This section is divided in four
parts. In the first and second parts, we present classical conditions on weight sequences
and we see what it implies on the corresponding Denjoy-Carleman spaces. It can be
resumed as follows:

e If the weight sequence M is logarithmically convex, then the space Epry(Q2) is an
algebra.

e If the weight sequence M is non-quasianalytic, then given an open subset € of
R and a compact K C (), there exists a function of pry(R) having a compact
support included in © and being identically equal to 1 in K.

In the third part of this section, we study inclusions between Denjoy-Carleman
spaces. These inclusions can be characterized by relations on weight sequences, defined
as follows:

1
Mo\ ®
M<N — sup<k> < 400,
keN \ Nk

MAaN <+ lim <]V[k>k<+oo.
k— 400 k
Of course, for any open subset Q of R, if M < N, then £,/}(2) C Eny () and
Ean(Q) € Eny(R). Moreover, if M < N, then £, () C Eny(Q). Actually, all
converse implications are true, using the assumption that the weight sequence M is
log-convex. We also show that in the case M <1 N, the inclusion is even strict.

In the last part, we present a result of separability of the Denjoy-Carleman classes.
In order to simplify notations, if a statement is true for both the Roumieu space ;a3 (Q2)
and the Beurling space £7)(2), we write E57(§2). Since we have E1(2) = En(Q)
where M|, = %’; for every k, we will always assume that any weight sequence M is such
that MO =1.
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CHAPTER 3. CLASSES OF ULTRADIFFERENTIABLE FUNCTIONS

3.2.1 Log-convex weight sequences
An important condition usually imposed on weight sequences is the logarithm convexity.

Definition 3.2.1. A weight sequence M is logarithmically convez (or shortly log-convex)
if M,? < My_1Mj4q for every k € Ny.

This condition means that the sequence (log(My))ken, is convex. Let us remark that

MAf’“I is increasing. It follows that
T keNy
if M is log-convex, one has MM; < My, for every k,l € Ny. Indeed, first we have

MoM; < My, for every [ € Ny since My = 1. Using a simple induction on k, we get

an equivalent condition is that the sequence

M M, M,
Mk:Mk;qu < Mkflequl < Mkiltlle—Hl = M1,

MM, =
for every I € Ny. The following result follows directly (see [100] for example).

Proposition 3.2.2. If the weight sequence M is log-convex, the space Eny(S2) is an
algebra for the pointwise multiplication of functions.

Proof. Let f,g be two functions of £,y (£2) and let K be a compact of . Then, there
exist hy,ho > 0 and C7,Cs > 0 such that

sup |D3f(x)| < Clh{Mj and sup |ng(m)\ < Cgh%Mj
zeK reK
for every j € N. By Leibnitz’ rule, we have

i@l < X (7)o ot

k<j
J i—k
< ;j(k>01hlka02h§ M;_y,

= C1C3(hy + h)? M;
for every z € K and every j € N. The proof of the Beurling case is similar. O

Let us state this other simple result about log-convex weight sequences (see [126] for
example).

Proposition 3.2.3. If the weight sequence M is log-conves, the sequence ((My)*)ien
1S increasing.

Proof. Tt suffices to prove that log(My41) > % log(My,) for every k > 1. Let us remark
that since M is log-convex, we have

2log(My) < log(Myy1) +log(Mg—1), Vk>1.

We will prove the result by induction on k. For k = 1, since My = 1, we have directly
2log(M7) < log(Ms) + log(My) = log(Ms). Moreover, if the result is true for k — 1, we
get

k—1
2log(My,) < log(Mpy1) + log(My—1) < log(Myy1) +

log(My,)

and it follows that # log(M),) < log(Mj41). O
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Let us end this section by the construction of the largest log-convex minorant of a
given weight sequence [79]. See [126] for a proof.

Proposition 3.2.4. The sequence M€ defined by

i—k

M = My=1
1=j i=k
M§ = inf{Mkf’“Mll :kgjgl,k;él}

is the largest log-convex minorant (for <) of the sequence M.

Remark 3.2.5. Another construction is given by the so-called method of regularization
1
of a sequence [107]. For every weight sequence M such that (M)* tends to infinity as
k tends to infinity, we set
k k

t b(c) t
Ty(t)=sup —, t>0, and M,'’ =sup ——, k€Nj.
m(t) kemll)o M, k t>Ig T (t) ’

The sequence M°(®) is the largest log-convex minorant of M.

3.2.2 Quasianalyticity

If f is an analytic function on an open interval I of R and if zy € I, the values of f in
a neighborhood of zy are completely determined by the derivatives D" f(xg) (n € Np)
of the function at xg. In particular, if there is xy € I such that all derivatives of f at
xo are equal to 0, the function is identically equal to 0 on I. On the opposite, there
exist non-zero infinitely continuously differentiable functions which are identically equal
to 0 on an interval. So, there is a unicity property on the class of analytic functions
which is not true in general for infinitely differentiable functions. For analytic functions,
Cauchy’s estimates gives growth conditions on the derivatives. A natural question is
to ask whether this property of unicity is due to a good control of the growth of the
derivatives. The Denjoy-Carleman theorem presented in this section gives an answer to
this question. Let us start by giving some definitions.

Definition 3.2.6. Let I be an open interval of R. A class Ey(1) is quasianalytic if 0
is its unique function f for which there is a point « € I such that D™ f(x) = 0 for every
n € No. If this is not the case, we say that the class (1) is non-quasianalytic.

Quasianalytic classes are classes of functions for which the statement of unicity men-
tioned above is true. One has the following result (see for example [124]).

Proposition 3.2.7. A class E(R) is quasianalytic if and only if Epy(R) does not
contain any function not identically zero with compact support.

Proof. Of course, if £37)(R) is quasianalytic, it does not contain any function not iden-
tically zero with compact support. Assume that £(R) is non-quasianalytic, we can
find f € & (R) such that there are 29,21 € R with D" f(xq) = 0 for every n € Ny and
f(x1) # 0. Let us consider the case where z7 > x¢. We consider the function g defined

on R by
_ flz) it x>,
g(x) = { 0 if x<uxg.

Then g is infinitely continuously differentiable in R and one directly checks that g belongs
to & (R). Let us set
h(z) = g(z)g(2z1 — x), Vre€R.
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By Proposition|3.2.2) h € &5 (R). Moreover, h is compactly supported since h(x) = 0 if
x < xg or if & > 2z1 — 2. Finally, h(x1) = f(x1)? # 0 and this concludes the proof. [

Corollary 3.2.8. If the class &y)(R) is non-quasianalytic, given an open interval I of
R and a compact K C I, there exists a function of Egyry(R) having a compact support
included in I and being identically equal to 1 in K.

Proof. By Proposition |3.2.7) there is f € & (R) not identically zero with compact
support. Consider a constant a > 0 such that the support of f is included in [—a,a]. Up
to a multiplication by a constant, we can suppose that fR f(z)dx = 1. For every ¢ > 0,
let us set f.(z) = %f (ﬁ), x € R. Then, the support of f. is included in [—ae, ag|. For
every € > 0, consider the compact

K, = K + [—ae, ag]

and its indicator function x .. Using typical properties of the convolution product, the
function f.*xx. has its support included in K +[—2ae, 2a¢] C I if ¢ > 0 is small enough.
Moreover, f. * xk. belongs to C*°(R) and D"(f. * xk.)(x) = (D" f. * xk.)(x) for every
n € Ny. Therefore, for every n € Ny and every = € R,

D™ (fe * xk.)(2)]

/R D" fe(z — y)xk. (y)dy’

sup\D"fE|/ dy

R K.

_ b D" d
= o SEP\ f] W

and since f € &p(R) it follows easily that f. * xx,. € Er(R). It remains to show that
fe * XK. is identically equal to 1 on K. Let us fix x € K. Then the support of the
function f.(x — ) is included in K. and it follows that

IN

fo % X () = / fo(x — y)xx. (w)dy = / folx —y)dy = 1,

hence the conclusion. O

Let us now state the announced result of Denjoy [61] and Carleman [48]. Let us
recall that M€ denotes the largest log-convex minorant of M (see Proposition |3.2.4]).
We also set Lo = 1 and Ly = inf;>, Mjl/j for every k € N. The weight sequence L is

the largest increasing minorant of (M ,1/ k)keN.

Theorem 3.2.9 (Denjoy-Carleman). Let M be a weight sequence and let I be an open
interval of R. The following conditions are equivalent:

1. &y (D) ds quasianalytic,
+o0 1

2.5 = =
L

400 c
Mkrfl

Mg T

k=1

38
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+oo
4> (M) = foo.
k=1

A contemporary proof of this result can be found in [79]. In view of this theorem,
the following definition is natural.

Definition 3.2.10. If one of the equivalent conditions of Theorem [3:2.9]is satisfied, we
say that the weight sequence M is quasianalytic. If this is not the case, we say that the
sequence is non-quasianalytic.

Example 3.2.11. Consider the weight sequences k° = ((k!)®)ren, with s > 0. The
Roumieu space Eqgs}(£2) corresponds to the class of Gevrey differentiable functions of
order s on Q. We get that the class Exs1(f2) is quasianalytic if and only if s < 1.

3.2.3 Inclusions between Denjoy-Carleman classes

In this section, we study inclusions that exist between Denjoy-Carleman classes defined
on an open subset 2 of R. Of course, for every weight sequence M, we have the inclusion
Ery () € Erary(Q2). Moreover, conditions on two weight sequences M and N to have
the inclusion £ () € Eny(Q) and () € En(Q2) are known and presented in
this subsection. Let us start by defining some relations on weight sequences, using the
notations of Rainer and Schindl [120].

Definition 3.2.12. Given two weight sequences M and N, we write M < N if there
exist C > 0 and p > 0 such that M, < CpFN,, for every k € Ny. Therefore, we have

1
Mo\ ®
MjN<:>sup<k) < +oo.
keN \ IV

If M < N and N < M, we write M =~ N.

From the definition, it is clear that the relation =< is reflexive and transitive. There-
fore, the relation = is an equivalence relation on the set of weight sequences.

It is clear that if M =< N, then &(R) C En(R). We will see that, up to an
additional assumption on M, the converse implication is also true. Let us first present
a construction of Thilliez [138].

Lemma 3.2.13. [138] Let M be a log-conver weight sequence and 0 be the function
defined on R by

“+00 k
Mk Mk—l . Mk
O(x) = E S ( A ) exp (22Mk1x) .
k=1

Then 6 € Eqpry(R) and |[D7(0)| > M; for all j € Ng. In particular, this function belongs
to Eaary(R\Ean) (R).

Proof. First, using the log-convexity of the sequence M, let us show that

My M,
M, - My

for every k € N, j € Ng. If j > k, we have

My My My, Mg >( M, )j_k
M, M1 M;_o M, — \ My,
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since the sequence (ﬁ) is increasing. Similarly, if j < k, we have
IS\

s
My My Mjp My < (Mkl) !
My, M Mo M, — \ M

If j = k, the result is obvious. Then, for every j € Ny, we have

+oo k—j o
My (M- 1
PRl <M :
2k=7 ' My 2k—J
k=1 k=0

and the Weierstrafl theorem implies that 6 is well defined and belongs to C*°(R). More-
over, we get that

+oo
, 1 ,
sgg |D70(x)| < M; Z i 27 M;
z k=1

for every j € Ny and consequently, 6 € £/, (R). Finally, we have

+o0 k—j
; My (M
1DI0(0)] = k}_; s ( 3 ) > M;.

O

Proposition 3.2.14. [138] Let M and N be two weight sequences. If M < N, then
Eny () C Eny (). If moreover M is log-conver, the converse implication is also true.

Proof. Tt suffices to prove that if M is log-convex and if Erp(2) € Erny(2), then
M = N. Up to a translation, we can assume that 0 € Q. From Lemma there is
0 € Eqary(R) such that [D76(0)| > M; for all j € Ng. By assumption, § € Ex}(2) and
there exists C, h > 0 such that

M; < |D76(0)] < CHN;
for all j € Ng, which gives the conclusion. O

As a consequence, on the set of all log-convex weight sequences, the equivalence
relation /& characterizes entirely the equivalence of two function spaces of Roumieu type.
The same holds for Beurling classes, as presented in the following result of Bruna [44].

Remark 3.2.15. If M is a log-convex non-quasianalytic weight sequence, then by
Denjoy-Carleman’s theorem, we obtain that (k!)gen, =< M. Therefore, the set of analytic
functions on an open set €2 is included in £ (€2).

Proposition 3.2.16. [fJ] Let M and N be two weight sequences. Assume that the
sequence M is log-convex and that the sequence ((Mk)%)keN tends to infinity. We have
Ery() € Eny(Q) if and only if M < N.

Proof. Again, if M =< N, it is clear that £)(2) C Eny(2). Let us assume that
Ean(Q) € Ey(€2). We know that those spaces are Fréchet spaces whose topologies are
stronger than the pointwise topology. Then, using the closed graph theorem, we get that
the inclusion map £ (Q2) — Eny) () is continuous. In particular, for every compact
K C Q and every h > 0, there is a compact K/ C Q, o’ > 0 and C > 0 such that

£ < CUFIE by VF € Eany (). (3.1)
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From the assumption that the sequence ((Mk)%)keN tends to infinity, we have that for
every t > 0, the function f;(x) = exp(itz), x € R belongs to £ (R). The inequality
(3.1) with f; and h =1 gives ', C' > 0 such that

tk tk

sup — < C sup ————.
remn N = e (WYF M

Since M is log-convex and using the Remark [3.:2.5] we get

t tk 1\"
Mpy=sup———<Csup—<C|—-) N
BT Tu(t) — 10 Tn(th) — (h) *
for every k € Ny and the conclusion follows. O

Let us now study inclusions existing between Denjoy-Carleman classes of different

types. First, let us introduce another relation on weight sequences, as done by Rainer
and Schindl [120].

Definition 3.2.17. Given two weight sequences M and N, we write M <1 IV if for every
p > 0 there exists C' > 0 such that M, < Cp*N,, for every k € Ng. Consequently, we
have

1
M.\ *
M <N < lim (’f) = 0.
k—-+oo \ Ny

If M <N, it is direct that () € Eny(R2). Let us now study the converse
implication. First, let us recall the following lemma of Rainer and Schindl [120] which
directly imply that in the case M <1 N, the inclusion is even strict.

Lemma 3.2.18. [120] Let M and N be two weight sequences satisfying M <<N and such
that (k!Nk)% tends to infinity as k tends to infinity. There exist two weight sequences
L', L? such that (k!L}‘C)% tends to infinity as k tends to infinity for i = 1,2 and satisfying

M<L'aL?<N.

Proof. First, we set L} = max{ e Mk} for every k € Ng. Then L}, > M, for every

k € Ny and L' < N since

ZAL LE (M
N AT A

which tends to 0 as k tends to infinity. Moreover, Li k! > v/Nyk! so that (k!L}) % tends to
0 as k tends to infinity. To conclude, it suffices to set Li = V/ L} Ny, for every k € Ng. [

Remark 3.2.19.

e The assumption (k!Ny)* — 400 as k — +oo is automatically satisfied if the

1
weight sequence N is log-convex. Indeed, in this case the sequence (NF)ien is

increasing as proved in Lemma and the sequence (k!)* tends to infinity as k
tends to infinity.

o If the weight sequence M is log-convex, we can assume that the weight sequence
L? is also log-convex. Indeed, using Proposition[3.2.4] a simple computation shows
that if M and L are two positive sequences such that M < L, then M¢ < L¢.
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The next result follows directly.

Proposition 3.2.20. Let M, N be two weight sequences and let £ be an open subset of
R. If M is log-convez, then

M <N <= S{M}(Q) - E(N)(Q)
and in this case, the inclusion is strict.

Proof. Tt suffices to show that if ;573 () € En) (), then M < N. Up to a translation,
we can consider that 0 € . Since M is log-convex, Lemma [3.2.13] gives a function
0 € Eay(Q) such that |[DFO(0)| > My, for every k € No. Then, 6 € () and for
every p > 0, there is C' > 0 such that

M, < |D¥6(0)] < Cp*Ny, VkeN,.

Let us now prove that in this case, the inclusion is strict. By Lemma [3.2.18] there exists
a log-convex weight sequence L such that M << L < N. Again, Lemma [3.2.13] gives a
function f which belongs to £7}(Q2) but not to £(2). Since L < N, we have that
Erry(Q) € Ewy(R) and since M < L, we have E3(2) € E1)(R2). The conclusion
follows. 0

3.2.4 Separability

In order to end this section about properties of Denjoy-Carleman classes, let us mention
this last result of density, due to Komatsu [100].

Proposition 3.2.21. [100] Let M be a log-conver non-quasianalytic weight sequence.
The polynomials form a dense subset of Ear)(Q2) for any open subset Q of R™.

The idea of the proof is to show that the space of analytic functions on 2 is dense in
& () and that the inclusion mapping is continuous. The density of the polynomials
in the space of analytic functions gives the result.

3.3 Generic results in Denjoy-Carleman classes

Agreement. In this section, we will always assume that any weight sequence is log-
convex.

Let us consider two weight sequences M and N such that M <1 N. In this section,
we study the set of functions of £ )(R) which are nowhere in £¢57y. More precisely, we
show that such a function exists and is generic in £)(R), from three different points
of view. Let us first start by an explicit construction of such a function.

Proposition 3.3.1. [63] Assume that M and N are two weight sequences such that
M < N. If M is non-quasianalytic, there exists a function of & ny(R) which is nowhere
mn g{M}.

Proof. From Lemma[3.2.18] we know that there is a log-convex weight sequence N* such
that M < N* < N. Applying recursively this lemma, we get a sequence (L(p))peN of
log-convex weight sequences such that

MaL® L@ q...qL® g... 9 N* g N.
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For every p € N, Lemma [3.2.13| allows us to consider a function f, that belongs to the
class &1y (R) and such that [D7f,(0)] > Lg.p) for every j € Ny. Since M is non-
quasianalytic, Corollary gives ¢ € Erpry(R) with compact support and identically
equal to 1 in a neighborhood of the origin. If we consider a countable dense subset
{zp :p € No} of R with zy = 0, then for every p € N, we can find %k, > 0 such that the
function
¢p = ¢(kp( - 'rp))
has its support disjoint from {zo,...,z,—1}. We introduce the function g, defined on R
by
9p(2) = fp(z — 2p)Pp(2).

Since f, € Epwm}(R) € En+)(R) and ¢, € Ep (R) C En+)(R), we obtain that g, is
a function with compact support that belongs to £ «)(R). Then, there exists v, > 0
such that ‘

sui |D? gp(z)| < vpNj, VjeNg.

TE
Finally, we define the function g by

+oo 1
9: =) —9p
];’Vp2p :

Let us show that this function has the desired properties.

First, let us remark that for every j € Ny and every x € R, we have

+o00 1 ] +o00 1
> 5Dla@) <Y N < N
p=1 ’yp2p p=1 2

which implies that g belongs to £y« (R). Since N* < N, we get that g € £y (R).

Let us now prove that the function g is nowhere in £;57y. We proceed by contradiction
and we assume that there exists an open subset € of R such that g € £3(£). Since
the subset {x, : p € N} is dense in R, there is py € N such that z,, € Q. Remark that
the function Zg‘:ll ,Yp%gp belongs to & 1we))(R) and that g belongs to sy (22) which
is included in & o)) (§2). Consequently, the function

400 1 po—1 1

Yo ——m=9- )

P=Po p=1

9p

Tp2P Tp2P

also belongs to & 1we))(§2). But, since the support of g, is disjoint of x, for every
p > po, we also have

+oo

>

b=Ppo

1 ;
= Yp 2P0 |ngpo (‘TPOM
0

1

- Vpo 2P0 |Djfpo(0)|
0

L
’VPOZDU J

ngp(fpo)

Tp2P

>

for every j € Ny, hence a contradiction with the definition of the space £ k0))(22). O
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Proposition 3.3.2. [63] Assume that M and N are two weight sequences such that
M < N. If M is non-quasianalytic, the set of functions of & ny(R) which are nowhere
in Eqnry is prevalent in Eny(R).

Proof. The set of functions of £ )(R) which are somewhere in £,s) is given by

U U EU,m),

ICR meN

where I denotes rational subintervals of R and

E(I,m) = {f € Eny(R) : 3C > 0 such that sup |D7 f(z)| < Cm/M;, Vj € NO}.
xzel

We know from Proposition that any countable union of shy sets is shy. So we just
have to prove that F(I,m) is shy for every I and every m. It is clear that F(I,m) is
a vector subspace of £ yy(R) which is proper using Proposition Moreover, it is a
Borel subset of £ x)(R). Indeed, we have

E(I,m)= U {f € &w(R): sup |D? f(z)| < sm? M;, Vj € NO}
seN zel

which is a countable union of closed sets in £y (R). Lemma m gives the conclusion.
O

Proposition 3.3.3. [63] Assume that M and N are two weight sequences such that
M < N. If M is non-quasianalytic, the set of functions of & ny(R) which are nowhere
in Eqnpy is residual in Eny(R).

Proof. As done in the previous proof, the set of functions of £y (R) which are somewhere
in £y can be written as

Uuu {f € Ey(R) s sup | D f(x)| < sm? My, Vj € NO}.
ICR meN seN o€l

Each closed set {f € En)(R) : sup,¢; |D? f(z)| < smiM;, Vj € No} has empty interior
since it is included in E(I,m) which is a proper vector subspace of the locally convex
space & n)(R). The conclusion follows. O

The next construction used to prove the lineability follows an idea of Schmets and
Valdivia [128]. Fix two weight sequences M and N such that M is non-quasianalytic
and M < N. For every t € (0,1), we define a weight sequence L(®) by

L\ = (M)'"H(N)!, VkeNp.

Since N, M are log-convex, it is straightforward to see that L®) is also log-convex.
Moreover, the assumption M <1 N leads directly to the relations

M<aL® aNifte (0,1) and LY 9L if t < s.
For every p € N\{1} and for every ¢t € (0, 1), using Lemma|3.2.13| we consider a function
A _1
ot € E{Lm,%m}(R) such that |D? f, .(0)] > L;“ D for every j € Ny.
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Since M is non-quasianalytic, using Corollary we can choose a function ¢ in
Ermy(R) with compact support and identically equal to 1 in a neighborhood of 0. Let
us consider a countable dense subset {mp ip € N} of R with z; = 0. For every p > 2,
we fix k, > 0 such that the function

Gp 1= ¢(kp( - xp))

has its support disjoint from {z1,...,2,-1}. We introduce then for every ¢t € (0,1) the
function g, ; defined by

Ip,t = fp.t(- = Tp) -
It is clear that f, (- — xp) € S{L((l,%)t)}(]R) C Erwy(R). Moreover ¢ belongs to
Ey(R) C Erw)y(R). Since the support of g, ; is compact and using Proposition (3.2.2]
there exists v, ; > 0 such that

sug |D7g,(z)| < *yp7tL§t), Vj € Np.
e

For every t € (0, 1), we define the function g; by setting

+oo 1

gt = Z ﬁgp,t'

p=2 Pt
Remark that we are in the same situation than in the proof of Proposition |3.3.1] since
MaL® a3 QL) ... qL® qN, vie(0,1).

Therefore, as done previously, we get that the function g; belongs to &(y1(R) and is
not in & (G- 27) (), for any open neighborhood Q of x,, and for any pg > 2. This
L PO

construction leads to the following lemma.

Lemma 3.3.4. [63] If D denotes the subspace of Eny(R) spanned by the functions gy,
t € (0,1), then dimD = ¢ and every non-zero function of D is nowhere in Eqpry.

Proof. First, assume there exist ay,...,ay € Cwith ay #0and t; < --- <ty in (0,1)
such that ijzl ange, = 0. Then

Jtn € E{L(thl)}(R) g S(L((l—%)fq\])) (R)

if po is such that (1 — p%)tN > tny_1. This is a contradiction and it follows that the
functions g¢, t € (0,1), are linearly independent.

To conclude, it remains to show that every non-zero linear combination of the func-
tions g;, t € (0,1), is nowhere in Erpyy. Let us fix ai,...,an € C with ay # 0 and
t1 <--- <ty in (0,1), and let us consider the function

N
G = Z QnJt,, -
n=1
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Assume that there exists an open subset 2 of R such that G € &£,(2). We fix
po € N such that z,, € Q and ty_1 < (1 — p%) tn. Again, the function g¢;, belongs to
€{L(tN,1)}(R) for every n < N — 1 and it follows that the function

1 N-1
Oty = a (G Z angtn>

n=1

belongs to E{L(f,N_l)}(Q). From the choice of pg, we have

E{L(tN—l)} (€) € E(L(Uf%)izv)) ()

and this leads to a contradiction with the construction of g . O

The dense-lineability in Eny(R) of the set of functions which are nowhere in Egpry
will be obtained using the condition presented in Chapter [T} Proposition [I.3.4]

Lemma 3.3.5. If P denotes the set of polynomials, then the set of functions of £ ny(R)
which are nowhere in Epry is stronger than P.

Proof. Let us fix a function g of & (R) which is nowhere in £{;7 and P a polynomial.
We proceed by contradiction. Assume that there is an open subset €2 such that g + P
belongs to the class £;373(2). Of course, P belongs also to this class and it follows that
g=(9+P)— P € &uny(Q), hence a contradiction. O

Consequently, we directly obtain the following.

Theorem 3.3.6. [63] Assume that M and N are two weight sequences such that M is
non-quasianalytic and M < N. Then the set of functions of E ny(R) which are nowhere
in Eqppy is c-dense-lineable in Eny(R).

Proof. From Proposition 3.2.21} we know that the set of polynomials is dense in & ) (R).
The result is then a direct consequence of Lemmas [3.3.4 and [3.3.5] Proposition [I.3.4]and
Remark [[L.3.5] 0

Let us end this section by the study of the case of countable unions. As a consequence,
we will get results about Gevrey classes. If (M (™), cy is a sequence of weight sequences,
we say that a function is nowhere in |, ey Eqaremy if its restriction to any open and
non-empty subset 2 of R does not belongs to &y (2) for any n € N.

Lemma 3.3.7. [63] Let N be a weight sequence and let (M™),cn be a sequence of
weight sequences such that M) < N for every n € N. Then, there exists a weight
sequence P such that

M™ <P VYneN and P < N.

Proof. By assumption, we know that there exists a sequence (C, )nen of positive numbers
such that
M™ < Cun Ny, VkeNgneN.

(n)

Then, for every k € Ny, sup { ]Vél“ —ine N} < 400 and we define a weight sequence P

by setting
M(")
P, ::sup{ le :nEN}, keNp.

n
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It is clear that M(™ < P for every n € N. Let us now show that P <t N. If we consider
p > 0, there exists N € N such that p > % for every n > N. We get that

M™ < Cun Ny < CopNi, Vk €N

if n > N. Moreover, if n < N, the assumption M < N gives a constant D > 0 such
that
M™ < Dp*Ny, Vk €Ny, ¥n < N.

It follows that the constant C':= max {1, max{cgn :n < N}} > 0 is such that
Pkngka, Vk € Np.

This means that P << N. Finally, it is straightforward to see that the sequence P is
log-convex. This leads to the conclusion. O

This Lemma and the results obtained previously lead directly to the following propo-
sition.
Proposition 3.3.8. [63] Let N be a log-convex weight sequence and let (M), cn be
a sequence of weight sequences such that M™ < N for every n € N. If there is ng € N
such that the weight sequence M) is non-quasianalytic, then the set of functions of
Ew)(R) which are nowhere in \J, o Eqpremy is prevalent, residual and c-dense-lineable
Proof. From Lemma there is a log-convex weight sequence P such that

U S{Mm)}(Q) - S{P} (Q) - g(N)(Q)

neN

neN

for every open subset Q of R. Moreover, since the weight sequence M) is non-
quasianalytic and M) < P the weight sequence P is also non-quasianalytic. The
result follows then directly from Propositions [3.3:2] [3:3:3] and Theorem [3.3.6] O

As mentioned before, an important example of ultradifferentiable classes of Roumieu
type is given by the classes of Gevrey differentiable functions of order o > 1. They
correspond to the weight sequences

My = (k")a, keNp.

Remark that for every a > 1, the class £~} (R) is non-quasianalytic. Moreover, for
every «, 3 such that 1 < 8 < «, we have

Erwyry (R) € Erne) (R).
In 1999, Schmets and Valdivia [128] proved the following result.

Proposition 3.3.9. [128] Let o > 1. The set of functions of Ex1ye)(R) which are
nowhere in Egnsy for every B € (1, ) is residual in E(gryay(R).

This result can be seen as a consequence of Proposition applied to the weight
sequences M (™ (n € N) given by

M™ = (k)P ke N,,

where (8,,)nen is an increasing sequence of (1, «) that converges to a.
Here is a direct consequence of Proposition [3.3.8 which completes the result of
Schmets and Valdivia given in Proposition [3.3.9
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Proposition 3.3.10. [63] Let o > 1. The set of functions of E ke (R) which are
nowhere in Egyey for every B € (1,a) is prevalent and c-dense-lineable in E((rrye)(R).

3.4 Braun, Meise and Taylor classes

In the present section, we handle the same kind of questions than previously but in
the context of non-quasianalytic classes of ultradifferentiable functions which have been
introduced by Beurling [36], see Bjorck [38] for more details. They pointed out that the
smoothness of a C> compactly supported function can also be measured using decay
properties of its Fourier-Laplace transform and weight functions w. This method was
modified by Braun et al. [43] who showed that these classes can also be defined by the
decay properties of their derivatives through the Legendre(-Fenchel-Young) transform
of the function ¢ — w(e?). It is in this context that we will work in this section.

In this section, we will first define classes of ultradifferentiable functions as introduced
by Braun et al. [43] and give their first properties. We will then present their dual space.
This characterization will be used while studying inclusions between classes of Roumieu
and Beurling type. Finally, we present generic results about functions which are in a
given Beurling class but nowhere in a given Roumieu class.

3.4.1 Definition and first properties

Definition 3.4.1. [43] A function w : [0, +00) — [0, +00) is called a weight function if
it is continuous, increasing and satisfies w(0) = 0 as well as the following conditions:

() there exists L > 1 such that w(2t) < Lw(t) + L, t > 0,

+o0 w
(B) /1 #dt < 400,

(7) log(t) = o(w(t)) as t tends to infinity,
(0) pw it w(et) is convex on [0, +00).
The Legendre(-Fenchel-Young) transform of ¢, is defined by
(@) = supfzy — pu(y) 1y >0}, 2 >0.

Let us now introduce function spaces of Beurling and Roumieu type associated with
a weight function w. For a compact subset K of R" and every m € N, we define the
space E7(K) as the space of functions f € C*°(K) such that

1

115 i= sup sup [D*f (o) exp (= -l ) < +x.
aeNj ze K m

Clearly, it is a Banach space.

Definition 3.4.2. If w is a weight function and if € is an open subset of R", we define
the space £(,1(Q2) of w-ultradifferentiable functions of Roumieu type on § by

E () == {f €C>(Q) : VK C Q compact Im € N such that || f[|%.,, < +oo}.
It is endowed with the topology given by the representation

Ern(Q) = proj ind ETM(K),
(@) =prof inq

where K runs over all compact subsets of 2.
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Definition 3.4.3. If w is a weight function and if € is an open subset of R", the space
E(w) () of w-ultradifferentiable functions of Beurling type on € is defined by

Ew)(2) == {f €C™(Q) : VK C Q compact ,Vm € N, p% . (f) < —|—oo},

where for every compact subset K of R" and every m € N

Pitm(f) = sup sup [D”f(x)|exp <_ms0$ ('Z')) |

aeNj zeK
We endow the space & (€2) with its natural Fréchet space topology.

As done in the case of Denjoy-Carleman classes, when a statement holds both for
the space £, (€2) and the space £} (), we will write £,;(€).

Remark 3.4.4. Fix a > 1 and consider the weight function w(t) = t*/® and the weight
sequence M = ((k!)*)ken,- It is well known that for every open subset  C R", the
equality
Ew () = Enn ()

holds as locally convex spaces. In particular, the space £y} (£2) corresponds to the space
of Gevrey differentiable functions of order a on 2. However, in general, the definitions of
ultradifferentiable functions using weight sequences or weight functions lead to different
classes. We refer to Bonet et al. [42] for a complete study of the comparison of the two
approaches.

Given a weight function w, the property («) and the convexity of ¢} lead to the
following result.

Proposition 3.4.5. [[3] Let Q be an open subset of R" and w be a weight function.
The space £.,)(Q2) is an algebra for the pointwise multiplication of functions.

Proof. Let f,g € £, (2) and let K be a compact of . Then, there exist C1,Cy > 0
and my,mo € N such that

1
sup [ D f(z)| < Cyexp <<Pl(m1|al)>
reK ma

and

1 *k
sup [D*g(a)] < Caexp (mmzmn)
zeEK mo

for every a € Njj. Leibnitz’ rule gives

D) < 3 (Z)Dﬁﬂmnm-ﬁg(x)

B«

IN

5 (§) crcaenn (o (eLmisl) + ool - )

Bla

for every x € K and every a € Ny, where m = max{m;j, ma}. Moreover, since ¢} is
convex, we have ¥ (A\t) < Ap* (t) for every A € [0, 1], hence

18| la — B

wi(mlBl) < m@i(mla\) and @, (mla = f) < ol

i (mlal).
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Therefore,

IN

sup [D(fg)(x)]
reK

1
C, 052l exp < @Z(m|a|)>

m

IN

1
C1Caexp <Oé| + @Z(mm)) :
m

To conclude, let us remark that since w is continuous and increasing, the condition («)
provides a constant L > 0 such that

Pu(+1) < L(1+ pu(x))

for every x > 0. Then, an easy computation shows that

oL(y) —y > Ly}, (%) - L

for every y > 0. By taking y = mL|a|, we get

sup [D(0)@)] < CiCoexp (7 (mLlal + Loz (mla)) )

TeK

1 1
< CiChewp (3 + pilntla) )

The proof of the Beurling case is similar. O
The next result of Braun et al. [43] gives the non-quasianalyticity of the space £,;(€2).

Proposition 3.4.6. [[3] Let Q be an open subset of R" and w be a weight function.
The space £.,)(Q2) contains non-zero functions with compact support.

Therefore given an open subset Q of R” and a compact K C (, it is possible to find
a function in &y, (R™) with compact support included in € and identically equal to 1
on K [43]. Such a function can be obtained with a technique similar to the one used in

Corollary

3.4.2 Dual space

When dealing with ultradifferentiable classes defined using weight functions, it is gen-
erally difficult to construct an explicit function with some expected properties. That
is the reason why, given a weight function w, we will need the characterization of the
strong dual spaces of £(,}(2) and &(,(€2), respectively denoted & ,(€2) and £, ().
Let us first introduce weighted spaces of entire functions, where we denote the space of
entire functions on C" by H(C").

Definition 3.4.7. For each compact set K of R", the support functional of K is defined
as

hg :R" 5> R:x— hg(z) :=sup < z,y > .
yeK

For A > 0, let
A(K, ) = {f € H(C) : [flg = Sup. |f(2)|exp (—hx (S2) — Aw(|2])) < +OO}
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endowed with its natural topology. We define

Ay () := ind ind A(K, n)
KChneR

and

1
Q) =i jA| K, — ).
A () ind proj ( , n)

—
KCQneN

It is easy to check that A(K,\) is a Banach space, A(,)(£2) is an (LB)-space and
A1 (Q) is a (LF)-space.

The following result was proved by Heinrich and Meise [77] (Theorems 3.6 and 3.7).
Let us mention that the Roumieu case was already proved by Rosner [123] (Theorem
2.19).

Proposition 3.4.8. For each weight function w and each convex open set ) in R™, the
Fourier-Laplace transform

F 1y (Q) = Ay (), F(u) s 2 u (exp(—i < z,2>))

()

is a linear topological isomorphism. The same holds for the Beurling type provided that
w(t) = o(t) as t tends to infinity.

Remark 3.4.9. If w and o are two weight functions such that o(t) = o(w(t)) as t tends
to infinity, then the condition o(t) = o(t) as ¢ tends to infinity is automatically satisfied.

3.4.3 Inclusions between Braun, Meise and Taylor classes

Following [127], we define the following relations on weight sequences:

w=o <<= o) =0(w(t)) ast — +o0,
w~o < w=ocand o X w,
wdo <= o(t) =o(w(t)) as t = +o0.
Of course, if w < o, we have &,)(Q2) C &5)(Q2) for any open subset Q of R". Inclusion

between Roumieu and Beurling classes follows also directly from the definitions and is
given by the following result of Braun et al. [43].

Proposition 3.4.10. [/3] Let Q2 be an open set of R™. Ifw <o, then the space Eq.,3(Q)
is continuously included in E,)(£2).

Proof. Since w < o, for every € > 0, there is C. > 0 such that
o(t) <ew(t)+ Ce. Vt>0.

Consequently, we have
elo) < ep; (1) +
€ €
for every > 0. This gives directly the conclusion. O

In this section, we will show that if w < o, the inclusion given by the previous
proposition is even strict. We will use the characterization of the dual spaces. Let us
also recall the following proposition that follows from Hérmander [78] (Theorem 4.4.2).
See Bonet and Meise [41] (Proposition 12).
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Proposition 3.4.11. For every n € N, there exist C1,Cs > 0 such that for every
plurisubharmonic function u : C" — R and every a € C", there exists f € H(C") that
satisfies

f(a) = exp ( inf u(v) —nlog (1+ |a|2)>

lv—a]<1

and

|f(2)] < Crexp ( sup u(v) + Cylog (1+ |z|2)> , VzeC".

lv—z|<1

Remark 3.4.12. Let w : [0, +00) — [0, +00) be an increasing continuous function such
that the function ¢, : t — w(e?) is convex on [0,+00). Then its radial extension w
defined on C" by @(z) := w(|z|) is continuous and plurisubharmonic on C". Indeed,
it suffices to note that @w(z) = ¢, (log(|z|)) for every z € C™. In particular, the radial
extension of any weight function is plurisubharmonic on C". We refer the reader to
Hormander [78] for more information about theory of plurisubharmonic functions.

In what follows, we will also use the following results of Braun et al. [43] (Lemma
1.7).

Lemma 3.4.13. Let w be a weight function and assume that g : [0,400) — [0, +00)
satisfies g(t) = o(w(t)) as t tends to infinity. Then, there exists a weight function T such
that

g(t) = o(7(t)) and 7(t) = o(w(t))
as t tends to infinity.

Let us finally recall the localization theorem of De Wilde (see for example [95],
Corollary 5.6.4).

Theorem 3.4.14 (De Wilde). Let E be a Baire topological vector space and let the
Hausdorff topological vector space F be the reduced inductive limit of a sequence of
strictly webbed topological vector spaces F,, n € N. Let T : E — F be a closed linear
map. Then there exists n € N such that T(E) C F,, and the map E — F,, induced by T
18 continuous.

The proof of our next result is inspired by the proofs of Propositions 13 and 18 in
Bonet and Meise [41].

Proposition 3.4.15. [63] Let w and o be two weight functions such that w <o. If Q is
a convex open subset of R™, then Eq,,1(Q) is strictly included in £)(L2).

Proof. Up to a translation, we can assume that 0 € Q. Suppose that £, () = &) ().
Then, the continuity of the inclusion £, (2) € £)(R2) and the closed graph theorem
imply that £y () = £, () as locally convex spaces. Consequently they have the
same dual spaces, i.e. by Proposition the spaces Ay} (22) and A(,)(€2) coincide as
locally convex spaces. In particular, the inclusion

Ay (@) = A5 ()
is continuous. It follows that for every compact K C 2, the inclusion
 rw 1
projA <K, ) — A0)(Q)
meN m
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is also continuous. Let us fix a compact subset K of Q2 such that 0 € K. Now, we apply
Theorem [3.4.14] to get a compact K’ of 2 and a natural number my, such that

1
pI‘OjAw (K7 > - A (K/7 m{))
— m
meN

continuously. Therefore, there are my € N and C' > 0 such that

o w s w 1
T, < Ol o Y5 € proid (Km) (3.2)

Since o(t) = o(w(t)) as t tends to infinity, Lemma [3.4.13| gives a weight function 7
such that o(t) = o(7(t)) and 7(¢) = o(w(t)) as ¢ tends to infinity. Next, we consider the
radial extension T of 7 to C™ defined by

T(z) :=71(|z]), 2z € C".

As mentioned in Remark [3.4.12] this function is plurisubharmonic on C". For every
J € N, we apply Proposition [3.4.11| with a; = (4,0, ...,0) to get a function f; € H(C")
such that

las) =exp (| it 7(0) ~ nlog(1 + 7)) (3:3)
and
|fi(2)| < Cyexp < sup T(v) + Czlog(1l + |z|2)> , VzeC". (3.4)
jo—zl<1

Let us first show that for every j € N, the function f; belongs to projA* (K7 %)
P
meN
We know from condition () that there is L > 0 such that
T(1+[2]) <7(2l2]) < L7(|2]) + L

for every |z| > 1 since 7 is an increasing function. Moreover, using the continuity of T,
there is Dy > 0 such that 7(1 + |z|) < Dy if |z| < 1. So, we have

T(1+|2|) < L7(|z]) + L+ Dy, VzeC". (3.5)
Consequently, using condition (v), there exists Ds > 0 such that
2C5log (1 + |2]) < L7(|2]) + L+ Da, Vze€C™. (3.6)
If we use , and , we get

lfi(z)] < G eXP( sup 7(v) + C2 10%(1+|Z|2)>
jo—zl<1
< Crexp(t(1+|z]) +2C log(1 + |z]))
< Crexp(L7(|z]) + L+ Dy + L7(|z|) + L + D2)
< Dsexp (2L7(|2]))
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for every z € C", where we have set D3 := C exp (2L + D1 + D»).
Moreover, since 0 € K, we have hi(x) > 0 for every 2z € R". Therefore, for every
m € N fixed, we get

[fili,.o = sup [fj(z)]exp <—hK(%z) - w(|2|))
" zeCn

m

IN

D3 sup exp (2LT(|2|) — hg(Sz) — w(|z|)>
zeC™ m

< Ds sup exp (2LT(|Z|) - w(z|)>
zeCn m

for every j € N. We know that 7(¢) = o(w(t)) as t tends to infinity and consequently,

the function x € [0, +00) +— 2L7(z) — ©) s bounded from above. This implies that

1
f; € projA® (K, ) , VjeN.
meN mn

In particular, we have also got the existence of a constant D > 0 such that
filf SD ViEN. (3.7)
On the other hand, 7 is increasing and consequently we have

inf  F(v)>7(j -1
wggﬁglfhﬁ__TU )

for every j € N. Moreover, we have that Ja; = 0 for every j € N. Using (3.3)), the
condition («) and the assumption that 7 is increasing, we get then

1fillfrmy = |fi(ag)]exp (= b (Saz) — moo(j))

> exp (7(j — 1) —nlog(1 + j*) — mgyo(j))
> exp (T(‘;) —2nlog(l+j) — mgo(j))
> exp (T(Lj) —1-2nlog(l+4j)— méa(j))

- oo (B (1 - a2

for every j > 2. Moreover, from the condition (v) and the assumption o(t) = o(7(t)),

the term

L log(1 + j j
| +2Ln0d f])+n%LUO)

7(J) () ()

converges to 0 as j tends to infinity and therefore, there is J € N such that

o ()
|fj‘K’,m’ > exp <2L>

for every j > J. Combining this with the relations (3.2)) and , we finally get
7(J)
—22 |} <CD
()-
for j > J. Taking j — 400, we obtain a contradiction. O

54



3.4. BRAUN, MEISE AND TAYLOR CLASSES

3.4.4 Generic results

In this subsection, we handle the same kind of questions of genericity than those pre-
sented in the case of Denjoy-Carleman classes.

Definition 3.4.16. Given a weight sequence w, we say that a function is nowhere in E¢.,)
if its restriction to any open and non-empty subset 2 of R™ never belongs to £g.y(£2).

We will obtain generic results about the class of functions which are in £, (R™) but
nowhere in &y,;.

Unlike the case of weight sequences, if w <1 o, we have obtained the strict inclusion
of £(,1(2) into £, () without exhibiting a particular function. The construction of a
function of &) (€2) which is nowhere in £,y is therefore more complicated, but it will
be obtained thanks to the following results.

Lemma 3.4.17. [63] Let w and o be two weight functions such that w <\o. Fiz x € R",
r,m € N and define b, := B(x, %) Then the set

E(x,r,m) = {f € Ey(R™) = sup sup [D*f(y)|exp (—:nsoll(mlalo < +OO}

aeNy yEby
is a proper vector subspace of ) (R").

Proof. Tt is clear that the set E(x,7,m) is a vector subspace of £,)(R"). Moreover,
Proposition [3.4.15| provides a function f € &4 (br) \ Efwy (br) so that there is a compact
K included in b, such that

@ 1 *
sup sup |D* £(y)| exp (sow<m|a|>) — too
aeNp yeK m

for every m € N. Multiplying f by any function of &) (R") with compact support and
identically equal to 1 on K, we get a function of £)(R™) which does not belong to
E(x,r,m). This gives the conclusion. O

Proposition 3.4.18. [63] Let w and o be two weight functions such that w < o. The
set of functions of £,)(R™) which are nowhere in £,y is prevalent in &5 (R™).

Proof. Consider a countable dense subset {x, : p € N} in R". The set of functions of
E(s)(R™) which are somewhere in £,y is given by

U U U Eyp.r,m),

peENreNmeN

using the notation of Lemma [3.4.17] As done previously, since any countable union of
shy sets is shy ([82]), it is enough to prove that E(z,,r, m) is shy for every p,r,m € N.
Remark that E(xp,,r,m) is a Borel subset of £,)(R"). Indeed, we have that the set
E(zp,r,m) is the union

U {f €&y R™) : sup sup |DYf(z)|exp (;apf}(m|a|)> < s},

seN €N zeb, .

where b, , denotes the open ball B(z,,r), and an easy computation shows that every
set of the countable union is closed in &)(R™). We get the conclusion using Lemma
[[.2.7 and Lemma O
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A prevalent subset is not empty (it is even dense in the considered space, see Propo-
sition [1.2.5)) and therefore, we get the following corollary.

Corollary 3.4.19. [63] For every weight functions w and o such that w <o, there exists
a function of £)(R™) which is nowhere in &,y .

Proposition 3.4.20. [63] Let w and o be two weight functions such that w <ta. The
set of functions of £,y (R™) which are nowhere in £,y is residual in ) (R™).

Proof. From the previous proof, we know that the set of functions of £¢)(R™) which
are somewhere in £y, is a countable union of sets closed in S(J)(R"). Moreover, each
closed set has empty interior since it is included in E(x,, r,m) which is a proper vector
subspace of the locally convex space &) (R"). O

Proposition 3.4.21. [63] Let w and o be two weight functions such that w < o. The
set of functions of £)(R™) which are nowhere in &y, is lineable.

Proof. Since w < o, using Lemma [3.4.13] we get a weight function w(*) which satisfies
w dw® g 0. Repeating this procedure, we construct recursively a sequence (w(p))peN
of weight functions such that

waw g quP) QP g o

for every p € N. For every p € N, Corollary [3.4.19| gives a function g, € &, ep1)(R")
which is nowhere in £, emy. In particular, every g, is in €)(R"). Moreover, the
functions g,, p € N, are linearly independent. Indeed, assume there exist a1,...,an € C

with ay # 0 and p; < --- < py such that Zjvzl @;jgp; = 0. Then

B ] N—-1

Ipn = Q;j9p;
PN T oy < 79p;
Jj=1

so that gpy € Eg,eeny(R") since E(w(zpj+1>)(R") C Eyerny (RY) for every j < N —1,
which is impossible.

With the same technique, let us also show that every non-zero linear combination
of the functions g,, p € N, is nowhere in &,y. Let a1,...,an € C with ay # 0,

p1 <---<pny and
N
G:Zajgp]..
j=1

If there is an open set (2 such that G belongs to E(,}(2) C &Epery1(€2), then the
function

1 N-1
n = oy |6 2
j:

belongs to &£ {w@pN)}(Q), which is impossible. This concludes the proof. O

As for the case of classes of ultradifferentiable functions defined using weight se-
quences, we have the following result of density.

Lemma 3.4.22. [77] For each weight function w such that w(t) = o(t) as t tends to
infinity and each open subset Q of R", the polynomials form a dense subset of £, (£2).
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Consider two weight functions w and o such that w<io. As done previously, it is easy
to see that the set of functions of £,)(R") which are nowhere in £, is stronger than
the set of polynomials. From the last lemma, using Remark [3.4.9] the set of polynomials
is dense-lineable in &) (R™). Therefore, we can apply Proposition and Remark
[I:375] to obtain the following result.

Proposition 3.4.23. [63] Let w and o be two weight functions such that w < o. The
set of functions of £)(R™) which are nowhere in &y, is dense-lineable in E)(R").

3.5 More with weight matrices

Recently, Rainer and Schindl [T20] proved that &,(€2) can be represented as locally
convex space through intersections and unions of ultradifferentiable classes defined by
means of weight sequences. More precisely, given a weight function w, we define a family
of associated weight sequences M), [ > 0, by setting

W _ Lo ,
M_j = €xp (lQPW(l‘])) , J€ NO .
Then, as it will be stated in Proposition [3.5.4] we have

g{w} m U S{M(l)} and 5(w) ﬂ & M(l))

KCQI>0 >0

Following this representation, Rainer and Schindl [I20] have introduced new spaces of
ultradifferentiable functions using weight matrices.

Definition 3.5.1. A weight matriz M = {M® : [ > 0} is a family of log-convex weight
sequences M) = (M](l))jeNO satisfying Mél) =1land MO < MW if0 <1<V, ie.
M;l) < M;l,) for every j € No.

D)

If w is a weight function and if Mj( = exp (%@Z(l])) for every j € Ny, [ > 0, then

M= {MW : >0} is a weight matrix. We say that it is the weight matriz associated
to w.

Before introducing classes of ultradifferentiable functions defined with weight matri-
ces, let us recall that, given a weight sequence M, Eps 5, (K) denotes the space of functions
f € C®(K) such that

D f(x
1A, = sup sup LPL@

aeNy ze K hla‘M\al

Definition 3.5.2. Let M be a weight matrix and let Q be an open subset of R™. The
space Eqagy () of M-ultradifferentiable functions of Roumieu type on Q is defined by

Eay (2 ﬂ U U Epw (K

KCQI>0h>0

Similarly, the space E o () of M-ultradifferentiable functions of Beurling type on € is

defined by
Emy () 1= [ Earan (@
1>0
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Those spaces are endowed with their natural topology through the representations

Ermy () = proj ind ind Eyyay ,(K) and Eag)(Q2) = proj proj proj Epy p(K).
kca >0 h>0 Kca >0 h>o

Remark 3.5.3. Intersections of non-quasianalytic ultradifferentiable classes have al-
ready been studied by several authors. Among others, let us mention Chaumat and
Chollet [52], Beaugendre [29] [30] and Schmets and Valdivia [129, [130].

If M is a weight matrix, we have assumed that M® < M) if | < [’. Therefore, all
the occuring limits are countable. In the Roumieu case, we can restrict ourselves to the
inductive limits over [ € N and A € N, and we can take a countable covering of 0 by
compact sets. In the Beurling case, we take | = % for n € N, h € N and we take again
a countable covering of € by compact sets. Therefore, the space £ ) (f) is a Fréchet
space.

As done previously, if a statement holds for both Efr(©2) and E ) (2), we will
write 5[M] (Q).

Among the spaces E[xq)(£2), we recover the spaces &31(§2) defined with weight se-
quences by taking M = {M }. Moreover, the spaces &}, (£2) defined with weight functions
are also recovered, as proved by Rainer and Schindl [120].

Proposition 3.5.4. [120] Let w be a weight function and denote by M its associated
weight matriz. For any open subset Q of R",

Ew) () = E M (Q)
as locally convex spaces.

Let us mention nevertheless that in [I20], it is proved that there exist weight matrix
spaces Eqaqy(R) and E gy (R) which don’t coincide with £y (R), Erwy(R), Eary(R),
E(w)(R) for any weight sequence M and any weight function w.

As done in the case of weight sequences and weight functions, let us define a relation
on weight matrices, following [120].

Definition 3.5.5. Let M and N be two weight matrices. We write M <N if M < N
for every M € M and every N € N.

Of course, M <N implies Erpqy () C Eny ().

Definition 3.5.6. We say that a function is nowhere in Ejpqy if its restriction to any
open and non-empty subset {2 of R never belongs to g (£2).

As in the previous sections, if M <1 N, we wish to characterize the size of functions
of Eny(R) which are nowhere in . Let us start by the following lemma, inspired
by Schindl [127] (Lemma 9.4.1).

Lemma 3.5.7. Let M and N be two weight matrices. If M <N, then there exists a
weight sequence L such that

e M <L for every M € M,

e LN for every N e N.
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Proof. By assumption, for every n € N, M q N(1/7) Therefore, there is C,, > 0 such
that

M]( ) < Can(l/ ), Vi eNp.
ni 7

Let us fix A > 1. For every n € N, we choose j,, € N such that C,, < A/». Of course,
we can assume that the sequence (j,)nen is strictly increasing. We define the sequence

L by setting
[ ar(h) : L
L= M; N it 0<yj <y,
\/ M;n)N;l/n) it jn <J <Jnt1-

Let us fix [ > 0. First, let us show that that M® < L. Indeed, let us fix p > 0 and
no > [ such that A < p?ng. If j, < j < jni1 With n > ng, we have

and therefore M;l) < p/L; for every j > jn,.
Secondly, let us show that L < NV, Let us fix p > 0 and let us choose ng € N such
that nio <land A< ,02710- Then, if j is such that j, < j < jp+1 with n > ng, we have

I IC IR TUTS NS P SO R BN ()
Lj=\/M;"’N;7/™ < Onanj < p'N;”.
O

Remark 3.5.8. Since the weight sequences of M and N are all log-convex, we can
assume that L is log-convex by taking its largest log-convex minorant.

Lemma 3.5.9. Let M be a weight matriz. The polynomials form a dense subset of
Em)(Q) for any open subset Q of R™.

Proof. This is clear since we know from Proposition that the polynomials form a
dense subspace of each one of the spaces & pra1))(€2). O

Proposition 3.5.10. Let M and N be two weight matrices such that M <N If there
exists M € M such that M is non-quasianalytic, the set of functions of Enry(R) which
are nowhere in Eaqy is c-dense-lineable.

Proof. Since M <N, Lemma [3.5.7] gives a weight sequence L such that M <1 L for every
M € M and L < N for every N € N. Consider the weight matrix £ = {L}. Then
L <1 N and applying again Lemma we get a weight sequence P such that L < P
and P < N for every N € N. Moreover, remark that since there exists M € M such
that M is non-quasianalytic, L is also non-quasianalytic.

If we use Lemma we get a subspace D of functions of £ py(R) which are nowhere
in &pry. Remark that

Emy(Q) CEy(Q) and Epy () C Eny(Q)

for every open subset 2 of R. It follows that the set of functions of £ (R) which are
nowhere in £,y is c-lineable. Lemma [3.5.9} Proposition [I.3.4 and Remark [I.3.5] give the
conclusion. O
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Before we state a corollary of this result, let us first recall this result of Schindl [127].

Lemma 3.5.11. [127] Let w and o be two weight functions and denote by M and N
their associated weight matrices. If w < o, then M < N.

Let us also observe that Denjoy-Carleman’s theorem implies that £y (€2) contains
non-zero functions with compact support if and only if there exists M € M such that
M is non-quasianalytic. Therefore, given a weight function w and its associated weight
matrix M, since S{W}(Q) contains non-zero functions with compact support, there is
M € M such that M is non quasi-analytic (it is even true for any M € M, see [127]).

This observation, Lemma and of Proposition directly give an improve-
ment of the result [3:4:23] in the case n = 1. The dense-lineability obtained is now
maximal.

Corollary 3.5.12. Let w and o be two weight functions such that w < o. The set of
functions of £ (R) which are nowhere in Eg.y is c-dense-lineable in £,)(R).

We get also the following generalization of the results [3:3.2] and [3.3-3] presented for
weight sequences, and the results [3.4.18] and [3.4.20] for weight functions.

Proposition 3.5.13. Let M and N be two weight matrices such that M <N If there
exists M € M such that M is non-quasianalytic, the set of functions of Enry(R) which
are nowhere in Eqpqy s prevalent and residual in Enry(R).

Proof. The set of functions of £ (R) which are somewhere in g4y is given by

Uy U EC1,m),

leEN ICR meN

where I denotes rational subintervals of R and E(I, I, m) is the set defined by
{f € Eny(R) : 3C > 0 such that sup|D f(z)| < C’ijj(l)7 Vi € No} .
zel

It is direct to check that E(I,I,m) is a vector subspace of &) (R) which is proper using
Proposition [3.5.10, Moreover, it is a Borel subset of £ r)(R) since

E(,1m) = {f € Eun(R) s sup | D7 ()| < sm/ M, Vj € No}
sEN zel
which is a countable union of closed sets in £xr)(R). Lemma gives the prevalence.
Each closed set {f € Ew)(R) : sup,e; [DY f(z)| < sij](l), Vi e No} has empty inte-
rior since it is included in E(I,I,m) which is a proper vector subspace of the locally

convex space Er)(R). The residuality follows. O

Let us end this chapter with a few words about algebrability. It can been obtained
directly using the exponential-like method, up to an additional assumption on the weight
matrix. Given a weight sequence m, we define the sequence m° by setting mg = 1 and

my, = max{m;meq, ...Mq, : &y € Nyay +---+a; =k}, VkeN.

Following Rainer and Schindl [120], we say that a weight matrix M satisfies the property

, 0
(M papy) if for every [ > 0, there is I’ > 0 such that (m(l))Q < m), where m,(cl) = ]V][C",
’ ah
and mg ) = Ml’g! for every k € Ng.
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Proposition 3.5.14. [120] Let M be a weight matriz and let  be an open subset of
R. Then E;pqy () is stable under composition if and only if M satisfies the property

(M papy)-

Moreover, remark that if M is a weight matrix for which there is a non-quasianalytic
weight sequence M € M, then &y (), and therefore g (2), contains the set of
analytic functions on €2 (see Remark [3.2.15]).

Proposition 3.5.15. Let M and N be two weight matrices such that M < N. If
there exists M € M such that M is non-quasianalytic and if M satisfies the property
(M rapy), then the set of functions of Eary(R) which are nowhere in Eqpqy is strongly-
c-algebrable.

Proof. Using Proposition we can consider a function F' of &r)(R) which is
nowhere in Epqy. Let f be an exponential-like function. Assume that there exists
an open subset  of R such that g = fo F belongs to Epuy (2). By Lemmall.3.12] there
is an open subset V C F(V) on which f is invertible. Hence, F = f~! o g belongs to
Epmy(F~1(Q) NV) using Proposition 3.5.14l This is a contradiction and the conclusion
follows from Proposition [1.3.13] O

In the case of a weight matrix associated with a weight function w, the property
M rapr) can be written
{FdB}

C >0 E'to >0: w()\t) < C)\w(t) vt > to, V> 1. (Cko)

So, we get that £¢,y(2) is stable under composition if and only if w satisfies () [120].
This result had already been proved by Ferniandez and Galbis [6§].

Corollary 3.5.16. Let w and o be two weight functions such that w < o. If w satis-
fies (), then the set of functions of £)(R) which are nowhere in Ey,y is strongly-c-
algebrable.

Finally, in the case of weight sequences, we obtain this last result.

Corollary 3.5.17. Assume that N and M are two weight sequences such that M is
non-quasianalytic and M <A N. If m° < m, where my, := % for every k € Ny, then the
set of functions of £ ny(R) which are nowhere in Eqary is strongly-c-algebrable.

61






Part 11

Revisiting S” spaces with
wavelet leaders






Chapter 4

Preliminaries

Contents
M1 Tntroductionl . ... .. ... ... 65
4.2  Hausdorff dimension|. . . . . . . ¢« ¢ ¢ i i ittt e e e 69
E3 Waveles . . - .« v v v vt e 71
4.4  Robustness criterial . . . . . . . ¢ i i i i e e e e e e e . 74
4.5 Besov Spaces and the Frisch-Parisi formalism| . .. .. .. 75
4.6 UUSPACES| .« v v v e e e e e e e e e e e e e e e e e e e e e e e e 76
4.7 Wavelet leaders and the associated formalism| . . . .. .. 80

4.1 Introduction

Multifractal analysis of functions started to be developed by physicists in the context of
fully developed turbulence. More precisely, in the 1940’s, Kolmogorov predicted that the
scaling function n(p) of the velocity field v of a turbulent fluid included in a domain U,
defined by
[v(z + h) — v(z)[Pdx ~ |h|"®) when |h| — 0,
U

should be linear: n(p) = %. Subsequent experiences showed that 7 is actually a strictly
concave function, which is believed to be independent of the considered fluid and central
to the understanding of turbulence. This problem was addressed by Kolmogorov and
Mandelbrot among others. Parisi and Frisch [I17] proposed an explanation by inter-
preting the nonlinearity of n as the signature of the presence of several kinds of Holder
singularities (the regularity of the velocity of a turbulent fluid fluctuates widely from
point to point). More precisely, they proposed a formula which is expected to connect
together the scaling function and the singularities through a Legendre transform. This
phenomenon of large variability in the local regularity received the name multifractality.
Let us be more precise about this notion of regularity.

Definition 4.1.1. Let us fix zp € R™ and a > 0. A locally bounded function f : R" — R
belongs to the Holder space C*(zg) if there exist a constant C' > 0, a polynomial P of
degree strictly less than « and a neighborhood V' of xg such that

|f(z) = P(x — x0)| < Clz — zo|¥, VYaxeV.
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Remark that one has C**¢(xg) C C%(xg) for any £ > 0. We consider then the
following definition.

Definition 4.1.2. The Hélder exponent of f at xq is defined by
hy(zo) =sup{a >0: f € C%xo)}.

The Holder exponent hy(zg) gives information about the local regularity of f at x.
In particular, the smaller its value is, the less regular the graph of f looks around x.

Some functions have a Holder exponent which is the same at every point. An example
of such a function is given by the Weierstrafl function, defined by

“+oo
W:zeRw— Z a" cos(b"mx).

n=0

for a € (0,1) and b > 0 such that ab > 1.

Ml

Figure 4.1: The Weierstrafl function with parameters a = 0.5 and b = 3

This application is known as the first published example (1872) of a function that is
continuous everywhere but nowhere differentiable [140]. It is among the first examples
which contradicted the idea of the time that every continuous function is differentiable
except on a set of isolated points. Hardy [76] proved the following result.

Theorem 4.1.3. [76] The Weierstraf§ function is continuous but nowhere differentiable.

Moreover, its Hélder exponent equals flloga at every point.
ogb

Nevertheless, for an arbitrary locally bounded function, the behaviour of the function
hy can be very erratic. In particular, from a practical point of view, it is very difficult
to estimate the Holder exponents of a function obtained from real-life data. Moreover,
the knowledge of the function h; does not give a concrete idea of the distribution of the
singularities of f and their importance. This is why iso-Holder sets

ET(h) = {zo € R" : hy(x0) = h}

are usually considered. In order to give some precise meaning to their importance, one
has to find a notion of “size”. The Lebesgue measure is not the appropriate notion in
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this context: in general, one iso-Holder set has full Lebesgue measure and the others
have a vanishing one. One should therefore use a notion a “size” which allows to distin-
guish sets with Lebesgue measure zero. Such a tool is supplied by the different “fractal
dimensions”: in general, those dimensions are the box dimension or the Hausdorff di-
mension. Nevertheless, it appears that most functions of interest or sample paths of
stochastic processes have dense iso-Holder sets. The box dimension gives dimension n
to any dense set of R and therefore, this notion does not allow to distinguish them.
This explains why the Hausdorff dimension is considered. This last notion is recalled
briefly in Section This leads to the following definition.

Definition 4.1.4. The multifractal spectrum of a locally bounded function f: R" — R
is the function

ds :[0,+00] = {—o0}U[0,n] : h s dimyE’ (h),
where dimy denotes the Hausdorff dimension.

The multifractal spectrum of a function f gives a geometrical idea about the dis-
tribution of the singularities of f. Note that d; is defined on [0, 4+00] since hy(zg) can
be infinite. Furthermore, we use the convention that dimy () = —oo so that d; takes
values in [0,n] U {—oo}. Let us mention that the multifractal spectrum is sometimes
called the Hélder spectrum or the spectrum of singularities.

A very famous example of a function for which the Holder exponent is not constant
is given by the Riemann function, defined on R by

2

= sin(n?mrx)
R(z) = Z —
n=1

Many authors worked on the multifractal properties of this function, see [72] [76] for
example, but the computation of the multifractal spectrum of the Riemann function was
completed by Jaffard [85].

0.25 0.5 0.75 1 1.25 1.5

(a) (b)

Figure 4.2: The Riemann function (a) and its multifractal spectrum (b)
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Theorem 4.1.5. [85] The multifractal spectrum of the Riemann function R is given by
4h—2 ifhe [}, 2],
dr(h) =14 0 ifh=3,

—00 otherwise.

Although the multifractal spectrum of many mathematical functions can be directly
determined from their definition, for real-life signals, as mentioned, before the Holder
exponent is expected to be very erratic and the numerical determination of their Hélder
regularity is not feasible. Therefore, one cannot expect to have direct access to their
spectrum. Moreover, since the definition of the multifractal spectrum involves successive
intricate limits, there is no algorithm to directly obtain the spectrum dy associated with
a signal f. In such cases, one has to find an indirect way to compute the spectrum.
A multifractal formalism is a formula which is expected to yield the spectrum of a
function from “global” quantities which are numerically computable. Mathematically,
these quantities are interpreted as indicating that the signal belongs to a certain family
of function spaces. The validity of such formulas never holds in complete generality.
However, three types of verification can be performed [91]:

- The multifractal formalism is proved under additional assumptions on the signal
or even for specific functions.

- The multifractal formalism is proved for a generic subset of the function space
considered.

- The multifractal formalism is shown to yield an upper bound of the multifractal
spectrum of any (uniformly Holder, see Section function.

Several multifractal formalisms based on the wavelet coefficients of a signal have been
proposed to estimate its multifractal spectrum [3] 86} [88] [O1]. The starting point of all
these methods is a wavelet characterization of the Holder exponent [91] (see Section.
They share the advantage of being easy to compute and relatively stable from a numerical
point of view; however, they require the assumption of a uniform Hoélder regularity. The
most widespread of these formulas is the so-called thermodynamic multifractal formalism,
proposed by Parisi and Frisch (presented in Section , and which is based on the
computation of scaling exponents derived from the LP norm of increments of the data,
followed by a Legendre transform. This formalism presents two disadvantages: firstly,
by construction, it can only hold for spectra that are concave and secondly, it can only
yield the increasing part of the spectrum.

The following possibilities have been proposed in order to meet these two problems.
Regarding the first one, the use of function spaces, based on large deviating estimates of
the repartition of wavelet coefficients (the so-called S¥ spaces [14], see Section allows
to deal with non-concave spectra. Regarding the second problem, it has been proposed
to replace the role played by wavelet coefficients in the analysis by wavelet leaders (which
are local suprema of wavelet coefficients, see [92] [94] and Section . In particular, it
has been shown that a Legendre transform formula based on such quantities allows to
recover the decreasing part of the spectrum for many multifractal models (cascades,
Lévy processes... see [2, [16], O1]).

Our purpose in this part of the thesis is to combine both approaches and define a new
formalism derived from large deviations based on statistics of wavelet leaders. We show
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that, as expected, this method allows to access to both the increasing and decreasing
parts of non-concave multifractal spectra.

In Section[4.2] we recall the definition and the first properties of the Hausdorff dimen-
sion. In Section [.3] the notion of wavelets is presented as well as the characterization of
the Holder exponent in terms of decay rates of wavelet coefficients. The formalism based
on the Frisch-Parisi conjecture is recalled in Section [£.5] We also give the definition and
the first topological properties of the S¥ spaces, as well as the corresponding multifractal
formalism in Section Finally, in Section [£.7] we define the wavelet leaders of a signal
and we present the associated formalism.

Let us end this section by mentioning that the Hélder exponent does not fully describe
the local behavior of a function. For example, it does not take into account the oscillating
comportment of a function in the neighborhood of a point: at 0, the function “cusp”

defined by x +— |z|* and the oscillating function x +— |z|* sin (| ‘) have the same Holder

exponent. Other regularity exponents have been introduced to complete the information
given by the Holder exponents, such as the oscillating exponents [4], [93] and the local
Holder exponents [131] for example.

4.2 Hausdorff dimension

In this section, we present the notion of Hausdorff dimension (for more details, we refer
the reader to [66]). A first step consists in the introduction of the Hausdorff measures.

Definition 4.2.1. Let B C R™ and for any € > 0, let A.(B) denote the collection of all
countable coverings of B by sets with diameter less than . For every s > 0 and £ > 0,

one sets
HE(B) = inf diam(B
E( ) J ]€N€A (B Z

Since H{ is a decreasing function with respect to ¢, one can define the s-dimensional
Hausdorff measure of B by

H*(B) =supHI(B) = lim H:(B).

e>0 e—07F

This limit exists for any subset B of R™, but the limit value can be (and is usually) 0
or +o00. For every s > 0, the function H?® defines an outer measure. Moreover, it can be
shown that its restriction to the Borel subsets of R" is a measure.

For subsets of R"™, the n-dimensional Hausdorff measure is related with the n-
dimensional Lebesgue measure. More precisely, we have

7.(.n/2

H"(B) = ¢, L (B) where ¢, = T2

Moreover, Hausdorfl measures behave nicely under translations and dilations in R".
Given a subset B of R", A > 0 and = € R", we set

AMB={\ : z€B} and B+z={b+x:b€ B}.
As might be expected, we have

HY(AB) = N*H*(B) and H*(B +z) = H*(B).
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Such scaling properties are fundamental in the theory of fractals.

Let us remark that for any subset B of R", any € > 0 and any 0 < s < 7, we have

"B
() > B,
ev—s

Taking € — 0, we get the following important result.
Proposition 4.2.2. Let 0 < s <.

1. If H*(B) < 400, then HY(B) = 0.

2. If HY(B) > 0, then H*(B) = 4o0.

Thus, a graph of H°(B) with respect to s shows that there is a critical value of s for
which H*(B) jumps from +oco to 0. The critical value is called the Hausdorff dimension
of B.

+00

0 dimy(B) s

Figure 4.3: The Hausdorff dimension of B

More precisely, we have the following definition.

Definition 4.2.3. The Hausdorff dimension dims (B) of a subset B of R" is defined
by
dimy(B) = sup{s > 0 : H*(B) = +0o0}.

We use the convention that sup()) = —oo so that dimy () = —occ.

If s = dimy/(B), then H*(B) can be 0 or 400, or can satisfy 0 < H*(B) < +oo. Let
us now give some properties of the Hausdorff dimension.

Proposition 4.2.4.
1. If AC B CR", then dimy(A) < dimy(B).
2. If B CR", then dimy (B) < n and if Q is an open subset of R™, then dimy (Q) = n.
3. If (By)ken 1s a sequence of subsets of R™, then

dimy (ﬂ Bh> = sup (dimH(Bk)).

keN keN
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4. If B is a countable subset of R", then dimy(B) = 0.
5. If B CR" satisfies dimy(B) < 1, then B is totally disconnected.

It can also be shown that if f: X CR" — R™ and if there are ¢ > 0 and « > 0 such
that

[f(@) = f(y)l <cle—yl*, Vo,yeX,
then dimy (f(X)) < 1 dimy(X). The next result follows.

Proposition 4.2.5. If f : X C R" — R™ is Lipschitz, then dimy (f(X)) < dimy(X).
If f is bi-Lipschitz, i.e. if there exist ¢y > 0 and co > 0 such that

ale —yl < |[f(x) = f)] < colw—yl, Va,y e X,
then dimy (f(X)) = dimy (X).

This proposition gives a fundamental property of the Hausdorff dimension: it is
invariant under bi-Lipschitz transformations.

In order to get an upper bound for the Hausdorff dimension of a set, it is enough
to consider a particular covering. In contrast, it is more difficult to get a lower bound
directly from the definition. Indeed, all coverings have to be taken into account. The
mass distribution principle replaces the consideration of all coverings by the construction
of a particular measure.

Proposition 4.2.6 (Mass distribution principle). Let p be a probability measure with
support included in B C R"™. Assume that there exist s > 0, C > 0 and € > 0 such that

w(U) < Cdiam(U)®

for every set U such that diam(U) < e. Then H*(B) > @ and dimy (B) > s.

4.3 Wavelets

As mentioned previously, orthonormal wavelet bases appeared to be a useful tool to study
multifractal properties of functions. A first reason is that classical function spaces, such
as Sobolev or Besov spaces, can be characterized by conditions on the wavelet coefficients.
Another reason is that the Holder pointwise regularity can also be characterized by decay
conditions on the wavelet coefficients. Besides, wavelet bases allow to construct easily
functions which satisfy particular properties: for example, in [84], Jaffard constructed
functions with prescribed Holder exponents and more recently, Buczolich and Seuret [45]
constructed functions with prescribed multifractal spectrum, see also Chapter [7]

An orthonormal wavelet basis of L?(R) is an orthonormal basis of L?(R) of the form
2j/21/’(2j ' _k)v .]7k € Z,

where the function v is called the mother wavelet. The first construction of an orthonor-
mal wavelet basis is due to Haar [75] in 1910 (the name “wavelet” was not already used).
In 1981, Stomberg [I35] constructed orthonormal wavelet bases with arbitrary regular-
ities. Wavelets in the Schwartz class were introduced by Lemarié and Meyer [102] in
1986. The classical construction of wavelets using a multiresolution analysis of L?(R)
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was performed by Mallat [I05] and Meyer [I12] in 1989. In 1992, Daubechies [60] con-
structed wavelets with compact support. We refer the reader to [60] 105 11T, 112] for
the construction and the main properties of wavelets. Note that the results exposed here
also hold for higher dimensions.

The aim of this section is to state the characterization of the Holder exponent using
decay rates of wavelet coefficients. Given a mother wavelet 1, we set

ik =02 - —k), jkeZ.

Any f € L*(R) can be decomposed as

f= Z Z ¢k Wik

JEL KEL

where
q$=ﬂéﬂ@%ﬂﬂw-

The values c; j, are called the wavelet coefficients of f. The index j is called the scale and
k represents the position. Let us remark that we do not choose the L? normalization for
the wavelets, but rather an L°° normalization, which is more appropriate to the study
of the Holder regularity.

We will also need decompositions on biorthogonal wavelet bases, which are a useful
extension of orthogonal wavelet bases [55]. A Riesz basis of L?(R) is a collection of
functions (f,)nen such that the vector space spanned by the set {f, : n € N} is dense
in L?(R) and for which there are C; > 0,Cy > 0 such that

C1y al< > ant <Gy al

neN neN L2(R) neN

2

for every sequence (a,)nen of £2. Biorthogonal wavelet bases are a couple of two Riesz
wavelet bases generated respectively by ¥ and ¥ and such that

2j/22j//2 / 1/)(2].’1,' - ]{7)1’/}“(2]/1' - k/)d{L‘ = 5j,j’5k,k’~
R

In that case, any function f € L?(R) can be decomposed as

f= Z Z ¢ kWi

JEL KEL

where
x =2 [ 1@

Biorthogonal wavelet bases are particularly well adapted to the decomposition of the
fractional Brownian motion (see Chapter : indeed, well chosen biorthogonal wavelet
bases allow to decorrelate the wavelet coefficients of these processes (the wavelet co-
efficients become independent random variables), and therefore greatly simplify their
analysis.

In what follows, since we are interested in local behavior of functions, we will work
with periodic functions. We denote by T the torus R / Z and we consider the space L?(T)
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of functions of period 1 which locally belong to L?(R). With the constant function
¢(x) := 1, the periodized wavelets

per =3 "g(2(—1) k), jeNoke{o,...,2 1}

IEZ

form an orthogonal wavelet basis of L?(T) [58]. The corresponding coefficients

1
e = 9 /O F@)9r (2)da

are naturally called the periodized wavelet coefficients. In this thesis, we shall system-
atically use periodized wavelets and the corresponding periodized wavelet coefficients.
For the sake of simplicity, we will again write them 1;; and c; and call them again
wavelets and wavelet coefficients of the function. Moreover, we denote by 2 the set
of complex sequences ¢ = (¢ x)jeng,ke{0,...,2—1}- 1t Will usually be interpreted as the
sequence of wavelet coefficients of a periodic function f.

We will also use the notation 1) to denote the wavelet v; 5, where A is the dyadic

interval P

. ; +
The interval A gives an indication concerning the localization of the corresponding
wavelet ¢, [II1]. We shall use both notations c¢;x and cy for the wavelet coefficients.
Finally, we denote by A the set of all dyadic intervals of [0, 1) and at a given scale j € Ny,
we denote by A; the set of all dyadic intervals of [0,1) of size 277.

Let us now present the important result which relates the pointwise regularity to
decay conditions on the wavelet coefficients of a function. First, let us introduce a
notion of uniform regularity.

For every r > 0, the space C"(T) is the space of Holder continuous periodic functions
of order r. If r ¢ N, the wavelet characterization of Holder spaces, see [I11], allows to
identify this space with the subspace C" of Q) composed of sequences satisfying

[¢]lcr == sup sup  2"7|cj k| < +oo0.
j€Ng ke{0,...,29 -1}

In this thesis, when r € N, we will also denote by C"(T) the space of functions satisfying
this condition. A function is uniformly Holder if it belongs to a space C"(T), for an r > 0.
Note that this is a stronger requirement than continuity.

The pointwise Holder exponent hy(xg) can be characterized by the decay rate of the
wavelet coefficients around zg. This result is due to Jaffard [83].

Proposition 4.3.1. If ¢ has more than |hf(zo)| + 1 vanishing moments (that is to say
fR z™p(z)dx =0 for every n € {0, ..., |hs(zo)|}) and if f is uniformly Hélder, then

- . log |¢j k|
h =1 f f . EiLal . 4.1
slwo) =lminf 8 Tog@ 1 k37 — 2] (4.1)

As mentioned before, the wavelet ¢ can be chosen with compact support, see [60].
Nevertheless it introduces technical complications: indeed, if a compactly supported
wavelet 1 is used, it has a finite number of vanishing moments so that is in con-
currence with the regularity of ¥. This justifies the following agreement.

73



CHAPTER 4. PRELIMINARIES

Agreement. In this thesis, the considered mother wavelets 1 always belong to the
Schwartz class S(R), as constructed in [I02]. For such wavelets, all the moments of
positive order are null (see [60] for example), so that holds at every xy. Moreover,
the assumption 1) € S(R) is needed to get results of robustness, see next Section

Remark 4.3.2. The condition ¢ € S(R) is clearly a drawback in applications. However,
one can use the following heuristic: if the wavelet basis is r-smooth, then all results hold
when dealing with exponent h < r.

4.4 Robustness criteria

In what follows, several quantities associated to a function will be defined through its
wavelet coeflicients. The independence from the sufficiently smooth wavelet basis which
is chosen is a natural requirement. In practice, one often uses a stronger requirement
but easier to handle which implies that the condition considered has some additional
stability. This notion was introduced by Meyer in [IT1I] (Chapter 8.9) as follows.

Definition 4.4.1. If v is a positive number and if A = A(j, k), X = A(j', k') are two
dyadic intervals, let
9—(v+2)l5-3'l

wy (A N) =
! (1 + 20055} dist (A, V)

y+27

where dist(\, ') = [k277 — k'279|. An infinite matrix A = (A(\, \'))(xa)eaxa belongs
to A7 if there exists C > 0 such that

JAAN)] < Cwy (W), VAN €A

We denote by || Al the infimum of all possible such constants C. A matrix is almost
diagonal if it belongs to A for every v > 0. Moreover, we say that a matrix is quasidi-
agonal if it is almost diagonal, invertible on {2, and if its inverse is also almost diagonal.

Matrices of operators which map an orthonormal wavelet basis in the Schwartz class
into another orthonormal wavelet basis in the Schwartz class are quasidiagonal [IT1]. Let
us note that it also holds for biorthogonal wavelet bases. Therefore, in order to check
that a condition defined on wavelet coefficients is independent of the chosen wavelet
basis (in the Schwartz class), one can check the stronger property that it is invariant
under the action of quasidiagonal matrices.

Definition 4.4.2. Let C be a collection of coefficients indexed by dyadic intervals. A
property P is linear robust if the following conditions hold:

e The set of C’s such that P(C) holds is a vector space;
e If P(C) holds, then for any almost diagonal operator M, P(MC) holds.

A property P is robust if the following condition holds: if P(C) holds, then for any
quasidiagonal operator M, P(MC) holds.
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4.5 Besov Spaces and the Frisch-Parisi formalism

Let us recall the definition of the Besov spaces by, ., of sequences.

Definition 4.5.1. For s € R and p > 0, a sequence ¢ € € belongs to b, . if

p

I€l;... = sup 20 Z lejnlP | < +oo
J€ENg

The definition is extended to the case p = oo by setting b3, ,, = C*.

We endow naturally these spaces with the (1 A p)-norm || - [ _ so that by ., are
complete topological vector spaces. Moreover, they are the dlbcrete counterparts of the
Besov spaces of functions B} . (see [I11]): f € B, . if and only if the sequence of its
wavelet coefficients belongs to b, . The information concerning the Besov spaces that
contain ¢ can be stored through the scaling function nz which is defined by

nz(p) :sup{seR:EG bg,oo}, Vp > 0.

If ¢ denotes the sequence of wavelet coeflicients of a function f, its scaling function n¢ is
defined by 7 = nz. From the previous characterization, this function does not depend
on the chosen wavelet basis. Using the definition of the Besov spaces, it is direct to

check that log S-(7.p)
(Y ogoe], P
1y (p) = 1e(p) = lim fnf g2

where ‘
S:(Gp) =27 > leal”.

AEA;

Let us mention that this function was initially introduced in the context of fully devel-
oped turbulence by Parisi and Frisch [I17]. They proposed a formula to estimate the
multifractal spectrum of a function based on LP norms of the increments of the function.
This formula, referred generally as the Frisch-Parisi conjecture or the thermodynamic
multifractal formalism, was generalized by Jaffard [86] where the connection with Besov
spaces was made. This conjecture states that

ds(h) = igf (ph —nys(p) +1). (4.2)

The heuristic argument that underlies this method is the following. If A is a dyadic
interval containing a point whose Holder exponent is h, from the equality , one
should have |cy| ~ 27" as j tends to infinity. If we cover each such singularity by
dyadic intervals of size 277, it follows from the definition of the Hausdorff dimension
that there are about 2%/ ("7 such intervals. The most important contribution in the sum
> |eal? is the one corresponding to the value of h associated with the biggest exponent
in 2(ds(h)=ha)j  Noreover, from the definition of the scaling function, one can expect
to have Y, |ca|? ~ 2(=77(@+Di  Consequently, we are led to the following heuristic
formula: —ns(q) +1 = sup,{d;(h) — hg}. Using an inverse Legendre transform, we
obtain the estimation .

Although it is based on heuristic arguments and approximations, formula (4.2)) holds
for many mathematical objects. For example, Jaffard [86] proved that it allows to recover
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the increasing part of spectra of self-similar functions. He also obtained the following
upper bound: if f is a uniformly Holder function, its multifractal spectrum satisfies

dg(h) < inf (ph —ny(p) + 1)
P>Pe

where p, is the solution of ns(p) = 1.
Besides, Jaffard [88] and Fraysse [69] justified this formalism with the introduction

of the Baire space
B — m ﬂ Bz()nég)/p—E)

e>0p>0

for every function 7 such that s(q) = gn (%) is concave, 0 < §'(¢q) < 1 for every ¢ > 0 and

$(0) > 0. These conditions follow naturally from the result of Jaffard [88]: any scaling
function 7 associated with a uniformly Hoélder function f satisfies these properties and
conversely, any function 7 which satisfies these properties is the scaling function of a
uniformly Hélder function.

Theorem 4.5.2. [69, [88] If p. denotes the unique solution of n(p) = 1, the set of
functions of B such that

. . 1
dy(h) = infp>p. (ph —n(p) +1) ifhe {3(0), pc] ,
- otherwise,

and ny = n 1s residual and prevalent in B".

Therefore, a generic function in B" satisfies the Frisch-Parisi conjecture. Let us
remark that since this method is based on a Legendre transform, it can hold only for
spectra that are concave. Moreover, since ns(p) is defined only for positive p, it can
only yield the increasing part of the spectrum. However, this first problem can be
avoided using S” spaces. The second one can be avoided using wavelet leaders and a
generalization of Besov spaces, the Oscillation spaces.

4.6 S” spaces

In this subsection, we first recall some definitions and some basic topological results
obtained for & spaces. Furthermore, we expose the multifractal formalism based on
these spaces. We refer the reader to [13] for details about the topology and [9] 10} [1T] 14]
for more results. The spaces S” are defined as function spaces through conditions on
the wavelet coefficients. Let us first introduce the spaces §” as sequence spaces.

Following [I3], the wavelet profile of a sequence ¢ € ) is the function vz defined by

(1 c
vz(a) := lim limsup log #8;(1, a +¢)(€)

. a€eR
e0% jstoo log 27 ’ ’

where '
Ej(C, a)(é’) = {)\ S Aj : |C)\| > CQ_CU}

for j € Ny, C' > 0 and o € R. Remark that the function vz is non-decreasing and right-
continuous. Moreover, it takes values in {—oo} U [0,1]. If ¢ € C*, then vg(a) = —oc0
for every a < aj.
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Following this remark, an admissible profile is a non-decreasing right-continuous func-
tion of a real variable, with values in {—oco} U [0, 1] such that there exists auin € R for
which v(a) = —oo for all @ < oy and v(a) > 0 for all & > amin.

Definition 4.6.1. Given an admissible profile v, a sequence ¢ belongs to §” if
ve(a) <v(a), VYVaeR.

Equivalently, ¢ belongs to S” if and only if for every a € R, € > 0 and C > 0, there
exists J € Ny such that

#E;(C,a)(C) < 9W(@)+e)i > g
with the convention that 27°° :=0 .

Heuristically, a sequence ¢ belongs to S” if at each large scale j, the number of k
such that |¢; x| > 27?7 is of order smaller than 2¥(@)J | This space is a vector space.

Jaffard [90] proved that if amin > 0, the definition of the S” spaces is robust, hence
independent of the chosen wavelet basis. We will then consider them equivalently as
sequence or function spaces (as for Besov spaces): we say that a function f belongs to
S” if its sequence of wavelet coefficients belongs to the sequence space S”.

In order to define a complete metrizable topology on &, auxiliary spaces were in-
troduced. For any a € R and any 8 € {—oo} U [0, +00), the space A(«, 3) is defined
by

A(a, B) == {€€Q : 3C,C" > 0 such that #E;(C,a)(¢) < C'2%7, Vj € No}.
This space is endowed with the distance
00,5(G, ") :=1inf {C+C": C,C" > 0 and #E;(C,a)(¢—¢') < C'2%7, Vj € No}.

Remark that if § = —o0, then (A(®, —00),q,—c0) is the topological normed space C*.
If 8 > 1, then A(a, 8) = Q. Moreover, in the case 5 > 1, the topology defined by the
distance 04,5 is equivalent to the topology of pointwise convergence.

The properties of auxiliary spaces are summarized in the following proposition.
Proposition 4.6.2. Let « € R and € {—oo} U [0, +00).

1. The addition is continuous on (A(w, B),0q,3) but the scalar multiplication is not
continuous.

2. The space (A(e, 8),0q,3) has a stronger topology than the pointwise topology and
every Cauchy sequence in (A(a, B),0q,8) is also a pointwise Cauchy sequence.

3. If B > 1, the topology defined by the distance dn g is equivalent to the uniform
topology.

4. (a) If B is a bounded set of (A(a, B),0a,8), then there exists v > 0 such that

B

N

{EeQ:#{Aeh; e >r27} <r27, Vje Ny}
{GeQ:#{NeEN;|cr| >r27} <r2M Vje No}.

N
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(b) Letr,r' >0, &’ >« and 3/ < . The set
B= {EEQ:#{AGAj eal > 127 </ 28 v eNo}

is a bounded set of (A(w, 8),0a,3). Moreover, B is closed for the pointwise
convergence.

5. The space (A(a, B),0a,8) is a complete metric space.

The following proposition gives the connection between auxiliary spaces A(«, 8) and
the space S”.

Proposition 4.6.3. For any sequence (ay,)nen dense in R and any sequence (&,)men
of (0,+00) which converges to 0, one has

S = ﬂ ﬂ Ao, v(ay) + em).
meNneN

The topology of S is defined as the projective limit topology, i.e. the coarsest
topology that makes each inclusion §” C A(ay,, v(ay,) + €,,) continuous. This topology
is equivalent to the topology given by the distance

+oo 400

)
— —(m+n) m,n
’ Z Z 2 1+ 5m,n '

m=1n=1

where 6,, , denotes the distance d,,, v (a,)4<.,- Lhe topology of §” is independent of the
sequences (o, )neny and (£, )men chosen as above. Therefore, this distance is denoted 6,
independently of the sequences chosen. The next result concerns the compact subsets

of (8¥,9).

Proposition 4.6.4. For m,n € N, let C(m,n) and C’'(m,n) be positive constants and
let us define

K= {EE Q:#{NE N, fen| > O(m,n) 277} < O (m,n) 20 en)Femli -y ¢ NO}

and

K = ﬂ ﬂ Koo

meNneN

Every sequence of K which converges pointwise converges also in (S¥,§) to an element
of K. It follows that K is a compact of (S,0).

Let us now present some connections with Besov spaces. If we define the concave
conjugate n of the admissible profile v by

n(p) := a>inf» (ap—v()+1), p>0,

we get the following embedding of & spaces into Besov spaces.

Proposition 4.6.5. [13] If (pn)nen is a dense sequence of (0,+00) and if (€m)men s
a sequence of (0,400) which converges to 0, then

n(p) e n(pn) —em
sre Bk "= N N Wi

p>0e>0 neNmeN

and this inclusion becomes an equality if and only if v is concave.
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This result justifies the introduction of the S¥ spaces: the spaces B do not contain
more information about the multifractal spectra of their functions than their concave
hull since for most of the functions in this intersection, the multifractal spectrum is given
by a Legendre transform of 1 (see Theorem . By contrast, if v is not concave, the
space 8" gives an additional information and leads to estimation of spectra which are
not concave, as presented below.

In order to state the multifractal formalism based on the S” spaces and justify its
validity, we assume now that am,;, > 0 and we consider the space S” as a function
space. The multifractal formalism based on the §” spaces, called also the wavelet profile
method, consists in the estimation of the spectrum of a function f by the formula

ve(h) .
d¢(h) =h sup , Vh < inf .
f( ) h'E(O,h] h’/ Q2 Qmin l/f (a)

Aubry and Jaffard [I2] proved that for any Random Wavelet Series (see Chapter ,
formula (4.3) holds. They also established that if f is a uniformly Hoélder function, then

(4.3)

!
dy<h sip P wh< e .
neon N a>amin V(@)
Furthermore, an implementation of this formalism has been proposed by Kleyntssens
et al. [99] where it is tested on several theoretical examples such as fractional Brownian
motions, Lévy processes, sum of binomial cascades...
The results about the validity of this formalism are given by the following theorem.

Theorem 4.6.6. [11],[T]|] If v is an admissible profile, we denote

— 00 Zf h < Ominy
1%
I/](h) = h sup V( if amin < h < Amax,
h’€(0,h] h
1 otherwise,

where hmax = infp>a,;, V(hh). If ain > 0, the set of functions f € S such that

dg(h) = { —00 otherwise,

and v = vy 1is residual and prevalent in S”.

It follows that for a generic function in S”, formula holds. Although it allows
to estimate non-concave spectra, this formalism is still limited to the increasing part
of spectra. Moreover, the conversion of v into v; transforms the admissible profile into
another admissible profile with an additional property, called the increasing-visibility
(see [106] and the definition below), and is therefore limited to spectra enjoying this
property.

Definition 4.6.7. Take 0 < a < b < 4o00. A function g : [a,b] — [0,400) is with
increasing-visibility on [a,b] if ¢ is continuous at a and if the function

9(x)

T

is increasing on (a, b].

In other words, a function g is with increasing-visibility if for all © € (a,b], the
segment [(0,0); (z, g(x))] lies above the graph of g on (a, z].
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0 hinas

Figure 4.4: Example of v (---) and vy (—)

4.7 Wavelet leaders and the associated formalism

Let us recall that the thermodynamic formalism fails for the detection of decreasing
spectra. In the context of wavelet-based multifractal formalism, more accurate results
can be obtained when, rather than relying directly on wavelet coefficients, one relies
on alternative quantities, namely the wavelet leaders. This was possible thanks to the
specificity of wavelet leaders: given a scale, they take into account a specific family of
coeflicients of smaller scales and located at the same place. Let us be more precise about
the introduction of those quantities.

As presented in Section the thermodynamic formalism relies on the estimation
of the sums

2773 Jeal”. (4.4)

AEA;

The behavior of this sum for large j and positive p is related to the increasing part of
the spectrum. The decreasing part is connected with the asymptotic behavior of this
sum for negative p. Nevertheless, is totally unstable for negative p due to the
presence of small wavelet coefficients: indeed, when they are taken to a negative power,
they can be extremely large. Therefore, it does not allow to estimate the decreasing
part of spectra. One way to stabilize these sums and eliminate this source of instability
was proposed by Jaffard [92]. The idea was to replace in the single value |c)| by
a supremum of the |cy/| where A’ is close to A. This idea is consistent with the purpose
of estimating multifractal spectra. Indeed, a small coefficient is not the signature of a
large Holder exponent if it has a large coefficient in its immediate neighborhood. On
the opposite, a small value of the supremum means that all wavelet coefficients close to
each other take a small value, which is the signature of a smooth zone.

Remark 4.7.1. In order to overcome the issue of the unstability for negative p, Arneodo
et al. [3] proposed the wavelet transform modulus maxima method, using the notion
of line of maxima in the continuous wavelet transform: the value of the continuous
wavelet transform at a point is replaced by a supremum on all lines of maxima ending
at the considered point [I05]. This technique proved helpful in many practical and
theoretical problems, but its theoretical contribution was limited. In particular, there is
no underlying functional space.
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Definition 4.7.2. The wavelet leaders of a function f € L?(T) whose wavelet coefficients
are given by the sequence ¢ are defined by

dy = sup |ea|, VAEA,
A C3A

where 3\ denotes the dyadic interval with the same center as A but three times larger.

Remark 4.7.3. In view of the periodization, we use the following conventions when
the cube X is at one of the boundaries of [0,1): 3A(5,0) = A(4,27 — 1) UA(4,0) UA(j, 1)
and 3A(4,27 — 1) = A\(4,29 —2) UN(j,27 — 1) UA(5,0).

If f is bounded, then

1
o] < 2 / F@)llor(@)dz < C sup [f(@)

z€[0,1]

for some C > 0, so that the wavelet leaders are finite.

Wavelet leaders also appeared to be very interesting in the study of the pointwise
Holder regularity. Indeed, their decay properties are directly related with the Holder
exponent. If xy € [0,1), there is a unique dyadic interval A of length 277 which contains
xg. Let \j(xo) denotes this dyadic interval. Then, we set

dj(z0) == dx,;(zo) = SUp lear |-
)\’§3/\j(wo)

10,0) I (1,0
(0,1) 11 21 31

J (©,2) (1,2) (52) (6,2) (7,2)

Figure 4.5: Representation of the dyadic intervals which are involved in the computation
of d;j(x).

Proposition 4.7.4. [91] If f is a uniformly Hélder function, then

log d; (x0)
h = liminf —>—"2,
(%0) J‘IQ-&EO log2—J

Therefore, Holder exponents can be recovered from wavelet leaders by local log-
log plot regressions, see [91]. Comparing this result with , one can see that the
wavelet leaders are a more adequate tool to study the Holder regularity than the wavelet

coeflicients. Moreover, the heuristic underling the Frisch-Parisi conjecture and presented
in Sectionis based on the fact that if hy(xz0) = h, then |cx, (z0)| ~ 27"/, Actually, this
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estimation only holds if f has cusp-like singularities (i.e. which have a behavior similar to
| — 20|" around z¢, see [I12]). In the case of wavelet leaders, from Proposition we
really have |d;(xo)| ~ 27" for large j under the unique assumption that f is uniformly
Holder.

This argument leads to the wavelet leaders method. By mimicking the thermody-
namic formalism, one sets

Wi(jp) =277 > df, VpeR
)\GA]'

where the symbol Z:e A, neans that the sum is restricted to the intervals A € A; such
that dy # 0. From this, one sets

— liming 28V G P)

s (p) j—+oo  log27J

The multifractal formalism associated to the wavelet leaders, called the wavelet leaders
method, is based on the estimation
dg(h) = inf (hp — 7 1). 4.5
s(h) = inf (hp =5 (p) +1) (4.5)
Again, Jaffard [91] proved that the function 77y does not depend on the chosen wavelet
basis and that if f is uniformly Holder,
d¢(h) < inf (hp—17 1).
£ )7;&{( p—7s(p) +1)
One can show that ny(p) = 7¢(p) if p < pc [92] and therefore, compared with the
thermodynamic multifractal formalism, this upper bound is sharpened since it is taken

on every p. Moreover, equality (4.5 holds for large classes of models such as fractional
Brownian motions, cascades, Lévy processes... [2, [16] [91].

Let us make two remarks. First, the estimation only gives concave spectra.
Secondly, the wavelet leaders give rise to some generalization of the Besov spaces called
the Oscillation spaces [91]. These spaces are a particular case of Oscillation spaces (’);’s/
considered in [87, [92]. In the case p > 0, as for Besov spaces, 777(p) determines which
oscillation spaces f belongs to.

Definition 4.7.5. For s € R and p > 0, a sequence ¢ € (2 belongs to Oy if

27 1 %
sup 2067 )7 Z i < +oo.
J€ENy k=0 ’
With this definition, it is direct to see that
nr(p) =sup{s eR:C€ (9;;;}, Vp > 0.

For s € R and p > 0, we endow the space Op with the (1 A p)-norm

=

291

Zllos == sup 207 d?
H ||O p 7,k 9
P jEN, — )
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so that (O, || - ||o§) is a complete topological vector space. When p is negative, an
analogous definition exists but these Oscillation spaces are not vector spaces anymore.
Therefore, prevalent results as those obtained for Besov spaces (see Theorem do
not make sense. However, one could wonder if there could be generic results in some
other sense. Up to now, no appropriate topology has been proposed on these spaces to
achieve this purpose.

83






Chapter 5

Wavelet leaders profile
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5.1 Introduction

As presented in the previous chapter, the Frisch-Parisi conjecture, classically used for es-
timating the multifractal spectrum of a function, can only lead to recover the increasing
and concave hull of spectra. It appeared that more accurate information concerning the
pointwise regularity can be obtained when relying on wavelet leaders, which are local
suprema of wavelet coefficients. First, the wavelet leaders allow to stabilize the coeffi-
cients which can take a small value “accidentally”. Moreover, they give an easier charac-
terization of the pointwise regularity than wavelet coefficients (see Proposition SO
that Holder exponents can be recovered from wavelet leaders by local log-log plot regres-
sions. In this context, the wavelet leaders method has been introduced as generalization
of the thermodynamic multifractal formalism using wavelet leaders. In particular, this
method allows to recover increasing and decreasing parts of spectra. Nevertheless, this
method is still limited to concave spectra.

In order to get a suitable context to obtain multifractal results in the non-concave
case, S” spaces have then been introduced. As presented in Chapter [4] several positive
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results for the estimation of non-concave spectra have been obtained. However, those
spaces can only detect the increasing part of spectra. Moreover, it is limited to spectra
with increasing-visibility since it is based on the estimation of them by the function

h/
B e (0, hmas] o b sup L)
nen N

where hpax = infp>a, % Let us however mention a particular case where this
transformation of vy into a function with increasing-visibility is not necessary in or-
der to estimate the multifractal spectrum: let us assume that f is a function whose
wavelet coefficients are given by ¢y = u(A) where p is a finite Borel measure on [0, 1].
This method of prescribing wavelet coefficients using measures has been proposed by
Barral and Seuret [20]. Moreover, for every 5 > 0, let fz denote the function whose
wavelet coefficients are given by 27%7¢,. In this case, a direct computation shows that
ds,(h) = dy(h — ) for all h > 3. Remark that the same relation also holds for the
wavelet profile, that is to say vy, (h) = vy(h — ) for all h > (. If one has

inf { vi(z) —vy(y)

r—y

where hpin = inf{a : vy(a) > 0}, Al = inf{a : vf(a) = 1}, then there exists § > 0
such that the function vy, is with increasing-visibility on [Amin, hj,.,]. In this case,
the wavelet profile vy, gives an approximation for the multifractal spectrum dy, of fg.
Therefore, since df,(h) = ds(h — 3) and vy, (h) = vf(h — j3), the increasing part of the
multifractal spectrum dy of f can be approximated by the wavelet profile vy.

Remark that in this case, there is a nice decreasing property in the repartition of
the wavelet coefficients: if A’ C A, then |cx/| < |ca|. Using the wavelet leaders instead
of the wavelet coefficients, we get this decreasing property for any function. Therefore,
one can hope that the definition of a profile with the wavelet leaders will directly give
(without any transformation) an estimation of the multifractal spectrum.

2,y € [hmin, Popay)s © < y} > 0,

The leaders profile method presented in this chapter aims at combining the ad-
vantages of the two previous methods. With the use of the wavelet leaders, one can
consider the entire spectrum, while the profile function allows to recover non-concave
spectra. Moreover, this combination also gives estimations for spectra which are not
with increasing-visibility. Let us mention that this method is being studied in practice
in [2) 64].

This chapter is structured as follows. In Section [5.2] we introduce a quantity based
on the distribution of the wavelet leaders of a function and we show that it gives an upper
bound for its multifractal spectrum. Nevertheless, we show that its definition can depend
on the wavelet basis chosen to compute it. Moreover, its definition is numerically instable
because it is based on a double limit. That is why we derive in Section [p.3|another large
deviation type quantity based on the wavelet leaders which still yields an upper bound for
the spectrum and which is robust. It allows to propose a new multifractal formalism: the
leaders profile method. In Section [5.4] we illustrate this formalism on classical models.
We end this chapter in Section [5.5] with a theoretical comparison of this method with the
wavelet leaders method (presented in Section of Chapter [4]) and the wavelet profile
method (based on S” spaces and presented in Section of Chapter . Most of the
results presented in this chapter have been gathered in the papers [24] and [64]. Let us
note that in this chapter, ¢ represents the sequence of wavelet coefficients of a bounded
function f on T and d its sequence of wavelet leaders.
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5.2 Upper bound for the multifractal spectrum

In this section, we define a large deviation spectrum based on the wavelet leaders of a
signal in a given wavelet basis, and we show that this quantity yields an upper bound for
the multifractal spectrum of the signal. Note that a similar approach has been developed
in [I9] using oscillations of the function (i.e. the difference between the supremum and
the infimum of the function on an interval) instead of wavelet leaders. The advantage of
wavelet leaders is that they allow to deal with Holder exponents of order larger than 1.

Definition 5.2.1. The wavelet leaders density pz of ¢ € C? is defined for every a > 0
by
log#{\ e A :27(+e)) < gy < 2= (a=e)j
pz(a) := lim limsup g #1 ! I }
e—=0F j 400 log 27

and for a = +o00 by

1 ANEA; 1 dy <274
pe(+00) := lim liminf o8 #1 i = }
A—~4o00 j——+oco IOg 27

This definition formalizes the idea that there are approximately 927:(2)i wavelet lead-
ers of size 277 at large scales j. From typical properties of large deviation spectra, we
get the following property of the wavelet leaders density.

Proposition 5.2.2. The wavelet leaders density of a sequence ¢ € C° is upper semi-
continuous on [0, +00), i.e. for every ag € [0,+00), one has

lim sup pg(r) < pe(o).

a—rQQ

Proof. From the definition, for every v > 0, there is € > 0 such that

log #{/\ €A;: 2 (@0+26)j < ¢, < 2—(a0—2a)j}
lim inf .
j—+oo log 27

< palao) + -
On the other hand, if o — ag| < &, we have

#{N € N 27(@0F2 < gy <27 (@072} >y € A 2709 < gy < 27 (@7}
so that

1 Ne A2 (ate)i < gy < 9 (a—e)
lim inf og#{ €% = < }
j—+oo log 27

< palao) +7.
Consequently, pz(a) < pz(ap) + 7 if | — ap| < € so that

lim sup () = inf sup{e(a) 0 < o — ao| < e} < Felan) +7,
1>

a—raqQ

We get the conclusion since v > 0 is arbitrary. O

Let f be a uniformly Holder function. We denote by ¢ its sequence of wavelet
coefficients in a fixed wavelet basis. Let us consider the points xo such that hy(zo) = h.
Using Proposition we know that d;(ro) ~ 27" and from the definition of the

wavelet leaders density, there are about 927=(Mi guch dyadic intervals. Moreover, if we
cover each singularity zo such that hy(xzg) = h by dyadic intervals of size 277, from the
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definition of the Hausdorff dimension, there are about 2% (")J such intervals. This large
deviation-type argument shows that one can hope to have the equality pz(h) = d¢(h).

In general, this equality is not verified, but we will prove that p; yields an upper
bound for the multifractal spectrum of f. First, let us introduce some notations. For
every o € R, we set

Fila)={ke{0,....,27 =1} :dj, 227} and E'(a)= [J N
kEFI ()

We also define _
E(«a) = limsup E (o) = m U E™(a).

gmoeo jENg m>j
Remark that, since f is uniformly Holder, there exist ag > 0 and C' > 0 such that
Vj€Ng, ke {0,...,27 =1},  |¢jp] < C27%.
Therefore, E(a) =0 if o < o.
Lemma 5.2.3. [2]] Let f be a uniformly Holder function and let a € [0, 400).
1. If zg € E(«), then hy(zo) < a.
2. If hy(xo) < a, then 2o € E(a).

Proof. 1. Let us assume that xp € E(«). Then for every j, there exist m; > j and
kj € F™i(a) such that xg € Ay, ;. This means that d,,(20) = dm, k, > 27, It
follows that

logd,; logd,,. k. log 2—a™m;
hy(xo) = lim inf M < lim M < lim L_ =«
j—+oo  log27J j—+oo log 27 j—4oo log 2™y

2. Let us assume that h¢(zo) < a. Then, there exists an increasing sequence (i )nen
of natural numbers such that lowd
oo d
gd;, (o) _
log 2=Jn

Consequently, d;, (x¢) > 27" and z € E/" ().
O

Lemma 5.2.4. [Z]] Let f be a uniformly Holder function. Then, for every h € [0,400).
{z0 : hy(zo) = h} = () E(h +e)\E(h —¢).
e>0
Proof. The result is obtained directly from Lemma [5.2.3] O

Theorem 5.2.5. [2]] Let f be a uniformly Hélder function. Then its multifractal
spectrum satisfies
df(h) < :bvé‘(h)a Vh € [Oa +OO]

Proof. We first assume that h € [0,400). Because of Lemma we have to show
that

dimy, (ﬂ E(h+¢)\ E(h— 5)) < palh).

e>0
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Let us consider 6 > 0. From the definition of pg, there exist €9 > 0 and jo € Ny such
that _
4 {A eA; 2 < gy < 2—(h—e>j} < 2(eW+Di i > o

If we set _ _ ‘
Ego(h) =F/(h+e9)\ E'(h—¢eg), Vj€ Ny,
then

E(h+e)\E(h—e0) € () | EZL(h).

JeNg j>J
Let us show that

1l () UEL(M) | <400
JENg j>J

where s = pz(h) 4+ 26. Remark that for every j € No, the set EJ (h) is covered by
#{NeA;: 2~ (hte0)i < ) < 2_(h_50)j} intervals of length 277. For every n > 0, there
is J(n) > jo such that 277 < n if 5 > J(n). Then, we have

wil N UeLm | < x| U B0
JeNo j=J J=J(n)

< Y (#{ren; 2t < gy <27 (i )g
j=J(n)

< ¥ 9(pe(h)+8)ig=si < 3279 < 4o
j=J(n) j€No

Consequently,
Hel () UELM) | = tim #Hy | () JEL(R) | <D 27 < +o0
JENg j>J n=0 JENg j>J j€Ng

and it follows that

dimy, <ﬂ E(h+¢)\ E(h — s)) <dimy | () U EL (1) | < 5= ps(h) +20.

e>0 JENg j=J
Since § > 0 is arbitrary, we finally get

dmﬁ(ﬂEw+a\Ew—a>s@m>

e>0
which leads to the conclusion.
We consider now the case h = +00. For every A > 0, let
Ba)= U A
A:dy SQiA]‘
Then it follows from Proposition [£.7.4] that
{l‘o : hf(IL'o) = +OO} = ﬂ U ﬂ BA(])

A>0JeNy j>J
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The result follows as previously from the definition of pz(+00). Indeed, let us fix A > 0.
Then, for every € > 0, there are A > 0 and a subsequence (j,)nen such that

HINE A, 1 dy <2 4in} < 9Pel+o)te)in

for every n € N. Therefore, the set B4 (j,,) is covered by less than 9(pe(+00)+e)in intervals
of length 2779, Let us fix n > 0. For every J € Ny, there is n € N such that j,, > J and
27Jn <. Then, we have

Ho | () Bal) | < #; (Ba(Ga)) < 200etto0)+)ingins
i>J

so that

Ho |l U N Bal) | < 3 20ethoodtoing=ins < 400
JeNy j>J neN

if s > pz(+00) + . It follows that dimy ({z : hy(zg) = +00}) < pz(+00) + . The real
number € > 0 is arbitrary, hence the conclusion. O

One drawback when dealing with wavelet leaders is that the suprema corresponding
to two neighbors dyadic intervals overlap. For instance, in a probabilistic framework, this
will create correlations between wavelet leaders, even if they don’t exist between wavelet
coeflicients. Therefore it is natural to wonder if the developments that we pursued could
be developed in a simpler framework where wavelet leaders are replaced by restricted
wavelet leaders defined by

ex = sup |ex|, VA €A
MCA

As before, we can consider the function

1 Ae A 27(0Fe)i <y <27 (ame);
(o) := lim limsup o8 #1{ ? = }
e—=0t jsto0o log 27

~k
c

Let us show that pz < ps but that these functions do not necessarily coincide.

First, remark that dy = max{e, : p € N(A)} where N()) denotes the set of the 3
“neighbors” of A in A; (i.e. the dyadic intervals of length 277, whose boundary intersects
the boundary of A, with the usual conventions). Therefore,

#{NeN; 27T < gy <2707} <3l e A 27 (0TI <y < 27 (07T
and it follows that for any sequence ¢ we have p> < px.

Let us now check that these two quantities can differ. Consider the Cantor set of
ratio %: we start with the interval [0, 1], and, at each step in the standard Cantor set
construction, we keep the two outer dyadic intervals whose length is % times the length

of the parent interval. We denote by C,, the subset of [0, 1] obtained at step n and we

denote the Cantor set by
1
C <4) =) Cn.

neN

Note that the dyadic intervals that appear in the construction (we will call them the
“fundamental intervals”) correspond to scales j that are even.
Let us now define a wavelet sequence as follows. Let 0 < v < a.
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e Let j be even. If \; is a fundamental interval, we set ¢ := 2777, If A, is a
subinterval of a fundamental interval of the generation j —2 (we will call them the
“secondary intervals”), then we set ¢; 1 := 27?7, Otherwise, we set ¢;  := 0.

e Let now j be odd. If A; 1, is a subinterval of a fundamental interval of the generation
j—1, we set ¢ := 2777, Otherwise, we set c; := 0.

One easily checks that all wavelet leaders are either equal to 2777 or 0, while restricted
leaders associated to a secondary interval are equal to 2= (indeed, this is the value of
the corresponding wavelet coefficients, and all wavelet coefficients associated to proper
subintervals vanish). Consequently, pz(a) # pz(a).

Remark 5.2.6. From Theorem [5.2.5] if f is a uniformly Hélder function, we have
ds(h) < pg(h) for all h € [0, +0c]. So, we also have ds(h) < pz(h) for all h € [0, +00].

The example that we have just exposed shows that the upper bound of the spectrum
supplied by p%(h) can be sharpened using wavelet leaders. This explains why one prefers
the definition using wavelet leaders (see however Proposition below, which shows
that some quantities derived from these notions actually coincide).

The wavelet leaders density of a signal is defined through its wavelet coefficients.
The independence from the sufficiently smooth wavelet basis which is chosen is a natural
requirement. In practice, as presented in Chapter[d] one can use the notion of robustness.

Proposition 5.2.7. [Z]] The definition of the wavelet leaders density of a function is
not robust.

Proof. We consider again the Cantor set of ratio i and as before, we denote by C,, the

subset obtained at step n in its construction. We define the subset I' of A x A by
r.— {(/\, N):3n €N such that N € C,,, [(K +3)277, (K +4)277) € C,
and j = 5/ +1, k:2k’+3}.

Let us fix 8 > « > 0 and let us define the infinite matrix A indexed by dyadic intervals
by setting

1 if A= N,
A\ N) = 27Biged" if (A, \) e,
0 otherwise.

The matrix A is of the form Id + R. Remark that if (A, \") € T', then (XN, \”) ¢ T" for
any dyadic interval \” and it follows that B2 = 0. This implies that A is invertible, with
inverse Id — R.

Clearly, the matrices A and A~! belong to A" for every v > 0. Let us fix § > 3 and
let us define the sequence ¢ by

2723 if there is n € N such that A € C,,,
cx:=¢ 0 if there exists A’ such that (A, \) € T,
279 otherwise.

It is straightforward to see that pz(8) = —oo. Let us now consider the image & of & by
the matrix A, that is to say

2= AMNXN)en, VAEA
MNeA
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Then, we have

2727 if there is n € N such that \ € C,,,
xzy =14 2797 if there exists )’ such that (\,\') € T,
270 otherwise;

hence pz(8) > O

1

5.
This counter-example motivates the introduction, in the next section, of another

notion based on the wavelet leaders of a signal which will be shown to be robust.

5.3 Wavelet leaders profile

A theoretical drawback when working with the wavelet leaders density is that it is not
a robust quantity. Consequently, it may lead to quantities that are not intrinsic, and
therefore not reliable for classification purposes. On the computational side, another
drawback comes from the double limit in Definition [5.2.1] In practice, when dealing
with real-life data, one can never really “pass to the limit” several times consecutively,
and one must therefore make simultaneously € become small and j large, and therefore
introduce some dependency between j and . However, on the mathematical side, it
is easy to check that, as soon as such a dependency between j and ¢ is introduced
in Definition the value of the corresponding limit can change radically (see for
example [46] [47) [139]). In other words, this definition is numerically extremely unstable
and, in practice, definitions that are based on a single limit are the only ones that
can be used. Therefore, we will define another quantity based on the wavelet leaders
density which will turn out to be robust and which still yields an upper bound for the
multifractal spectrum.

Definition 5.3.1. The increasing wavelet leaders profile of a sequence ¢ € C? is defined
for every « € [0, +00] by

1 AeA;: dy>2 (ete)i
g:*F(O‘) = lim limsup og#{ J A2 }
e—0t s too log 9

Similarly, the decreasing wavelet leaders profile of ¢ is defined for every a > 0 by

1 ANeA;: dy <2 (@9
vz (o) :== lim limsup og#{ J >\ < }
e—0t oo 10g23

and for a = +o00 by

1 ANEA; 1 dy <274
Uz (400):= lim liminf o8 #{ IA = }
¢ A—+o00 j—+o0 log 27

~t ~

These definitions formalize the idea that there are about 2Y¢ ()7 (resp. 2ve(2)7)
wavelet leaders larger (resp. smaller) than 277 at large scales j. Remark that thanks
to the limit over €, the inequalities that appear in the definitions can be chosen strict or
not.

Remark 5.3.2. The limit over € which appears in the definition of the increasing and
decreasing wavelet leaders profiles is required in order to derive some mathematical
properties that will be useful in the sequel; however, it is not taken into account in
applications, and the definition therefore boils down to a single limit, as required, see [64].
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5.3. WAVELET LEADERS PROFILE

The next result gives the properties of the increasing and decreasing wavelet leaders
profiles of a sequence & € C°.

Proposition 5.3.3.

1. The increasing wavelet leaders profile of a sequence ¢ € C° is increasing and right-
continuous on [0,400], and takes values in {—oco} U [0, 1]. Moreover, it satisfies
v (+o00) = 1.

2. The decreasing wavelet leaders profile of a sequence ¢ € C° is decreasing and left-
continuous on [0,+00), and takes values in {—oo} U [0,1]. Moreover, it satisfies
v (0) =1.

3. If ¢€ C°, then the function

a € (0,400) — %

is decreasing, i.e. the function 1 — U7 is with increasing-visibility on [0, 4+00).

Proof. The two first points are immediate. Let us prove the last one. We fix a, o’ such
that 0 < @’ < a. From the definition of the decreasing wavelet leaders profile of ¢, we
know that for every > 0, there is g9 > 0 such that for every 0 < € < g¢, there is a
sequence (jn)neny which satisfies

BN e Ny, i dy <277} > 90w ()=in  yp e N,
Then, if j > j,, we also have
HINE N 1 dy < 27(@in} > 9i=ing(Ve ()=0)in
since dy < dy, if A C A,. For every n € N, let us set

If n is large enough, J,, > j, and we obtain

#{Ae Ay, 1 dy <279}
Z 2Jn_jn2(;;(a)_§)jn.

#{Ae Ay, dy <27}

Y

Consequently,
i sup LB FA €A 1 dy < TV gy la#A e Ay, ndy <27
=00 log 27 T nooo log 2/n
. ~ Jn
> - S
> nh_}ngo (1 + Tz (a)—0—1) Jn)
o —¢

> 1+ (@)~ 0 - )=

and it follows that
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Since § > 0 is arbitrary, we get that

hence the conclusion. O

Additionally, if there exist ag > 0 and Cy > 0 (resp. a3 > 0 and C7 > 0) such that
‘C)\| S 002_040j (resp. d}\ Z 012—a1j)

for every j € Ng, A € Aj, then ﬂ:f is identically equal to —oo on (—o0, o) (resp. vz is
identically equal to —oco on (a1, +00)). Moreover, the increasing and decreasing wavelet
leaders profiles of a sequence of wavelet coefficients still yield an upper bound for the
spectrum of the corresponding function, as stated in the next result.

Proposition 5.3.4. [Z]|] Let f be a uniformly Hélder function, and let ¢ be the sequence
of its wavelet coefficients in a given wavelet basis. The multifractal spectrum of f satisfies

ds(h) < min{vt (h), 75 (h)}, Vh € [0, +00].

c

Proof. Tt is clear that 7} (h) > pz(h) and ¥ (h) > pz(h) for every h. The result follows

C

then directly from Theorem [5.2.5] O

The following lemma shows the link between the wavelet leaders density of a sequence
and its increasing and decreasing wavelet leaders profiles.

Lemma 5.3.5. [Z]]
1. If¢€ C°, then
Ui (a) = sup psa’), Va €0, +00).

C
a'<a

2. Assume that ¢ € C° is a sequence for which there are oy > 0 and Cy > 0 such that
dj > C127°9 for every j € Ng, k € {0,...,27 —1}. Then

Vg (@) = sup pg(a’), Va € [0,+0oc].

a'>a

Proof. 1. Let apg = inf{a > 0: '17;' >0} . The result is clear if & < . So, let us assume
that a > ag. Of course, we have 7} (o) > p(«). Since 7} is increasing, we get that

c

Vg (@) > sup py(a).
o' <a

For the other inequality, let us fix € > 0. By definition of pg, for every o/ < o+ ¢, there
exist r(a’) > 0 and J(«') € N such that

” {A €A :dy > 2—(a’+r(a’>)j} —u {A €A :dy > 2—<a'—r<a’))j} < 9(pela’)+e)j

for every j > J(«'). From the covering of the compact [ag,« + €] by the open sets
(o/ = r(a), ¢ +7r(a)), we extract a finite subcovering

{(a —r(al), ol +r(al)) i€ {l,...,n}}.
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Fix J > maxi<;<, J(c). For every j > J, we have

#{N €N 1 dy > 27 (@FT}

3 (#{A €A dy > 2 I _ iy e A dy > 2—<a§—r<aé>>j})

i=1

IN

< 22<Eg<a;>+e>a‘ < n2(Par<a pala)+e)]
i=1
It follows directly that 7 (o) < SUD < P().

2. The proof of the second part is very similar. The result is obvious if @ > «;. The
case a = +oo follows from the definitions of 7} (+00) and pz(+00). So it remains to
study the case o < ;. As done previously, since v, is decreasing, we get that

Uz (@) > sup pa(a’).

a'>a

For the other inequality, let us fix ¢ > 0. Again, for every o/ > a + ¢, there exist
r(a’) > 0 and J(a') € N such that

” {A €A :dy > 2*(0/+T(a'))j} 4 {A €A :dy > 24&/4(&/))]} < 9lpsla)+e)j

for every j > J(«'). Taking a finite subcovering { (o —r(a}), ol +r(aj)) : i € {1,...,n}}
of [a+¢,0q] , we get
#{N €A1 dy < 27(@FIY

n

3 (#{A €Ajidy > 27 @I} _ sl e A i dy > 27(a;4(a;))j})

i=1

IN

n
< Zz(pa(a§)+€)j < p2uPar>a pa(@t’HE)J’7
i=1
hence the conclusion. O

The next proposition shows that, unlike the wavelet leaders density, we can define
the increasing and decreasing wavelet leaders profiles of a sequence using the restricted
wavelet leaders ey instead of the wavelet leaders d.

Proposition 5.3.6. [Z]] If &€ C°, then for every a € [0, +00],

log#{\ € Aj : ey > 2 (aF9)}

) = lim 1 , 5.1
vz () = lim im sup log 2 (5.1)
Moreover, for every a € [0, +00),
log#{\ € Aj ey <27 (@)
v (o) = lim limsup g#{ ] eA,_ }7 (5.2)
e—=0% jto00 log 27
and for a = 400,
1 AEA;tey <274
7z (+o0) = lim liminf ogtH{AE N ien S 2} (5.3)
A—+oo j—+00 log 27
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Proof. 1. Let us define 7" () as the right hand side of . Then it is clear that
ﬂ;f’*(a) < 7} (a) for every a € R since ey < dy for every dyadic interval A. For the
other inequality, let us fix & € R and 6 > 0. By definition, there exist J > 0 and € > 0
such that

NN ey > 27O <T@ > g

Let us fix j > J. As before, for all A € A;, we denote N(A) the set of the 3 “neighbors”
of X in Aj. Then we have d) = max{e, : p € N(X)} and it follows that, for j large
enough,

#{N €N 1 dy > 2797}

IN

3-#{NEN; ey > 27T}
< 3. Q(Flfvcf’*(a)ﬁ)j.
Thus 77 (a) < 75" (a) +  and since § > 0 is arbitrary, we get the conclusion if « is

finite. The result is also true for &« = +00 because these two functions take the value
one for o« = +o0.

2. The proof of the second point is similar. Of course, we always have
#{INE N ey <27} > AN e A1 dy <2797},

Moreover, for any dyadic interval A € A;, there exists X' € Aj o such that 3\ C A
Therefore dy, < ey and

#{A S Aj ey < 2*(a78)j} < #{A c Aj+2 cdy < 27(0475)]‘}
#{)\ S Aj+2 : d}\ S 27(0‘725)(]-“”2)}

A

if j is large enough. Hence the result for o € [0, +00). The same argument holds for
a = 400. O

This equivalence of the definitions of the wavelet leaders profiles is important be-
cause the formulation using restricted wavelet leaders is more suited for the study of its
properties: indeed, the suprema at a given scale are taken on non-overlapping intervals.
Consequently, from now on, we will often work with restricted wavelet leaders instead
of wavelet leaders. Both functions ﬁ;f and Z;f’* will be denoted by '1721 We use similar
notations for the decreasing profile.

Proposition 5.3.7. Let ¢ € C" for some r > 0 . The definitions of the increasing and
the decreasing wavelet leaders profiles of ¢ are robust.

The robustness of the increasing and decreasing wavelet leaders profiles is proved
in Appendix [A] Consequently, given a uniformly Hélder function f, we can define its
increasing (resp. decreasing) wavelet leaders profile Z}r (resp 5;) by setting ﬁ}r = 77;
(resp. vy =), where ¢ is the sequence of wavelet coefficients of f in a given wavelet
basis.

5.4 Examples

From Proposition [5.3.7] we know that the increasing and decreasing wavelet leaders
profiles of a uniformly Holder function do not depend on the chosen wavelet basis.
Moreover, from Proposition [5.3.4] we know that they give an upper bound for the
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multifractal spectrum of this function. They are therefore a “good candidate” to propose
a new multifractal formalism based on wavelet leaders. In practice, in order to estimate
the multifractal spectrum of a function using its wavelet leaders profile, one can proceed
as follows.

Definition 5.4.1. Let f be a uniformly Hélder function and let us denote by «g the
smallest positive number such that '17?(015) = 1. The wavelet leaders profile of f is
defined by

Z?(a) if a € [0, as],

vi(a) if a € [as, +od].

vi(a) = {

The leaders profile method is based on the estimation of the multifractal spectrum of f
by the function v.

Remark that this definition makes sense: indeed, it is easy to see that we also have
vy (as) = 1 (by using the wavelet leaders density). In this section, we show that the
leaders profile method holds for some classical models used in applications.

5.4.1 Fractional Brownian motion

A classical process is the fractional Brownian motion [I08]. It is a Gaussian stochastic
process which is self-similar with stationnary increments and which depends on a param-
eter B € (0,1), called the Hurst indez. Its main property is the existence of a long-range
correlation which introduces a weak dependence between the points of a realization.
Such dependences are detected in many experimental observations and that is why frac-
tional Brownian motions model many monofractal phenomena [I5] [56] [I08] I16]. The
regularity of sample paths of fractional Brownian motions is well known and is recalled
in the following theorem.

Theorem 5.4.2. [97] With probability one, a sample path Bg of a fractional Brown-
ian motion of parameter 8 € (0,1) has everywhere the Hélder exponent 3, so that its
multifractal spectrum satisfies

1 if a=p,
dB’*(a){—oo if a#p.

In particular, with probability one, a sample path of a fractional Brownian motion
is uniformly Hélder.

Let ¥ be a mother wavelet in the Schwartz class and let v, be defined by

~ 1 ~
Ya(§) = @w@).

Then 9, and ¥ _, form biorthogonal wavelet bases [I13]. The use of these bases gives a
decorrelation of the wavelet coefficients of a fractional Brownian motion. More precisely,
if By is a fractional Brownian motion of index 8 € (0,1), it can be written as

271
Ba(z) =Y > 2P pby i1 p (22 — k) + R(z), x € [0,1], (5.4)
JEN k=0
where R is a C*° function and where the £ ;, are independent standard centered Gaus-
sian [TI, [114].
The proof of the following lemma is inspired from Jaffard [90], Jaffard et al. [94].
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Figure 5.1: Sample path of a fractional Brownian motion of parameter g = 0.5

Lemma 5.4.3. Let Bg be a sample path of a fractional Brownian motion of index
B € (0,1) and € be the sequence given by the decomposition . With probability one,
there is J € N such that dj; > G428 gnd djr < 27634 for every j > J and every
ke{o,...,27 —1}.

Proof. Let us fix a dyadic cube ) of length 277. We use the wavelet decomposition given

by (5.4). Let us set
Jo =J + [log,(5%)] + 1.
The number of dyadic cubes at the scale jy included in A is greater than or equal to j2.

Consequently,

Pldy < j~4F275] Pley < 5472787

Pllex,| < 5742777 ¥Ag C A, Ao € Aj]

[T Pllea) <5727
AoCAAo€A,

I Pl < 2774277
Ao CAA0EA,

5 it
= H — ert
™ Jo

AoCANo€A,

I I \/53'—452(1'0—]')5
T
Ao CAAEA

2
J
( 2j462(joj)ﬁ>
T
2
J
2
e

< e

[VANVAN

IA IN

IN

if j is large enough. Let us denote by A; the event “there is k € {0,.. .,27 — 1} such
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that d; , < j~*#27%7 " Then, we have
. . 2 _;2
P[A,] < Z Pld; ) < j*4ﬁ2*ﬁj] <9I < eH

if j is large enough. It follows that the series >
Cantelli lemma, we get

jenP[4;] converges. Using the Borel

P (C4)| =1

JeENj>J

i.e. with probability one, there is J € N such that d;x > j~*27% for every j > J and
every k € {0,...,27 —1}.

Let us show with the same method that with probability one, there exists J € N
such that |c;j ;| < 27775 for every j > J and every k € {0,...,27 — 1}. We have

. 2 +oo —t2 +oo —t —J
Pllea| > 27%74] = P[|éx| > 4] = \/>/ e dt < / ez dt=2e7 .
T Jj J

If A, denotes the event “there is k € {0,...,27 — 1} such that |¢; x| > 277757, we have
ZP[A;] < 400.
jEN

The Borel Cantelli lemma gives the result. In particular, with probability one, we have
dj < 277 for every j large enough and every k € {0,...,2/ — 1} since the function
x — 277 is decreasing if x > L. O

Proposition 5.4.4. Let Bg be a sample path of a fractional Brownian motion of index
B € (0,1) and € be the sequence given by the decomposition . With probability one,

~ —00 Zf a#ﬂa
pg(o‘){ 1 if a=4.

Proof. First, let us fix o > 3. We know from Lemma that with probability one,
there exists J € N such that

djp > %27P vj>J Vke{0,...,27 —1}.

Let us fix e > 0 so that a—e > 3. Then for j large enough, we have j~4#2-87 > 2—(a=<)j
It follows that

#{ke{0,...,20 —1}: 27T < g, <279l =

and we get that pz(a) = —oco with probability one.
Now, assume that o < . Using Lemma [5.4.3] we know that with probability one,
there exists J € N such that

din <275 Vj>J Vke{o,...,29 —1}.

We choose € > 0 small enough so that o + ¢ < 3. Then 27975 < 2-(a+e)i if j is
sufficiently large. Consequently,

#{ke{0,...,20 —1}: 27+ < g, <279l = ¢
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hence pz(a) = —oo with probability one.

Finally, let us show that pz(8) = 1. We know that for any uniformly Holder func-
tion f, dp,(h) < pz(h) for every h > 0. Moreover, with probability one, we know that
dp,(B) =1 and it follows that pz(3) = 1. O

The following result shows that the leaders profile method yields the correct spec-
trum.
Proposition 5.4.5. Let Bg be a sample path of a fractional Brownian motion of index
B € (0,1). With probability one, dp, = vy on [0, +0c].

Proof. The robustness of the wavelet leaders profile implies that vy = Vg, where € is
the sequence given by the decomposition (5.4)). The result follows then directly from

Lemma Theorem and Proposition O

5.4.2 Lacunary wavelet series

Lacunary wavelet series have been introduced by Jaffard [89]. They depend on two
parameters n € (0,1) and o > 0 and are defined through their wavelet coefficients as
follows. Let (gj,k)jeNo,kE{O,“.,W—1} be a sequence of independent random variables in a

probability space (2, B,P) whose laws are Bernoulli laws with parameter 2—(1=mJ je,
such that

0 with a probability 1—2-(0=m7,
The wavelet coefficients of the lacunary wavelet series R, , are given by

cig = gin2 %, Vj€No,k€{0,...,27 —1}.

1 with a probability 2-(1=m7
9jk =

The regularity of lacunary wavelet series have been studied by Jaffard.

Theorem 5.4.6. [89] With probability one, the multifractal spectrum of a sample path
of the lacunary wavelet series R, is given by

L] if h € [, 2]
= @ ’ 7] ’
dRam (h) { —o0  otherwise.

In particular, almost every lacunary wavelet series is multifractal. Let us prove that
with probability one, the leaders profile method gives the correct spectrum.

Lemma 5.4.7. Let us fiz n' > n. With probability one, there is J € N such that
#{kef0,...,20 =1} ¢ =2"} <279 vji>
Proof. For every j, we denote by B; the event
“H{ke{0,...,20 =1} :cjp =27} > 2797,

Remark that at a given scale j, we count the number of successes of a binomial distri-
bution of parameters (27, 2-(1=mJ)  where the success means “cj = 277 It follows
that

e
2n'i <m <27

io—(1—n); m . 277/1

Z (2]2 n J) <o (an) .
m! 277 +1)

2n'i <m <27

IA
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n

Figure 5.2: Almost sure multifractal spectrum of a sample path of a lacunary wavelet
series

Using Stirling’s formula, we obtain then that for j large enough,

!
2mJ

ni gn'j X '
2]'% W 2 (-t P (2(77—77’)3'6)277
(277 4 1) V2r V2 Vo

since

2")’]’

v < (1)

if 7 is large enough. Since 7’ > 7, this last term is the general term of a series which
converges. We conclude the proof using the Borel Cantelli lemma. O

Remark 5.4.8. In the next lemma, we will use the following fact: if a € (0,1) and if
b > 0, then

(1—a)’ <e b

It suffices to use the Taylor development of the function x — log(1 — z) around 0 to
prove it.

Lemma 5.4.9. For every € > 0, with probability one, there exists J € N such that the
wavelet leaders dj i of Ra.y, satisfy

dip > 277G vi> g ke do,...,2 —1}.

Proof. Let us fix € > 0. For every j € N, let us denote by A; the event “there exists
k€ {0,...,27 — 1} such that d;; < 2~ (G+e)in By the Borel Cantelli lemma, it suffices
to prove that

> P[4;] < +oo.

JEN
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1
Let us set jo = |—(j + logy j)] + 1. We have
n

271
Pl4;] < ) Pldjp <2795
k=0
271
< ]p[e <2 J(,,-‘r&)]
k=0
271
< [T Pl <277+,

k=0 XoCA(4,k), o €A,
From the definition of jg, we have jo < j (% + £) if j is large enough. Consequently,
lea,| < 277G if and only if |cy,| = 0. Therefore, we obtain

291

. 270 —J
P[4;] < Z (1 _2*(1*77)]0))
k=0
< 2 (1 - 2_(1_n)jo))230—y
< 2 exp (,2j0*j2*(1*ﬂ)jo))
, 2\7
< 2exp(—j) = <)

€

1
where we have used Remark |5.4.8/ and the relation jo > —(j + 2log, j). This leads to

3

the conclusion. O

Proposition 5.4.10. With probability one, dr,, , = Vg, , on [0,+0d].

@,n
Proof. First, let us fix h < a. Of course, we have d; ; < 27 for every j € N and every
k € {0,...,27 —1}. Then, if £ > 0 is chosen small enough so that h + ¢ < «, we have
djj. <27+ for every j €N, k € {0,...,27 — 1}. Tt follows that 7} (h) = —oc.

Secondly, let us fix h € [a, ]. We already know that dg, ,(h) < ﬁga,n(h), so it
suffices to show that UEW] (h) < % Let us remark that

o-(h+e)i < g-ai' oy < MEE

7.
Consequently, if 2= (P+e)i < d;j i, then there exists X' C 3A(j,k) with ¢y = 9-aj’ and
j' < =4 Fix / > . Lemma implies that

#{)‘ € Aj : d)\ > 2_(h+6)j} < Z #{)\/ S )‘j’ LC\ = 2_ajl}

. h4te -
JI<TEEg

Z on's’

., _h .
jr<hte

IN

on' | E=5]+1
' —1
271/ h+zj+1

Y

< —
- 21 — 1
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on' Bt 41
1 4

with probability one. Therefore, we obtain

log #{\ € Aj : dy > 27 (hFe)i}

IN

lim sup lim sup

j—+oo log 27 j—+oo IOg(Qj)
on' *EE+5
= limsuplogy | ———
j—+oo (27 —1)3
h+e
= ’[’I —_—
Q

with probability one. Taking a sequence (1, ), en decreasing to n and a sequence (€., )meN
decreasing to 0, we get that ﬁ;a n(h) < % with probability one.

Finally, from Lemma we know that, with probability one, ’7;%&,” (h) = —o0 for
every h € (1, +o0].

Taking a dense sequence (h,)nen in R and using the right-continuity (resp. left-
continuity) of 7, , (resp. Ug ), we get the conclusion. O

5.4.3 Random wavelet series

The model we present in this section is a generalization of the lacunary wavelet series.
It was introduced by Aubry and Jaffard [12]. The proofs of the results presented here
are developed in Appendix [B]

Let (2, F,P) be a probability space. We suppose that, at a given scale j, the wavelet
coefficients ¢; . of the process are drawn independently with a given law. We denote by
p; the common probability measure of the 2/ random variables z; = —logs(|c;k)/7;
the measure p; thus satisfies

P [|cj,k| > 2_°‘j] = pj((—oo,a]).
For a > 0, we denote

o log@p(la—za+e])
p(a) := lim lim sup .
€20 j+oo log(27)

Definition 5.4.11. If there exists v > 0 such that p(a) < 0 for every a < ~, we say
that

27 -1
F=22 2 cirti
jeNy k=0
is a random wavelet series. We will also assume that there is @ > 0 such that p(a) > 0,
so that
pla)\ ™
Pmax = | sup —= < 4o0.
a>0 «
We define

W:i=<a>0: Z ijj([a—e,a—i-e]):—i-oq Ve >0
J€No

and we set b,y := inf(W).

103



CHAPTER 5. WAVELET LEADERS PROFILE

Remark 5.4.12. If p(a) > 0, then o« € W. It follows directly that if v(«) > 0, one
has a > hpin-

Aubry and Jaffard have computed the almost sure multifractal spectrum of a random
wavelet series.

Theorem 5.4.13. [12] Let f be a random wavelet series. With probability one, the

spectrum of singularities of f is given by

pla) .
df(h) = { hsupae(o,h] T th € [hmin; hmax]y
—0 otherwise.

Let us denote by p; the common probability measure of the 2/ random variables
—log,(lej kl)/j, where e denotes the restricted wavelet leaders. Therefore, we have

P [ejx > 2°9] = B, (—00,al).
Remark that one has
E[#{k €{0,...,27 =1} ¢, > 27} = 27p,((—00, o))
since #{k € {0,...,27 — 1} 1 €;, > 277} counts the number of successes of a binomial

distribution of parameters (27, p;((—00,a])), where the success means “e;p > 279
For every a > 0, we define

log (27p.;((—o0,a + ¢
v () := lim limsup 8 (224(( . D)
e—=0% jto0o 10g(23)

~+

and
g 1= inf{a >0:0"(a)= 1}.

We also assume that for every € > 0 and every é > 0, there is J € N such that
pj((—o0, a5 +e]) =27, Vj>J
Proposition 5.4.14. Let f be a random wavelet series.

1. With probability one,

~4 .
ot — v (a) Zfa Z hmina
vy(e) = { —00 otherwise.
2. With probability one, if o € (as, +0], v (o) = —00.

The next result shows that with probability one, a random wavelet series satisfies
the formalism based on the wavelet leaders profile.

Theorem 5.4.15. Let f be a random wavelet series. With probability one, we have
dy =vy on [0,400].
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5.4.4 Deterministic cascades

The next model we consider is a deterministic wavelet cascade; it is the simplest case of
the famous cascade models which have been introduced as turbulence models, and are
also used in financial modelling.

Let us consider the binomial measure p of parameter p € (0, 1), which is the unique
measure supported on [0, 1] such that

pAjk) = p?IR (1= p) =20k,

where ¢(j, k) is the number of 1 among the j first coordinates in the dyadic decomposition
of k277. Following a general framework proposed by Barral and Seuret [20], let us
construct the wavelet series F), by prescribing its wavelet coefficients in a given wavelet
basis as follows: for every A, we set ¢y := pu(X). We will say that F), is a deterministic
Bernoulli cascade of parameter p. Tt is known (see [20} [137] for example) that the wavelet
series F), is well defined and its multifractal spectrum is given by

—(Blogy(B) + (1 — B)logy(1 = B))  if a € (—logy(1 — p), —logy(p)),
dp, () =4 0 if a € {—logy(1 —p), —logy(p)},
—00 otherwise,

where
a +logy (1 —p)

" logy(1—p) — logy(p)

B

0 —logy(1—p) ‘1 —log(p) é

Figure 5.3: Multifractal spectrum of a deterministic Bernoulli cascade of parameter
p=04

Remark that the wavelet coefficients are simply defined recursively by

0070 = 1,
Cj,Qk; = Cj_17k (1 — p), (55)
Cj2k+1 = Cj-1kDs

for all j > 1 and k € {0,...,27 — 1}. At each scale j € Ny, we have (;) coefficients of
size p!(1 — p)i=! for 1 € {0,...,7}. Moreover, if X' C A, then |cx/| < |cx| and therefore,
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CHAPTER 5. WAVELET LEADERS PROFILE

the wavelet coeflicients are the restricted wavelet leaders. In order to avoid trivial cases,
we will assume that p # 1/2. We will also assume that p < 1/2; the case p > 1/2 is
similar.

co,0 =
(I-p)
cl0 = (;0’0(1 —p) C1,1 ‘= Co,0P
(1-p) X (1- / X
Co0 = c10(1—p) C2;1 ‘= C1,0P Cog 1= (;1’1(1 -p) C2;3 1= C1,1P

Figure 5.4: Construction of the wavelet coefficients of a deterministic Bernoulli cascade

The following proposition is a classical result in the theory of large deviation (see
[104] for example).

Proposition 5.4.16. If the wavelet series F), is a deterministic cascade of parameter p
and if C is its sequence of wavelet coefficients given by , then pz = dp, on [0, +o0].

Proof. From Theorem and Remark it suffices to show that p%(a) < dF, («) for
every a € [0, 400]. First, if « < —log,(1—p), we fix e > 0 such that a+e < —log,(1—p).
Then, we have ¢, < (1—p)? < 27+ for every j € Ny, k € {0,...,27 —1}. Tt follows
that

#INEA; 1 27@F <oy <27 (@I Z LN € A 27T <oy <27 (@79 =
and p%(a) = —oo. Similarly, if & > —log,(p), then for € > 0 such that a —e > —log,(p),
we have |c; x| > p/ > 2779 for every j € N, k € {0,...,2/ — 1}. Consequently,
Fi(a) = —o0.

Secondly, let us assume that « € (—logy(1—p), —logy(p)). Let us fix € > 0. Remark
that we have

9—(a+e)j < pl(l _p)j—l <9o-(a=9)j o ﬂjj >1> 677,
where
a — e+ logy(1 —p)

+  a+etlogy(1—p) _
log, (1 — p) —logy(p)

° logy(1—p) —logy(p)
With these notations, we have

d B

log #{\ € A; : 27(@F9) < ey < 27 (279}
log 27

1 8% 4] J
- e > (1)
1=[6Z 41
Lo 37 VIR ()’
— 10 - -
J 82 Varl(L)y/2n (G — 1))

I=[B< 41
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where we have used Stirling’s formula. Moreover,

+ o
o [ 2 VI
70\ o VERIE R - (D
1824 :
1 : Vi
= 310g2 > N : N\l
=101 V1 (;) 2m(j — 1) (%)
18241 .
< llogQ ZJ Vi
T l:w_ﬂ,/gs—j(ga—)ﬁgj,/gﬁj(l_ (1 — pF)ia-62)
i e
< llogg Bi—Bitl —i,logz(j)
J

Bz 2m(1 - )

1
o, ((ﬁa)ﬁf_ (1— B4 >>

1
(B)B (1 — p) (=8

that converges to log, ( ) as j tends to +oo. It follows that

z(a) < lim logy ((6;)58 - ﬁ;)(1—63)> = —(Blog,y(B) + (1 — B)log,(1 - B))

where
~ a+logy(l—p)
logy(1 —p) — IOgQ(p)'

This concludes this part of the proof. The case a € {—logy(1 — p), —log,(p)} is very
similar. 0

Remark that the function dr, has a unique maximum realized at the point

1
Qg = D) log, ((1 *P)P)~
The leaders profile method gives the correct spectrum, as stated in the next corollary.

Corollary 5.4.17. [Z])] If the wavelet series F, is a deterministic cascade of parameter
p, then we have dp, = vp, on [0, +o0].

Proof. The result follows directly from Proposition [5.4.16] and Lemma [5.3.5] O

5.4.5 Thresholded deterministic cascades

Let f be a function whose wavelet coefficients in a wavelet basis (1¥5)rea are given by &
and let v > 0. Following [132], the wavelet series f! defined by

ft= Z Z Ava where ¢} = cxlj s2-vi(cr),

JENg A€A;
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is said to be obtained from f after a threshold of order ~. This method was introduced
by Seuret in order to create functions with oscillating singularities. They also display
non-concave multifractal spectra, as stated in the following proposition.

Proposition 5.4.18. [132] Let F,, be a deterministic Bernouilli cascade of parameter
p € (0,1/2). Let wy : [y, —logy(p)] — (0,+00) be the increasing function

u + logy(1 — p)
v +logy(1—p)

Let ht . = wi(—logy(p)). If v € [—logy(1 — p), —log,(p)], the multifractal spectrum of
Fli is equal to

dg(h) ) if h € [~logy(1 —p),],
dre(h) =S dp(wy (R)  ifh€ (7, hinads
—00 otherwise.

Let us fix ay = —% log, ((1 — p)p), the point at which dp, is maximum. If v > a,
the spectrum of Fﬁ is non-concave in its decreasing part (see [132] and Figure j and
all the multifractal formalisms proposed up to now fail for F ﬁ Let us show that the

computation of the wavelet leaders profile of F' ﬁ leads to the correct spectrum.

0 —logy(1=p) 1 7 —log(®) e

Figure 5.5: Multifractal spectrum of Fﬁ for p=04and y=1.2

Proposition 5.4.19. [2]] Let F,, be a deterministic Bernouilli cascade of parameter
p € (0,1/2) and let Fft be the wavelet series obtained from F,, after a threshold of order

v > ag where ag = —% log, ((1 —p)p). Then we have dFli = ;Fﬁ on [0, +o0].

Proof. From Proposition it suffices to show that D'Fﬁ < dFﬁ. Let us denote by e
the restricted wavelet leaders of F, and by e the restricted wavelet leaders of F /i

First assume that o < a,. We clearly have vpt () < ﬁ}u (o) and therefore, we get
vrt (@) < dpt () using Corollary

Secondly, if @ € [as, ], we have
#INE N reh <277 <IN e A ey <27(@7OT )
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Indeed, if ey > 27(@=9)J then ¢y = ey > 277. It follows that cf\ = ¢, and that
el = cx = ey. Therefore, €} > 27(@=9)7 and vr(a) < Vg, (a) = dp(a).

Finally, assume that o > 7. Remark that if A € A; is such that ef < 2-(@=9)J with
o — ¢ >, then e} = p!(1 — p)I17 where
o _ logy(1 —p) —logy (p)
! 7 +log, (1 —p)

and B, ; <1 < j, where

g = lom(l —p)t(a—eg)j _ (logy(1—p)+(a—e)j)(y+logy(1 —p))
(- C,)logy(1 —p) —logs(p) v(logy (1 — p) — logs(p)) '

Moreover, since a > 7 > a, [, ; is bigger than j/2 for j large enough. Therefore,

#{Aen; el <277} < zj: (ﬁ : j(LﬁZ,jJ)

1=1Be,;]

and it follows that
log #{\ € A; : €f < 27(a=2)7}
log 29

1 A

7 o8 <]<me>)

L ( V2 (L) | )
§ 2\ 2B (2 Bei) 2 (G — (B, ) (=h)i—16=s]

where we have used Stirling’s formula. Moreover,

IN

L os ( iV (LY )
- 2 - T NN
J V2r[Be ] (4) Pe) /2w (G = [Bo g ) (el yi= 18]
_ 110g2 Vi
T I\ LBe.sd . - NI LBe.s]
(5) ™ VarTa TG — 13T (F15)
~ Ly Vi
e LB<.i] J—1Be.s]
Lﬂs,jJ ! Lﬁs,jj Lﬁs,jj LBE,jJ J
(M) ol = i (1 - sl
1 - LBe,jl 1— LBe.5)
S flOgQ \/j _10g2 LﬂE;JJ (1 _ I.BEJJ)
\/27T W;JJ (1 _ W;JJ ) J J

If we compute the limit as j — +o0o and € — 0T, we get that

iy () < —(Blogy(B) + (1 = B)logy(1 - 5))

with . )
B = lim lim 55',3‘ =« 7+ logy(1 — p) .
=0t jotoo 7(log,(1 = p) — log,(p))
In particular, if o > hf, ., then vpt(a) < 0 so that Vpr(a) = —oo. The conclusion
follows from Proposition [5.4.18 O
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5.4.6 Sum of deterministic cascades

The last example we present is given by the sum of two deterministic Bernoulli cascades.
In order to compute their multifractal spectrum, let us first give some definitions con-
cerning the multifractal analysis of measures. If 4 is a finite Borel measure on [0, 1], the
Hélder exponent of u at xg € [0, 1] is defined by

. logp(B(x,T))
hu(zo) = lirgérif B E—
The multifractal spectrum of p is then given by
d, :[0,400] = {—00} U[0,1] : h+— dimy({z € R" : h,(z) = h}).

In 20} [133], it is proved that if p is uniformly regular (i.e. there exist a constant C' > 0
and an exponent A, > 0 such that u(B(z,7)) < Crmn for any ball B(z,r) C [0,1])
and if f is a function whose wavelet coeflicients are given by ¢) = u(\) for every A € A,
then df = d,,.

Theorem 5.4.20. [99] Let us denote by F,, (resp. F,,) the deterministic Bernouilli
cascade of parameter p1 (resp. ps), with 0 < p1 < pa < 1/2. The multifractal spectrum
of the function F' = F,, + F,, is equal to

[ dp, (h) i h<h,
dF(h)‘{ dn' () if h> ho,

for all h € [—logy(1 — p1), — logy(p2)], where

logy(1 — p1) logy (p2) — logy (1 — p2) logy (p1)
log, (4522) —lows (1522)

Moreover, dp(h) = —o0 if h & [—logy(1 — p1), —logs(p2)].

Proof. Let us denote by p,, and p,, the binomial measures of parameter p; and ps
respectively. If ¢ denotes the wavelet coefficients of F', then

ex = phpy (A) + pip, (X)), VA €A

ho =

Therefore, the multifractal spectrum of F' is the same as the multifractal spectrum of
the measure

.u = /’Lp1 + iu’PQ'
It suffices then to compute d,,. Let us first remark that for every « € [0, 1],

hyu(x) = min{hy,, (), by, (€)}-
Indeed, for every € > 0, there is 0 < R < 1 such that
fip, (B(,7)) < #hen @7 and py, (B(a,r)) < rhere (@€

for every r < R. One has

log (Npl (B(z, 7)) + ,U'pz(B(x7 r))) log (rhum (z)—e & pPeps (I)*E>
log r - log r
log (2rmin{h#m (@)sh gy (z)}75>
>
- logr ’
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for every r < R. It follows that h,(z) > min{h,, (), hy,, ()} —€ and since ¢ > 0 is
arbitrary, we get that h,(x) > min{h,, (x),h,,, ()}
In view of
tp (B(,7)) + iy (B(, 7)) = pip, (B(2,7))
and
tpr (B, 7)) + iy (B(,7)) = pap, (B(, 7)),
the other inequality is obvious.

For every x € [0,1], let S, (z) denote the number of 0 appearing in the n first terms
of the proper dyadic development of x. If u, is the binomial measure of parameter
p < 1/2, it is direct to see that

S hy, (x) 4+ logy (1 —
o Sule) (@) +logs(1-p)
n—too logy(1 — p) — logy p

Consequently, for every x € [0, 1], we have
hy,, (x) +10gy (1 —p1) Ay, (@) +logy(1 — p2)
logy(1 —p1) —logapr  logy(1l — p2) — logy p2

and a simple computation shows that

ho(@) = o, (x) <= hy,, (@) > ho,

where
_ logy (1 — p1)logy(pa) — log, (1 — p2) logy (p1)

log; (1522 ) ~ lo, (5522 |

The conclusion follows. O

ho

H | | i
~logy(1—p1) —logy(1—p2) —logy (p2) ‘ —logy (p1)

0 1 2

Figure 5.6: Multifractal spectrum the sum of two deterministic Bernoulli cascades of
parameters p; = 0.2 and py = 0.4

Remark 5.4.21. Let us notice that d,, (ho) = dy,, (ho) and that ho corresponds to
the first intersection between the two graphs because we have

1
h() < —5 10g2 ((1 —pg)pg).
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Proposition 5.4.22. Let us denote by F,, (resp. Fp,) the deterministic Bernoulli
cascade of parameter p1 (resp. p2), with 0 < p1 < p2 < 1/2. If F = F, + F,,, then
drp =UFp on [0,400].

Proof. Let us denote
1
hs = D) log, ((1 - p2)p2).

Using Proposition we already have the upper bound. Let us prove the other
inequality. We denote by ¢!, &2 and ¢ the wavelet coefficients of F,,, F},, and F respec-
tively. Remark that the restricted wavelet leaders of F},,, Fj, and F' are equal to their
wavelet coefficients. In particular, ey = e} + ei.

First, let us fix a < hg. For every 6 > 0, there is J € N such that

17

#NEN; ey > 27T < HIN e A el > s27(0FT)

N | =

1 .
+H#{AE A€} > ~2 oty

[\V]

Wiy, (40) | ok, (@) 465

IN

< 9. gmax{Vr, (a)Vp, ()} +)j

if j > J. Tt follows that vj(a) < max{ﬂ}?pl (a),ﬁ}pz ()}, If @ < hg, then using

Corollary [5.4.17|and Theorem [5.4.20} a simple computation gives D;m () > ﬁ;m (o) and

h(a) < ’714;,71 (o) = dp(a) . Similary, if o € [ho, h], then () < 17;1)2 (@) =dp(a).

Assume now that o > hy. It is clear that vp(a) < min{vp, (a),vp, (@)} since

ey < e}\ and ey < ei. Moreover, using again Corollary |5.4.17| and Theorem [5.4.20} a
simple computation shows that vp, (a) > Vg, (o) and the conclusion follows. O

5.5 Comparison of the formalisms

In this section, we compare from a theoretical point of view the leaders profile method
with both the wavelet leaders method and the wavelet profile method, presented in
Chapter More precisely, we first show that while it is not concave, the function v
gives a sharper approximation of the spectrum of f than the wavelet leaders method.
We then prove that if 7y is not with increasing-visibility, the leaders profile method is
also more efficient on the increasing part of the spectrum than the method based on the
S” spaces.

5.5.1 Comparison with the wavelet leaders method

Let us first recall the wavelet leaders method introduced in Chapter [d First, one has to
compute the function

1 .
s (p) = lim ing 208 WV1U-2)

j—+oo  log2J where Wf(j7p) =27/ Z d{)\, Vp eR.

AEA;

Then the method based on the estimation of the multifractal spectrum of f by the
function

inf (hp —7 1), h>0.
;ER(p nr(p)+1), h>
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Let us start by the following lemma which gives a connection between the function
7y and the wavelet leaders density.

Lemma 5.5.1. [6]] Let & denote the wavelet coefficients of a locally bounded function
f in a wavelet basis. If pz takes the value —oco outside of a compact set of (0, +00), then

nr(p) = ;Lgfo(hp —pe(h) +1), VYpeR.

Proof. Let Huin, Hmax > 0 be such that pz takes the value —oo outside of [Hpin, Hmax)-
Then

inf (hp — pe(h) +1) = he[Hi{imeax](hp — pe(h) +1).
Let us fix h € [Hpmin, Hmax|, 6 > 0 and € > 0. Then, from the definition of the
wavelet leaders density, there exists a subsequence (j,,)men such that

#{N €N, 27 0Fdin < gy < 27 (h=edim ) > 9(pa(h)=8)jim

for every m € N. It follows that

1og<2‘jm > e, d{{)
~ < 1. i Im
mp(p) < lm Tog 27

log (g—jmQ(Zaw)—a)jm2—<hp+a|p|>jm)

N

li .
m—l>r—rs-loo log 2=7m

1 —pz(h) + 6 + hp + €|p|.

Since € > 0 and § > 0 are arbitrary, we get that
nt(p) < hp — pe(h) + 1.
This result is valid for every h € [Hmin, Hmax] and consequently,

nr(p) < inf  (hp — pz(h) +1).

- he[Hmin;Hmax]

For the other inequality, let us fix 6 > 0 and ¢ > 0. For every h € [Hpin, Hmax),
there exist ¢, < ¢ and J, € Ny such that

#{re A2 (hFei < gy < 9= (h=en)i) < glee(h)+o)s
for every j > Jp,. From the compactness of [Hmin, Hmax], there exist hy < -+ < hy in
[Hmin, Hmax), €1,-.-,en < € and J € Ny such that the intervals (h; — €;, h; + &;) cover
[Hmin7 Hmax] and

#{)\ S Aj . g~ (hite)j <d, < 2—(hi—5i)j} < Q(ga(hi)+5)j
for every i € {1,...,N} and every j > J. Since hy — €1 < Hpin and Ay + en > Hpax,

we can assume that
9—(hn+en)j <dy < 9—(h1—e1)j
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for every j > J and A € A;. It follows that
* N -
9—J Z &< 9—J Z 9(pz(hi)+08)jg—(hip—e:lp)i
AEA; i=1

< gOterhi §° 9= (hip—pa(hi)+1)j

=1

A

N2@+elpDig— infrer(hp—pe(h)+1)

and consequently,

S e s el
7 (p) 2 fuf (hp — pe(h) +1) = 6 — elp|

The numbers 6 > 0 and € > 0 being arbitrary, we get the conclusion. O

Proposition 5.5.2. [67)] Let & denote the wavelet coefficients of a function f in a wavelet
basis. If pg takes the value —oo outside of a compact set of [0,+00), then

v(h) < inf (hp —7if(p) +1), Yh>0

and the function h > 0 — infper (hp — 77 (p) + 1) is the concave hull of Uy.

Proof. By definition, h ~ inf,cg (hp — 77(p) + 1) is the Legendre transform of 7j;.
Moreover, we know from Lemma that 7y is the Legendre transform of pz. Using
properties of this transform, we directly get that the function h — inf,cg (hp—ﬁ +(p)+ 1)
is the concave hull of pz. In particular, a, is also the point at which the function
h — infer (hp —1r(p)+ 1) is maximum. The function vy is the increasing hull of pz on
[0, hs] and its decreasing hull on [hs, +00) from Lemma hence the conclusion. [J

Therefore, as one could hope, the leaders profile method gives a better theoretical
approximation of spectra while there are not concave.
5.5.2 Comparison with the wavelet profile method

Let us recall that the formalism based on the S spaces, presented in Chapter[d] is based
on the estimation of the multifractal spectrum of f by the function

/
a € [0, hypax] — @ sup L?),
a’e(0,a] &
where hmax = info>a,,, ﬁ Let aumin be defined as amin = inf{a > 0 : v¢(a) > 0}.

We directly get that amin = inf{aw > 0: () > 0}. Since the method based on the S”
spaces only allows to estimate increasing spectra, we will of course compare the leaders
profile method with it on [0, o], i.e. the domain on which the function ¥y is increasing.

Proposition 5.5.3. [64] If amin > 0, then

!
Z}'(a) <a sup Vf((/l )
a’€(0,a] «

for every a € [0, as]. Moreover, the inequality becomes an equality on [0, | if and only
if vy is with increasing-visibility on [otmin, o).
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Proof. Let us fix a € [amin, @s], d > 0, 0 < ap < amin and € > 0 such that ag —e > 0.
For every o/ < a + ¢, there exist ¢/ < & and J € Ny such that

#INEA; 1 |er] > 2*(a+6')j} <2 (@40i i > .

Let us choose aq,...,ay < h+¢, e1,...,eny < e and J € Ny such that the intervals
(o, a; + €;) cover [ag, o + €] and

#IN €A1 ey > 27(itei) < oy (@n)+9)

for every ¢ € {1,..., N} and every j > J. Remark that since ag < ayin, We can assume
that |cy| < 2707 for every j > J. We obtain

#HAe e 227 ™ Y #{N € hy o] 227

IS <SEd

For every j' which appears in the sum, we have

o< @I oy,
J
and from the covering of [ag, o + €], there exists i € {1,..., N} such that

aij’ < (a+e)j < (o +ei)j"

We get then
#{)\I € Aj/ : |C)\/| > 2—(a+a)j} < #{)\/ S Aj/ : ‘C)\/| > 2_(ai+8i)j/}
< olwrle+d)j’
< ol td)FE

and consequently,

. ) vy(a')+s
#{NEN; ey > 27T < <(aoj;€ - 1>j + 1> 29(2+) SUPacla i ate] o

It follows that

l/f(Oé,) + 1)

/

lim sup log#{)\ €A eAA = 2_(a+8)j} < (a+e) sup
oo log 27 - ' € [Ctmin,0te] a

Taking the limit as ¢ — 07 and using the right-continuity of v, we get

l/f(Oé/) + 5

<o

o' €[omin, ]

Z}" (o) <a sup

o’ €[amin, ] a

Qmin

Since § > 0 is arbitrary, we obtain the first part of the proposition. Moreover, we have

- vi(a')
o) 5 <0 mp

for every a € [aumin, @5, which leads to the conclusion. O
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CHAPTER 5. WAVELET LEADERS PROFILE

Remark 5.5.4. In particular, one always has hmax < as. Moreover, it becomes an
equality if 7y is with increasing-visibility on [oumin, @s).

Consequently, from a theoretical point of view, the leaders profile method is better
than the method based on the S” spaces for two reasons. First, it allows to detect
the decreasing part of spectra while the wavelet profile method is limited to increasing
spectra. Secondly, it allows to detect spectra without increasing-visibility.

In practice, another drawback of the method based on the S spaces lies in the
estimation of sup,¢(g,q) %ﬁ’/), once vy has been computed. Indeed, while dealing with
numerical data, there are precision errors in the function v¢ which can introduce a bias
in the computation of this upper bound.
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6.1 Introduction

In the previous chapter, we have introduced a new multifractal formalism based on the
wavelet leaders which allows to detect non-concave and decreasing spectra. In this chap-
ter, we present the underlying function space, denoted £”. This new space is robust and
encapsulates the information supplied by the increasing and decreasing wavelet leaders
profiles. We investigate then which ones of the results proved in [13] in the wavelet
coeflicients setting can be extended in the wavelet leaders setting. In particular, we en-
dow this space with a topology and obtain generic results about the form of the wavelet
leaders profile of the functions in £”. The main difference is that now the profile in-
cludes an increasing and a decreasing part, and is therefore much more realistic for most
multifractal models, for which the decreasing part can prove crucial for identification,
or model selection, see [I01] for instance. Nevertheless, it implies that the underlying
space is not a vector space.

Since the wavelet leaders profile is independent of the chosen wavelet basis, the same
will hold for the space £”. Therefore, as in the case of S spaces and Besov spaces, we
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CHAPTER 6. L" SPACES

can consider £” as a sequence space (and not as a function space). That is the point of
view that we adopt here. If ¢ € 2, we set

ex = sup |ex|, A €A, j€N,
NCA

similarly to what was done in Chapter [d In the present situation of sequence spaces, we
call again c;  or c\ wavelet coefficients and e;; or ey restricted wavelet leaders (even
if these elements no longer depend on a function). Similar definitions are adopted for
the wavelet leaders of a sequence. With this definition, it may happen that ey = +oc.
We will work usually with sequences in C to avoid this situation. Moreover, in order
to get a topology on L¥, we will also assume that the sequences have a given maximal
regularity.

In this chapter, given a sequence ¢ € C?, we denote by € its sequence of restricted
wavelet leaders, unless explicitly stipulated. Similarly, given a sequence (¢(™),cy of
sequences of C°, we denote by (™ the sequence of restricted wavelet leaders of (™).

This chapter is structured as follows. In Section [6.2] we construct sequences with
a prescribed wavelet leaders profile. The spaces LV are introduced in Section In
order to endow £ with a topology, we consider in Section [6.4] and Section two
derived spaces, £*°" and £¥', respectively related to the increasing and the decreasing
wavelet leaders profiles. The topology of L£” is presented in Section [6.6] Finally, we
present generic results about the form of the wavelet leaders profile of sequences of £V
in Section 6.7

6.2 Admissible profile

Given a sequence ¢ € CY, let us recall that we denote by o, the smallest positive number
such that 7} (o) = 1 and we define the wavelet leaders profile 7z of & on [0, +oc] by

Sy | PE@) ifae0al,
C( )_{ D’Cj(a) ifQE[asa_Foo}'

As presented in Chapter |5 this function takes values in {—oo} U [0, 1] and there exist
0 < amin < a5 < amax < 400 such that 7z = —oo on [0, min) U (Qmax, +09),
va(as) = 1, Uz is increasing and with values in [0, 1] on [aumin, @s] and Dz is decreasing
and with values in [0,1] on [avs, umax]. Moreover, vz is right-continuous on [0, 5] and
left-continuous on [ag, +00). Finally, we know that the function 1—7z is with increasing-
visibility on [as, max]. In this chapter, we assume that amax < +00. Let us show that
these properties entirely characterize the wavelet leaders profiles, as stated in the next
result.

Proposition 6.2.1. Any function v : [0,400) — {—o00} U[0,1] for which there exist
0 S Qmin S Qg S Qmax < —+00 such that

v=—00 on [0, amin) U (Qmax, +00),
vias) =1,
v is increasing, right-continuous and with values in [0,1] on [qumin, @),

v is decreasing, left-continuous and with values in [0,1] on [ows, Gmax]s

v(a)—1

o is decreasing on [(s, max],
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6.2. ADMISSIBLE PROFILE

is the wavelet leaders profile of a sequence of C°.

Proof. Let us consider a sequence (v, )nen which forms a dense subset of [@min, ¥max]
and such that ay appears in the sequence. Using the right-continuity (resp. the left-
continuity) of v and of the increasing wavelet leaders profile (resp. decreasing wavelet
leaders profile) on [amin, as] (resp. on [as, amax]), it suffices to construct a sequence &
such that Vz(ay,) = v(ay,) for every n € N and such that Dz is identically equal to —oo
on [0, umin) U (Qmayx, +00]. First, we will construct sequences &™), n € N, such that
Ve () > viow).

1. If o, < @

If v(ay,) =0, let J, = 0 and otherwise, let J,, be the smallest integer such that

2

v(on)Jn
2 - 21 vian) ]_

(6.1)
Then, for every j > J,, we have

|2v(en)i| < g|2v(en)G=1) |
Let us define @™ as follows: if j < J,, we set cﬁ) =0 and if j > J,, we set

(n) o 2_an(j+n) fOI‘ L2V(a’L)jJ Values Of k7
Jk T 27@@Hn) otherwise,

where the positions of the k € {0,...,27 — 1} such that c(”) 2-2n(i+7) are chosen first

to fill entirely dyadic cubes of scale j—1 whose coefﬁmentb equal 2= 0U=14+1) Tt follows
that if 7 > J,,, the restricted wavelet leaders are the wavelet coefficients. In particular,
one has D;i'(n) (an) = v(ap).

2. If a, > g is such that v(a,) < 1

Let jo = 0 and for every [ € Ny, let j;11 be the smallest integer larger than j; such
that
s (i1 + 1) = o (i +n).

In particular, if j; < j < ji11, as(j +n) < an(ji +n). Let us define ¢ as follows: if
Jj = 7ji, we set

NON 2-anliitn)  for |2v(@n)it | values of k,

ook T { 2-as(itn)  otherwise,

and if j is between j; and j;y1, we set

O 2—“ﬂr(fl+”) if A(j,k) is included in \; € Aj, with ¢y, = 2-an(rtn),
3ok 2-as(j+n)  otherwise.

With this construction, the restricted wavelet leaders of @™ are its wavelet coefficients.
Moreover,

lim sup log #{A € A, :eg\n) < 27(%76”‘} > lim log #{\ € Aj, : e(") < 9 (as—e jl}
J=rtoo log 27 Sl rerme Tog 27

so that v_ ., (an) > v(am).
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Let us also make two remarks that will be useful in the general construction. First,
if a < ay, then
#rAeN el >27%) =0

Indeed, if j —n = j;, then eg\n) = 27%J < 27% or eg\n) =27 < 27%  If j —n is
between j; and j;41, then eg\n) =27%J < 27 or eg\") = 2-an(itn) < 9-asj < 9—aj,
Secondly, assume that o € (as, o] and fix j such that j — n is between j; and jj1. If
27%nJl > 27 then

#NEN el <279} =0

and if 27%nJt < 27% we have

#{NeA_,: eg\n) <271 < 2i—n=digv(an)i
< 9i—ngwlan)=1)3-j
< i—ngW(e)-1)j
< V(@i

using the last property of the admissible profile v.

3. If @, > g is such that v(a,) =1

We consider the sequence &™) defined by
Cﬁ) =2 Ut vieN, ke{0,...,27 —1}.
Then, v_,, (an) = D';(n) (an) = 1.

4. General case

We consider the sequence ¢ defined using the sequences ¢, n € N, as follows: we
set co,0 := 0 and for every j € N, k € {0,.. 27 — 1}, we set

1 . . .
g ke {27l 20 -1},
2 . i i
e k{272 21}
Gri=9q
O if k € {2,3},
) if k=1,
0 if k=0.
Clearly, we have |c; | < 27%minJ for every j € Ny, k € {0,...,27 — 1}, and therefore
¢ e Comin C OO, In particular, if @ < aumin, then ﬂg(a) = —oo. Similarly, if & > apax,
ejr > 27 for every j,k and we obtain 7 (o) = —oo. Moreover, if a,, = a;, we have

vy (as) > U, (as) = 1. The same holds for the increasing wavelet leaders profile of ¢,
so that 7} (o) = 75 () = 1.

Let us now show that for every n € N such that a, < a,, we have v} (a,) = v(a,).

By construction, it is clear that 7} (as,) > ﬁcf(n) (an) = v(ay,) and we only have to prove
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6.2. ADMISSIBLE PROFILE

the other inequality. Let us fix € > 0 such that «a,, + ¢ < a,. At a given scale j > n, we
have to take into consideration the sequences (), ...,&0) and the restricted wavelet
leaders corresponding to £ = 0. More precisely,

J
#NEN; tex> 27t < N gIN e Ay, e > 27t} 4

m=1

where we have added the case £k = 0. By construction, we know that if o, > ay + €,
we have

N E Ay e > 2 ()i} —
Assume then that o, < a, +¢ < a,. If j —m > Jp,, we have 65'7:11)7@,1@ = c 2n &
follows that

and it

#{)\ c A] ” €>\ m) > 92 (an+e)j } < ov(am)(j—m) < gv(ante)j

If j —m < J,,, we have

HINE Ny W > 27 (k)i < gr(am)Tm |
S 2L2V(am)(Jm_1)J
< 4
— 21—1/(04,,,,) -1
4

< 217u(an+e) —1
using the choice (6.1]) of J,,,. If j is large enough, we have

4 )
< oulante))
21l—v(ante) — 1 — 2

and it follows that
#{)\ c Aj Tey > 2_(an+5)j} < j21/(06n+€)j +1.
Therefore,

+(an) < 61_1)%1 V(an + 6) = V<an)

using the right-continuity of v.

Finally, let us show that for every n € N such that o, > o, V7 () = v(ay). As
previously, v, (o) > U, (an) > v(a;,) and we only have to prove the other inequality.
Let us fix ¢ > 0 such that «,, — & > a,. Remark that if o, < a,, — €, we have

HNE A e <27 <A e Ay M <27 (DT} =,
If o, > v — €, wWe know that
HNE A el < 27 (n=9i} < grlen—)i,

In total,

#A ey <27} < Z HINE N,y e™ <27(m9)) g

IN

]2u(a" E)]+1

121



CHAPTER 6. L" SPACES

and it follows that

vz (an) < lim v(ay, —¢) = v(an)
e—0+

using the left-continuity of v.
O

Remark 6.2.2. If one considers the wavelet series f associated to this sequence ¢, i.e.
the function whose coeflicients in a fixed wavelet basis are given by the sequence ¢, then
it does not satisfy the leaders profile method. Indeed, it is direct to check that, for
example, Ef(h) = ) if h < a, does not belong to {a,, : n € N}. Let us mention that
a function with prescribed wavelet leaders profile will also be constructed in Chapter [7]
This construction will use the topology of £” and it will give a function which satisfies
the leaders profile method.

Following this result, we consider the next definition.

Definition 6.2.3. A function which satisfies the conditions of Proposition [6.2.1]is called
an admissible profile.

Using the previous construction of a sequence with a prescribed wavelet leaders
profile, it is possible to construct a subspace of C° with a maximal dimension whose
elements have the same prescribed wavelet leaders profile v. We will show in Section
that this subspace can be chosen to be dense in L”.

Proposition 6.2.4. Let v be an admissible profile. The set of sequences ¢ € C° such
that Uz = v is c-lineable in CO.

Proof. Let ¢ € C° be a sequence such that 7z = v, as constructed in Proposition
Let us denote by € the sequence of restricted wavelet leaders of ¢. For every r > 0, we
define the sequence (") € C° by setting

(r) 1
Ty = —ey
A i

for every j € Ny, A € A;. Of course, the restricted wavelet leaders of & (") are its wavelet
leaders.

Let us first prove that the sequences # (), » > 0, are linearly independent. Let
rN >7rN_1>--->711 >0 (N €N) and let us assume that

0,72 4. TN = 0,

where 61,...,0n € C. Since vz = v, we know that ey # 0 for infinitely many j € Ny,
A € A;. Consequently,
1

i

0

1
bh—— + - +0On
Jn
for infinitely many j € Ny. If we multiply this relation by j™, we get
01+ 625" " + -+ 0N T =0

for infinitely many j € No. Taking j — +oo, we get that §; = 0 and recursively,
01 =---=0x=0.

Secondly, let us prove that if

7= 915(7'1) 4Ly eNf(T'N)’
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with ry >7ry—1 >+ >7r1 >0 (N €N) and 6,,...,0n € C\{0}, then vz = v. Let us
remark that

< s (Il bk Ol )
sup |za| < sup - T N\~ (S5Y
NCA A CA o JjirN

1
<|9ljﬁ+m+|9N )eA

1
JT

IN

(S5Y

if 5 is large enough. Moreover, for every € > 0, we have

1 1
sup |zx| > 91T+"‘+9NT [P
NCA J N
1 1 1
> (Il = 6nl = o= ol
> 27 %J¢

if j is large enough. It follows that

# {A €A ¢ sup || 2 2(““”} < # {/\ EAjies> 2*<a+€>ﬂ'}
and

i {/\ €A sup lzar| > 2‘(‘"*5”} > # {/\ CAj:ey> 2—(°‘+%>J}

for every a € [0, o] if j is large enough. Consequently, we obtain Uz(a) = vz(a) = v(a).
Similarly, we directly get that vz(a) = vz(a) = v(a) if a > as. O

6.3 Definition of L” spaces

In this section, we introduce new sequence spaces which contain the information supplied
by the wavelet leaders profiles.

Definition 6.3.1. Given an admissible profile v, the space L£” is defined by the set of
sequences ¢ € CY such that 7z < v on [0, +00), i.e. such that

{ vi(a) <v(a), VYa<as,

v (o) <v(a), Ya> as.

Using Proposition [5.3.7 we directly get that the space £ is robust. Therefore, one
can define an associated function space: a locally bounded function f belongs to the
function space LV if its sequence of wavelet coefficients ¢ in a given wavelet basis belongs
to the sequence space L£”. Remark that if the admissible profile v is such that api, > 0,
then all the functions of £” are uniformly Holder. The following proposition gives a
useful characterization of the space L.
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Proposition 6.3.2. A sequence ¢ € C° belongs to LV if and only if for every o > 0,
€ >0 and C > 0, there exists J € Ny such that for every j > J

#E;T(C’, Q)(€) < 2@+ yf o < ay,

#E; (C,a) () < 2@+ if o > ay,
where
EJT*'(C', a)(@)={NEN;j1ex>C27%} and Ej_(C’, a)(@) ={Ae ey <C274,

Proof. This proof is a simple adaptation of the proof of Lemma 2.3 in [13]. Assume that
g€ LY. Let us fix a € [0,a,), ¢ > 0 and C > 0. From the definition of 7} (a), there
exist J € N and 1 > 0 such that C > 27 for every j > J and

HEF (Lo +n)(@) < 207495 vj> g,

From the choice of 1, we have #E';T(C’, a)(@) < #E}'(l, a+n)(¢) for every j > J and

since 74 (o) < v(a), we get
#ET(C,a) (@) <20+ 5 > .

The proof for the decreasing part is similar.
Assume now that ¢ satisfies the assumptions of the proposition. Let o € [0, a5) and
€ > 0 be such that o + ¢ < az. Then, there is J € N such that

#EF (1,a+2)(@) < 200t ) >

so that

log #E+ 1L,a+¢)(@
lim sup g# Jl( - i )gu(a+5)+s.
Jj—4o0 ng

The right-continuity of v gives

o log #E; (1,0 +¢)(€)
lim lim sup -
=0 jstoo log 27

<v(a).

If a € (a5, +00), the proof is similar. If o = a, the result is direct since v(a,) = 1. O

Remark 6.3.3. Of course, from Proposition [5.3.6] the same result holds if we replace
the restricted wavelet leaders by the wavelet leaders.

Let us remark that, in general, the space L£” is not a vector space since 0 does not
belong to L£”.

Definition 6.3.4. Given an admissible profile v, we define the spaces £ and £V~ as
follows:

e the space £ is the set of sequences & € C such that for every a € [0, ay), € > 0
and C > 0, there exists J € Ny such that

#ET(C,a)(F) <2097 > g,
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e the space £V~ is the set of sequences ¢ € ) such that for every a € (as,+00),
e > 0and C > 0, there exists J € Ny such that

#E-(C,a)(@) < 2@+ vj> .

Remark that we allow the wavelet leaders of a sequence of £~ to be infinite. Of
course, we have
LY =Lrrnce.
Moreover, as we will see, the space £T is a vector space. Obviously, the notation £¥+
is used to refer to the fact that we consider only the increasing part of the admissible
profile v. Similarly, in the definition of £*"~, we only consider the decreasing part of v.

Remark 6.3.5. If one considers an admissible profile such that v(a) = 1 for every
a > ag, it is easy to see that £~ = C° so that £¥ = £F and L” is a vector space.
Remark that it is the notion of admissible profile used in the case of S” spaces.

6.4 L" spaces

In this section, we show that £ is a vector space and we endow it with a distance 5t
We study then some basic properties of this topological vector space. Most of the
results and proofs presented in this section are derived from [25] and are similar to the
corresponding results in 8" spaces, see [13].

Let us recall that £ is the set of sequences ¢ € C° such that for every a € [0, o),
e >0 and C > 0, there exists J € Ny such that

#ET(C,a)(@) < 20T ) >,

where _ ‘
Ej(C, a)(@) = {)\ €EAjien> CZ_O‘J}.

From Proposition we know that a sequence ¢ € C° belongs to £ if and only if
v <wvon [0,
Proposition 6.4.1. [25] The space LV is a vector space.
Proof. We trivially have 0 € £*"". Moreover, if € £ and 6 € C\{0}, then 6¢ € £*+
~+ —

since E; (C,a)(0¢) = E; (‘%l,a)(é’). Let ¢,& € LV, Let us fix a € [0,a5), € > 0
and C > 0. There exists J € Ny such that

o (‘;a) (@) < 2@+ wp,t (§a> (6) < 2@+ and 2955 < o7
for every j > J. We have

) C . C ;
ex+ey\>sup ey +cy | >027% = ey > 527'” or e\ > 3 27w

N CA
and so
~+ ~+ (C ~+ (C
45 Cae+d) < #5 (Go) @ +#E (5.0) @
< ov(@igosi
< o@)+e)

for every j > .J. Thus ¢+ ¢’ € L.
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6.4.1 Auxiliary spaces A*(a,ﬁ)

As for the case of the S” spaces, a useful description can also be obtained by the
introduction of auxiliary spaces. These new spaces will then be used to define a topology
on LY,

Definition 6.4.2. Let @ >0 and 3 € {~o0} U0, +00). A sequence &€ C? belongs to
the auxiliary space AT (q, () if there exist C,C’ > 0 such that

#Ef(C, @)(€) < C'2%, VjeN,.

Let us remark that a simple adaptation of the proof of Proposition [6.4.1] shows that
the auxiliary spaces are vector spaces.

Remark 6.4.3.

1. If B = —o0, then g"’(a, B) is the set of the sequences ¢ € Q) satisfying

sup sup 2% < 4o0.
Jj€Np ke{0,...,27 -1}

Let us remark that it is the Hoélder space C®. Indeed, since a > 0, this result
follows from the fact that if there is R > 0 such that sup; , 2*7[c; x| < R then

lcjow| < 27%'R < 27%R for every j' > j, k' € {0,...,27 —1}. Hence, we get
ejr < R27% for every j € Ny.

2. If B > 1, then A* (o, 8) = Q.
Let us now define a distance on these auxiliary spaces.

Definition 6.4.4. Let a >0 and 8 € {—oc0} U [0,400). For &’ € At (a, 8), we write
51 p(@e) =it {C+C':C,C" > 0and 4B, (C,a)(E— ') < "2 ) e No}.
Lemma 6.4.5. [25] For every o > 0 and € {—oo} U [0, 4+00), giﬁ is a distance on
Zﬁ(a, B) which is invariant by translation and which satisfies

04.5(02.0) < sup{L,16]} 6F 5(,0)
for all @€ At (a, ) and 0 € C.

Proof. If B = —o0, it is immediate to check that (Z*(a,ﬂ),giﬁ) is the normed space
(C* || - llc=) and all properties are then satisfied. So, let us assume that g > 0.
By definition, it is clear that (5;ﬂ is invariant by translation. Moreover, if || < 1,
one has #ET(C, )(0¢) < #ET(C,0)(¢) so that 5;&(95, 0) < 5;5@,6 ). If 6 > 1,
#E;(C, a)(@) < #E;-“(|0|C, a)(0¢) and it follows that 5;/3((95,0) < |0|5;B(6’,0).
Let us now show that g;rﬁ is a distance on AT (a, ).

e The positivity and the symmetry of g;r 5 are immediate.
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e Assume that 5+6(C 0) = 0. Let us consider 0 < & < 1. Then there is C,C’" > 0
such that C'+ C" < ¢ and

#E; (C,a)(@) <C'2%, YjeN,.
In particular, for j = 0,

#Ey, (C,a)@)<C' <e<1

so that ego = supyep |ea| < C27% < €27 Since 0 < € < 1 is arbitrary, we get
cy = 0 for every X\ € A.

e Let us now prove the triangle inequality. Because of the invariance by translation,
it suffices to show that

00p(@=7",0) <07 4(8,0) +0] 4(",0)
Let us fix 7 > 0. Then there are Cy,C{, Co, C} > 0 such that

—

Cl+Cl<5 5(C, )+n,02+02<6 (’,0)+n

and

#E; (C1,0)(0) < C12Y 4B (C2,0)(F") < C27
for all j € No. If X € A; does not belong to E;Jr(Cha)(E') U E;+(Cg,a)(é”), then

sup Jex: — .| < sup fex| + swp [ef,| < (C1 + C2)2°
ACA

and consequently, for every j € Ng,

#E; (Ci+ Co,a)(@— ) < #E; (Cr,a)(@) + #E; (Ca,a)(@') < (Cf + C4)2.

The triangle inequality follows.

Remark 6.4.6. It is direct to check that the distance defined by
bip@ey =it {C20: #E; (Cra)@—e") < C2%, vj e Ny }

leads to the same topology.

In the following proposition, we get that the topology defined by giﬁ is stronger

than the uniform topology, i.e. the topology defined by the norm of C°. The equivalence
with the uniform topology happens when § > 1.

Proposition 6.4.7. [25] Let « > 0 and 8 € {—c0} U [0, +0).

1. The addition is continuous on (A*(a, 3), 0. 5;‘5)

2. The space (A*( B),diﬁ) has a stronger topology than the uniform topology.

Moreover, every Cauchy sequence in (Z*(a,ﬂ),gz‘ﬂ) is also a uniform Cauchy
sequence.
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3. If B > 1, the topology defined by the distance g:g is equivalent to the uniform
topology.

4. (a) If B is a bounded set of (Z*(a,ﬂ),g;'ﬁ), then there exists r > 0 such that

B {EEQ:#{/\EAj:eAZr27°‘j}§r2ﬁj, VjENo}

-
C {ceQ:#{rAehjrey>r27} <r2% VjeN}.
(b) Letr,r' >0, &’ >« and 8/ < 5. The set
B= {Ee Qi #{NEN; e >r22T <728 yje NO}
is a bounded set of (K“'(a,ﬁ),gctﬁ). Moreover, B is closed for the uniform

convergence.

Proof. 1. The first point is obvious using the triangular inequality and the invariance
by translation of the distance (5; 5

2. Let (Z(™),,en be a sequence of elements of AT (a,3) which converges to & in

(K*(oz, B), 5; 5). If B = —o0, it suffices to observe that C is included continuously in

the space C°. Let us consider now the case 8 > 0. Let & > 0 and 1 := min{},e}. There
exists M € N such that

# {)\ € Aj: sup |cf\7fb) —cn| > 172‘”} < 7725j
MCA
for all j € Ng and m > M. Consequently, taking j = 0, we obtain for all m > M,

sup |cE\m) —a<n<e.
AEA

The proof is similar for the Cauchy sequences.

3. From the previous point, it only remains to show that, if 3 > 1, the uniform
topology is stronger than the topology defined by the distance 6; 5 Let (@) en be

a sequence of At (a, ) = Q which converges uniformly to & and let ¢ > 0. Since 8 > 1,
there exists J € Ny such that 27 < 257 for every j > .J and then we have

# {)\ € Aj:sup |cE\7,n) —cn| > €2°‘j} <97 < 2P
MNCA

for every j > J and m € N. Using the uniform convergence, there exists M € N such
that

sup |7 — x| < 27

MNCA
for every A € A; with j € {0,...,J} and m > M. So, for every m > M, we have

#{)\ €A;: f/ucp)\|cg\7,n) —en| > 52—%’} =0<e2%, vje{o,...,J}

It follows that (¢("™)),,cn converges to ¢ in (ﬁ*(a,ﬁ),gj{ﬂ).
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4. The properties related to the boundedness are immediate. Let us show that B is
closed for the uniform convergence. Let (€(™),,cn be a sequence of B which converges
uniformly to ¢ and let € > 0. Then there exists M € N such that

sup |c{™ —cx| < ¢
AeA

for all m > M. Let us fix j € Ng and A € A;. We have

(M)

ex>r27 % = > 2,

Otherwise, eg\M) < 72797 and then, by taking ¢ smaller if needed, we have

r27% < ey —e < sup |cE\M) -+ eE\M) —e <27,
MCA

which is impossible. So, we have
#{AEN ey >r27 %} <#{reA: e >r2_‘”}<r2’33 Vj € Ny
and ¢ € B. O
Remark 6.4.8. If § € [0,1] and « > 0, the scalar multiplication
(0,2) € CxAt(a,B) — 62 € At (a, B)

is not continuous and consequently, the space (/~1+( ,B), 5: B) is not a topological vector
space. Indeed, let & be the sequence of A+ (a, B) defined by

[ g7 ifkedo,...,[2%] -1},
GEEV0 ke {292~ 1},

for j € Ny. For large j, we have |2°0U+1]/2 < 207 and then e;; = c;j; for every
ke{0,...,27-1}. Following the proof of Proposition 3.5 in [I3], the sequence (¢/m)men
does not converge to 0 in (A (a, 3),0 o ﬂ) Indeed, otherwise, one could find M € N
such that

#{AEA ‘ ]> 2@J}<22BJ Vj € No, m > M.

Taking j = m, we get

1 1
#INCA; |2 > Z27om ) < —9fm
2 2
which leads to a contradiction if m is large enough. This counterexample also shows
that the topology defined by 5;[ 5 and the uniform topology are not equivalent for such

« and S.

Proposition 6.4.9. [25] The space (A (a, ﬁ),ggﬁ) is a complete metric space.

Proof. Let (2(™),,en be a Cauchy sequence in (;ﬁ(a,ﬁ),éiﬁ) From the point [2| of

Proposition (¢ (m))meN is also a uniform Cauchy sequence and thus it converges
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uniformly. Let us denote by ¢ this limit. By assumption, if > 0, there exists M € N
such that

#{)\GA :sup \c —C)\/)|>’I72 ‘”}<n237 V4 € No, Vp,q > M.
It follows from the point [4] of Proposition [6.4.7] that we have
#{)\GA :sup |c(p)—C>\/|>n2_O‘j}<172ﬁj, Vj € Ny, Vp> M

and the conclusion follows. O

Let us end with some relations between auxiliary spaces. The second part will be
useful to obtain the continuity of the scalar multiplication in £¥°.

Lemma 6.4.10. [25]
1. Ifa>d and B < 3, then
At(a, 8) C AY(,B) and G, o < g+ﬁ.

2. Let o/ > « and B’ < B. If the sequence (0p)men converges to 0 in C and if the
sequence (€(™),,en converges to € in (At (a ,5)762[3) with @ € At (o/, ), then

the sequence (0,,&™)men converges to 02 in (AT (« 6),5;’5)

Proof. The first item is obvious. Let us prove the second one. Since the sequence
(0m)men converges to 6 in C, there exists D > 0 such that |0,, — 0] < D for all m € N.
We have

0m@™ — 02 = (0, — 0)(@™ — &) + 0™ — &) + (0, — 0)

and then
08 5(0m@™,08) < sup{1,D} 5} 5(@"™, &) +sup{L, 8]} 5 5(@"™, &) + 6. 5((0r — 0), 0)

thanks to Lemma [6.4.5 The two first terms converge to 0 by assumption. Let us
consider the convergence of the third term. Since ¢ € AT (o/, 3'), there exist C,C’ > 0
such that

# {)\ €A ey > 02—“’3} <0279, VjeN,.

Let us consider n > 0. Then there exists J € Ny such that DC2-ile'—a) < n and
C'2-3(B=8") <y for every j > J. Consequently, we have

#{)\EAj:|0m—9|e)\2n2_O‘j}§n25j, Vi > J, meN,

since |0,, — 0] < D for every m € N. Moreover, since the sequence (6,,)men converges
to 6, there exists M € N such that

|0 — Olex < N2~

for every m > M, j € {0,...,J —1} and A € A;. Hence g;;ﬁ((Hm —0)¢,0) < 27 for
every m > M and we get the conclusion. O

Remark 6.4.11. Of course, if 8 = 8/ = —oo, this lemma remains true.
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6.4.2 Topology on LV spaces

Let us now present the connection between £°F and the auxiliary spaces AT (a, ). We
will use it to endow £¥'" with a distance.

Proposition 6.4.12. [25] For any dense sequence o = (0 )nen in [0, 5] and any
sequence € = (€ )men of (0,+00) which converges to 0, we have

Lvt = ﬂ m Z‘*‘(a,y(a)—i-e) = ﬂ ﬂ K+(an,u(an)+6m)-

>0 a€(0,as] meNneN

Proof. Remark that a sequence ¢ belongs to £t (resp. g+(a,ﬁ)) if and only if &
belongs to S” (resp. A(a, 3)). The result follows then from Proposition [4.6.3] For the
convenience of the reader, let us nevertheless develop it, independently of S¥. It is direct
to see that

£t c m ﬂ At (a,v(a)+¢) C ﬂ ﬂ AT (an, v(am) + €m)-

e>0 a€l0,as] meNneN

So, let us consider

ce ﬂ ﬁ AT (o, v(o) + €m)

meNneN
and let us fix « € [0, a5), € > 0 and C > 0. We will show that there is J € N such that

#ET(C,a) (@) < 20(0F 5 >
If v(a) = —o0, then there is ay, > « such that v(a,) = —oco. It follows that
Ze At (an, v(og) 4+ em) = C C C° = At (o, () +€).

Assume now that v(«) > 0. Using the right-continuity of v, there are n,m € N such
that a,, > a, 3g,, < € and v(a) < v(ay,) < v(a) + em. Since @€ AT (o, v(an) + em),
there are Cp, C) > 0 such that

#E*(Co,an)(é) < C(’)Z(V(Dén)+6m)j, Vj € No.

Let us fix J € N such that Cp2~J < C2~% and C}, < 257 for all j > J. Consequently,
#ﬁjJr(Cv, a) (@) < #E;J’(CO’O%)(;) < ChaWlan)tem)i < gv(@)+e)]
for every j > J, which concludes the proof. O

As in the case of §” spaces, this description allows to obtain a structure of complete
metric space on £V, Let us recall the following classical result (see [95] for example).

Proposition 6.4.13. Let E,,, (m € N) be spaces endowed with the topologies defined by
the distances dp, and set E = (), ey Em. On E, let us consider the topology T defined
as follows: for every e € E, a basis of neighborhoods of e is given by the family of sets

N {f€E dnle, f) <rm}
(m)

where r,, > 0 for every m € N and (m) means that it is an intersection on a finite
number of values of m. Then, this topology satisfies the following properties.
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1. For every m € N, the identity i : (E,7) — (Fm,dmn) is continuous and T is the
weakest topology on E which verifies this property.

2. The topology T is equivalent to the topology defined on E by the distance d given
by

“+o0
) :ZQ m__M 00 e fekE.
=7 14dple, f)
3. A sequence is a Cauchy sequence in (E,7) if and only if it is a Cauchy sequence
in (B, dy) for every m € N.

4. A sequence converges to e in (E,T) if and only if it converges to e in (E,,,d,) for
every m € N.

Using this Proposition [6.4.13] we can define a distance on the spaces £*7.

Definition 6.4.14. Let « := (ay,)nen be a dense sequence in [0, o] and € := (g, )men
be a sequence of (0, +00) which converges to 0. For m,n € N, we write

g;,"m =4t and AT (m,n) = A (an, (o) + em).-

an,v(an)+em

Then, for m € N, we denote

- e
ot = Z 27" O and 0% = > 27"
n=1 1 + m R m=1

Proposition 6.4.15. [25] For every sequences o and € chosen as above, gms is a
distance on LY. All these distances define the same topology.

Proof. Thanks to Lemma and Proposition it is clear that gms is a distance
on £¥"F. In order to show that all these distances define the same topology, it is sufficient
to prove that if (¢("™),,cn is a sequence of £¥"* which converges to ¢ for the distance
Ser e, then for every « € [0, as] and every € > 0, the sequence (¢(™)),,en converges to &
for the distance 6

o,v(o)te’
If v(a) = —o0, we can find a,, >  such that v(a,) = —oco. It follows then directly
that 5@ a)te S Ohn

If v(a) > 0, let m,n € N be such that 2¢,, < e, o, > a and v(a,) < v(a) + en.
Then, we have v(a,) + €, < v(a) + € and using Lemma [6.4.10} we get 5;‘}5 <ot ., O

In view of this result, we write this distance 5t independently of these sequences «
and . In fact, this result can be seen as a direct consequence of the closed graph
theorem since the distance defines a complete topological vector space, as we will see in

Propositions [6.4.16] and [6.4.18]

Agreement. From now on, o := (ay,)nen denotes a dense sequence in [0, ] and
€ := (em)men denotes a sequence of (0, +00) which converges to 0.

As a direct consequence of Proposition [6.4.13] we get the following result.
Proposition 6.4.16. [25]

1. The topology defined by 5t on £”~’+ is the weakest topology such that, for every
m,n € N, the identity i : LV — A+ (m,n) is continuous.
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2. A sequence of L is a Cauchy sequence mn (E”’+ 5+) if and only if, for every
m,n €N, it is a Cauchy sequence in (AT (m,n), (5,*,; n)-

3. A sequence of LY converges in (E”’+,5~+) if and only if, for every m,n € N, it
converges in (A*(m,n), (5;'; n)-

Proposition 6.4.17. [25] The space (LY, ng) is a complete topological vector space.

Proof. From Proposition [6.4.7, we know that the addition is continuous on each of the
spaces AT (m,n). Using Proposition it is also continuous on £¥'*. Let us prove
that the scalar multiplication in £”'" is continuous. Let (GZ)ZGN be a sequence in C
which converges to § € C, and let ( 0),en be a sequence of £YF which converges to &
in £, From the properties of 4, it suffices to prove that (A'e®),cy converges to AZ
in At (o, () +¢) for every a € [0, o] and every e > 0. If v(a) = —oo, it is immediate
since AT (a, () 4+ €) = C as normed spaces. Assume that v(a) > 0. Using the right-
continuity of v, let us consider m,n € N such that a,, > o and v(ay,) + £, < v(a) + €.
The result follows then directly from Lemma [6.4.10] and Proposition [6.4.12]

Let us now prove that the space (v, 5t) is complete. Let (¢1));en be a Cauchy
iﬁ 4.16

sequence in (E" +, 5“'). From Proposition it is a Cauchy sequence in the spaces
(A (m,n), 5:,2 ,) for every m,n € N. We know from Proposition that these spaces
are complete and thus, there exists &, , € A*(m,n) such that (¢®W),ey converges to
G in (A (m,m), (5;; ). By Proposition we get that &, , = ¢is unique since it is

the uniform limit of (¢());ey. The conclus1on follows using again Proposition|6.4.16] [

Proposition 6.4.18. [25] If gf and (5~2+ define complete topologies on LV which are
stronger than the pointwise topology, then these topologies are equivalent.

Proof. Tt is a direct consequence of the closed graph theorem and Proposition O

Remark 6.4.19. Let us note that the inclusion £“°* C C? is continuous by combining

Proposition [6.4.16] (item [3) and Proposition (item |2)).

As already proved before, the definition of the space £“°T does not depend on the
chosen wavelet basis. Therefore, it can be seen as a function space. Let us now show that
the topology defined on this space is also a “good topology”, in the sense that it is also
independent of the chosen wavelet basis. This allows to consider the space (£*'F,67)
as a topological function space.

Proposition 6.4.20. Let A be a quasidiagonal matriz. If apmi, > 0, the application
A:(L0F,6T) o (Lvh,6%) + @ AC

18 continuous.

Proof. The result of robustness of Proposition ensures that A maps £¥" into

L7, As the operator A is a linear operator between complete metrizable topological

vector spaces whose topologies are stronger than the pointwise topology, the continuity
is obtained using the closed graph theorem. O
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6.4.3 Compact subsets of £”" spaces

Let us continue with the characterization of compact subsets of (£, 5~+) It will only
hold if apin > 0. Let us start with some observations useful to obtain this characteriza-
tion.

Lemma 6.4.21. [25]

1. Let a > 0 and let B be a bounded set of (C%,||.||c). If (€W)en is a sequence of
B which converges pointwise to ¢, then it converges uniformly to c.

2. Let ag > 0, By > 0 and let B be a bounded set of (A*(ao,ﬂo), 0. fo ). If (€0 )leN
is a sequence of B which converges uniformly to ¢, then it converges to C in
(A+(a B),6. ﬁ) for all a and B such that a < ag and 5 > By.

3. Let ag > 0 and let B be a bounded set of (C°°,]|.||ceo). If (1)ien is a sequence
of B which converges uniformly to ¢, then it converges to ¢ in (C%,||.||ce) for all
a < op.

Proof. 1. By assumption, there exists R > 0 such that |e§l3§ — ¢kl < R27°J for every

j €Ny, k€{0,...,27 —1} and every [ € N. Let > 0. On one hand, since a > 0, there
exists J € Ng such that R27%7 < 5 for every j > J and then
| (0

€k~ VIEN, j>J ke{0,...,27 —1}.

On the other hand, thanks to the pointwise convergence, there exists L € N (which only
depends on 7) such that

sup sup |e§lL —c¢jpl <m, VI>L.

§€{0,....7} ke{0,...,20 -1}

Thus

sup sup |c§l3c —cjkl <m, VI>L.

j€No ke{0,...,29 1}

2. Since the sequence (Z() — @);en is bounded in (A (ap, Bo), 0. ao.f)» there exist
R, R’ > 0 such that

# {A €A sup ) —en| > R2‘0‘“} < R'2%9. WjeNp, leN,
NCA

using Lemma m (item . Let n > 0. Since a < ag and 8 > g, there exists J € Ny
such that R27%J < 2= and R'2%J < 1287 for every j > J and then

# {/\ €A sup ) —en| > nQ—CU} <25 WleN,j>J
NCA

Moreover, thanks to the uniform convergence, there exists L € N (which only depends
on 1) such that

sup ) —ex | <n27%9, Vje{0,...,J}, Ae Ay, 1> L
ACA
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and then

#{AeAj :sup | — e >n2aﬂ} —0<n2%, vje{o,...,J}, 1> L.
NCA

Thus, we have gi,ﬁ(é(l), ¢) < 2n for every | > L.
3. The proof of this item is similar to the two previous ones. O

Lemma 6.4.22. [25] Assume that amyin > 0. For m,n € N, let C(m,n) and C'(m,n)
be positive constants and let us consider the set K,fm defined by

{56 OO A E A, ex > Clm,n) 2709} < O (m, n) 2¢(@n)+em)i i € No} .

We write

=1 N K.

meNneN

From all sequences of KT, we can extract a subsequence which converges pointwise.

Proof. Let (E(l))leN be a sequence of K. There exists n € Ny such that «a,, < ami, and
then we have

[l <279 C(m,n), WIEN,jeNg, ke{0,...,27 —1}.

This means that the sequence (¢());cy is pointwise bounded in C and we can thus
extract a pointwise convergent subsequence. O

In what follows, K+ will denote any subset defined as in Lemma [6.4.22] Let us
remark that from Proposition |6.4.12} it is clear that K+ C £V,

Pr0p0s1t10n 6.4.23. [25] Let us assume that amin > 0. A set is a compact subset of
(v, 5%) if and only if it is closed in (LF,67) and included in some K.

Proof. Since any compact set of a metric space is closed and bounded, the condition is
obviously necessary. Let us show that the set KT is compact. Let (¢ (l))leN be a sequence
of K+. By Lemma we can extract a subsequence which converges pointwise. Let
us note again (¢();cy the subsequence and ¢ its pointwise limit. Let us show that
(ZW)en converges to @ in (£2F, 7).

As amin > 0, there exists ng € N such that 0 < an, < amin. By construction,
we know that ¢V ¢ I?,‘fmo for all I € N and m € N. Moreover, I?;Lno is bounded
in (C%o || -||gane). Using Lemma (item [1), we get that (Z®),cy converges
uniformly to ¢.

Let o € [0, 5] and € > 0. If v(a) € R, the right-continuity of v gives n,m € N such
that

em <&, ap > aand viay) + &, <v(a) +e.

Lemma (item [2)) implies that the sequence (¢®);cn converges to & in the space

(Kﬂa,y( ) + e) 5a V(a)+€) If v(a) = —o0, there exists n € N such that o, > «

and u(an) = —oco. By Lemma [6.4.21] (item |3), (¢(V),cn converges to ¢ in the space

At (a,v(a) + € ,5 Proposition [6.4.16| gives the conclusion. O
a,v(a)+e/* g

Let us remark that we have also obtained within this last proof the following result.
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Corollary 6.4.24. [25] Fvery sequence of K+ which converges pointwise converges also
in (LY7,67) to an element of K.

Remark 6.4.25. The characterization is not longer valid in the case i, = 0. Indeed,
let v be the admissible profile defined by

_f —oo if a<0,
v(@) =194 it a>0.

It is direct to see that £“°7 = C°. If we assume that we have this characterization,
then the unit ball of C° would be compact and therefore the space would be finite
dimensional. This leads to a contradiction.

6.4.4 Comparison of £”" spaces with Oscillation spaces

As presented in Chapter [} for positive values of p, the leader scaling function 7jz(p) of a
sequence ¢ gives information about which Oscillation spaces contain ¢. More precisely,

we have
nz(p)

ce(No"

p>0e>0

One could therefore wonder if the knowledge of the £“' spaces which contain & would
give more information than the knowledge of the Oscillation spaces to which ¢ belongs.
From Proposition [5.5.2] one could expect that it will be the case if v is not concave. Let
us prove it.

Let us note that a sequence ¢ belongs to £ (resp. 0;) if and only if the sequence
defined by the wavelet leaders of ¢ belongs to S” (resp. by, ). Proposition implies
then directly the following embedding result, where we recall that the concave conjugate
1 of v is defined by

n(p) = inf (ap—v(a)+1), p>0.
Q> Qmin
Proposition 6.4.26. [25] Let n be the concave conjugate of v. For any dense sequence
(Pn)nen in (0,400) and for any sequence (€ )men of (0,+00) which converges to 0, we

have
n®n) _

) o Em
e o -0 N ok

p>0e>0 neNmeN

Moreover, the inclusion becomes an equality if v is concave on [aumin, Qs
Moreover, we have the following result concerning the topology of £¥° if v is concave.

Theorem 6.4.27. [25] Let us assume that v is concave on [Qmin, @s] and let n be the
concave conjugate of v. If (pn)nen is a dense sequence in (0,400) and if (em)men S a
sequence of (0,400) which converges to 0, then

npn) _

2p) o Em
et = NNoF -0 N ok

p>0e>0 neNmeN

and the topology T+ on LY defined as the weakest one such that each identity map

n(pn)

i (LY ) = O

" is continuous, is equivalent to (LV°F,57).
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Proof. The algebraic result is a consequence of Proposition [6.4.26] For every n,m € N,
n(en) _

the topology of O, " is metrizable, complete and stronger than the topology of
pointwise convergence. From Proposition|6.4.13) 71 is metrizable, complete and stronger
than the pointwise topology. The closed graph theorem leads to conclusion. O

Let us now show that, as in the case of §”, the concavity of v is also a necessary
condition to the equality between £”°" and the intersection of Oscillation spaces. Let
v be the concave hull of v on [aumin, @], i.e. the smallest concave function F on this
interval which satisfies F' > v on this interval. This function is defined, continuous,
non-decreasing on [Qumin, @s] and with values in [0, 1]. Moreover, from Proposition 8.10
of [13], we know that

np)= _inf (ap—rp(a)+1), p>0,

o€ amin,0s]
where 7 is the concave conjugate of v. For @ < amin, we set v(a) := —oo.

Proposition 6.4.28. [25] If v is the concave hull of v on [Qmin, as], we have

et =N 01%‘5.

p>0e>0
Proof. This result follows from Proposition [6.4.26 O

Proposition 6.4.29. [25] If v is not concave on [Qmin, @s|, then LT s strictly included
in L¥T.

Proof. Using Proposition [6.2.1} let us consider & € £+ such that 74 = v. By assump-
tion, there is a € [, @s] such that v(a) < v(a) = U+ (a) and it follows that the

sequence ¢ does not belong to £V O

6.4.5 Comparison of L”" spaces with S” spaces

While studying £°" spaces, we work only with the increasing part of the wavelet leaders
profile. Therefore, a natural question is to ask whether £¥°7 = §”. In view of Proposi-
tion in Chapter [f] one could expect that these two spaces coincide if and only if v
is with increasing-visibility. That is what we will prove in this subsection.

From the definition of the wavelet leaders, it is direct to see that vz < 17;r for any
sequence & € C? since |cy| < ey for every A € A. Given an admissible profile v, we have
then

£V7+ c &Y
Here is a case where the inclusion is always strict.

Proposition 6.4.30. [25] If v is an admissible profile such that ami, = 0, then LV is
strictly included in S”.

Proof. Since £¥°" is always included in C°, it suffices to find an element of S which
does not belong to C°. Such an element is given by the sequence ¢ € Q defined by
cjo0 :=j and ¢ := 0 for k # 0, at every scale j € No. O

We already know that £“'" C S” for all admissible profile v. We can also easily
compare the topologies of S” and £¥'*. The proof is direct.
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Proposition 6.4.31. [25]

1. Ifa >0 and B € {—oo} U [0, +00), then we have

g+(a,6) C A, B) and dap < 526

2. The space (E”’+,5~+) has a stronger topology than the topology induced by the
distance §.

Let us now investigate under which conditions on the admissible profile v one has
L7 = 8Y. As mentioned before, since the multifractal formalism based on the wavelet
profile and on the wavelet leaders profile coincide if and only if the wavelet leaders profile
is with increasing-visibility, one expects that the spaces coincide if and only if v is with
increasing-visibility. Since Lyt C SY if amin = 0, we assume that amn;; > 0 in the
following.

Let v be an admissible profile such that oy, > 0. We define the function v; by
setting

—00 if 0 < a < amin,

v(a')

vi(a) = QSUD,re(0,0] if amin < & < Bmax,

1 if > hmax7

where hpax = infp>a,,, ﬁ Of course, we have v < v;. Besides, v = v if and only
if v is with increasing-visibility on [amin, @s] and in this case, as = hmax. Let us also
remark that since v is right-continuous, v; is also right-continuous. Therefore, vy is an
admissible profile in the sense of ¥ spaces. Moreover, from Proposition [£.6.6] we know
that there is ¢ € §” such that vz = v on [0, +00) and

_ Vf(h) ifoéhghmaxa
dy(h) = { —00 otherwise.

Then, Proposition directly implies the following.

Proposition 6.4.32. [25] If v is an admissible profile such that amin > 0, there exists
¢ € SY such that vz = v and 17;' = vy on [0,+00).

Proposition 6.4.33. [23] Let v be an admissible profile such that cpmin > 0. Then, we
have £V = SY if and only if v is with increasing-visibility on [omin, @], i.e. if and
only if v = v on [0,+00).

Proof. Let us first assume that £”"7 = §”. From Proposition we know that there
is ¢ € §Y such that vz = v and ﬁcf = vy, Since € € 8¥ = LT, we directly get that
17; < v hence v = v;. This means that v is with increasing-visibility on [amin, ).
Conversely, let us assume that v is with increasing-visibility on [auin, @s]. Then
v =vron [0,400). If €€ S§”, we have Uz < vy = v from Proposition and it follows
that ¢ £V, O

Proposition 6.4.34. [25] When LV is strictly included in S”, the set LV is not
closed in the space S”.
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Proof. First, let us remark that any sequence with only a finite number of non zero
coefficients belongs to £°F. Take now an element ¢ of S which is not in £°*. The
“truncated” sequence (¢("))yen defined by

e df j<Nandke{0,...,29 —1},
k10 if j>Nandke{0,...,27 -1},

for all N € N, converges to ¢ for the topology of 8 (see Lemma 6.3 in [I3]) and each of
its elements belongs to £”°". Hence the conclusion. O

Let us end this subsection by investigating for which admissible profiles v/, we have
the inclusion S¥ C LY .

Proposition 6.4.35. [23] Let v be an admissible profile such that cpmin > 0. Then, we
have 8¥ C LY"F if and only if v' > vy on [0,+00) and in this case, the inclusion map
s continuous.
Proof. First, assume that S C L£vr. Using Proposition let ¢ € §” be such that
ve = v and ng = v;. Then ¢ € £+ and it follows that v; = DCT < V. Reciprocally,
it suffices to show that §¥ C £+, If ¢ € §”, we know from Proposition that
17; < vy. This means that ¢ € £¥I»F.

Both 8 and £V are complete metrizable topological vector spaces whose topologies
are stronger than the pointwise topology. The closed graph theorem gives the continuity.

O

Remark 6.4.36. If anin = 0, the space S8” is not included in £+ for any admissible
profile v/ since it is not included in C°.

6.5 L” spaces

This section is devoted to the study of the £~ spaces. Unlike the £*'" spaces, the
LY~ spaces are not vector spaces. Moreover, the definition of a distance on these spaces
is more delicate. The approach we have chosen will be justified in this section.

Let us recall that given an admissible profile v, the space £°~ consists in the set of
sequences ¢ € ) which satisfy the following: for every ¢ > 0, C' > 0 and « € (as, +00),
there exists J € N such that

#E; (C,a)(@) <20(@0F) vj> g,

where

E; (C,a)(@)={Ne A, ey <27}

Let us also recall that the restricted wavelet leaders of a sequence of £¥>~ can be infinite.
Remark that, since we have assumed that a,.x < 400, the restricted wavelet leaders ey
are all different from 0 for every ¢ € £”°~. In this case, we have

11, ,
Ae A, — > =29} < oWwle)te)
#AEN 252 <

for every j > J, where we use the convention that +%.o := 0. This means that the

sequence % defined by

1
) =—, VAeEA
A e
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belongs to ¥ , where

oy v(-a) ifa<-—a,
v (a).—{ 1 if > —a.

Note that v~ is increasing and right-continuous. Moreover, one has v~ (a) = —oo for
every a < —Qumax, S0 that v~ is an admissible profile in the sense of §” spaces, see [13]
and Section [£.6] of Chapter @] In other words, there is a natural application

('b.\ ]

T:L 58 @ @

This point of view will be adopted to define a topology on £¥°~. As in the case of £V
spaces, let us start by defining auxiliary spaces.

6.5.1 Auxiliary spaces A («, 3)

In this subsection, we introduce auxiliary spaces A- (a, 8) and endow them with a
pseudo-distance.

Definition 6.5.1. Let a > 0 and 8 € {—o0} U [0,4+00). A sequence ¢ € § belongs to
the auxiliary space A~ («, 8) if there exist C,C’ > 0 such that

#E; (C,0)(@)<C2%9 VjeN,
and if ey # 0 for every X\ € A.

Since A~ (a, B) is not a vector space, one cannot take as definition for the distance
between ¢ and ¢’ the value

-1 ,
inf{C’—i—C’ :C,C" >0 and #E; (a,a)(é’— ¢y <02 vy e No},

which would be in parallel with what is done for the auxiliary spaces At (o, B). We have
thus to consider a different approach.

Remark that, if A(«, 8) denotes the auxiliary spaces introduced in the study of the
S spaces, see [13] and Section of Chapter {4l then a sequence ¢ € Q belongs to
A~ («, B) if and only if ey # 0 for every A € A and

T

— e A(— .
" € A-a,f)
The properties of the auxiliary spaces A~ (c, B8) will then follow directly from the proper-
ties of the auxiliary spaces A(—a, 8). In particular, this leads to the following definition.
Definition 6.5.2. Let a > 0 and 8 € {—oc0} U [0, +00). For ¢, ¢’ € g_(a, B), we write
- =
T L 1 1
5a7B(C,C/) =0_ap (e , e’) )

Proposition 6.5.3. For every a > 0 and B € {—o0}U[0, +00), o, 4 is a pseudo-distance
on A~ (a, B).
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Proof. Of course, 6a p 1s positive and symmetric. Moreover, if ¢, c',c" e /T*(a,ﬂ), then

- =
~ L 1 1
5(%5(0,0') = 0_ap (,/)

e’e
TT TT\ ~ .. o
< d_ap S +0_ap i féaﬁ(cc )+5aﬂ( ,Z)

since 0_q, 3 is a distance on A(—q, 3). O

Remark 6.5.4. The definition of g; 5 does not give a distance. Indeed, if ¢+# ¢’ are

two elements of E‘(a, B) which have the same sequence of restricted wavelet leaders,
then

0, (62 =0.

Consequently, (A"(oz7 B), S; ﬂ) is not a Hausdorff space. The choice of this topology can
appear unnatural since we compare the restricted wavelet leaders of sequences instead
of their coefficients. Let us justify this approach: our goal is to get information about
multifractal spectra of functions using their wavelet leaders profile. Both these notions
depend only on the distribution of the wavelet leaders of the function. Two functions
sharing the same restricted wavelet leaders have the same multifractal properties and
the same wavelet leaders profile. In order to get results in this direction, this topology
seems to be convenient. Nevertheless, we still don’t know if this topology is independent
of the chosen wavelet basis. Of course, one could consider the relation R defined by

(G, c"YeER < ex=¢€), VAEA.

This relation is an equivalence relation. Then g; 5 defines a distance on

A (e, B)/R

Nevertheless, we will not use this quotient space: indeed, when we will endow the entire
space LY = LY TN LY~ with a topology, we will get a distance thanks to the topology
of £¥+.

The next result follows directly from the definition of the distance on A- (o, B).
Proposition 6.5.5. Let a > 0 and 8 € {—oo} U [0, +00). A sequence (@) en of
A= (a, B) converges to € (resp. is a Cauchy sequence) in (A~ (a, 3),0 o.p) if and only if

— -
the sequence (W) g converges to E (resp. is a Cauchy sequence) in A(—c, ().

Let us mention the following property concerning the bounded sets of A- (o, 8). Tt
follows from the characterization of bounded sets in A(—a, ), see Proposition m

Proposition 6.5.6. Let a > 0 and 8 € {—o0} U [0, 4+00).

1. If B is a bounded set of (AV* (a,ﬂ),g;ﬁ), then there exist r,r’ > 0 such that

B C {CeQ:#{Nehjen<r27} <20 VjeN}.
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2. Letr,r' >0, <aand f < B. The set

B={zeQ:#{reAjier<r2} <r'277, Vje N}

is a bounded set of (K‘(a,ﬁ),é;’ﬁ).

We end with this result which compares auxiliary spaces A~ (a, 3).

Lemma 6.5.7. If o’ > «a and 8’ > f3, then

A (o, 8) C A (/,3") and (5a < g;ﬁ

6.5.2 Topology on L~ spaces

As in the case of the LY spaces, we have a description of the £V~ spaces in terms of
auxiliary spaces A~ («, B).

Proposition 6.5.8. For any dense sequence &’ = (o, )pen in [as, +00) and any sequence
€ = (em)men of (0,+00) which converges to 0, we have

_:ﬂﬂﬁ_(aﬂ/ nﬂA )+5m)

e>0a>as meNpeN

Proof. We know that a sequence ¢such that ey # 0 for every A € A belongs to £~ (resp.

A= (a, B)) if and only if 1 belongs to S”  (resp. A(—«, 3)). The result follows then from
Proposition[4.6.3} It can “also be proved as in Proposition using Lemmal[6.5.7 O

This result allows to define a pseudo-distance on the £”'~ spaces.

Definition 6.5.9. Let o’ := (a})),en be a dense sequence in [, +00) and € := (&m)men
be a sequence of (0, +00) which converges to 0. For m,p € N, we write

and A~ (m,p) = A" (), v(« ) + Em)-

(5;1_’ == 57 P

apv(ap)tem

Then, for m € N, we denote

T
22 p ;p and 5;,’6 = ZOO 27mo
m=1

p=1 1+5m,p

Proposition 6.5.10. For every sequences o’ and € chosen as above, ga/,s is a pseudo-
distance on LY~ . All these distances define the same topology.

Proof. Thanks to Proposition it is direct to see that ga/ﬁ is a pseudo-distance on
L”~. The second part of the proof is very similar to the proof of Proposition [6.4.15
using Lemma [6.5.7} O

In view of this result, we write this pseudo-distance 5 independently of these se-
quences «’ and e.

Agreement. From now on, ' := (o} )pen denotes a dense sequence in [a, +00) and
as previously, € := (€,,,)men denotes a sequence of (0, +00) which converges to 0.
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Remark 6.5.11. Again, 4 is not a distance on £~ and (£'~,4) is not a Hausdorff
space. It is a distance on the quotient space £~ /R.

A slight modification of Proposition [6.4.13] gives the following result.
Proposition 6.5.12.

1. The topology defined by 5~ on LY™ is the weakest topology such that, for every
m,p € N, the identity i : L — A~ (m,p) is continuous.

2. A sequence of LY~ is a Cauchy sequence in (L‘”’_,g_) if and only if, for every

m,p € N, it is a Cauchy sequence in (A~ (m,p), 0., ,)-

3. A sequence of LV~ converges in (L',”’f,g’) if and only if, for every m,p € N, it
converges in (A~ (m,p),d,, ,)-
This result and the description of the topology of the S spaces imply the next result.

Corollary 6.5.13. A sequence (¢(™),en of L7 converges to & (resp. is_)a Cauchy

sequence) in (C”’f,gf) if and only if the sequence (ﬁ) converges to % (resp. is
meN
a Cauchy sequence) in (S¥ ,0), where

v (a) = { v(—a) ifa< —ay,

1 if a > —asg.

The last result we present in this section concerns the compact sets of (L”"~, g*) and
will be helpful in order to prove the separability of the £” spaces.

Lemma 6.5.14. For m,p € N, let D(m,p) and D'(m,p) be positive constants and let
us define

K, = {86 Q:#{AeAj:ex < D(m,p) 27%7} < D' (m, p) 2@ Fem)i v e Ny }

m,p

Then, we set

K™ = ﬂ ﬂ I?;l,p.
meN peN

Every sequence of K~ which converges uniformly converges also in (L~ ,07) to an
element of K.

Proof. Let (ZW);ex be a sequence of K~ which converges uniformly to & Let us consider
p € N such that a; > Qmax. Then, if m € N, we have
#{re A, el) < D(m,p)277} =0

for every [ € N and every j € Np, so that ef\l) > D(m,p) 2% > 0 for every | € N and
every A € A; with j € Nyg. From Proposition we get that K- Crv. Moreover,
since (¢();en converges uniformly to & we also have ey > D(m, p) 2% > 0 for every
! € N and every A 6_1>\j with j € Ng. Moreover, for every [ € N, ¢ K~ and it follows

that the sequence e(—ll) belongs to the set K defined by

1 /- , .
reQ:H#{NeA;: —— YA 1 owlap)tem)i i e Ny b
nQNPEN {x € #H{NeEA; zy] > Dlm.p) } < D'(m,p) , Vj € Ny

143



CHAPTER 6. L” SPACES

o T 0
Since (ﬁ)leN converges pointwise to E , Proposition [4.6.4] implies that ( (l))leN con-
- _ — ~
verges to % in §¥ and that % € K. Then, ¢ € K~ and the conclusion follows from
Corollary [6.5.13 O

6.6 Topology on L” spaces

In this section, we endow the space £” with a distance 5 and we show that the space
(L7,0) is complete and separable. Let us recall that, given an admissible profile v, one
has

Lr=crtnes

Since the spaces £°" and £¥°~ have been endowed with a topology, we directly get
a topology on L¥. Let us also recall that o := (@ )nen denotes a dense sequence in
0, as], @ := (a,)pen denotes a dense sequence in [a, +00) and € := (&) men denotes
a sequence of (0, +00) which converges to 0.

Proposition 6.6.1. For every sequences o, &' and € chosen as above,

504,04 £ = 6(1,{-: + 6(1’,5:

’

is a distance on LY. All these distances define the same topology.

Proof. Using Propositions [6.4.15( and , it is clear that ga,a’,e is a distance on L”.

The independence on the choice of the sequences follows from the same propositions. [

This result allows us to write this distance o independently of these sequences «, o’
and €. We directly get the following result.

Proposition 6.6.2.

1. The topology defined by 5 on LV is the weakest topology such that the inclusions
LY — LT and LY — LY are continuous.

2. A sequence of LY is a Cauchy sequence in (L7,0) if and only if it is a Cauchy
sequence in (LY, 6%) and in (L7 ,567).

3. A sequence of LV converges in (LY, 5~) if and only if it converges in (LY, 5~+) and
n (LY7,07).

Thanks to Propositions [6.4.16] and [6.5.12], we have the next result.

Proposition 6.6.3.

1. The topology defined by 5 on LY is the weakest topology such that, for every
m,n,p € N, the inclusions £¥ — AT (m,n) and LY — A~ (m, p) are continuous.

2. A sequence of LY is a Cauchy sequence in (LY, ~) if and only if it is a Cauchy
sequence in (A*(m,n),8+ ) and in (A~ (m, p), mp) for every m,n,p € N.

rrm,n

3. A sequence of LV converges in (L¥,8) if and only if it converges in (AT (m,n), g;tm)

and in (A= (m, p), mp) for every m,n,p € N.
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Proposition 6.6.4. The space (£”,5~) is a complete metric space and thus a Baire
space.

Proof. Let (€));en be a Cauchy sequence in (E”,g). Then, it is a Cauchy sequence
in (£7,0%) and from Proposition it converges to ¢in (£*7, 5+)ﬂoreover, it

is also a Cauchy sequence in (ﬁ”’_,g_) hence, from Corollary [6.5.13 (%) is a
€ meN

Cauchy sequence in (8 , ). Since the space (8" ,4) is complete, there exists 7 € SV
such that ("‘%QleN converges to Z in (8 ,d). Since the topology of S is stronger
than the pointwise topology, we know that

zy = lim L, VA e A
l—+o0 eE\l)

Moreover, since the convergence in £”'" is stronger than the uniform convergence, we
have

sup |ex| = hm e( ). VAEA.
A CA —+oo
It follows that that )
ry=—""—H-—-—/—+—, VIEA.
Sup)\/g)\ |C)\/|

In particular, supy,cy [cx| # 0 for every A € A and ¢ € £L”~. Proposition gives
the conclusion. O

Lemma 6.6.5. Assume that amin > 0. For every m,n,p € N, let C(m,n), C'(m,n),
D(m,p) and D'(m,p) be positive constants. Let us define

K=K*nK-

where K+ (resp. K~ ) is defined as in Lemma (resp. Lemma |6.5.14). Every

sequence of K which converges pointwise converges also in (LY,0) to an element of K.

Proof Since amin > 0, there exists n € N such that 0 < «,, < amj,. By construction,
K C K, which is bounded in (C*",|| - ||cen). Using Lemma 6421 (item , we

m,n
get that if a sequence of K converges pointwise, it converge also uniformly. The result
follows then from Corollary [6.4.24] and Lemma [6.5.14] O

The next characterization of the compact sets of (£¥,4 ) is immediate.

Proposition 6.6.6. Assume that amin > 0. A subset of LY is compact in (LY,0) if and
only if it is closed and included in some K=KtnK-.

Proof. Since any compact set_of a metric space is closed and bounded, the condition is
necessary using Propositions 7| and |6 It suffices to show_that K is compact in
(L¥,8). Let us assume (¢ (l))leN is a sequence of K. By Lemma since K C K+,
we can extract a subsequence which converges pointwise. The conclusmn follows from
Lemma O

Let us now study the separability of the space (£, 4 ). We will see that it holds only
if appin > 0. Let us recall that, while working with £¥ as a function space, this condition
means that all functions of the space are uniformly Holder.
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Lemma 6.6.7. Assume that ayiy, > 0 and let 2 € LY. For every ¢ € LY and every
N € N, we set

cix i j <N,

N e
c;’k) =4 ejr ifj=N,
zjr ifj>N.

Then the sequence (E™))nen converges to @ in (L¥,6).
Proof. Tt is clear that ¢(N) € £¥ for every N € N since cg.Nk) = zj if 7 > N. Since
¢,z € LT there are C(m,n),C'(m,n) > 0 such that ¢, and Z belong to

{f €LY #{A €A sup |za]| > C(m,n)27%I} < C'(m,n)2W (@) ten)i v ¢ NO}
NCA

for every m,n € N. Let us remark that if j < N, then for every A € A;, we have either
eE\N) = ey or eg\N) = Supycy, [2a| < supycy zn| where Ao € A. Tt follows that for

m,n € Nand j <N,

#{NeA;: eg\N) > C(m,n)2" 7}
#{NE N ten > C(m,n)27 I} + #{N € A; : sup |z | > C(m,n)2" 7}
A CA

IN

< 20" (m,n)2w(en)tem)i

Since C;,Nk) =z if j > N, we get that ¢(V) ¢ K+ where K¥ is the intersection over
m,n € N of the sets

{f €LY #{Ae A sup |za| > Clm,n)27%I} < 20" (m, n)2W (@) +em)i v e No} .
NCA

For the decreasing part, since ¢,z € £L”'~, there are D(m, p), D'(m,p) > 0 such that
¢ and 2’ belong to the set K~ given by the intersection over m,p € N of the sets

{:E' €LV H#{NeEA; sup |zy| < D(m,p)?f‘)‘;j} < D’(m,p)2(”(“;)+5"”)j, vy e NO} .
NCA

Let us show that ™) € K~ for every N. Let us fix m,p € Nand N e N. If j < N,

then eg\N) > ey for every A € A; so that

#{N €Ay el < D(m,p)27 7} < D' (m, p)2 (@) tem)i,

Moreover, if j > N, then c;Nk) = z;,, and if follows that ¢ e K-

Since (¢(V))nen converges pointwise to & Lemma m gives that (Z(V))yen con-
verges to ¢ in (LY, 9). O

Lemma 6.6.8. Assume that cnin > 0. Let B be a subset of LY and 7 € LY. If B is
pointwise bounded and if there exists N € N such that cx = 2\ for every A € A; with

7 > N and every ¢ € B, then B is included in a compact subset of (E”,g).
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Proof. Since Z € LY, there are C'(m,n),C’'(m,n) > 0 such that

# {)\ €A fup}\ |zar| > C(m,n)Qo‘"j} < C'(m,n)2Wlen)rem)i i e N,

'C

There are also D(m,p), D'(m,p) > 0 such that
# {A €A sup |2 < D(m,p)r%j} < D/(m,p)2 @) Heni v e Ny.
NCA
If j < N and ¢ € B, one has

299 sup || = 20‘"jmax{ sup  |zn|, sup |c>\/|}
NCA NCAj'>N NCAJ <N

< 29N max sup  |zn|, sup |en|
ACNG' >N ACNG' SN

which is bounded by a constant independent of ¢ € B since B is pointwise bounded.
Therefore, there is C(n) > 0 such that

#{N €A, : sup |en| > C(n)27*7} =0, Vj<N, Vée B.
N CA

Similarly, for every ¢ € B, if j < N, one has

sup |ex| > sup  |av| >0, VA€EA;
NCA NCA />N

since 7 € LY. Consequently, for every p € N, there is a constant D(p) > 0 such that

#{Ne Aj:sup |en]| < D(p)2~} =0, Vj<N, Vée B.
A CA

It suffices then to take the constants max{C(n),C(m,n)}, C'(m,n), min{D(p), D(m,p)}
and D’(m,p) and to use Proposition

We can now prove that, if apin > 0, the space (LY, g) is separable.

Proposition 6.6.9. Assume that amin, > 0. Let us fix 27 € LY and let us consider the
set U of sequences ¢ € Q for which there exists N € N such that |cx| = |za| if X € A
with 7 > N, and cx € Q+iQ if X € Aj with j < J. Then U C LY and U is dense

in (Ey,g). In particular, the space (ﬁ”,g) is separable.

Proof. Tt is clear that U C LY since Z € LY. Let us fix ¢ € LY and let us consider
the sequence (€M) ey given by Lemma For every N € N, it suffices to find a

sequence of U which converges to V) in (£¥,§). Using the density of Q 4+4 Q in C, there
is a sequence (§V'D);cn of U which converges pointwise to &¥). From Lemma this

sequence can be included in a compact set K of £” and since it is pointwise convergent,

it converges also to &™) in (L£¥,4) using Lemma O

Let us now consider the case where the admissible profile v is such that oy, = 0.
The previous result is no longer valid. Indeed, with the admissible profile considered in
Remark the space £V is C° which is not separable. More generally, we have the
following property.

147



CHAPTER 6. L” SPACES

Proposition 6.6.10. If ay;, = 0, the metric space (C",g) is not separable.

Proof. This result uses classical considerations concerning sup-norms. Indeed, let us
consider the uncountable set A of sequences ¢ of C? such that for each scale j € Ny,
cjo € {0,1} and the other coefficients are equal to 27:J, Using the assumption on
Qimin, We easily prove that A is a subset of LY. Moreover, ||¢— ¢’||co = 1 for all distinct
elements ¢ and ¢’ of A. B

Let D be a dense subset of (£¥,§). For every ¢ € A, there exists a sequence
(&(™)),en of elements of D which converges in (£¥,8) to &€ £Y. From Remark [6.4.19
the convergence also holds in C°. Consequently, there exists M € N such that

1
&= 2™ co < 3 ¥m>M.
In particular, there exists @ € D such that

&= o < -
cC—a —.
Co 2

Since the CY norm between two distinct elements of A is equal to 1, D must contain at
least as many elements as A and cannot be countable. O

6.7 Generic results in £” spaces

In this section, we study the form of the wavelet leaders profile of most of the sequences
of L¥. Note that since L” is not a vector space, prevalent results cannot be obtained.

Proposition 6.7.1. Let v be an admissible profile such that cwin > 0. The set of
sequences € € LY such that Uz = v is residual in (LY,0).

Proof. From Proposition we know that we can consider Z € LY such that vz = v.
Then, using the definition of vz, for every m,n € N, there exists an infinite set Jnt)n
such that

# {)\ c Aj . f,ucp)\|z>‘,| > 2(Q1L+251n)j} > Q(V(an)fem)j’ Vj e Jﬂtm'

Similarly, for every m,p € N, there exists an infinite set J,, , such that

m

H#IXEA; : sup |zn]| < 9= (=) L > oWleg)—em)i i g
/ N CA e

We know that £V is separable, and more precisely, the set U = {77 : | € N} defined
with Z as in Proposition is dense in L£¥. Moreover, by construction, for every
l € N, there exists j; € Ny such that yf\l) = z, for every A € A; with j > j;. For every

m,n,l € N, we fix jmni €, such that
jm,n,l >0 and 5mjm,n,l >1
and for every m,p,l € N, we fix j{nm € J,, , such that

Em .

j;n,p,l > i and 7]m,p,l > 1
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For every m,n, L € N, let us consider the set U;Z L defined by
m n, L= U Bm n,l’

I>L

where E;nl is the open ball in the auxiliary space A+ (ay,, v(am) + ) formed by the
sequences ¢ € LY such that

inf{C’ >0:#{A€ A sup len — y)\,)| > (0277}
MCA
< Co0lenten)i, i € Ny | < 27 3mdmnt,

Similarly, for every m,p, L € N, we consider the set U, , ; defined by

mpL U m,pl

I>L

where E;l . is the open ball in the auxiliary space ﬁ_(a;, v(a,) + &m) formed by the
sequences ¢ € LY such that

1 1

inf {C > 05 A€ A > 0207}

SupPyrca x| SuPxca ‘Z/E\l')|
< CQ(V(Q;Jrsm)j’vj c NO } < 2735mj;n,p,l.

Remark that, for every m,n,p, L € N, the set U;g np N U,, mop.L 18 dense in L¥ since it
contains the sequences ¢V, [ > L. Finally, the set

W= () Uh,.0nU,

m,n, m,p,L
m,n,p,LEN

is a countable intersection of dense open sets of L. Let us show that if ¢ € W, then
vz =v. Since W C LY, we already know that vz < v.

First, let us consider the increasing part. For every m,n, L € N, there is | > L such
that @€ B, , so that
# {A c A . Sup |C>\' y)\/ ‘ > 2~ 3emIm,n, l2_04w]} S 2_35mjm,n,l2(’/(an,)+5m,)j

for every j € Ny. Then, for j = jy, »,i, We obtain

# {)\ € Aj:sup |ex| > 2_(0‘”""35%L)j}

NCA
= # {/\ € Aj:sup lew —y) +u3)] > 2<an+3€m>ﬂ‘}
NCA
> 4 {A s el sup e — o) 2 23
NCA NCA
> #{ : sup |y( )| >9.92 (an+3em)i ond sup |ex — y(l)| <9 (an+3€m)J}
NCA NCA
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hence

#

—

A€ A;:sup |en] > 2—(an+35m)j}
NCA

> # {)\ € Aj:sup |yf\l,)| >2. 2(an+35m)j}
NCA
—# {)\ €A sup |y — yg\l,)| > 2—(O¢n+3em)j}
MNCA
> # {)\ €A sup |zn| > 2(an+2€m)j}
NCA
—# {)\ €A sup |y — yg\l,)| > 2—(O¢n+3em)j}
MNCA
2 2(”(an)_5m)j _ 2(1/(0471)—25,"1)]’
> oW(an)—2em)j

using the choice of jy, n,. It follows that, for every m,n € N,

. log# {X € Aj s supycy [en | > 27 (ntem)i}
lim sup =

- > v(iay) — 2em,.
o0 log 27 = vian)

Taking the limit as m — +oo, we get U1 (ay,) > v(a,) for every n € N. The conclusion
follows from the right-continuity of the functions 17;' and v.

Let us now consider the decreasing part. For every m,p, L € N, there is [ > L such

that @€ B, ;, so that
1 1 i, %
HIAeEA;: - N 27 3¢mm p,1 2%
SupPxrca e Suprca lyx/ |

< 9= 3emip piov(ag)+em)i

for every j € No. For j = j;, ,, we obtain

# {)\ € Aj:sup Jey| < 2(%%)]}
NCA

1 !/ .
= # {)\ eNi— > 2(%—%%}
SUpPyrca x|
= # {A SRV AR ! + 1 Ol : | 2 2(a;_5"”)j}
supyrc fex| supycalya/ | supycy Yy |
> # {/\ S A] : 1 O 1 _ 1 5 > 2(a;_5m)j} .
supy e Yy | supycafex] supyc Yy |
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As done in the increasing part, we get

H#IAEA; sup ey < 2*(a'p*€m)j
J
ANCA

1 ’ i
> #{A €A ———g =220
supycx [y |
1 1 ! j
and - ol < 2l
Supy ca lex] Supyrca |y>\/ |
> #{A €hj i ——— 5 22 2“‘%5’"“}
Supy ca \y/\/ \
—#INEA;: ! - 1 e g(op=em)i
supyca fen] supyca Yy |
MNCA
—H#LANEA;: ! - ! a2 2(0p=3em)J
Sup)\’QA |C)\’| sup/\/g/\ |y§\/)|
Z 2(11(0(;))—5771).7 _ 2(1/(a,lp)—2€m)j
> 2(1/(0[;)7257n)j.

Then, for every m,n € N, we have

log # {)\ € Aj isupycy lev] < 2*(a;*€m)j}
lim sup =

, >p(al) — 2em.
=00 log 27 = viey) "

P

Taking the limit as m — 400, we get v (a;,) > v(ay,) for every n € N and the conclusion
follows from the left-continuity of the functions v and v. O

Let us now generalize Proposition [6.2.4] with the construction of a dense vector
subspace of LY whose elements ¢ satisfy vz = v.

Proposition 6.7.2. Let v be an admissible profile such that amin > 0. The set of
sequences ¢ € LY such that Uz = v is c-dense lineable in (LY,0).

Proof. Let us denote by Z("), > 0 the sequences constructed in Proposition and
such that v = v. For every r > 0, consider the set U, obtained from Z(") as in

Z(r)
Proposition We know that these sets are dense in (£¥,6). Then we consider the
subspace D of C? defined by

D:span{é’ECO:HT>Osuchthat ce UT}.

Of course, dimD = ¢ since D contains the sequences ("), » > 0. If Z € D\ {0}, then
there are J € N, rq,...,7x >0 (N € N) and 6y,...,0y € C not all equal to 0 such that

2k = 91%542) +-+ GNZ';;?)
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for every j > J, k € {0,...,27 —1}. Consequently, 7 has the same wavelet leaders profile

as
0,7 ) 4. Gz (V)

and the conclusion follows from the proof of Proposition O
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Chapter 7

Validity of the leaders profile
method
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7.1 Introduction

In the previous chapters, we have introduced a new multifractal formalism, the leaders
profile method, and the underlying function spaces, the £” spaces. As for the other
multifractal formalisms, this method never holds in complete generality, but we have
proved that it yields an upper bound for the multifractal spectrum of the functions in
the space £¥. This is the best that can be expected: usually, there are no non-trivial
minorations for the multifractal spectrum of all functions in the space. Nevertheless,
one can hope that for most of the functions in the space, that is to say for a generic
subset of the space, the inequality becomes an equality. As a first step toward the proof
of the generic validity of this new method, we construct in this chapter functions with
prescribed multifractal spectra which satisfy the leaders profile method. More precisely,
given an admissible profile v, we construct a function f € £ which satisfies df = vy = v
on [0, +0o0].

This chapter is structured as follows. In Section we present the construction of
functions f with increasing affine spectrum of the form

L ifhelo,p
de(h)=¢ 1 if h = +oo0,

—oo  otherwise,
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CHAPTER 7. VALIDITY OF THE LEADERS PROFILE METHOD

with v € (0,1) and 0 < @ < 8 < +oo. This allows to create in Section functions
with prescribed multifractal spectrum which satisfy the leaders profile method.

7.2 Lacunary wavelet series on a Cantor set

In this section, we present a model based on the lacunary wavelet series presented in
Chapter [f] It allows to construct functions whose spectra are affine functions.

We denote by C(r) the Cantor set with ratio of dissection r < % given by the following
iterative Cantor-like construction. Let Cy = [0, 1]. We remove from Cy the open middle
interval of length 1 — 2r, leaving two closed intervals of length . We call C; the union
of these intervals. At step N in the construction, if we have inductively constructed
Cy as a union of 2%V closed intervals of length r", we remove the open middle interval
of length (1 — 27)r"Y from each of the intervals of the step N and we define Cy; as
the union of the remaining 2V+! closed intervals of length rN+1. Finally, we define the
Cantor set C(r) by

C(r)= ) Cn.
NeN
The Hausdorff dimension of C'(r), denoted in what follows by ~, is given by

log 2
v =dimy C(r) = o8

“logr’
see for example [65] [109].

The model we consider is constructed as follows. Let o > 0 and 0 < nn < 1 be two
parameters. Let (gj.x)jeng,kefo,...,29—1} be a sequence of independent random variables

in a probability space (2, B,P) whose laws are Bernoulli laws with parameter 2~ (=mj
i.e. such that

~_ | 1 with probability o—(=mJ
93k =\ 0 with probability 1 —2-(1=m4,
We consider then the random wavelet series R, ;,, whose coefficients are given by

o gj7k2iaj if ke Kj,
Gk = { 0 otherwise, (7.1)

where K is the set of k € {0,...,27 — 1} for which there is j/ < j and X' € Aj with
n(j—1) < j +logyj’, A(j, k) € X and C(r) NN # 0. Intuitively, k € Kj if at a scale
j' < j close to j, the dyadic interval of Aj, which contains A(j, k) meets C(r). Let us
remark that is suffices to ask that it holds for the smallest integer j° < j such that

n(j —1) <j' +logyj".
7.2.1 Multifractal spectrum of R, , ,

The aim of this section is to compute the multifractal spectrum of R, ;. It is given by
the following theorem.

Theorem 7.2.1. With probability one,
n ; o2
V2 ifh€ o, 2],
dch,n,'r‘ (h) = 1 th = +00,

—00 otherwise.
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a a/n +00

Figure 7.1: Almost sure multifractal spectrum of Rq ),

Let us first show, using Proposition [£.7.4] that the range for the possible values of
the Holder exponent is [, £]U{+00}. Clearly, since |c;x| < 272 for every j, k, we have
that hgr, , () > o for every x € [0,1]. Of course, if z ¢ C(r), then since C(r) is closed,
3Xj(x) NC(r) = 0 for every j large enough. Therefore, d;j(x) =0 and hg, , , (z) = +oo0.
Let us now prove that if € C(r), then hp z) < 5

a,n,r(

Lemma 7.2.2. With probability one, for every e > 0, there exists J € N such that
ey > 9—i(5+e)
for every j > J and every A € A; such that AN C(r) # 0.

Proof. Let us fix ¢ > 0. For every j € N, let us denote by A; the event “there exists
X € Aj such that ANC(r) # () and ey < 2795+ Let us set

. 1. .
Jo = LE(J +logy j)| + 1.

For j large enough, we have j < jo < j(+ + £). Moreover, if A € A; is such that
J g n a J

ANC(r) # 0 and if A(jo, ko) C A, we have ko € Kj, and ¢y ko = Gjo.ko2~ */°. Since there
are 290=J such intervals, we obtain

P[4;] < > Plea < 277G
AANC (r)#£0

< Y I Eled<z)
A:ANC (1) #D Ao SA Ao €A,
2J0—J
< ¥ (1_2—(1—n)jo>)
AANC (1) #£0
<

99 exp (72j0*j2*(1*77)]’0)
2\’
(5)
using Remark and the relation njo > j + logy j. Therefore,
ZIP’[AJ-] < 400,

jEN
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and using the Borel Cantelli Lemma, we get that with probability one, there exists J € N
such that
ey > 9—i(5+e)

for every j > J and every A € A; such that AN C(r) # (. Taking a decreasing sequence
(em)men that converges to 0, we obtain the conclusion. O

Proposition directly implies that if € C(r), the Holder exponent of R, , , at

x is smaller than %

Let us now describe the iso-Hoélder sets of Ry, . Let us denote by (jn, kn)nen the
sequence of indexes for which g;, ., = 1, re-ordered so that j, < j,11 for every n € N.
For every 0 € (0,1], we consider a sequence (d,)nen of (0,d] which converges to ¢ and
we set

E5(((5n)neN) := lim sup (kn2_j” — 27 Ondn [ 0=In 4 2_5"j"') .

n——+oo
In order to simplify the notations, we will write Es := Fs ((5n)neN)~ Finally, we consider

Gs := m E(;/\ U FEys if(5<1, Gy = m FEy.

0<9’<é §<6’<1 0<d’<1
Lemma 7.2.3. Let us fiz 6 € (0,1). If v € E;, then hg, , () < $.

Proof. If x € Ej, there exist infinitely many n € N such that |z — k,277»| < 279Jn_ For
every n € N; we consider J,, = |0,jn] — 1 < jn. Let us show that dj,_ (z) > 2~ 5 (Int2),
Let K, denote the element of {0,...,27» — 1} such that A; (z) = A(J,, K,,). Then

kn2_jn Z T — 2_5njn Z KnQ_Jn _ 2_6njn Z (K’ﬂ _ 1)2_Jn
and

(k.n + 1)2-% < 2_57zjn NPV 9= Jn 2—5n,jn + (Kn + 1)2_Jn + 9= Jn

<
< 2. 92— 0nin =+ (Kn + 1)2_Jn
< (K,+2)2 7

since 0,9y > Jpn + 1. It follows that A(jn, kn) C 3A(J,, K,,) and

dy, (x) > |ej, g, | =279 > 27 H (It

Consequently,
.. .logd;(z) . logdy ()  «
= — < ——n < —,
hR“*””‘(x) 131314}25 log2—J — ngr-lr-loo log2=/» — §
O
Lemma 7.2.4. Let us fix 6 € (0,1]. If v ¢ Es, then hg, , (x) > §
Proof. Since z ¢ Es, there is N € N such that for every n > N, |z — k,,277n| > 270nJn,

Let us show that for j > jn, we have dj(x) < 2=50=2) Assume it is not the case.
Then there is n > N with j, > j and such that ¢;, 4, = 27" > 2750~2) and
A(jny kn) € 3)\j(z). In particular, we have j — 2 > §j,. Since x and k,277" belong to
3\ (x), we have

| — kp2 0| < 3.270 < 2700n < 9= 0nin
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hence a contradiction. Consequently, we obtain

b, ) = imint ) > 5
O
Proposition 7.2.5. For every é € (0,1], we have G5 = {x € [0,1] : hg,, () = §}.
Proof. 1t follows directly from Lemma[7.2.3] and Lemma [7.2.4] O

Let us remark that in particular, Gs is independent of the sequences (8/,)nen chosen
to define the sets Ej, 6’ € (0,1].

In order to get the multifractal spectrum of R, ., it suffices now to compute the
Hausdorff dimension of the sets Gs. We consider the random sets

Fj:={ke{0,...,20 =1} :¢jx =27}, jeN,.

Equivalently, Fj is the set of k € {0,...,27 — 1} for which there is n € N with k = k,
and j = j,. An upper bound for the Hausdorff dimension of G5 will be obtained thanks
to an estimation of the cardinality of F;. Let us start with the following remark.

Remark 7.2.6. For every j' € N, there is N € N is such that vV < 27" < pN-1
Since r¥ < 279" the number of dyadic intervals of length 273" which intersect Cly is at
most 2 -2V . Moreover, since 277 f< N —1 we get that the number of dyadic intervals of
length 277" which intersect the Cantor set is smaller than 277 +2. Let j € N and consider
the smallest integer j' < j such that n(j — 1) < j/ 4 log, j/. Since there are 207" dyadic
intervals of size 277 included in a dyadic interval of size 2" for j > 7', we get that

#K;<4. 9i—(1=7)j"
Lemma 7.2.7. With probability one, for every € > 0, there is J € N such that
#F; < 2(“/77+€)j7 Vi > J.

Proof. Let us fix € > 0. For every j € No, we denote by B; the event “#FJ > 2(vnt+e)j”,
Remark that at a given scale j, we count the number of successes of a binomial distri-

bution of parameters (n;, 2-(1=m3) " where the success means “cjr =277 and where
nj = #K;. From Remark we know that

n; <4- 9i—(1=7)7"

where j’ is the smallest integer such that j' < j and n(j — 1) < 5/ +log, j'. In particular,

we have
nj2—(1—7l)j <4. onig—(1=7)j’ < 4j22(1—'v)n27m’ < 2(m+5)i

for j large enough. We get

P[B;] = 3 (ng) (2-(1=m3)™ (1 — g~ (=)=

m
27 +e)i<m<n;
90— (1-n)7)™
(”32 )

Z m!

2 +e)i <m<n;

(nj27(1777)j)
= M r(2m+e)i +1)

IN

o(ny+e)j
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Using Stirling’s formula, we obtain then that for j large enough,

.\ 2(ny+e)i (nv+e)j
o (ng27tm) L (ng—(l—n)jg—(nwsn@f
J L(20m+e)i 4 1) Vor U7 V2
2j e o(nv+e)j
< 2‘5]44,
< (%)
1 e . 2mr+e)d
- —3J
< m (2 e)
. o(ny+e)j
since 27 < /2 if j is large enough. Therefore, P[B;] is the general term of a
converging series. We conclude the proof by using the Borel Cantelli lemma and by
taking a sequence (;,)men which decreases to 0. O

Proposition 7.2.8. With probability one, for every ¢ € (0,1], dimy (Gs) < v%.

Proof. From Lemma we know that with probability one, for every ¢ > 0, there is
J € N such that A
#F; < 2(’Yn+5)]’ Vi > J.

Remark that for every N € N and every §' < 4,

U (kn27j" - 2*5;jn7kn2*jn + 276;1‘")

n>N

is a covering of G5 with intervals of diameter smaller than 2 - 2~ fr>~ .95 | Let us fix
Ny € N. Then, for every x > 0, there is N > Ny such that 2 - 27 fn=nduin <, Tt
follows that with probability one, we have

Hi(Gs) < > (diam (kp279n — 270nin g, 970n 4 2—52-7*'»))8
n>N
— 95 Z #F; - 9(yn+e)jg—sinfys g 6,7
J2iN
< 98 Z o(yn+e)ig—sinfzn, 6,5
i>in

If s > m(n’y + ¢£), we obtain that

H5(Gs) < ZQ(W%)J’Qﬂinf@NO 5 < 400
jeN
and therefore, dimy(Gs) < s. Since Ny € N and ¢ > 0 are arbitrary, we get the
conclusion. O

Remark 7.2.9. With the same arguments, we also have that with probability one, for
every ¢ € (0,1], dimy(Es) < v%. Moreover, this result does not depend on the chosen
sequence (0, )nen Which converges to 4.

Obtaining a lower bound for the Hausdorff dimension of G5 is more delicate. We will
use the following result of Beresnevich and Velani [3I]. It is simplified for the particular
application we have in mind.
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Theorem 7.2.10 (General mass transference principle). [31] Let X be a compact set
in R™ and assume that there exist s < n and a,b,eq > 0 such that

ae® <H* (BN X) < be’
for any ball B of center x € X and of radius e < gg. Let s’ > 0. Given a ball B = B(x,¢)
with center in X, we set
B =B (x,g“?) .
Assume that (By)nen is a sequence of balls with center in X and radius €,, such that
en = 0 asn— 4oo. If

n—-+o0o

H? <X ﬁlimsuprL/> =H¥(X),

then
H (X N lim sup Bn) = H¥ (X).

n—4oo

Before applying this theorem in our case, let us prove the following lemma. It is a
deeper result than Lemma [7.2.2]

Lemma 7.2.11. With probability one, there is a sequence (n,)nen of real numbers
smaller than 1 which converges to n such that

C(r) C limsup (kn2_j” — Q7 Mmdn | 9~ In 4 2‘"”“’) .

n—-+oo

Proof. Let us first define a decreasing sequence (&,,)men which converges to 0. For every
jo € N, if there is j < jg such that

. 1, . .
jo = L;(J +1logy j)] + 1,
we consider ‘
logy j + 21
j+logyj+2n
Since the second member converges to 0, we can assume that €;, tends to 0 as jo tends

to infinity. We complete then this subsequence to obtain a sequence (&,,)men of positive
numbers which converges to 0.

€jo

Using the Borel Cantelli lemma, let us show that there exists J € N such that for
every j > J and every A € A; for which A N C(r) # 0, there is n € N such that
A(Jnskn) € X and jpn(l —¢j,) < j. For every j € N, let us denote by A; the event
“there exists A € A; such that ANC(r) # 0 and for every n € N such that A(jn, kn) C A,
Jnn(l—e¢;,) > j”. Equivalently, A; is the event “there exists A € A; such that A\NC/(r) # 0
and for every j/ > j such that nj'(1 —¢ej/) < j, if A(j',k) C A, then ¢; » = 0”. Let us
consider 1

Jo = LE(J' +logy j)] + 1.

Remark that jo > j and, from our choice of ¢;,, we have njo(1 —¢;,) < j. Therefore, we
can proceed as in Lemma [7.2.2] to get that

Pl4;] < > II  Plel=0

AANC (1) #£0 AoCA A0 €A,

()
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which is the general term of a converging series. The Borel Cantelli lemma implies that
there is J € N such that for every j > J and every A € A; for which AN C(r) # 0, there
is n € N such that A(jn, kn) € A and j,n(1 —¢;,) < J.

Let us now consider z € C(r). Then, \;j(z) NC(r) # 0 and if j > J, there is (jn, kn)
such that A(jn,k,) C Aj(z) and j,n(1 —¢;,) < j. This event happens with probability
one, independently of the choice of € C(r). Since z and k,277" belong to \;(z), it
follows that

|2z — knz—jn| < 277 <« 9=inn(l=ejy,)

We get the conclusion taking the sequence (1), )nen defined by 1, =n(1 —¢;, ). O
We can now obtain a lower bound for the Hausdorff dimension of Gj.
Proposition 7.2.12. With probability one, for every § € [n,1], dimy(Gs) > vi.

Proof. This result is a simple application of Theorem[7.2.10] With probability one, from
Lemma [7.2.11] there is a sequence (7, )neny Which converges to n such that n, < n for
every n € N and

C(T) g llm sup (kn2_]n _ 2_nn,jn,,kn2_jn + 2_77njn) .

n—-+o0o
For every n € N, there is z,, € C(r) such that
(kn279m — 2700 2700 4271 ) N CO(r) © (2 — 202797 @y +2-27"02) N C(r).

Then, if we set n,, = n, — ]i for every n € N, the previous inclusions give

C(r) = limsup (z, — 2= Min g, + 2_";“) NC(r)

n—4oo

with probability one. Consequently, we have

HY (O(T) N limsup (2, — 27" 2, + wéjn)) =N (C(r)).

n—-+oo

Moreover, it is known that #Y(C(r)) = 1 and that there are a,b > 0 such that
ag? < HY(B(z,e) NC(r)) < be?

for every x € C(r) and 0 < & < 1, see [65] [109] for example. Let us fix 6 € [n, 1] and let
us consider the sequence (0, )nen defined by

,'7/
0p=0-"2, VneN.
n
By taking s’ = v¢ <+, Theorem [7.2.10| gives that

W (C(r) Nlimsup (z, — 27", 2, + 2—%%)) = H3(C(r)) > 0.

n—-+oo

If the set Es is defined with the increasing sequence (d,)neny Which converges to 4, it
follows that
dimy Es > fyg.
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If 0 < 1, we have

Gs= () Es\ |J Es.

0<5'<6 5<6'<1

Remark that Es» C Egs if §” > ¢’. Therefore, the union and the intersection that appear
in the definition of G5 can be taken countable by considering subsequences converging
to 0. If s = %, let us show that H*(Gs) > 0. With probability one, we have

H(Gs) = H([) Bo) = (| Es) = ([ Es)

8'<d 8'>0 6'<d

since the s-dimensional Hausdorff measure of Es vanishes if 8 > § using Remark
It follows that
M (Gs) =H* ([ Esr) = H(Es) >0,

8'<é
and it follows that dimy (Gs) > 1.
Ifo =1,
H(Gs) = H"([) Esr) = H(E1) >0,
6'<1
hence the conclusion. O

Combining Propositions[7.2.5] [7.2.8]and [7.2.12] with the possible values for the Hélder
exponent, we get the announced Theorem [7.2.1]

7.2.2 Wavelet leaders density of R, , ,

In this Section, we compute the almost sure wavelet leaders density of R, ),

Proposition 7.2.13. Let ¢ denote the sequence of wavelet coefficients of R . given
by (7.1)). With probability one, pz = dr, . on [0,+o0].

Proof. From Theorem and Remark it suffices to show that p%(h) < dg, , . (h)
for every h € [0, +00]. Of course, we have pz(+00) < 1. So, we can assume that h < +oc0.

1. Assume that h € [0,a). We know that |cy| < 277 for every j € N, A € A;.
Hence, p%i(h) = —oo =dg,, , (h).

2. Assume that h € [a, £]. With probability one, we know from Lemma that
n
for every € > 0, there is J € N such that
#F=#{N€Njcy =279} < 2(ynte)

for every j > J. Moreover, the wavelet coefficients cy of R, at a scale j only take
the values 27 or 0. Therefore, we get that with probability one, for every ¢ > 0,
VRg..(R) <ny+¢€, where vg, . denotes the wavelet profile of R, , . Consequently,

h/
h sup 71/1%“‘"’;( ) <h sup m —j_ - hny te
h'€(0,h] h N a

Since € > 0 is arbitrary, we get that with probability one,

VRo.,. () _ 0y
hosup DPemr\W) G g ),
h'€(0,h] n a R nr (1)
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Using Proposition [5.5.3] we obtain then

h/
Ao, () <3N <7 ()< sup Zene)

<d h).
o o o <dg,, . (h)

This events happens with probability one, independently of the choice of h € [, %], SO
that we have the announced equality on [« %]

3. Finally, assume that h € (%, +00) and let us show that
#{ €A :0<ex<2M} =0
for every j large enough. From Lemma with probability one, we have
#{reA:0<ex<2M}=#{NeN;:ANC(r)=0and 0 < ey <27}

for every h € (%, +00), since ey > 27" if AN C(r) # 0 and if j is large enough. From
the construction of R, ., if AN C(r) = (), we have either ey =0 or ey = 27290 where
jo > j is such that n(jo — 1) < j + log, j. In this last case, we have ey > 27 if j is
large enough and the conclusion follows. O

Let us remark that we also get that ﬁ;a’w =dg on [0, 2] U {+o0}.

@,n,T

7.3 Prescribed multifractal spectrum

Given an admissible profile v such that ay;, > 0, the aim of this section is to construct
a function f such that

vp=v=d; on [0,+o0].
We assume that v(a) > 0 if & € (min, ¥max)- We will consider separately the increasing
and decreasing part of the admissible profile. More precisely, in Proposition [7.3.6, we
construct a function f* such that

v(h) ifhe0,a,
v+ (h) =dg+(h) =
—oco if h € (as, +o0].
Similarly, in Proposition we construct a function f~ such that

—oo it he0,as),

Df— (h) S df_ (h) = { I/(h) if he [asv +OO]

If we consider the function f = f* ol*t + f~ ol™, where [T (reps. [7) is the unique
affine increasing map from [0, 1] to [3,1] (resp [0, 3]), we will then obtain the following
theorem.

Theorem 7.3.1. Let v be an admissible profile with amin > 0. If v(a) > 0 for every
@ € (Qmin, Omax ), then there is a function f such that

vp=v=dy on [0,+00].

Corollary 7.3.2. Let v be an admissible profile such that amin > 0 and v(a) > 0 for
every & € (Qmin, Omax). The set of functions f € LY such that vy = v = dy on [0, +00]
is c-dense lineable in (LY,0).
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Proof. Using Theorem we consider a function f such that Uy = v = dy. Let ¢
denote the sequence of wavelet coefficients of f in a given wavelet basis. We construct
then the same vector space D as in Proposition [6.7.2} using the the sequence ¢. We
already know that D is dense in (£¥,¢), has dimension ¢ and that for every zZ € D\ {0},
vz = v. Let us now prove that, if the wavelet coefficients of a function g are given by
Z € D\ {0}, then d, = v. By construction of D, there are J € N, rq,...,ry >0 (IV € N)
and #1,...,0y € C not all equal to 0 such that

(9 L4 1) el
N = 1T N~ sup |Cx
Jm J™ ) xca

for every j > J, A € A;. Consequently, as done in Proposition [6.2.4] for every ¢ > 0,
there is Jy > J such that

sup |22 < sup [ex| and  sup |z] > 2737 sup |en]
A'C3A N C3A NC3A NC3A

if j > Jo. Using Proposition [£.7.4] we get that the Holder exponents of g are the same
as those of f, and therefore, d; = dy = v. This concludes the proof. O

7.3.1 Increasing part

Given an admissible profile v, our goal is to construct a function f* such that
D}ﬂ =v=ds+ on [0,as] and Ty =dp+=-00 on (as, +oa.

Lemma 7.3.3. Let as € (0,+00). We denote by AT (as) the set of functions 6 of the
form

2 ifhelapl
(h) =+ 1 if h = o,

—oo  otherwise,

with v € (0,1) and 0 < a < B < as. For every 6 € AT (ay), there is a function f such
that dy = 6 on [0, +o0] and

—00  ifh<a,

- B ifhela,f)
Y if h € [Baas)v
1 if h > as.

Proof. Let us consider § € At (a,). We fix € (0, 1) such that & =pBandr e (0, %) such
that v = — 12272" We will slightly modify the function R, ,, constructed in Section

into a function RY, . as follows. Let ¢ be the sequence of wavelet coefficients of Ry . »

given by (7.1)). The sequence ¢* of wavelet coefficients of R, . is defined by

a,n,T
i { Cj.k if Cjk 7£ 0,

clp =
J,k —ali
27%sd ifcjp = 0.
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With probability one, we know from Lemma that for every e > 0, dy > 277 (5+e)
at large scales j if A\NC(r) # (. If € > 0 is chosen small enough, we have

9= i(5+e) > g—asj

and the wavelet leader dy is not modified by our construction, i.e. d;\" = dy. It follows
that the Holder exponents of R .. at points of the Cantor set are not modified. If

a,mn,r

x ¢ C(r), then 3\;(z) N C(r) = 0 for large j and it follows that the Holder exponent of
RY  at zis a,. Following the results of Section we get that with probability one,

a,m,r
n i e
yhy ifh € o, 7],
dee (W)={ 1  ifh=a,,

—oo  otherwise.

Let us now compute the increasing wavelet leaders profile of R} Since cjk takes

a,n,r
the value 272/ or the value 27?7, we have DE+ (h) = —c0 if h < a. As done in
& e

Proposition [7.2.13, if h € [, £], we have U}, (h) =~hZ and if h € (5, as),
S
#{reN; 27T <dy <27} =0

so that 'J;:‘n’r(h) = 7. It follows that the increasing wavelet leaders profile of RY . is

given by
—o0 ifh<a,

n i o
Yhg i h€ o, 7],
ol if he 5, as),
1 if h > a.

Remark 7.3.4. We also include in A" (ay) the degenerate cases where

0 if h =q,
Oh)y=1< 1 if h = ag,
—oo  otherwise,

with @ < as. Remark that in this case, if f is the function whose wavelet coefficients
are given by ¢ := 27 if k = 0 and ¢; , := 27%/ otherwise, then we have

—o00 if h < a, 0 if h =aq,
vi(h)=14 0 if h€la,a5), and dp(h)=1¢ 1 if h = a,,
1 if h > ag, —oo  otherwise.

Lemma 7.3.5. Let as € (0,+00). For every v € (0,1) and ag € (0,a5), there is a
sequence (0))ien of AT (as) such that

—o0o if h < ap,

supf;(h) = ¢ if h € [ap, as),
leN 1 if h > o.
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Proof. Let us consider a sequence (8,)nen whose elements form a dense subset of

(o, as). For every m,n € N, we set apmpn = Sn — % if B8, — % > ap, and agy, , = ap if

B — % < ap. We consider then the function 6,, , € AT (ay) defined by
i b€ [ m, Bl
Omn(h):=4q 1 if h = ag,
—o0o  otherwise.

It suffices to show that if h € [ag, ), then sup,, ,cnOmn(h) = 7. Of course, we
have sup,, ey Om,n(h) < 7. Moreover, for every m € N, there is n € N such that
Bn > h>pn— % Therefore,

1
em,n(h) = %ﬁ > ’Yﬂn >y (1 - 1)

ﬂ n maog
hence the conclusion. O

Proposition 7.3.6. Let v be an admissible profile with aumin > 0 and such that v(a) > 0
if @ € (Qmin, Omax). Then, there is a function f such that

N via) if a €0, as),
vi(a) =ds(a) =

-0 ifa€ (as,+x).

Proof. Since v is right-continuous and increasing on [aumin, s, it is possible to find a
sequence (Y )men of (0,1) and a sequence (am)men of (0, as) such that

v =sSup v, on [0,

meN
where
—oo if h < ayy,
Un(h) =< Ym if h € [am, as),
1 if h > ag.

Using Lemma for every m € N, there is a sequence (6, 1)1en of A1 (as) such that

Vpp = SUpP Oy ;.
leN

Reordering the sequence (6, 1)men,ien, we get a sequence (6,)nen of AT (a) such that

v=supb, on [0,aqs.
neN

For every n € N, using Lemma[7.3.3} we know that we can consider f,, such that dy, = 6,
on [0, 4+o0] and

sup 17}|r =v on [0,as].

neN "
In particular, f, € £Y"". We denote by &™) the wavelet coefficients of f,,. For every
n € N, there is a unique affine increasing map from [0,1] to [27",27"!]. We consider
then the function f, o‘ln; its Wayelet coefficient at position (j, k) is given by cyi)n’kfzj,n
if j >nand k € {277",...,277"+ — 1} and 0 otherwise. Of course, we still have
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fnol, € L7, Using the continuity of the scalar multiplication in £¥°F, there is €, > 0
such that

~ 1
+
0" (enfnoln,0) < el
For every n € N, we define then the function F™ by setting
Fn:€1flol1+"'+€nfnoln'
The wavelet coefficients of F'™, denoted by c (”), are given at scales j > n by

5165‘17)1,1@7%—1 if ke {2771,...,27 — 1},
6205'27)2,1@72;72 if ke {2772,...,2071 -1},
cti -
enct™ ithe{2i-n, ... 2i-n+l _ 1),
0 ifke{0,... 2" -1}

Let us prove that (F™),en converges in (LY, g*‘) Using the invariance by translation
of the distance in £°", we have

Q Q Q
= o~ ~ 1
5+(FP,FQ)§ Z 5+(FN_1,FN): Z 5+(ENfNOZN7O)§ Z Nz
N=P+1 N=P+1 N=P+1

and it follows that the sequence (F™),cy is a Cauchy sequence in (£“°F,8+). From
Proposition we know that the space ([,”’+,5~+) is complete and it follows that
(F™)nen converges in (£F,67). Let us denote by F this limit. In fact, if & denotes the
sequence of wavelet coefficients of F', we have

slcg.l_)lvk_y,l if ke {271, 20 — 1},
2y gie iR E{272 21},

Cjk = '
gocl ) ifke{2,3),

esedly if k=1,

0 if k=0,

for every j € Ny, similarly to what was done in Proposition since the convergence
in (Lv7,0%) is stronger than the pointwise convergence. As we have F' € £V, we
get 5} < v on [0, as]. Moreover, since affine mappings do not modify the multifractal
spectrum (see Proposition and since the intervals (277,27 %) are disjoint, it is
clear that
dp =supdy, =v on [0,q;).
neN

Remark that problems may possibly occur at the points 27, n € N, and at 0. Neverthe-
less, even if the Holder exponent is modified at those points, it will still be in [apin, )
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and since those points form a countable set, using Proposition [£:2.4] it does not change
the Hausdorff dimension of the iso-Hoélder sets. Since the wavelet leaders profile gives
an upper bound for the multifractal spectrum, we get

vh=dr=v on [0, al.
It remains to modify slightly the function F' in order to have
Vp=dp=—-00 on (o, +0].
We consider the function F* whose wavelet coefficients at scale j € N are given by
¢ = max (d)\,2_"5j), VA €A,

where d) denote the wavelet leaders of F'. Let us show that the wavelet leaders d3 of
F* are its wavelet coefficients.

e Assume that ¢§ = dy > 277 and let N C 3\. If dy > 2-:3’ then we have
¢ =dy < dy =c; and if dy < 277 then ¢, = 277 < 27%J < ¢},

e Assume that ¢ = 2—%J > dy and let N C 3\, If dy > 2*asj, then we have
cy =dyv <dy<c,andif dy < 27J then = 2—asi’ < 9masd = cx.

Clearly, the increasing wavelet leaders profile of F' and its multifractal spectrum are not
modified on [0, as]. Moreover, we have d} > 27 for every A € A; so that

UVpe =dp+ = —00 on (o, +00],

hence the conclusion. O

7.3.2 Decreasing part

Similarly to what is done in the previous subsection, given an admissible profile v, our
aim is to construct a function f~ such that

vio =df-=-00 on [0,a;) and vy =v=ds- on [as,+o0].

Lemma 7.3.7. Let as € (0,+00). We denote by A~ («s) the set of functions 6 of the
form

2 ifhela,fl,
o(h) =14 1 if h = as,

—00  otherwise,

with v € (0,1) and as < a < f < +00. For every € A~ (as), there is a function f
such that dy = 6 on [0,4+00] and

1 if h < ag,
D;(h): 1_‘_%(7—1) thE(Oésvﬂ]a
o if h > p.
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Proof. Let us fix 1 € (0,1) such that £ = 3 and r € (0, 1) such that v = — 122 Let us

logr
again modify the function R,y constructed in Section |7.2{into a function R, , .. The
function R, , . is defined through its sequence ¢~ of wavelet coefficients, with
Cik it k € Kj,
cip=1q 0 if k ¢ K; and if there is X' : N N C(r) # 0, A C 3\ and a,j < 570

27%J  otherwise,

where ¢, denote the wavelet coefficients of R, ;- given by (7.1). With probability one,

if z € C(r), we know that the Holder exponent of Roy» at x is in [a, &]. From our

construction, if A\g C 3);(z) is such that ¢y, = 2790, we have a,jo > %j. Consequently,

we obtain that the Hélder exponent of R, , . at z is the same as the Holder exponent
of Ry at . If x is not in the Cantor set, then 3\;(z) N C(r) = 0 for large j and it

follows that the Hélder exponent of R, , . at z is a,. Following the results of Section
[7-2] we obtain that with probability one,
1 if h = ag,
dR;m(h) =4 vht ifhe]q, %],

—oo  otherwise.

Let us now compute the decreasing wavelet leaders profile of R, .. We have

17;; T(as) > dR;,m(as) = 1 so that D;&myr(h) = 1if h < a,. It suffices then to

study the case h > as.

First, let us assume that h > % Let us consider three different possibilities.

o If A\NC(r) # 0, since d > dy, Lemma gives that with probability one, for
every h > &, dy > 277 if j is large enough.

o If A\NC(r) = 0 and if for every X" such that A’ N C(r) # 0 and A C 3\, we have
sy > %j’, then dy, =277 > 271,

e In the last case, AN C(r) = @ and there is A’ such that A’ N C(r) # 0, A C 3X and
ag) < %j’. Let j' < j be the maximal integer such that such a X' € A/ exists. In
this case, dy > 27*J0 where jj is the smallest integer such that ayjo > %j’. In
particular, as(jo — 1) < %j’ and we get that

dy > 2770970 > 9759 5 97
if j is large enough.
It follows that if h > &, then v _ (h) = —o0.
o,n,r
Secondly, let us assume that h € (as, &]. We know that

« e
dp- — ) =v<v__ () .
Ran,r (77) a,n,r n

Using Proposition we obtain
'17;&;"’7.(11) -1 7 ,

(
2 o
h 0

o}
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so that "
VR;,T,,r(h) >1+ ha('y - 1.

It suffices then to prove the other inequality. Let us fix € > 0 such that h — e > a; and
let us estimate the number of wavelet leaders d, smaller than 2—(h=e)j,

o IfANC(r) # 0, then dy, > dy. We know that for every § > 0, there are less than
2(1h3+9)i dyadic intervals X which intersect C(r) with dy < 2797 if j is large
enough. Then, the same holds for the wavelet leaders d; .

o If A\NC(r) =0 and if for every X such that X' N C(r) # 0 and A C 3\, we have
agj > %j’, then by construction, dy =c, = 2-s > 9= (h=e)j,

e In the last case, AN C(r) = 0 and there is A\’ such that N’ N C(r) # 0, A C 3N
and agj < %j'. Let j° < j be the maximal integer such that such a X' € Aj
exists. Then, d, > 27sJo where jo is the smallest integer such that a,jo > %j’.

In particular, as(jo — 1) < %j’ and d, > 2759~ As done in Remark

# {/\/ S Aj/ NN C(r) 7£ @} < 2’Yj/+2.

It follows that the number of dyadic intervals A of that case with dy < 2=("=9)J ig
smaller than

> 3.2 4N e Ay : N NCO(r) 0}

J<G 0 @i ras>(h—e)j

< 12.9% Z 9(v—1)5’
iS5 @i tas>(h—e)j
< 12j2j2(7—1)((h—5)j—as)§
— 12j2(1+(v—1)(h—8)%)J’Q—(W—l)%g’
The combination of these three possibilities gives the conclusion. O

Remark 7.3.8. We also consider in A~ (a;) the degenerate cases where

0 if h =aq,
Oh)y=1< 1 if h = ag,
—o00  otherwise,

with @ > a;. As done in the second case of Proposition [6.2.1] we set jo = 0 and for
every | € Ny, we consider j;4; the smallest integer larger than j; such that

QsJi41 = agy.

Then, we define ¢ as follows: if j = j;, we set

. i 27o‘jl if k= 07
Jik = 9—am otherwise,

and if j is between j; and j;y1, we set

~_f 2729 if A(j, k) is included in A(j,0),
€k =3 9-esd  otherwise.
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The function f whose wavelet coefficients are given by ¢ satisfies

i <
1 ifhsa, 0 if h = a,

vi(h)y=9q 1-% ifhe(asa], and ds(h)=1q 1 if h = a,

. —oo  otherwise.
—00 if h > «a,

Before stating the next result, let us remark that if amax < 400, then v(a) > 0 for
every « € [a, imax ). Indeed, from the properties of v, we know that

via)—1 > V(Qmax) — 1 S -1

« Qmax " Qmax

so that
via) >1—

>0

amax

for every « € [as, imax)-

Proposition 7.3.9. Let v be an admissible profile with amax < +00. Then, there is a
function f such that

—o0o  ifh€]0,as),

5 (h) = dy(h) =
s(h) = ds () {y(h) if h € [ag, +09).

Proof. We proceed as in the proofs of Proposition [7.3.6] and Lemma [7.3.5] Since v is
left-continuous and decreasing on [, amax], it is possible to find a sequence of functions
(fn)nen such that dy, € A~ (a;) with

v=supdy, on [(,C0max]
neN

and such that there is 8, € (s, max] With

1 if h < ag,
vp,(h) =4 143 —1) ifh e (as,Bal,
—00 if h > By,

with v, < v(B,). Since the decreasing wavelet leaders profile give an upper bound for
the mutlifractal spectrum, we know that

v=supdy, <supv;  on [avs, max]s
neN neN

and let us show that the converse inequality is also true. Let us fix h € [a, max] and
n € N. If h > B, then v, (h) = —oo <w(h). If h € (as, B,], then

— h h
vy, (h) =1+ ﬁ*(% -1 <1+ F(V(ﬂn) —1) <wv(h)
from the properties of an admissible profile. The equality at h = a4 is obvious. In
particular, if ™ denotes the wavelet coefficients of f,, then &™) € £V,
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For every n € N, we denote by €™ the restricted wavelet leaders of (™ and we
consider the sequences @ (™ and b(™ given by

0 if ke {27-nt 20 — 1},
afk) = ﬁ if ke {2j—n) R ’2j—n+1 - 1},
j—n,k—2i—n
20 if ke {0,...,207" —1},
and _ .
{ 0 if ke {20+ 20 — 1},
b(n) =
7,k

20s if ke {0,...,20 "t 1},

for every j > n, and agf;c) = b;nk) == 0if j < n. Since @™ € LY, we have @™ € SV~ .

Moreover, it is clear that b e s, Using the continuity of the scalar multiplication
in S¥ , there is &, > 0 such that

—(n — 1 _'TL — 1
6(ead™.0) < 55 and §(end™V,0) < T

2
Moreover, we can assume that ¢, < €,_127% for every n > 2. We define then the
sequence C (™ as follows: at scales j < n,

1 . s .
écj('—)l,k—gj—l if ke {2771 ...,27 -1},
2 . s -
écg'—)zk_zj—z if ke {272,271 -1},
(n) ._
Ciw = .
S ke {23,
écé{% if k=1,
éQ_QSj lf k' _ 07
and at scales j > n,
icg‘—)l,kfzj—l if ke {2771,...,29 —1},
2 ) . N
éc§32,k,2j,2 if ke {2072,...,2971 — 1},
(n) ._
Cily =
ic;i)mk_w,n if ke {2-n, ... 2i-n+l_ 1},
%2_0‘51' if ke {07_._’2j—7z _ 1}

Let us remark that if £ (™ denotes the sequence of restricted wavelet leaders of c (n),
we have . :

IR e S )

EM)  Rh-1) " n

Using the invariance by translation of the distance in S¥ , we get
1 1 1
s >(n) A 7(n) & .
5<E<n>’ E(n_l)) < 0(2a@™,0) +6(en1b™,0) < —
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H _
so that the sequence (ﬁ) is a Cauchy sequence in (S§” ,J). Since this space is

neN
complete, there is £ € S¥ such that the sequence converges to Z in (S ,4). We know
that the convergence in (S” ,4d) is stronger than the pointwise convergence. It follows
that

1
Ty=—— VYAEA,
Supy ca el
where
2D ifke{2T 2 1),
écﬁ)m_y,z if ke {2072, .. 2071 1},
Cik =
j—1 .
Ll ifke {23},
) .
L) if k=1,
1 o—asg s _
Lo if k=0,

for every j € Ny. In particular, ¢ € £¥°~. Let us consider the function F* whose wavelet
coefficients at scale j € N are given by

¢h =min (dy,27*7), VAE€A;.

As done in Proposition[7.3.6] a simple computation shows that the wavelet leaders of F*
are its wavelet coefficients. Therefore, the wavelet leaders of F'* smaller than 2~ %<7 are
the same as those of & and the others equal 27/, As in Proposition we directly
get

ﬁ}* =dp» =—00 on [0,ay)
and
Vps =dp==v on |ag,+00].
This gives to the conclusion. O
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Appendix A

Robustness of the wavelet
leaders profile

In this appendix, we show that the increasing and decreasing wavelet leaders profiles of
a uniformly Holder function are robust. In other words, let ¢ € C” for some r > 0 and
let A be a quasidiagonal matrix. If Z is the image of ¢ by the matrix A, i.e. if

Iy = Z A()\,)\I)C)\/

NeA

for every dyadic interval A, the aim of this appendix is to prove that 17;1r = 5; and
vz =vz on [0, +0o0].

A.1 Increasing wavelet leaders profile

In this section, we show that 7 = D} on [0, +00]. Let us first recall the following
lemma.

Lemma A.1.1. There ezists a constant C such that if v > |a] and A € A7,
lejul < C27%9 Vi k = |zj4| < C|Al,C27%, Wy, k.

This lemma expresses the fact that operators whose matrix in a wavelet basis belongs
to A7 are continuous on C*(T) if |a| < 7. It is a straightforward consequence of the
proof of Schur’s lemma (Lemma 4 in Chapter 8, [I11]).

Definition A.1.2. Let € > 0 and let A\ be a dyadic interval. The e-neighborhood of X,
denoted by N¢(\), is the set of dyadic intervals A’ such that

lj—J'l < &)
koK

% o 2285277,

IN

Remark A.1.3. Note that if \’ does not belong to N°(\) and if v > 72, a computation
leads to ‘
way (A, ) < wy (A, N)27975,
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APPENDIX A. ROBUSTNESS OF THE WAVELET LEADERS PROFILE

Proposition A.1.4. [2]|] Let ¢ € C" for some r > 0. The definition of the increasing
wavelet leaders profile of C is robust.

Proof. Let A be a quasidiagonal matrix and consider

I\ = Z A()\, /\/)C)\/

NeEA

for every dyadic interval A. Let us first show that 7} (a) < 7 () for every o > 0. Let
us denote i, = inf{a : Dg(a) > 0}. Since ¢ € C"(T), we know that i, > 0.

1. Assume that o < apmin.

If £ > 0 is such that a + & < iy, there is Cp > 0 with
lej il < 127+ Wi e N, ke {0,...,27 — 1},

Therefore, Lemma implies that |z; x| < 6||A||7012_(0‘+8)j for v > a + ¢ and for
every j € Ng and k € {0,...,2/ — 1}. We then directly obtain that 7} (a) = —oo for
every o < Qypin-

2. Assume that o > apin > 0.

Let us fix § > 0. We will prove that there exist J € N and € > 0 such that
# {)x €Ay sup |zn| > 2(0‘+5)l} < 2(;;(a)+85)l
NCA

for all I > J. Since § > 0 is arbitrary, we will get that 7% (a) < 7 ().
Using the right continuity of 17;1’, we choose ¢ > 0 such that that ¢ < §, a—oupin < 7!

and 7} (1‘":) < 7} (a) + 6. The definition of 7} gives g > 0 and J € Ny such that

. ~t( _« .
# {)\ €A sup |ex| > 9= (12 +2e0)j } < 2(”a(ﬁ)+5)3
NCA

for every j > J. Of course, we can also assume that ¢ is small enough so that it satisfies
a+eg(l —€) — amin < e 1. For every | € Ng, we define

1 o )
Ar =M (le) = U {)\ €A sup ley| > ~2_(1—s+80)3}
(1—e)I<j<(14e)l ATEA 4C||Alla

and

S 2—l+1225l } .

a) Let us show that if \o ¢ Na(l,€) is of size 27!, then supycy, |za] < 9~ (ateo(1=e)l,

It suffices to show that if A\ C Ao, then

1
Z A()\, )\/)C)\/ < §2f(a+60(175))l'

ANeA

lzA| =
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A.1. INCREASING WAVELET LEADERS PROFILE

So, let us fix A = A(j, k) C Ao = A(l, ko). Remark that in particular, we have j > [. We

set
Yx 1= > AN X)ens
)\’g)qV/h €Ay and 5/ >(1—e)l

and
2\ = Z A()\, )‘/)C)\/

N CAy with A €A or j/<(1—e)l

so that we have |z)| < |ya| + |2l

e If )\ is such that X & A for any A\; € Ay and if j* > (1 —¢)l, then by definition of
Ay (l,e), we have

1 — (2= teo)i(1=e) 1 —(ateo(1—2))l

<——o(s=+e =g (ateo(i-e)l,

AC| Ao AC| Ao
Using Lemma with @ > 0, we get that

lex|

|y)\| < 2_(a+60(1_6))l6||A||a2_0j _ 12—(04—&-50(1—5))1.
AC|[Alla 4

o If )\ is such that there is A\; € A1(l,e) with X' C Ay or if j/ < (1 —¢)l, let us show
that X ¢ N¢(\). First, if j/ < (1 —e&)l, then j' < (1 —¢)j since j > [ and it follows that
A ¢ N¢()\). So we can assume that A’ C A\; with A\; € A;. Since A\; € A; and Ao ¢ As,

we know that
ko Ry

2l 2J1 2—[—‘,—1226[.

Let us first assume that

From the inclusions A C \g and X C A\, we have

ko k1<k K 1 1<k K 1
P TR VAT T TR VAT

and consequently, from the previous relation,

E _ k/ > 2—l+122€l _ i
23 273’ 271"

Moreover, since A; € Aq(l,¢), we have j; > (1 —¢)l and it follows that

koK
2 24’

> 27[4’1226[ _ 27((176)[) — 2(2671)l + 2(2671)l o 27((176)0 Z 2(2671)[ Z 2(2671)]‘

where the last inequality comes from the fact that j > and 2¢ — 1 < 0.

The second case is quite similar. Assume that

ki ko o_ig162e

Using inclusions between dyadic intervals, we have

ki ko K k1 1 _ K k1
ST T T TR TR T T T
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and it follows that
kf’ o ﬁ > 27l+122€l o i > 2(2671)[ > 2(2671)‘7.
27’ 27 2l — -
So, we have proved that A" ¢ N°()\).
Consequently, using Remark [A-T.3] we get

2l < > AN len]

NN EN<(N)
< Z HA||25*2W26*2(A7)‘l)|cx\’|
N:XENE(N)
< A2 DD w2 (A N)27 ey
AN ENE(N)
< JAlle227 0 YD wea (A X270

NN ENe(N)

where ag < ain is such that a +eq(1 — &) — ag < e~ ! and the constant C; > 0 is such

that |c; x| < 01270 for every j €N, k € {0,...,27 — 1}. Lemma gives

- 1y - _ 1
2] < |Allos-2C1 820+ < | Allpe-aCyGa-(eot ) < Ly=(evteoti-oN!

if [ is large enough.

Finally, we have got
1
lza] < fyal + [2a] < 527(%50(175))[

if 1 is large enough. It follows that if A\g ¢ Ay(l,e) is of size 2= then we have
SUpycy, 2] < 27 (@teo=eDl g0,

# {)\0 € Ay osup |xy,| > 2_(0‘+50(1_€))l} < #As(le).
ACXo

b) Estimation of the cardinality of Ao(l,€)

Remark first that if A\; = A(j1, k1) € A1(l,¢) is fixed, we have
k k1

l A
#{ke{o,...,2—1}. 51 0

= # {k S {0, .. .,21 _ 1} . k12l7j1 _ 21+25l <k< k12l—j1 + 21+25l}

k,lzl—jl _|_ 21+2€l _ k12l_j1 + 21+26l + 1= 226l+2 _|_ 1
2381

< 2—l+1225l }

IAIA

if [ is large enough. Therefore, we get

1 [e3 -
#As(l,e) < E # {)\ €A, :sup |ew| > ~72*(1—s+50)11 } .
(1—e)I<j1 <(1+e)l ATCA 40| Alla
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A.2. DECREASING WAVELET LEADERS PROFILE

Moreover,

1 o .
#IAe A :sup len| > I I
B = Ea.

IN

# {)\ S Aj1 : sup |en| > 9~ (12 +2e0)51 }
NCA

< 2(;;(1%)”)7'1 < o7z (@)+26)51

for j1 (hence l) large enough. It follows that

# {)\o € Ay sup |xy| > 2—(a+au(1—e))l}

ACo

< 3 o (75 () +28) 1 y3e1
(1—e)1<j: <(1+2)1

< ) o (V4 (@)+20) (1+e)l g3t

(1—e)l<sr <(14e)l

(2e1+1)2 (v (@) +25+¢ (V8 (a)+26+3) )1

<
< oelg(ve(@)+20+5e)
< 2(Z§(a)+85)z

if [ is large enough.

So, we have proved that for every o > 0, 7% (a) < 7 (a). We have also obtained
that inf{c : U;f(a) >0} > amin > 0. Since A1 is also almost diagonal, the same proof
shows that 7f () < 7% (a) for every a > 0. The conclusion follows.

O

A.2 Decreasing wavelet leaders profile

In this section, we show that ¥z = v on [0, 4+00], where
o= Y AN XN)ew, VAEA,
MNeEA

for a quasidiagonal matrix A. Let us first introduce a new notation. Let us fix a dyadic
interval \o(l, ko) and € > 0. For j € Ny and k € {0,...,29 — 1},

kK .
A(j, k) € Cond.(Ng) <= (1 —2¢)j >1 and 2~VJ < %5~ 2—? <27t —3.20@15,

Lemma A.2.1. [Z]] Let us fix a dyadic interval Ao(ko,1) and let us consider e > 0. If
A(J, k) € Condc (o), then

N € NE(A(j, k) = N C Ao

Proof. First, we have
Fe(1—e)i> (-2 > 1.
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APPENDIX A. ROBUSTNESS OF THE WAVELET LEADERS PROFILE

Moreover,
/
k Sk k _pe-nj 5 Fo ko
20" = 29 2t°
Finally, we have
E+1 1 k , ok . )
o (2e-1); —j 0 l .9(2e—1)j (2e-1)j
577 §2j,+2j+2 < 2 +21+2 -3-2 +2
k() + ]. . 2(2E—l)j < kO + 1
- 2 - 2t

Proposition A.2.2. [Z)] Let ¢ € C" for some r > 0 . The definition of the decreasing
wavelet leaders profile of € is robust.

Proof. Let A be a quasidiagonal matrix and consider
I\ = Z A()\, /\/)C)\/
NeA

for every dyadic interval A. Let us first remark that, as done in the case of the proof of
Proposition since ¢ € C", there exists C; > 0 such that |z; x| < C127"7 for every
jeN, ked{0,...,27 —1}. In particular, we have v; (o) =V (o) = —0 if a < 7.

Let us show that vz (a) < vz («) for every a > r. Since A is quasidiagonal, we will
similarly obtain the other inequality. Let us fix £ > 0 small enough so that o —r < &1
and € < % Since o < 7+ ¢~ 1, there is J € N such that

— —(r4et - -«
1A |ze-2Cr27 F D0 < AT |27

for every | > J. For g9 > 0 small enough, we have a —r +eg(1+¢) < e~! and for every
1 > J, we define

Ei={X€EA: sup |ea| <2C|A7Y |42 (@m0l+e)l L
A€ Condc(Ao)

Let us show that if \g € A; is such that supy,c,, |zx] < 2~ (a=eo+))l then Ay € Ej.
Let us fix A € Cond. (o). We have

el <] D0 AT Ny |+ Y AT )|

MNEN=(N) NEN=())

As done in Proposition [A-T.4] using the Remark [AT1.3] we have

> A (M) | < AT |aeaCr G204 < G471 |27 (@20 01+
NENe(A

Moreover, Lemma implies that if ' € N%()), then X C )\g. Consequently, we
have |zy/| < 27 (@==00+e)l and Lemma gives

Z A™ )\ Ny <C’HA 1|| 9—(a—eo(1+€))l
MeENe(A
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A.2. DECREASING WAVELET LEADERS PROFILE

So, we get )
lea] < 20| A7 || o2~ (@—eo(+e))!

and )
sup  |ea| < 20| A7 27 (@m0 (FN]
A€ Condc (o)

Consequently, we have

#{)\0 €N sup |y < 2‘(‘1—80(1+8))l}
A CAo

’

< H#HIAEA: sup leal < 25|‘A_1||a2_(0‘_50(1+6))l )
A€ Cond. (Ao)

Let us choose j; € N such that (1—2¢)j; > 143 and j; < (1+4¢)l. For every Ag = A(I, ko)
of size 27!, we fix k such that
9(2e—1)5i < k ko <9l _4.902e=1)j
S0 Tl = '
Let us remark that in particular, we have A(j;, k) C Ao and therefore the A(j;, k) are
different for different \g of size 27'. A simple computation shows that if N C \(j;, k),
then X' € Cond.()\g). It follows that

H# X €A sup leal < 25’||A_1Ha2_(0‘_50(1+5))l
A€ Conde (Ao)

IN

H#{NE A, sup Jen| < 20| A7 Y2 (@m=o(eNl)
MNCA
< #{Ae A sup en] <20 A7 |a2- (F=0)it}
A CA

#{/\ €A, s sup |en| < 2_(ﬁ—2sﬂ)jl}
MCA

IA

if I (hence j;) is large enough. So, we have obtained

e
€

#{ Ao € A;: sup |on| < 2_(0‘_50(”5))1} <H#{A €A, sup |en] < 2_(T_28°)j1}.
N CAo NCA

This inequality, denoted (x), holds for every £ € (0, %) such that a —r < 7! (using

the corresponding €y and j;). Let us now consider three different cases. As usually, we

denote
Omax = sup{a > 0: vz (a) > 0},

possibly equal to +oo.

1. Assume that o < qpax < +00.

Let us first fix § > 0. Using the left continuity of 7>, we can assume that ¢ > 0 is
small enough so that € < ¢ and
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From the definition of 72, we can assume that

4 {A €A, : sup lex] < 2‘“15‘2“”} < 2( (32)49)7 < 9z (@420
MCA

for j > J. Using (x), we get

#{ Ao € Az sup |zn| < 2_("‘_50(1+5))l} < oz (@) +26)ju
A CAo

< 9We ()+28)(1+e)l _ 9(vs (a)+20+e v, (a)+220)l

< Q(Z;(a)+55)z

for every [ large enough and it follows that v (o) < 77 («) .

2. Assume that apax < +00 and a > apax

This case is immediate since

#{)\ € Aj:sup lex| < 2‘(%‘250)1} =0
MNCA

for every j large enough.

3. Assume that apmax = +00.

Let us fix 0 > 0. Again, we assume that ¢ < §. From the definition of 77 (4+00), for
every « large enough, we have

#{N € Aj: sup |en]| < 2*(ﬁ*250)j} < 9z (+00)+8)j
NCA

for infinitely many j. Given such a j, we consider [ € N such that (1 —2¢)j > 1+ 3 and
j < (1+¢)l. Using (), we get

#{/\0 €Ay sup || < 2_(‘1_50(“'5))1} < #{/\ €Aj:sup ley| < 2_(ﬁ_250)j}
MCho MNCA
< oz (+o0)+d)j
< 2(Zg(+oo)+25)(1+s)z
< 9z (+oo)+50)1
Since it holds for infinitely many [, this concludes the proof. O
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Appendix B

Random wavelet series

In this appendix, we prove the results presented in Chapter [f]related to random wavelet
series. Let us recall the form of the multifractal spectrum of a random wavelet series.

Theorem B.1. [I2] Let f be a random wavelet series. With probability one, the spec-
trum of singularities of f is given by

pla) .
df(h) — { hSUPae(o,h] T th € [hmina hmax]7
-0 otherwise,

where

hmin =inf< >0 Z ijj([a—s,oz—l—e]):—i—oo, Ve >0
Jj€Ng

-1
and hpmax = (Supa>0 @) .

Let us recall that p; is the common probability measure of the 27 random variables
—log,(lejkl)/j, where e;  denote the restricted wavelet leaders.

Firs, we consider the increasing part of the wavelet leaders profile. For every a > 0,
let us define

_ log (29p.((—o0,a + ¢
v (a) = lim limsup o8 (2/7,(( >.a D)
e—=0T jsto0o log(QJ)

and
aszinf{a20:17+(a):1}.

We also assume that for every € > 0 and every é > 0, there is J € N such that
p;((—00, a5 +¢]) > 270 > (B.1)
For every a and every j € Ny, we consider the random set
Fla)={ke{0,...,27 =1} re;), > 27},

Lemma B.2. Let f be a random wavelet series. Let a > 0 be such that o (o) > 0.
For every € > 0 and every & > 0 such that o7 (o) — & > 0, with probability one, there
are infinitely many j satisfying

HFI (a4 ¢) > 20 (@-0),
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APPENDIX B. RANDOM WAVELET SERIES

Proof. From the definition of " («), there is a sequence (j,)ney such that

. ~+ .
2 p, ((—o0,a+e]) > 20 ()=9/2in - yp e N.

Using the Borel Cantelli lemma, it suffices to show that P[A,,] is the general term of a
series that converges, where A,, denotes the event “#FJn (a+¢) < 2w(@)=0)in»  Remark
that at a given scale j,, since the e;, ; are identically and independently distributed,
we count the number of successes of a binomial distribution of parameters

(2jnvﬁjn((_oo7 o+ E]))v

where the success means “e;, > 27", Therefore, if j = j,, the probability of A,, is
given by

3 (2> (B;((—o0ra + )™ (1= By((—o0a+))* "

0<m<2(v (a)=8)j

(@5, (oc,ate)"™ »om
< Z j = (1 —pj((—oo,a+5]))
0<m<2(  (0)=8)j
(277, (( D o
27p.((—o0, a0+ € ~ 9i o (a)=8)j
< Z ! — (1—p;((—o0,a+¢l))
0<m<2( " (@)=8);
-~ 5 (@)=5)i ~ 9i o (@)=8)i
< o (¥py((—0na+e])) (1= By((~o0,a+ )
. :+ a)—48)j ~ 397
< e 92 (D70 (1 —p;((—o0,a + 6]))42J
~+
(0 (a)—8)j 3.
< e 2J2( (@)=3) exp ( _ ZQJpj((ioo’a JrED)
~+ . -
< 22" T oxp (_32@*(@)—6/2);')
- 4
<

exp (_;2(;+(a)—5/2)j>

for n large enough, where we have used Remark This concludes the proof. O

Lemma B.3. Let f be a random wavelet series, a > 0 such that vt (a) > 0 and § > 0.
We fiz e > 0 such that 27p;((—oco,a + ¢]) < 9@ (e)+6/2)j for j large enough. With

probability one, there is J € N such that
H#Fi(ate) <20 @iy g
Proof. For every j, we denote by B; the event “#F’(a +¢) > 2(;+(a)+5)j”. As done in
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the previous lemma, we have

P[B;] .
2G T (@)+8)i <m<2i
Z (2j/~)j((*oova+5]))m

m)!

IN

~+
2 ()+8)j <m <27

~+
o(v (a)+8)j

(Zjﬁj((—oo,a + 5}))
2. D@ @+ 1 1)

AN

~+
2 ()+8)j <m <27

~+
.~ 2@ (@)48)
. (27p;((—o0,a +¢]))
~

L@ (@+8i 4 1)

IA

Using Stirling’s formula, we obtain then that for j large enough,

~+
L o(v (a)+8)] - B
(275,((—00,a + €]) S (275;((—00,a + el)e21/2)

2 ~ 2

> (Qj) (7,((—o0ra + €)™ (1 = By((—00,a + <))

29 —m

~
o (@) +6)

I‘(2(§+(a)+5)j +1) \/%@(Z*(a)w)j)2(:+<a>+a>j

_—
T e

IN
)

\/ﬂ(2(§+(a)+5)j)2(:+(0¢)+5)j

~+
; & ()+8)i
- \/2L(6271/227j%)2
2T
1 .5
— 62*15)
V2T (
0@ T ()48

< (v3)

if 5 is large enough. We conclude the proof using the Borel Cantelli lemma.

~+
o(v (a)+8)j

IA

since

Proposition B.4. Let f be a random wavelet series. With probability one,

~ [ - if a € [0, hmin),
7j(a) = { 7t (@) if a > hom.

Proof. Let us fix a@ > hpin such that 17+(oz) > (0. From Lemma with probability
one, we have '17;' () < 7" (a)+d. Taking a decreasing sequence (3, )nen converging to 0,
we get that with probability one, Dj{ (o) < v(«). Using Lemma we also obtain that
ﬁ;r(a) > D+(a) with probability one, taking two sequences (&, )nen and (0 )neny which

converge to 0. Since ot and ﬁ;ﬁ' are right-continuous, we get the conclusion taking a

dense sequence (ay, )nen-
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Let us now assume that a > hyy is such that 7 (o) = 0. In this case, Lemma
gives that ’177[(04) <0. If ﬂ?(a) = —o0, then for € > 0 small enough and j € N large

enough, we have 4 4
ejr <27 vk € {o,...,20 —1}.

In particular, using Proposition the Holder exponents of f are all strictly greater
than «a, which contradicts Theorem which asserts in particular that every value
in [Amin, Pmax] is @ Holder exponent of f. Consequently, ﬁ}r(a) =vT(a) = 0 with a
probability one.

Finally, we know from Proposition 3.4 of [I2] that with probability one, if @ < hpin,
then |cj ;| <27 for every j large enough and every k € {0,...,2/ —1}. It follows that
ejx < 27 for every j large enough and every k € {0,...,2/ —1} and ﬁ?(a) = —oco. O

In the following proof, we will use classes G*(T) of sets of large intersection, defined
in [67]. Let us recall that G°(T) is the maximal class of G,-sets of Hausdorff dimension
at least s, that is closed under countable intersections and similarities. The original
setting was in R. As done in [I2], we make obvious modifications for working in T.

Proposition B.5. Let f be a random wavelet series. For every a € [hmin, s, with
probability one,
dy(a) = 17+(a).

Proof. We already know from Proposition @ and Proposition [B4] that with proba-
bility one, for every & € [Amin, ], df(a) < &7 (a). In particular, if 7% (a) = 0, then

ds(a) = 0 and we have the announced equality. So, we can assume that " (a) > 0.
Let us fix € > 0 and § > 0 such that 7" (a) — 26 > 0. Using Lemma we know that
with probability one, there exists a subsequence (j,)nen such that there are at least

~+ .
2w () =8)jn regtricted wavelet leaders such that
€ o = 27 (OFIn,

The locations of the restricted wavelet leaders satisfying this relation are picked at
random among the 2= possible locations. Applying Lemma 1 of [89], if v < v(a) — 4,
with probability one,

T = lim sup U (k279n — 270In 27In 4 97in)

NEOO e Fin (ate)

Consequently, applying Proposition 5.4 of [12], we get that for every t > 1,

E'(a+¢) := limsup U (k277m — 2778n |27 In 4 2770 € g%(T)-
n—-+o0o kEFin (ate)

Let us fix t = ﬁ > 1 and ~ such that 1/t < v < " (a) — 8. We also set for every
e>0,

. ~+ . . ~+ .
G(a —¢) := limsup U (kQ*J — o~ ()+2e)] po=i 4 9= (v (O‘H%)J) € G (T).
IO e Fi(a—e)
Let us show that

dimy, <ﬂ E'(a+e)\ Gla— 5)) > v ().

e>0
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Remark that for every e > 0 we are in the conditions of Proposition 5.8 of [12] and
therefore, with probability one,

E'(a+¢)\ G(a—c¢) € Gi(T).
Since the intersection can be taken countable, we obtain that with probability one,
N (B'(a+e)\ Gla—¢)) € G (T).
e>0
Consequently, with probability one,
dimy <ﬂ E'(a+e)\G(a— 6)) > vt () — 26.
e>0
Since § > 0 is arbitrary, taking a sequence that decreases to 0, we get that
dimy <ﬂ E'(a+¢e)\ Gla— e)) > v (a).
e>0
To conclude, it suffices to show that if x belongs to
M B'(a+€)\ Gla—2),
e>0

then h¢(z) = a. Let us fix « in this intersection. For every € > 0, there are infinitely
many n for which there is k € F/» (a+¢) such that z € (k279 — 2774n [270n 4 2778n),
Since t > 1/, we get that x € ((k—1)277~, (k+2)277"). Therefore, A(jn, k) C 3\, ().
It follows that d;, (z) > e;, x > 27(@+%)In hence hf(z) < a+e. Since £ > 0 is arbitrary,
we get that hy(z) < a.

Let us now fix & > 0 small enough so that " (a) + 2¢ < 1. Fix k such that
z € [k277,(k+1)277). Remark that for j large enough, since 7" (a) + 2¢ < 1, we have

[]fzfj7 (k + 1)2*j) C (kZij _ 2*(;(04)+25)j’ k27 + 2*(’5(a)+2a)j)
and it follows that e;; < 27(@=9)J gince 2 ¢ G(a — €). Moreover, for j large enough,
k277, (k+1)277) C ((k S )27 -9 @T2 ()2 2*<3*<a>+za)j)
and
. . . ~ . . ~+ .
k277, (k+1)277) C ((k +1)277 — 272 (4 1)277 4270 <“)+2€”) .
It follows that ejr—1 < 2—(a=€)i and ejkr1 < 2-(a=€)i_ Therefore, we obtain that

dj(z) =dji < 2=(@=)J for j large enough. Consequently, hf(xz) > a— ¢ and we get the
conclusion since € > 0 is arbitrary small. O

Remark B.6. In particular, with probability one, oy = hpyax. Indeed, by definition,
as = inf{a > 0: 7" (a) = 1} and from Theorem [B.1} we know that ds(h) = 1 if and
only if h = hyax.
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Corollary B.7. Let f be a random wavelet series. With probability one,
dy(a) = ’17}'(04), Ya € 10, o).

Proof. From Theorem [B:I] Proposition [B.4]and Proposition we know that for every
a € [0, ai], with probability one, ds(a) = ﬁ}' (o). We obtain the conclusion by taking a
dense sequence (o, )nen in [0, o] and by using the right continuity of the functions vy
and dy. O

Remark B.8. Using the results of [I2], this result can also be considered as a con-
sequence of the comparison of the formalisms based on & spaces and on the leaders
profile method, see Proposition [5.5.3]

Let us now study the decreasing wavelet leaders profile. With probability one, if
o > g = hmax, we know that dy (a) = —0c0. So, one can expect that the same holds for
the profile v .

Proposition B.9. Let f be a random wavelet series. With probability one,
ﬂ;(a) = —00, VYa € (ag,+o0].

Proof. Let a > a;. It suffices to show that, with probability one, e; ) > 27 for every
j large enough and k € {0,...,29 —1}. Fix e > 0 and § > 0 such that a(1 —9) > o, +e.
From the assumption we know that there is J € N such that

pi((—o0 a5 +¢]) > 27, Vj>J

For every j € N, let us denote by A; the event “there exists k € {0,...,27 —1} such that

ejr < 2797 Let us set jo = |5 (j + logy j)] + 1. Remark that if j is large enough,

then (as +€)jo < aj. Then, using Remark we have

201
Pl4,] < Plejr < 27%]
k=0
271
< IT  Plea, <27
k=0 /\Og)\,)\oeAJ‘O
201
< > II  @=pj((=00,as+e])
k=0 AoCX,Ao€Aj,
271 L
—_ 2]0*]
< Y (1= py((—o0ia+2])
k=0
271 L
< (1 —2-00)*" "
k=0
= 2'7 (1 - 2_5.70)210_.]
< 2 exp (_2jo*j2*5jo)
< 2 exp (,2(175)@—;')
< 2 exp(—j)

()
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if j is large enough, using Remark It follows that the series >y P[A;] converges.

Using the Borel Cantelli lemma, we get that with a probability one, v} (a) = —oo if
a > Q. O

A combination of the previous results gives the validity of the leaders profile method
for almost every random wavelet series.

Theorem B.10. Let f be a random wavelet series. With probability one, we have
dy =vy on [0,400].
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