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Abstract.—Recognition of evolutionary units (species, populations) requires integrating several kinds of data, such as ge-
netic or phenotypic markers or spatial information in order to get a comprehensive view concerning the differentiation of
the units. We propose a statistical model with a double original advantage: (i) it incorporates information about the spatial
distribution of the samples, with the aim to increase inference power and to relate more explicitly observed patterns to ge-
ography and (ii) it allows one to analyze genetic and phenotypic data within a unified model and inference framework, thus
opening the way to robust comparisons between markers and possibly combined analyses. We show from simulated data
as well as real data that our method estimates parameters accurately and is an improvement over alternative approaches in
many situations. The power of this method is exemplified using an intricate case of inter- and intraspecies differentiation
based on an original data set of georeferenced genetic and morphometric markers obtained on Myodes voles from Sweden.
A computer program is made available as an extension of the R package Geneland. [Bayesian model; bio-geography; clus-
tering; Markov chain Monte Carlo; molecular markers; morphometrics; Myodes; R package; spatial data.]

Species delimitation is of interest in conservation
biology (delimitation and management of endangered
species), epidemiology (detection of new pathogens),
and evolutionary biology to describe, quantify, and un-
derstand mechanisms of speciation. Methodological ad-
vances in evolutionary biology have led to methods for
species delimitation solely based on the variation of key
genetic markers (e.g., DNA barcoding, Luo et al. 2011).
Limits of these single-marker approaches are made ev-
ident by conflicts between different genes in a multi-
marker approach (Rodriguez et al. 2010; Turmelle et al.
2011) or between genetic and phenotypic markers (Nesi
et al. 2011). In this context of species or population de-
limitation, phenotypic data still remain of interest to-
gether with genetic markers.

Phenotypes such as size and/or shape of morpho-
logical structures are the product of numerous inter-
acting nuclear genes (Klingenberg et al. 2001) and, as
such, can provide a global estimate of the divergence
between units. Furthermore, by being the target of selec-
tion, morphological variation can provide precious in-
sights on the selection pattern contributing to shape the
units. In the case of fossil lineages, it may even be the
only information available to identify evolutionary and
systematic units (Girard and Renaud 2011; Néraudeau
2011).

A rich toolbox is available to tackle these questions.
Many methods work as partition clustering and aim at
defining how many groups are represented in a sam-
ple and assign individuals following some optimality
principles. These methods were initially developed to
deal with continuous quantitative measurements. These
classical clustering methods have been implemented
in programs such as EMMIX (McLachlan et al. 1999),

MCLUST (Fraley 1999), and MIXMOD (Biernacki et al.
2006). Such clustering and assignment methods were
not commonly used in systematics until they were made
more widely available through population genetic ap-
plications such as the computer program STRUCTURE
(Pritchard et al. 2000) and related work (reviewed,
e.g.,, by Excoffier and Heckel 2006). More recently,
Hausdorf and Hennig (2010) and Yang and Rannala
(2010) developed methods for delimiting species based
on multi-locus data. While the approach of Hausdorf
and Hennig (2010) method hinges on Gaussian cluster-
ing, that of Yang and Rannala (2010) is based on the co-
alescent and makes use of a user-specified guide tree.
Methods for genetic data have also been extended to in-
corporate information about the spatial location of each
sample—information rarely used although commonly
available in data analysis in evolutionary biology—with
the aim of increasing power of inferences and of relating
more explicitly observed patterns to geography (Guillot
et al. 2005, 2009).

These tools have been developed by different commu-
nities (evolutionists, population geneticists, and statis-
ticians). Therefore, one still lacks a unified framework,
and this constitutes a major impediment for combin-
ing various kinds of data. This is especially true for
morphological markers that have not received as much
attention as genetic markers for recognizing popula-
tions and species. There are therefore a few major
gaps in the toolbox available to identify evolutionary
units, namely there is to date: no method to analyze
genetic data and phenotypic data under the same gen-
eral paradigm (model and inference framework) and
no method to incorporate spatial information in such
phenotypic/genetic analysis.
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The goal of the present paper is to fill these gaps. We
propose a model to deal, in an integrated way, with
georeferenced phenotypic and genetic data. We also
provide a freely available computer program that im-
plements this model and should ease data analysis in
many respects. Given the complexity of the modeling
and inferential task, our method is not based on an ex-
plicit evolutionary model (e.g., coalescent) but on a sta-
tistical model. This model is a parametrization that is
not only general enough to capture some essential pat-
terns in the data but also simple enough to be subject
to a rigorous and accurate inference method. Briefly,
our model assumes the existence of several clusters that
display some kind of homogeneity. This model mimics
more or less what would be expected from a population:
homogeneity in terms of genetic and phenotypic vari-
ation and some geographical continuity. The existence
of homogeneous clusters corresponds to the fact that
some individuals have shared some aspects of their re-
cent ecological or evolutionary history. This shared his-
tory is summarized by cluster-specific parameters that
represent allele frequencies and means and variances
of phenotypic traits. Because it is not based on an ex-
plicit evolutionary model, it does not require prior in-
formation, as for instance, a guide tree in the method of
Yang and Rannala (2010). The statistical challenge in this
context is to estimate the number of clusters and these
cluster-specific parameters.

This article is organized as follows. First we provide
a description of the model and inference machinery.
Next we illustrate our method and test its accuracy on
a large set of simulated data as well as on two published
empirical data sets. Then we implement our method
on an original data set of georeferenced genetic and
morphometric markers to decipher the complex inter-
and intraspecific structure of red-backed and bank voles
Myodes rutilus and M. glareolus in Sweden. We conclude
by discussing potential applications in a more general
context.

METHOD
Overview

We assume that we have a data set consisting of n
individuals sampled at sites s = (s;)i=1,...» (Where s;
is the two-dimensional spatial coordinate of individ-
ual 7), observed at some phenotypic variables denoted
¥ = (Vij)i=1,...n, and/or some genetic markers denoted

=1
z = (2jj)i=1,....n. Our approach is able to deal with any
j=1,l
combination of phenotypic and genetic data, including
situations where only phenotypic or only genetic data
are available as well as situations when each individual
is observed through its own combination of phenotypic
and genetic markers. As it will be shown below, our ap-
proach also encompasses the case where sampling loca-
tions are missing (or considered to be irrelevant). The
only constraint that we impose at this stage is that if
spatial coordinates are used, they must be available for

all individuals. We assume that each individual sampled
belongs to one of K different clusters and that variation
in the data can be captured by cluster-specific location
and scale parameters.

Prior and Likelihood Model for Phenotypic Variables

Denoting by p; the cluster membership of individ-
ual i (p; € {1,...,K}), we assume that, conditionally
on p; =k, y;j is drawn from a parametric distribution
with cluster-specific parameters. Independence is as-
sumed within and across clusters conditionally on clus-
ter membership. This means in particular that there is no
residual dependence between variables not captured by
cluster memberships. Implications of this assumption
are discussed later. Although most of the analysis that
follows would be valid for all families of continuous dis-
tribution, we assume in the following that the y values
arise from a normal distribution. Each cluster is there-
fore characterized by a mean y4; and a variance 0]‘3]- and
our model is a mixture of multivariate-independent nor-
mal distributions (Frithwirth-Schnatter 2006). Follow-
ing a common practice in Bayesian analysis (Gelman
et al. 2004), we use the natural conjugate prior family
on (g, 1/ a,fj) for each cluster k and variable j. Namely,
we assume that the precision 1/ a,%j (i.e., inverse vari-
ance) follows a Gamma distribution G(«, 3) (a shape, 8
rate parameter) and that, conditionally on oy, the mean
i has a normal distribution with mean ¢ and variance
a,fj / k. In the specification above, «, 8, {, and « are hyper-
parameters. Details about their choice are discussed in

the Appendix and in the Supplementary Material (avail-
able from 10.5061/dryad.9mp902ck).

Prior and Likelihood Model for Genetic Data

We assume here a mixture of multinomial distri-
butions. This is the model previously introduced by
Pritchard et al. (2000) to model individuals with pure
ancestries. Denoting frequency of allele 4 at locus [ in
cluster k by fu, for diploid genotype data, we assume
that

7(zij = {a, b}|pi = k) = 2fuafry  Whenevera#b (1)

and 7(z;j = {a,a}|p; = k) = f, (2)
While for haploid data, we have
m(zij = alpi = k) = fua- 3)

We also deal with dominant markers for diploid or-
ganisms with a modified likelihood (see Guillot and
Santos 2010; Guillot and Carpentier-Skandalis 2011 for
details). We assume independence of the various loci
within and across clusters conditionally on cluster mem-
berships. In particular, as with all other population ge-
netic clustering models (including STRUCTURE), we
do not attempt to model background linkage disequi-
librium. Therefore, our model can handle nonrecom-
bining DNA sequences (such as data obtained from
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mitochondrial DNA (mtDNA), Y chromosomes, or
tightly linked autosomal nuclear markers), provided
data are reformatted in such a way that the various hap-
lotypes are recoded as alleles of a single locus (but see
also Discussion section). We assume that allele frequen-
cies f;. have a Dirichlet distribution. Independence of
the vectors fy. is assumed across loci. Regarding the de-
pendence structure across clusters, we consider either
independence (referred to as uncorrelated frequency
model or UFM) or an alternative model (referred to
as correlated frequency model or CFM) introduced by
Balding and Nichols (1995, 1997). In this second model,
allele frequencies also follow a Dirichlet distribution but
now depending on some cluster-specific drift parame-
ters. In this model, fy. are assumed to follow a Dirichlet
distribution D(fi,(1 — dy)/dx, . .-, fia(1 — dy)/dx), where
drs parametrize the speed of divergence of the various
clusters and the f,s represent the allele frequency in an
hypothetical ancestral population. This model can be
viewed as a heuristic and computationally convenient
approximation of a scenario in which present-time clus-
ters result from the split of an ancestral cluster some
generations ago. It is also a Bayesian way of introducing
correlation between clusters at the allele frequency level
and, hence, to infer subtle differentiations that would
have been missed by a model assuming independence
of allele frequencies across clusters (Falush et al. 2003;
Guillot 2008; Sirén et al. 2011).

Prior Models for Cluster Membership

Spatial model—We consider a statistical model known
as colored Poisson—Voronoi tessellation (Moller and
Stoyan 2009). Loosely speaking, this model assumes that
each cluster area in the geographic domain can be ap-
proximated by the union of a few polygons. Most of
the modeling ideas can be grasped from the examples
shown in Figure 1. The polygons are assumed to be
centered around some points that are generated by a
homogeneous Poisson process (i.e., points located com-
pletely at random in the geographic domain). Formally,
we denote by (u1, ..., u,) the realization of this Poisson
process. These points in R? induce a Voronoi tessella-
tion into m subsets A, ..., A,,. The Voronoi tile associ-
ated with point u; is defined as A; = {s € R?, dist(s, u;)
< dist(s, u;)Vj #i}. Each tile receives a cluster member-
ship ¢; (coded graphically as a color hence the terminol-
ogy) at random sampled independently from a uniform
distribution on {1,...,K}. Denoting by Dy the union of
tiles with color k, the set (Ds,...,Dk) defines a tessel-
lation in K subsets. This model is controlled by the in-
tensity of the Poisson process A (the average number of
points per unit area) and the number of clusters K. We
place a uniform prior on [0, Amax] and on {0, ..., Kmax},
respectively. This model is a flexible tool widely used in
engineering to fit arbitrary shapes in a nonparametric
way (Meller and Stoyan 2009). It offers a good trade-off
between model complexity, realism, and computational
efficiency. It is presumably most useful in situations of

incipient allopatric speciation but examples of applica-
tions in other contexts can be found (e.g., in the stud-
ies of Coulon et al. 2006; Fontaine et al. 2007; Wasser
et al. 2007; Hannelius et al. 2008; Joseph et al. 2008; Sacks
et al. 2008; Galarza et al. 2009; Beadell et al. 2010; see also
Guillot et al. 2009 for review and additional references).
Lastly, we note that our approach relates to that of Haus-
dorf and Hennig (2003), who propose a test for cluster-
ing of areas of distribution. However, rather than testing
clusteredness, our approach estimates these areas of
distribution. To do that, we assume some clustered-
ness but without making strong assumptions about its
intensity.

Nonspatial model.—If spatial coordinates are not avail-
able or thought to be irrelevant to the species at the
spatial scale considered, then a nonspatial model can
be used. The nonspatial modeling option considered
here does not require to introduce any auxiliary point
process as above, but for the sake of consistency, we
use the same setting as in the paragraph above. We
set m = n and impose (ui,...,u,) = (51,-...,5,). Here,
the s;s are some known spatial coordinates or dummy
points if this piece of information is missing. This model
does not impose any spatial structure and corresponds
to the model implemented in most nonspatial cluster
programs, including the genetic clustering programs
BAPS (Corander et al. 2003, 2004) and STRUCTURE
(with the exception of the latest model presented by
Hubisz et al. 2009).

Summary of Proposed Model

The parameters in our model are as follows: number
of clusters K, rate of Poisson process A, number of events
(points) of the Poisson process m, events of Poisson pro-
cess u = (uy,...,Uy), color of tiles (i.e., cluster member-
ship of spatial partitioning subdomains) ¢ = (c1,...,cn),
allele frequencies f = (fi,) (frequency of allele a at locus
l'in cluster k), genetic drift parameters d = (di, ..., dx),

allele frequencies in the ancestral population f = (f;),
expectations of phenotypic variables p = (1), standard
deviations of phenotypic variables o = (0y;) (note that
o is not a variance-covariance matrix (the phenotypic
variables are assumed to be independent) but rather a
set of scalar variances stored in a two-dimensional array.
On top of this, we place a uniform prior on [0, Amax] On
A, a uniform prior on {0, . . ., Kmax } on K, a Beta B(, d))
prior on di and a Gamma distribution G(g, /) on £.

The vector of unknown parameters is therefore
0= (K,\,m,u,c,f,f d,pu,o,3). Wealso denote by 05 =
(A\,m,u,c), 0c = (f,f,d), and 6p = (u, o, 3) the param-
eters of the spatial, genetic, and phenotypic parts of the
model, respectively.

The hierarchical structure of the model is summa-
rized on the graph shown in Figure 2. There are three
blocks of parameters relative to the genetic, pheno-
typic, and geographic component of the model. Infor-
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FIGURE 1. Examples of spatial clusters simulated from our prior model. The square represents the geographic study area. Membership of a
geographical site to one of the K clusters is coded by color in the online version of this article, and by shading in print. From left to right: K=2,3
and 4. A given clustering depends on K and on the number, locations, and colors/shading (cluster memberships) of each polygon. If the prior
placed on the number of polygons tends to favor low values, then each cluster tends to be made of one or only a few large areas. This is in sharp
contrast with nonspatial Bayesian models which typically assume that clusterings with highly fragmented cluster areas are not unlikely.

mation propagates from data to higher levels of the
model across the various nodes of the graph through
probabilistic relationships specified between neighbor-
ing nodes. The structure of the global model can be sum-
marized by the joint distribution of § and (y, z). By the
conditional independence assumptions, we get

m(0,y,2) = m(0)n(y,z|0)
= m(0)n(y|0)m(z|0)
= m(0)m(y|0p)m(2|0G). 4)

Each genetic or phenotypic marker brings one factor
in the likelihood. Whether the clustering is driven by
the genetic or the phenotypic data depends on the re-
spective differentiation and on the number of markers
of each kind.

Estimation of Parameters

Bayesian estimation and MCMC inference.—We are inter-
ested in the posterior distribution 7(@|y,z). Note that
this notation does not refer explicitly to the sample
locations because, unlike genetic markers and pheno-
typic variables, locations are not considered as ran-
dom quantities in our model. The model does, in fact,
implicitly account for spatial information. The distribu-
tion m(@|y,z) is defined on a high-dimensional space
and deriving properties analytically about this distri-
bution is out of reach. We implement a Markov chain
Monte Carlo (MCMC) strategy. This amounts to gen-
erating a sample of N correlated replicates (61,...,0n)
from the posterior distribution 7(0|y, z). The initial state
0, is simulated at random from a distribution that does
not matter in principle, a fact that has to be checked in
practice by convergence monitoring tools (Gilks et al.
1996; Robert and Casella 2004). We always sample 6;
from the prior and we check that starting from various
random states does not affect the overall result provided
a suitable number of burn-in iterations are discarded. In
analyses reported below, the order of magnitude of N

was 50,000-100,000 iterations with 20,000 burn-in itera-
tions. See Appendix for details on the MCMC algorithm.

Estimation of the number of clusters—Each simulated state
0, includes a simulated number of clusters K;. The num-
ber of clusters is estimated as the most frequent value
among the N simulated values Kj,...,Ky and we de-

note it by K.

Estimating cluster memberships.—A model assuming that
individuals i and j belong, respectively, to Clusters 1
and 2 characterized by a mean phenotypic trait equal
to 5 and 7 is essentially the same as a model assum-
ing that individuals i and j belong, respectively, to Clus-
ters 2 and 1 characterized by a mean phenotypic trait
equal to 7 and 5. This trivial fact is due to the invariance
of the likelihood under permutation of cluster labels
and brings up a number of computational difficulties in
the postprocessing of MCMC algorithm outputs known
as the label-switching issue (Stephens 1997). In partic-
ular, it does not make sense to average values across
the MCMC iterations. To deal with this, we implement
the strategy described by Marin et al. (2005) and Guil-
lot (2008). We consider the set of simulated € values
restricted to the set of states such that K = K. Then,
working on this restricted set, we relabel each state
in such a way that they “best look like” the modal
state of the posterior distribution. Cluster memberships
of each individual are estimated as the modal value
in this relabeled sample. Then we estimate all cluster-
specific parameters (mean phenotypic values and allele
frequencies) by taking the average simulated value over
the relabeled sample.

ANALYSIS OF SIMULATED DATA

We investigate here two new aspects of the model,
namely its ability to cluster phenotypic data only and
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FIGURE 2. Graph of proposed model. Continuous arrows represent stochastic dependencies, dashed arrows represent deterministic de-
pendencies. Boxes enclose data or fixed hyperparameters, circles enclose inferred parameters. Bold symbols refer to vector parameters. The
dash-line rounded boxes enclose parameters relative to the phenotypic, geographic, and genetic parts of the model, respectively. The parame-
ters of interest to biologists are the number of clusters K, the vector p that encode the cluster memberships, and possibly allele frequencies f,
mean phenotypic values p, phenotypic variance o2 that quantify the genetic and phenotypic divergence between and within clusters. Other

parameters can be viewed mostly as nuisance parameters.

phenotypic and genetic data jointly together with some
spatial information.

Inference from Phenotypic Data Only

In this section, we present new results on the model
for phenotypic data and focus on the spatial model op-
tion. We carried out simulations from our prior model
and performed inferences as described in Estimation of
Parameters section above. We produced data sets con-
sisting of n = 200 individuals with g = 5,10, 20, and 50
phenotypic variables. For each value of g, we produced
500 data sets with a uniform prior U({1,...,5}) on K.
In real life, the range of value of the putative true K is
largely unknown. To be as close as possible to this situ-
ation (i.e., pretend to ignore the true value of K), we car-
ried out inference under a uniform ¥({1,...,10}) prior
for K. We assessed the accuracy of inferences by com-
puting the classification error (Fig. 3). Further details are
provided in Supplementary Material.

We also wished to assess how our method performs
compared with other computer programs implement-

ing state-of-the-art methods. We therefore considered
the R package MCLUST (Banfield and Raftery 1993;
Fraley 1999) which is one of the most widely used and
arguably most advanced programs to perform cluster-
ing. This program implements inference for Gaussian
mixtures and as such deals solely with continuous quan-
titative data. It implements a nonspatial algorithm and
in its default setting performs inference by likelihood
maximization via the expectation maximization (EM)
algorithm. It implements a wide class of submodels
regarding the covariance structure of the data. In its de-
fault option (which we used), it performs model selec-
tion (covariance structure and number of clusters) by
optimizing a Bayesian information criterion. We set the
maximum number clusters to the K. = 10, that is, to
the same value as in analyses with our method.

We stress here that the goal of this experiment is not
to rank our method and MCLUST, as the two meth-
ods/programs differ in many important respects. They
differ regarding the type of data handled (MCLUST is
not aimed at genetic data and does not implement any
spatial model) and the breadth of covariance structure
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FIGURE 3. Classification error from simulated data. The variable plotted on the y-axis is the proportion of misclassified individuals (after
correction for potential label switching issues). Each bar is obtained as an average over 500 data sets consisting of #n = 200 individuals. Both
methods are excellent at avoiding false positives (i.e., reporting K = 1 when K=1) and have a clear ability to reduce the error rate when the
number of variables increases. They seem to lose accuracy in the same fashion when they are given an increasingly difficult problem (i.e., when
the true K increases) and have difficulty fully exploiting all the available information when the number of variables is large (cf. loss of accuracy
for 50 variables compared with 20 variables). In the overall, under this type of simulated data, our method is typically twice as accurate as the

competing method.

considered (our approach assumes conditional indepen-
dence while MCLUST considers in excess of 10 types of
covariance structures). It would be, therefore, difficult
to design an efficient and fair comparison. Results are
mostly given here to support the claim that our method
compares with state-of-the-art methods and to assess
the magnitude of improvement brought by the use of
a spatial model in a best-case scenario when data are
spatially structured (see also Discussion section). Most
of the numerical results are summarized in Figure 3. To
understand better how the method behaves as a func-
tion of the pairwise phenotypic differentiation between
clusters, we also report the classification error as a func-
tion of the T? statistic in a Hotelling T test (Anderson
1984) on Figure 4. See also Supplementary Material for
further details.

Inference from Phenotypic and Genetic Data Jointly

We illustrate here how combining phenotypic and ge-
netic data can improve the accuracy of inferences com-
pared with inferences carried out from one type of data
only. To do so, we simulated 500 data sets consisting
of two clusters each. There were 5 phenotypic variables
and 10 codominant genetic markers. We investigated a
broad range of phenotypic and genetic differentiation
and it appears that, on average, combining the two types
of data increases the accuracy of inference (Fig. 5).

ANALYSIS OF DATA FROM THE LITERATURE
Analysis of Iris Morphometric Data

Fisher’s iris data set (Anderson 1935; Fisher 1936)
gives the measurements in centimeters of the variables
sepal length and width and petal length and width, re-
spectively, for 50 flowers from each of 3 species of iris.
The species are Iris setosa, 1. versicolor, and I. virginica.
We applied our method to the data transformed into
log-shape ratios (see Claude 2008 and references
therein). Since the data are not georeferenced, we
used the nonspatial prior. We launched 10 independent
MCMC runs. Seven of them return correctly K = 3, the
other three runs return K = 4,5, and 6, respectively.
Ranking the runs according to the average posterior
density, the best run corresponds to one of the seven
runs that estimate K correctly (according to the num-
ber of actual species in the data set). This run achieves
a classification error of 6% (see Fig. 6). MCLUST returns
an estimate of K equal to 2 (raw data or log shape ra-
tio data) and 50 out of 150 individuals are misclassified,
thus failing to identify the three species of the data set.

AFLP Data of Calopogon from Eastern North America and
the Northern Caribbean

The way our model deals with genetic data and the
accuracy resulting from this method based on genetic
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FIGURE 4. Classification error for simulated data sets consisting of K =2 clusters as a function of the phenotypic differentiation between the
clusters. The variable plotted on the y-axis is the proportion of misclassified individuals (after correction for potential label switching issues).
The variable plotted on the x-axis is the Hotelling T statistic and assesses the magnitude of the phenotypic differentiation. Our method: A,
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data only has been investigated by Guillot et al. (2005,
2008), Guillot (2008), Guillot and Santos (2010), Safner
et al. (2011), and Guillot and Carpentier-Skandalis
(2011) and further discussion can be found in Guillot
et al. (2009). However, to further illustrate the accuracy
of our method when used with genetic data only, we
study here a data set produced and first analyzed by
Goldman et al. (2004).

This data set consists of 60 Calopogon samples geno-
typed at 468 AFLP markers. Goldman et al. (2004)
identified the presence of five species (C. barbatus,
C. oklahomensis, C. tuberosus, C. pallidus, and C. multi-
florus) and two hybrids specimens (C. tuberosus x C.
pallidus and C. pallidus x C. multiflorus). According to
Goldman et al. (2004), C. tuberosus has been widely

considered to have three varieties: var. tuberosus, var.
latifolius, and var. simpsonii. In addition, the data set con-
tains samples from two outgroups so that one could con-
sider that the data set contains up to 11 distinct species.

We analyzed this data set under the same setting as
the previous data set. Under the UFM, the estimated
K ranges between 2 and 3 . The best run (in terms
of average posterior density) corresponds to K = 3. In
this clustering, one cluster contains the samples of the
C. tuberosus species, a second cluster merges the sam-
ples of the C. barbatus, C. oklahomensis, C. pallidus, and
C. multiflorus species and the hybrids. The last clus-
ter contains the samples from the two outgroups. Un-
der the CFM, the estimated K ranges between 7 and
8. The best run (in terms of average posterior density)
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quantitative variables and I = 10 codominant loci. The variable plotted on the y-axis is the proportion of misclassified individuals using our

method (after correction for potential label switching issues).

corresponds to K = 8. It clusters the individuals of the
various species as follows: C. oklahomensis/C. multi-
florus/C. barbatus/C. pallidus, C. tuberosus x C. pallidus
and C. pallidus x C. multiflorus/C. tuberosus tuberosus ex-
cept three samples/the three C. tuberosus tuberosus pre-
vious samples/two extra clusters for the outgroups.

ANALYSIS OF Myodes VOLE DATA
Data and Statistical Analysis

We now study an original data set of georeferenced
genetic and phenotypic markers of the voles of the
genus Myodes in Sweden. This data set has several in-
teresting and complex aspects useful for investigating
the efficiency of our method. (i) Fennoscandia has been
recognized as a zone where the mtDNA of the north-
ern red-backed vole M. rutilus introgressed its southern
relative, the bank vole M. glareolus (Tegelstrom 1987).
This makes the delimitation of these two species impos-
sible based on common mitochondrial markers. (ii) The
bank vole is further characterized by intraspecific lin-
eages (Deffontaine et al. 2009). Two of them are docu-
mented in Sweden (Razzauti et al. 2009), providing a
complex case for disentangling intra- and interspecific
structure. (iii) Both genetic and morphological data are
available for this model to confront the structure pro-
vided by the two kinds of markers and explore their
combination.

The data set consists of 182 individuals. These in-
dividuals were genotyped at 14 microsatellite loci
(Lehanse 2010). The phenotypic data set corresponds
to a subsample of 69 individuals (Ledevin 2010). We
used measurements of the third upper molar shape for
which phenotypic differentiation has been evidenced
at the phylogeographic scale (Deffontaine et al. 2009;

Ledevin, Michaux, et al. 2010). The two-dimensional
outline was manually registered from numerical pic-
tures, starting from a comparable starting point among
teeth (Ledevin, Michaux, et al. 2010). For each molar,
the outline is described by the Cartesian coordinates
of 64 points sampled at equally spaced intervals along
the outline. These 64 landmarks are strongly correlated
and therefore carry redundant information. To summa-
rize this information into a lower number of variables
and decrease the intensity of correlation between vari-
ables, we first performed an elliptic Fourier transform
(EFT, Kuhl and Giardina 1982). The EFT provides shape
variables standardized by size, the Fourier coefficients
that weight the successive functions of the EFT, namely
the harmonics. A study of the successive contribution of
each harmonic to the description of the original outline
showed that considering the first 10 harmonics offered
a good compromise between the number of variables
and the efficient description of the outline (Ledevin,
Michaux, et al. 2010). Then we performed a principal
component analysis of the Fourier coefficients and re-
tained the scores on the first five principal components,
which together account for more than 80% of the vari-
ance (PC1 = 26.6%, PC2 = 21.6%, PC3 = 15.2%, PC4 =
7.4%, and PC5 = 6.5%). These scores were used as phe-
notypic data input (the y data matrix) to our clustering
method.

We analyzed this data set with our model first un-
der the UFM allele frequency prior then under the CFM
prior. For each allele frequency prior, we fed the model
with five types of data combination: using the georef-
erenced phenotypic data under the spatial model (PS),
using the phenotypic data under the nonspatial model
(PnS), using the georeferenced genetic data under the
spatial model (GS), using the genetic data under the
nonspatial model (GnS), using the georeferenced phe-

¥T0Z ‘6T JogLUBAON U0 anbiwouo.B Yy ayoeyoey | ap [euoieN INsu| YaN| 1 /Biosieuinolpioxo-oigsAs//:dny wody pepeojumod


http://sysbio.oxfordjournals.org/

2012 GUILLOT ET AL.—ANALYSIS OF PHENOTYPIC, GENETIC, AND GEOGRAPHIC DATA 905
o g a fa
e | ) T
- @ [}
@ =
05 T .5
= Co £ £ ©
T o °© 2 5 o
= 2 z 2
® =z = | oo
& 3 o B
1] & o a ©
] o
= 5 E S
& o
0| h §
T M T T T T T T T T T T T T T T T T 1
04 06 08 10 12 14 04 06 08 10 12 14 0.2 0.6 1.0 1.4
Sepal.Length Sepal.Length Sepal.Length
v A
0 (=B
=] = ! &
= T
A
= 2 o
10 b [ '
;g’ o —A&; = ° = o
c =2 ] = o]
5 o S 8o = f - o O = f - S 0%,
e o o s | 590 e] = | <)
T % o @ g; © af
o o Q o o 5 a " o ]
$ _ & ‘%e a7 0%% o
o W
‘? = (\‘J 00 2 = ° foxe)
I I ]
T T T T T T T T T T T T T T 1
-0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0 -06 -0.2 0.2 0.6
Sepal Width Sepal Width Petal.Length

FIGURE 6. Pairs plots of Fisher’s Iris data (transformed into log shape ratios). Symbol shapes indicate individual species estimated by our
method. The true number of species (three) is correctly estimated. Only 6 out of 150 individuals are misclassified.

notypic and genetic data under the spatial model (PGS).
In each case, we performed 10 independent MCMC runs
of 100,000 iterations discarding the first 10,000 iterations
as burn-in.

RESULTS

For each type of analysis, we observed an excellent
congruence across the 10 independent MCMC runs. The
UFM and the CFM model provide qualitatively similar
results with a tendency of the CFM model to return
slightly larger estimates of K. Although the CFM option
has been shown to detect finer differentiation than the
UEFM option (see analysis of AFLP data above), a de-
tailed analysis and interpretation of the fine scale struc-
ture inferred by the CFM model would require extended
data analysis, including some extra data still under
production. We therefore focus on the results obtained
under the UFM option.

In the analysis based on georeferenced phenotypic
data (PS), we inferred two clusters with one cluster in
the far North of Sweden (Fig. 7a), all remaining sam-
ples belonging to the other cluster. These clusters cor-
respond to the interspecific differentiation between the
red-backed vole to the North and the bank vole to the

South. Analyzing these data without spatial information
(PnS), we also inferred also two clusters (Fig. 7b). The
areas occupied by the two clusters under the PS and the
PnS analyses match in the sense that they both corre-
spond to a top North versus South dichotomy with a
region of marked transition estimated to be along the
same line in Swedish Lapland with a SW-NE orienta-
tion. In the PnS analysis, the clusters display a large
amount of spatial overlap with a regular North to South
cline. In the analysis based on georeferenced genetic
data (GS), we inferred the presence of four clusters. The
most northern cluster corresponds to the samples identi-
fied as belonging to the top North cluster in the pheno-
typic clustering and hence to the Northern red-backed
vole (Fig. 7c). The three other clusters correspond to the
intraspecific structure within the bank vole. This hier-
archical pattern of inter- and intraspecific differences is
confirmed by estimates of interpopulation differentia-
tion provided by Fst values. The far North population
attributed to the red-backed vole appears as strongly
differentiated from all other populations (N Sweden
vs. NE Sweden: Fst = 0.15; N vs. Central Sweden:
Fst = 0.19; N Sweden vs. South Sweden: Fst = 0.17). In
comparison, the differentiation is of smaller magnitude
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FIGURE 7. Population structure inferred from the Fenno-Scandia bank vole data. The upper titles refer to the number of clusters detected

with the various combinations of data.

among bank vole populations (NE vs. C: Fst = 0.07;, NE
vs. St Fst = 0.07; C vs. S: Fst = 0.06). Analyzing these
data without spatial information (GnS), we inferred four
clusters whose locations match tightly those obtained
under analysis GS (results not shown). In the joint anal-
ysis of georeferenced phenotypic and genotypic data
(PGS), we obtained results similar to those obtained
with georeferenced genetic data (results not shown).

DISCUSSION
Summary of Approach Proposed

Main features.—We have proposed the first method
to date for analyzing georeferenced phenotypic and

genetic data within a unified inferential framework,
opening the way to combined analyses and robust com-
parison between markers. Our method takes as input
any combination of phenotypic and genetic individual
data and these data can be optionally georeferenced.
Analyses can be run on phenotypic and genetic data
separately or jointly. The main outputs of the method
are estimates of the number of homogeneous clusters
and of cluster memberships of each individual. If anal-
yses are made on georeferenced data, the method also
provides an estimate of the spatial location of each clus-
ter which can be displayed graphically in form of con-
tinuous maps (see program documentation for details
on such graphic representation).
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Our approach is based on an explicit statistical
model. This contrasts with model-free methods such as
PAM (Kaufman and Rousseeuw 1990) which, roughly
speaking, attempts to cluster individuals in order to
maximize some homogeneity criterion. Although such
methods are fast and presumably robust to departure
from specific model assumptions, they are expected to
behave poorly compared with methods based on an ex-
plicit model that fits the data to a reasonable extent. This
claim is supported by the recent study of Safner et al.
(2011) in the case of spatial genetic clustering methods.
In addition, because model-free methods do not rely on
an explicit model, their output might be difficult to in-
terpret or relate to biological processes.

Main results from simulation study and analysis of classic
data sets.—All numerical results obtained here demon-
strate the good accuracy of our method and its efficiency
for identifying species and/or populations boundaries.
It is excellent at avoiding false positives (i.e., at re-

porting K = 1 when K = 1) and has a clear ability to
reduce the error rate when the number of variables in-
creases. The method loses accuracy when it is given a
difficult problem (i.e., when the true K is large). For a
fixed number of iterations, it also has increasing diffi-
culty to exploit fully all the available information when
the number of variables is large (cf. loss of accuracy for
50 variables compared with 20 variables), presumably
due to loss of numerical efficiency in the MCMC algo-
rithm. We also noted that MCLUST is subject to simi-
lar difficulties for large number of clusters and/or large
number of variables presumably due to the existence of
multiple maxima of the likelihood. In our method, this
problem can be resolved to a certain extent by longer
MCMC runs, an aspect not investigated in detail here.
Overall, our method offers a notable improvement over
the nonspatial penalized maximum likelihood method
of MCLUST used under its default set of options. One
factor responsible for this improvement could be that
our method exploits spatial information while MCLUST
does not. Results from the section Analysis of Classic
Data of the Clustering Literature, where our method
still provides better results than MCLUST even though
the data are nonspatial, suggests this is not the sole
factor. This might relate to model selection, which is
the second major difference between the two methods
considered (Bayes vs. penalized maximum likelihood),
more so given that MCLUST considers a broad family
of covariance structure, whereas our method assumes
conditional independence.

We also stress that the numerical values character-
izing the accuracy of our method are biased because
the model used to analyze the data matches exactly the
model that generated them. This situation is a best-case
scenario that is unlikely to be met in real-life cases. How-
ever, our results are informative about the potential of
the method and evaluations of the Iris data suggest a
certain robustness of these results (see also analysis of
crab morphometric data in Supplementary Material).

As a final note, we warn the reader unfamiliar with
clustering methods against overly pessimistic interpre-
tation of Figure 4. From this figure, it seems that the
methods lose accuracy very quickly as the “phenotypic
differentiation” decreases and are, in general, not very
efficient.

This is because detecting a hidden structure is a much
harder statistical problem than testing the significance
of a differentiation between two known clusters (the for-
mer involving many more parameters and hence uncer-
tainty than the latter). More details are given in Power to
Test the Significance of a Known Structure Versus Power
to Detect a Hidden Structure section of Supplementary
Material.

Genetic and phenotypic data can trace different evo-
lutionary histories, for instance, phylogenetic diver-
gence for neutral genetic markers and adaptation for
a morphological structure (Renaud et al. 2007; Adams
et al. 2009).

Confronting the structure provided by different mark-
ers emerges more and more as a way to get a com-
prehensive view of the dynamics and processes of
differentiation among and within species. Our method,
by providing a unified inferential framework for analyz-
ing different kind of data, including phenotypic data,
appears as a significant improvement for valid con-
frontation between data sets. Furthermore, in situations
when genetic and phenotypic patterns are suspected to
coincide, making inference from genetic and phenotypic
data jointly has the potential to increase the power to de-
tect boundaries between evolutionary units at different
levels (populations, species).

Analysis of the Calopogon AFLP data set.—The ability
of our model under the CFM prior to detect and clas-
sify species is excellent. This data set has been rean-
alyzed by Hausdorf and Hennig (2010) who carried
out a comparison of STRUCTURE, STRUCTURAMA,
a method known as “field of recombination” (Doyle
1995) and a hybrid method mixing sequentially multi-
dimensional scaling and model-based Gaussian cluster-
ing. The STRUCTURE program and the field of recom-
bination method were not able to detect any structure.
STRUCTURAMA identified only three clusters and mis-
classifies 44% of the samples. The hybrid method of
Hausdorf and Hennig (2010) identifies five clusters but
misclassifies 15% of the samples. Our method under the
CFM prior also identifies five clusters but misclassifies
only 5% of the samples. Under the UFM model, the
results we obtain are highly consistent with those ob-
tained with the CFM.

We also refer the reader to the Supplementary
Material where we analyze AFLP data of Veronica
(pentasepalae) from the Iberian Peninsula and Morocco
produced and first analyzed by Martinez-Ortega et al.
(2004). The results we report there confirm the excel-
lent performance of our method compared with the
four methods investigated by Hausdorf and Hennig
(2010). Finally, all the analysis carried out in the present
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article show that concerns of Hausdorf and Hennig
(2010) against methods for dominant markers based on
Hardy-Weinberg equilibrium were not grounded, pro-
vided the dominant nature of AFLP markers is taken
into account at the likelihood level as we did. We suspect
that the poor performances of STRUCTURE observed
by Hausdorf and Hennig (2010) relate to the procedure
used to estimate K (Evanno et al. 2005), as noted earlier
by Waples and Gaggiotti (2006).

The Myodes data set—We confronted clustering hy-
potheses using various data subsets with or without
spatial data and with or without genetic markers or
morphometric variables. This sheds new light on the
population structure of Myodes. The pattern of phe-
notypic and genetic differentiation reveals a complex
pattern of contact between species and populations.
The northernmost area corresponds to the narrow zone
of possible overlap between M. glareolus and its close
northern relative M. rutilus. Both species are difficult
to recognize based on external phenotypic characters
and impossible to identify based on common mitochon-
drial markers because of the introgression of M. rutilus
mtDNA into the northern fringe of M. glareolus distri-
bution. The northern cluster detected by our method
corresponds most probably to the occurrence of the
northern red-backed vole M. rutilus that tends to differ
in molar shape from its relative M. glareolus (Ledevin,
Quéré, et al. 2010).

The two analyses based on phenotypic data with
and without spatial information lead to slightly differ-
ent results, the former suggesting the presence of an
abrupt phenotypic discontinuity in the North, whereas
the latter suggests clinal variation (Fig. 7a,b). In the ab-
sence of model-fit criteria to assess the value of these
two maps, we can only speculate. We note however
that these maps are congruent concerning the location
of the main area of transition between the clusters and
that the analysis based on spatial information is graph-
ically more efficient at displaying the location of this
transition. Molar shape in bank vole has been shown to
display large variation even within populations due to
wear and developmental factors (Guérécheau et al. 2010;
Ledevin, Quéré, et al. 2010). This may render even clear-
cut interspecific boundaries difficult to detect. Our geo-
referenced method may greatly help to make such sig-
nal emerge despite the intrinsic variability in the phe-
notypic markers. This suggests that our method could
be viewed as an efficient generalization of the methods
of Womble (1951) and Bocquet-Appel and Bacro (1994)
aimed at detecting abrupt changes.

Regarding the additional clusters detected based on
genetic data, the location of two of them suggests that
they correspond to bank vole lineages already known
in this region based on mtDNA data. Indeed, after the
last ice age, Sweden has been recolonized by differ-
ent populations separated several hundreds of thou-
sand years ago coming from the South and from the
North of Fennoscandia (Jaarola et al. 1999; Razzauti et al.

2009). Our new data therefore confirm the existence of
two different bank vole lineages in Sweden based on
mtDNA and now nuclear DNA markers. The existence
of a fourth cluster located in Central Sweden strongly
suggests that the contact zone between these two main
lineages is situated in this latter region. Its origin may be
attributed to hybridization between animals of the two
genetic lineages. The discovery of this last cluster is new
and it was never detected previously using only mtDNA
marker.

Combining phenotypic and genetic data in a joint
analysis (PGS) did not allow us to detect any extra
structure (map not shown) possibly because beyond
the interspecific phenotypic difference corresponding
to the differentiation between far-North and the rest of
Sweden, a cline in molar shape exists through Sweden
that is roughly congruent with the genetic clusters (data
not shown). It shows that the confrontation between
data sets may be as informative as a joint analysis,
by providing clues about the hierarchical pattern of
differentiation. Morphometric clusters revealed only
interspecific differences between red-backed and bank
voles, whereas based on microsatellite data, both inter-
and intraspecific levels of differentiation emerged as
separate clusters. The structure of genetic differentia-
tion corroborates this interpretation. The interspecific
differentiation of the top North cluster from the rest of
Sweden is indeed much stronger than the intraspecific
differentiation among the bank vole populations from
North-East, Central, and South Sweden. Combining
both data types allows us to interpret the complex
phylogeographic structure of this species and helps
to distinguish differences between true species and
populations within a species.

Future Extensions

Our method is based on an assumption of indepen-
dence of the phenotypic variables within each cluster.
This does not amount to independence between these
variables globally. Indeed, the fact that phenotypic vari-
ables are sampled with cluster-specific parameters does
include a correlation (similar to the dependence struc-
ture assumed in a linear mixed model). However, our
method does not deal with residual dependence not
accounted for at the cluster level such as that gener-
ated by allometry. Results from simulations and clas-
sic datasets suggest that this can be partially dealt with
by preprocessing the data (e.g., transforming raw data
into log-shape ratio). Several other procedures may be
applied for avoiding or reducing problems with covari-
ation among phenotypic variable. For example, work-
ing on principal components rather than on raw data
may help in this task. Procedures such as the Burnaby
approach (Burnaby 1966) may also allow removal of co-
variance structures due only to growth or other con-
founding factors that the user may wish to filter out.
A more rigorous approach would be to allow the vari-
ables to covary within clusters, which would also allow
one to quantify these covariations.
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Potential Applications

Evolutionary biology has been flooded by molecular
data in the recent years. However, efficient methods to
deal with phenotypic data alone are still needed when
this type of data is the only available. This includes the
important case of fossil data. We note that in system-
atic paleontology, the methods used are often simpler
than those discussed in the present paper and chosen
as a matter of tradition in the field rather than on ob-
jective basis. Implementing our method in a free and
user-friendly program should help provide more objec-
tive methods in this context.

Our method was specifically tailored for biomet-
ric/morphometric measurements that are typically ob-
tained from a few tens of phenotypic variables. The
method proposed is therefore computer intensive and
not expected to be well suited for large data sets, such as
expression data produced in functional genomics. How-
ever, in situations where the scientist is able to select
some variables of particular interest and reduce the di-
mensionality of the model (as we did for our analysis
of the Myodes molar shape data), our method could be
used and play a role in the emerging field of landscape
genomics (Schwartz et al. 2010).

The submodel for genetic data used here was pre-
sented and discussed in detail by Guillot et al. (2005)
and Guillot (2008). It has been used mostly to analyze
variation and structure in neutral nuclear markers
(Guillot et al. 2009) and has proved useful to detect and
quantify fine-scale structure typical of landscape genet-
ics studies. The novel possibility brought here to com-
bine it with morphometric data might popularize this
genetic model among scientists interested in larger spa-
tial and temporal scales typical of phylogeography. In
the latter field, the use of mtDNA is common. As noted
earlier, the analysis of such non-recombining DNA se-
quence data using our method is technically possible
and meaningful by recoding the various observed hap-
lotypes as different alleles of the same locus. We stress
that this approach is an expedient which incurs a consid-
erable loss of information and that our approach should
not be viewed as a substitute to those that model the ge-
nealogy of genes (including the mutational process) ex-
plicitly. Extending our model to deal with nonrecombin-
ing DNA in a more rigorous way is a natural direction
for future work.

Our method for the combined analysis of phenotypic
and genetic data can be used to assess the relative im-
portance of random genetic drift and directional natural
selection as causes of population differentiation in quan-
titative traits and to assess whether the degree of diver-
gence in neutral marker loci predicts the degree of diver-
gence in quantitative traits (Merild and Crnokrak 2001).
Furthermore, our method should be useful in the study
of hybrid zones where, as noted by Gay et al. (2008),
comparing clines of neutral genetic markers with clines
of traits known to be under selection also indicates the
extent to which specific traits or their underlying genes
are under selection.

Lastly, because phenotypic and genetic markers may
reflect different evolutionary or demographic history,
combined analyses can help to understand the hierarchy
between evolutionary units (species and populations) as
shown in the Myodes example.

COMPUTER PROGRAM AVAILABILITY

The algorithm presented here is available as the R
package GENELAND (version > 4.0.0). Information
will be found on the program homepage: http://
www2.imm.dtu.dk/~ gigu/Geneland/.

SUPPLEMENTARY MATERIAL

Supplementary Material can be found in the Dryad
data repository (doi: 10.5061/dryad.9mp902ck).
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APPENDIX: DETAIL OF MCMC INFERENCE
ALGORITHM

Overview

The vector of unknown parameters is 8 = (K, A, m,
u,c,f,f,d, p, o, 3) which can be decomposed into 85 =
(A\,m,u,c), g = (f,f,d), and Oy = (i, o, 3) blocks of
parameters of the spatial, genetic, and phenotypic data,
respectively. We alternate block updates of Metropolis—
Hastings or Gibbs type and also transdimensional
updates involving changes of K and of parts of other
parameters. The updates of blocks of parameters that
do not involve phenotypic data are described in Guillot
et al. (2005) and Guillot (2008). We describe below
updates involving phenotypic data.

Joint Updates of (c, u, o)

We update jointly c, i, and o as follows. We propose
a new vector c¢* by picking two clusters at random and
reassigning some individuals of one of those two clus-
ters to the other one at random. Then we propose p
and o by sampling from the full conditional distribution
7(u,1/0?]y,c*). The Metropolis—Hastings ratio is

_7(6"ly) 9(6]6")
~(6ly) 9(6°10)

(1o ely) gl 1/o%e) aglele’)
w1/t cly) q(u 1)o7 c*) g(elo)

_ w(ely) m(p* 1/o* et y) w(p,1/0%le,y) glcle”)
w(cly) wm1/o%le,y) w(ut,1/o% e, y) 4(elo)
w(c*ly) glele?)

= 7 (ely) a(e’lo) A

Interestingly, the latter expression does not depend

on (u*,02"), which in principle would allow us to de-
cide whether a new state 8" is accepted prior to propos-

ing (p*, o). Unfortunately, expression (A.1) cannot be
used, as 7(cly) is not known analytically under the
present model. The ratio in equation (A.1) has therefore
to be written as
_nlylet,1/e” ) w(e)
rlylu1/o%e) w(o)
n(w,1/5>) wlw,1/0’ly,¢) qlele)
m(p,1/0?) w(p*,1/0% |y, c) q(c*|c)

which involves only analytically known expressions.

;» (A2)

Joint Updates of (K, c, u, o)

We take the same strategy as Guillot et al. (2005). The
algorithm follows ideas of Richardson and Green (1997).
It consists in updating K by proposing to split a cluster
into two clusters or merge two clusters in a way that
complies with the spatial constraints and multivariate
nature of the model. Since we use the natural prior con-
jugate family for parameters p* and o*, the full condi-
tional 7(p,1/02" |y, K*, c*) is available and can be used
as proposal distribution as advocated for example by
Godsill (2001). The acceptance ratio takes essentially the
same form as in equation (A.2), although it is now a gen-
uine transdimensional move.

Detail on Hyperparameters

Although we do not use exactly the same prior struc-
ture as Richardson and Green (1997), we follow largely
these authors. We take § = >, vy, hj = x; = 2/ RJZ, where
R; is the range of observed values of the jth pheno-
typic variable. 3;|g;, hj, ~ G(gj, hj). We also set oj =2 and
gj = 1/2. Since E[1/0?] = a/f, 3 represents 2/E[1/0?].
Also 1/2h represents the prior mean of beta.
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