



Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations

B. FRANCO<sup>1</sup>, F. HENDRICK<sup>2</sup>, M. VAN ROOZENDAEL<sup>2</sup>, J.-F. MÜLLER<sup>2</sup>, T. STAVRAKOU<sup>2</sup>, E. A. MARAIS<sup>3</sup>, B. BOVY<sup>1</sup>, W. BADER<sup>1</sup>, C. FAYT<sup>2</sup>, C. HERMANS<sup>2</sup>, B. LEJEUNE<sup>1</sup>, G. PINARDI<sup>2</sup>, C. SERVAIS<sup>1</sup>, AND E. MAHIEU<sup>1</sup>

<sup>1</sup>Institute of Astrophysics and Geophysics of the University of Liège, Liège, Belgium <sup>2</sup>Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium <sup>3</sup>School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA







### Formaldehyde (HCHO)

- Midday lifetime of a few hours
- Sources:
  - mainly by oxidation of:
    - CH<sub>4</sub>
    - primary NMVOCs
  - (directly from various sources)
- Sinks:
  - photolysis
  - oxidation by OH radicals
     => yield CO and HO<sub>2</sub>
    - (dry and wet deposition)
- Involved in the VOC  $HO_x NO_x$  chemistry generating or destroying tropospheric  $O_3$



from continental sources - biogenic (≈ 85 %)

HCHO = indicator of NMVOCs emissions

- anthropogenic (≈ 12 %)
- pyrogenic (≈ 3 %)

oxidative capacity of the atmospherethe global CO budget

Key role for air quality monitoring



#### **1. INTRODUCTION**

### Formaldehyde (HCHO)

- Midday lifetime of a few hours
- Sources:
  - mainly by oxidation of:
    - CH<sub>4</sub>
    - primary NMVOCs
  - (directly from various sources)
- Sinks:
  - photolysis
  - oxidation by OH radicals
     => yield CO and HO<sub>2</sub>
  - (dry and wet deposition)
- Involved in the VOC HO<sub>x</sub> NO<sub>x</sub> chemistry generating or destroying tropospheric O<sub>3</sub>



### <u>Issues</u>

- Can we detect background levels of HCHO in the remote troposphere from ground-based FTIR and MAX-DOAS?
- Is there a good consistency between both instruments regarding HCHO at a high-altitude station?
- Validating an optimized FTIR retrieval strategy for HCHO above Jungfraujoch as a preparation for further studies e.g., multi-decadal timeseries at Jungraujoch



Franco et al. (2014), Atmos. Meas. Tech. Discuss., doi:10.5194/amtd-7-10715-2014

## Measurement site: <u>Jungfraujoch station</u> (Swiss Alps, 46.5° N, 8.0° E, 3580 m a.s.l.), part of the NDACC network



- Essentially located in the free troposphere during winter
- Frequent injections of air masses from the boundary layer, especially during summer
- More than 35 years of uninterrupted IR monitoring

Measurement site: <u>Jungfraujoch station</u> (Swiss Alps, 46.5° N, 8.0° E, 3580 m a.s.l.), part of the NDACC network





- Bruker IFS-120 HR operated by ULg
- Under clear-sky conditions
  - Optical filter: 2400-3310 cm<sup>-1</sup>
- Spectral resolution: 0.004 and 0.006 cm<sup>-1</sup>

Measurement site: Jungfraujoch station (Swiss Alps, 46.5° N, 8.0° E, 3580 m a.s.l.), part of the NDACC network



- Operated by BIRA-IASB since 2010
- Pointing NE direction (city of Bern)
- Elevation angles used here: 0°, 1°, 3°, 4°, 5°, 8°, 10°, 12°, 15°, 30°
- Measurements from 85° SZA sunrise to 85° SZA sunset
- 20' per scan



#### 2. INSTRUMENTAL SETUP

# **FTIR retrieval strategy**

- SFIT-2 v3.91 algorithm
- Spectroscopic line parameters from HITRAN 2008
   => updated line strength for HCHO from Perrin et al. (2009)
- A priori from 1980 2020 WACCM v.6 simulation
   => good consistency with 36.5 56.5° N zonal occultations from ACE-FTS
- Optimal Estimation Method for the retrieval process
   => covariance matrix derived from slightly « relaxed » WACCM values



 Microwindows (cm<sup>-1</sup>)
 Interfering species

 2763.425 – 2763.600
 HDO, CH<sub>4</sub>, O<sub>3</sub>, N<sub>2</sub>O, CO<sub>2</sub>

 2765.725 – 2765.975
 HDO, CH<sub>4</sub>, O<sub>3</sub>, N<sub>2</sub>O, CO<sub>2</sub>

 2778.200 – 2778.590
 HDO, CH<sub>4</sub>, O<sub>3</sub>, N<sub>2</sub>O, CO<sub>2</sub>

 2855.650 – 2856.400
 HDO, CH<sub>4</sub>, O<sub>3</sub>, N<sub>2</sub>O, H<sub>2</sub>O

Based on Vigouroux et al. (2009), Atm. Chem. Phys.

#### NORS/NDACC/GAW workshop, 5 to 7 November 2014, Brussels

2. INSTRUMENTAL SETUP

# 1. DOAS spectral fitting => DSCDs

- Fitting window: 328.5 358.0 nm
   => minimizing the HCHO/BrO correlation
- Zenith spectrum of each scan taken as reference
   => reducing the interference by O<sub>3</sub>
- Fitted species: HCHO at 293 K
   NO<sub>2</sub> at 298 K
   O<sub>3</sub> at 223 and 243 K
   O<sub>4</sub>
   BrO at 223 K
   Ring effect
- 5<sup>th</sup>-order polynomial fit and linear correction for off-set

# **<u>2. Profile retrieval</u> => OEM-based profiling tool bePRO**





2. INSTRUMENTAL SETUP

### **Characterization of FTIR retrievals**



### **Characterization of MAX-DOAS retrievals**



# **Characterization of the retrievals**

- FTIR: mainly sensitive throughout the free troposphere
- MAX-DOAS: highly sensitive in the lowest layers

=> **<u>Complementary</u>** information content in the troposphere regarding HCHO

=> Direct comparisons between both instruments = little meaning

=> HCHO distributions from 3-D CTMs (GEOS-Chem and IMAGES) as *intermediates* 

→ Smoothed by the FTIR and MAX-DOAS AVK

# **Characterization of the retrievals**

- FTIR: mainly sensitive throughout the free troposphere
- MAX-DOAS: highly sensitive in the lowest layers

=> **<u>Complementary</u>** information content in the troposphere regarding HCHO

- => Direct comparisons between both instruments = little meaning
- => HCHO distributions from 3-D CTMs (GEOS-Chem and IMAGES) as **intermediates**

|                           | GEOS-Chem (v9-01-03)                                                                           | IMAGES v2                                                                           |
|---------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Horizontal resolution     | 2.0° x 2.5°                                                                                    | 2.0° x 2.5°                                                                         |
| Meteorological forcings   | GMAO GEOS-5                                                                                    | ECMWF ERA-Interim                                                                   |
| CH4 concentrations        | NOAA Global Monitoring Division                                                                | NOAA Global Monitoring Division                                                     |
| <b>Biogenic emissions</b> | MEGAN v2.0                                                                                     | MEGAN v2.0                                                                          |
| Biomass burning emissions | GFED v3                                                                                        | GFED v3                                                                             |
| Anthropogenic emissions   | EMEP (CO, NO <sub>x</sub> , SO <sub>x</sub> , and NH <sub>3</sub> )<br>RETRO and EMEP (NMVOCs) | EMEP (CO, NO <sub>x</sub> , SO <sub>x</sub> and NH <sub>3</sub> )<br>RETRO (NMVOCs) |



4. RESULTS





#### NORS/NDACC/GAW workshop, 5 to 7 November 2014, Brussels

4. RESULTS



#### NORS/NDACC/GAW workshop, 5 to 7 November 2014, Brussels

#### 4. RESULTS

### **Conclusion**

- HCHO amounts from ground-based FTIR and MAX-DOAS
- HCHO distributions from 3-D CTMs as intermediates

FTIR and MAX-DOAS => <u>complementary</u> and <u>consistent</u>

- FTIR retrieval strategy available now at Jungfraujoch

### **Perspectives**

- Contribution of the different NMVOCs to the HCHO formation
- Optimized FTIR retrieval strategy
   => multi-decadal observational time series
  - inter-annual variability
  - long-term trend
  - statistics for intra-day investigations





Thank you for your attention

# **Characterization of the retrievals**

- FTIR: mainly sensitive throughout the free troposphere
- MAX-DOAS: highly sensitive in the lowest layers

=> **<u>Complementary</u>** information content in the troposphere regarding HCHO

=> Direct comparisons between both instruments = little meaning

=> HCHO distributions from 3-D CTMs (GEOS-Chem and IMAGES) as *intermediates* 

|                           | GEOS-Chem (v9-01-03)             | IMAGES v2                       |                      |
|---------------------------|----------------------------------|---------------------------------|----------------------|
| Horizontal resolution     | 2.0° x 2.5°                      | 2.0° x 2.5°                     |                      |
| Meteorological forcings   | GMAO GEOS-5                      | ECMWF ERA-Interim               |                      |
| CH4 concentrations        | NOAA Global Monitoring Division  | NOAA Global Monitoring Division | Anthropogenic NMVOCs |
| <b>Biogenic emissions</b> | MEGAN v2.0                       | MEGAN v2.0                      | - RETRO = 25.7  Tg   |
| Biomass burning emissions | GFED v3                          | GFED v3                         | - EMEP = 10.3 Tg     |
| Anthropogenic emissions   | EMEP (CO, NO,, SO,, and $NH_3$ ) | EMEP (CO, NO,, SO, and $NH_3$ ) |                      |
|                           | RETRO and EMEP (NMVOCs)          | RETRO (NMVOCs)                  |                      |



# FTIR error budget

| Error source                     | Error | Comments                                                                      |
|----------------------------------|-------|-------------------------------------------------------------------------------|
| Assumed variability              | 49.7% | WACCM variability relaxed, commensurate with ACE-FTS variability down to 6 km |
| Systematic errors                |       |                                                                               |
| Line intensity HCHO              | 9.7%  | Assuming ±10 % uncertainties                                                  |
| Air-broadening coefficient HCHO  | 8.0%  | Assuming ±10 % uncertainties                                                  |
| Line intensity interfering gases | 5.2%  | Assuming the maximal HITRAN 2008 uncertainties                                |
| ILS                              | 2.5%  | ±10 % misalignment and instruments bias                                       |
| Forward model                    | 1.0%  | Retrieval algorithm-related                                                   |
| HCHO a priori profile            | 3.0%  | Assuming HCHO a priori profiles derived from ACE-FTS, IMAGES and GEOS-Chem    |
| Total Systematic Error           | 14.2% |                                                                               |
| Random errors                    |       |                                                                               |
| Temperature profile              | 5.0%  | ±4 K around NCEP noon profile                                                 |
| $H_2O$ and HDO a priori profiles | 10.1% | Changes by a factor 2 in a priori slope                                       |
| SZA                              | 0.7%  | Assuming $\pm 0.1^{\circ}$ bias                                               |
| Measurement noise                | 14.7% |                                                                               |
| Smoothing                        | 10.2% |                                                                               |
| Model parameters                 | 2 1%  |                                                                               |
| Total Random Error               | 21.3% |                                                                               |

# MAX-DOAS error budget

| Error sources                          | Uncertainty on HCHO |
|----------------------------------------|---------------------|
| Smoothing + noise errors               | 9.1%                |
| Uncertainty related to aerosols        | 6.3%                |
| Uncertainty related to the a priori    | 8.8%                |
| Uncertainty related to the albedo      | 1.0%                |
| Uncertainty on the HCHO cross sections | 9.0%                |
| Total uncertainty                      | 16.8%               |
|                                        |                     |



