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Control of molecular dynamics with zero-area fields: Application
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9 avenue A. Savary, Boı̂te Postale 47 870, F-21078 Dijon Cedex, France
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Osman Atabek
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The constraint of time-integrated zero area on the laser field is a fundamental requirement, both theoretically
and experimentally, in the control of molecular dynamics. By using techniques of local and optimal control theory,
we show how to enforce this constraint in two benchmark control problems, namely, molecular orientation and
photofragmentation. The origin and the physical implications for the dynamics of this zero-area control field are
discussed.

DOI: 10.1103/PhysRevA.90.053404 PACS number(s): 32.80.Qk, 37.10.Vz, 78.20.Bh

I. INTRODUCTION

Quantum control is aimed at designing external pulses
in order to achieve efficient transfers between the states of
the quantum system under study [1–3]. This task is crucial
in atomic and molecular physics and has many applications
extending from photochemistry to quantum computation.
Quantum control has attracted attention from the physics and
chemistry communities [4] and also from the applied math-
ematics community for the development of new theoretical
methods. In this context, optimal control theory (OCT) can
be viewed as the most accomplished way of designing control
fields [5–8]. Several modifications of the standard optimal
control algorithms have been brought forward to account
for experimental constraints [9–12], such as the nonlinear
interaction of the system with the field [13,14], the question of
spectral constraints [15–17], and the robustness with respect
to one or several model parameters [18–21]. Recently, we
have shown how optimal control strategies can be extended
to enforce the constraint of time-integrated zero area on the
control field [22]. This constraint is a fundamental requirement
in laser physics, as shown in different experimental and
theoretical studies [22–27]. Basically, this effect is related
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to the fact that the dc component of the control field is not
a solution of Maxwell’s equation. We refer the reader to
the first part of the paper for a complete discussion. Note
that this point is particularly crucial in the terahertz (THz)
regime or for laser pulses accommodating only a few optical
cycles [28–32]. The corresponding laser sources are by now
commonly used in quantum control [33,34]. Up to now, the
majority of the theoretical papers on quantum control have
not considered this zero-area requirement [9,35,36], which
may lead to nonphysical electromagnetic control fields and
is problematic in view of experimental implementations. In
addition, imposing such a constraint on the control scheme
may force the optimization algorithm to reach more efficient
external fields, leading to better transfer. These arguments
show the importance of the methods and of the results
presented in this work, particularly to fill the existing gap
between theory and experiment.

Our preliminary study on the subject [22] is a methodology-
oriented paper, focusing mainly on the technical aspects of
the optimization algorithms (local and optimal approaches)
as briefly illustrated for two typical molecular processes
(orientation and dissociation). The present paper thoroughly
expands this initial work [22] by providing an extended
numerical investigation and a detailed physical analysis of
the dynamics of two specific molecular systems. This article
is organized as follows. The physical origin of the time-
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integrated zero-area constraint is presented in Sec. II. For
completeness the principles of the optimization algorithms are
also briefly outlined, although full technical details are left to
Ref. [22]. Section III focuses on the control of the molecular
orientation, using the CO molecule as an illustrative example.
Section IV is devoted to the dissociation of HeH+ involving
the control of a given fragmentation channel. Conclusions and
prospective views are given in Sec. V.

II. MOLECULAR DYNAMICS CONTROLLED BY
ZERO-AREA ELECTROMAGNETIC FIELDS

A. Origin of the zero-area constraint in molecular physics

The zero-area constraint for laser pulses, although well
known, is rarely given a thorough and clear argumentation. For
completeness and pedagogical purposes, this section is devoted
to the presentation of such a proof. The body of the proof is
made of two parts: the calculation of the time-integrated elec-
tromagnetic field and the physical interpretation of the result.

We refer to the spatiotemporal electric-field amplitude
E(t,�r) and its Fourier transform Ê(ω,�k), where the corre-
sponding Fourier conjugate variables are time t and frequency
ω, on the one hand, and space �r and momentum �k vectors, on
the other hand. These quantities are related through

E(t,�r) =
∫

d�k
∫

dωÊ(ω,�k)ei(ωt−�k�r), (1)

together with the usual relation between the frequency and the
wave vector:

ω = c||�k||. (2)

Using these notations, the time-integrated field area is given
by∫ +∞

−∞
dtE(t,�r) =

∫ +∞

−∞
dt

∫
d�k

∫
dωÊ(ω,�k)ei(ωt−�k�r), (3)

which, upon the inversion of the integration order, leads to∫ +∞

−∞
dtE(t,�r) =

∫
d�k

∫
dωÊ(ω,�k)e−i�k�r

∫ +∞

−∞
dteiωt .

(4)

The last summation on the right-hand side is nothing more
than the Dirac function:∫ +∞

−∞
dteiωt = 2πδ(ω). (5)

Equation (4) can then be simplified, after integration over time
and frequency, as∫ +∞

−∞
dtE(t,�r) = 2π

∫
d�kÊ(0,�k)e−i�k�r . (6)

It is clear from Eq. (2) that a null frequency ω = 0 has, as a
consequence, a null momentum (�k = 0). We finally obtain∫ +∞

−∞
dtE(t,�r) = 2πÊ(0,0). (7)

The physical interpretation of Eq. (7) is as follows. The term
Ê(0,0) actually represents a nonoscillating (ω = 0), nonprop-
agating (�k = 0) dc Stark field. Assuming a nonzero value

for such a field requires, from the corresponding Maxwell
equation, the necessary existence of a spatial electronic charge
distribution. In particular, finite charges placed at finite dis-
tances may create the dc Stark field under consideration. One
may also invoke, as asymptotic condition, a charge distribution
set at an infinite distance. But, of course, within this hypothesis,
a nonzero Stark field would necessitate an overall distributed
infinite electric charge. Ultimately, in systems where electric
charges are not introduced on purpose, a dc Stark field cannot
be created, and∫ +∞

−∞
dtE(t,�r) = 2πÊ(0,0) = 0. (8)

B. Designing control fields with the zero-area constraint

The goal of this section is to show how zero-area control
fields can be designed. The three proposed methods are
based on the optimization of the parameters of a functional
form associated with the control problem. We consider a
quantum system interacting with an electromagnetic field
whose dynamics is described by the following time-dependent
Schrödinger equation:

i
∂

∂t
|ψ(t)〉 = [H0 + E(t)H1]|ψ(t)〉 = H (t)|ψ(t)〉, (9)

where H0 and H1 are the field-free Hamiltonian and the
interaction term, respectively, and E(t) is the control field.
The units used throughout this paper are atomic units. Let
|ψ0〉 be the initial state and tf be the total duration of the
control. The goal of the control problem is to maximize the
expectation value 〈ψ(tf )|O|ψ(tf )〉 of a given observable O at
time t = tf .

The first approach consists of introducing a closed-form
expression for the control field depending on a finite number
of parameters denoted αi :

E(t) = E({αi},t), (10)

with αi ∈ A. The ensembleA is chosen such that the constraint
on the time-integrated area, A(tf ) = ∫ tf

0 E(t)dt = 0, is satis-
fied. The optimal values of the parameters αi are determined
in a second step by using gradient [37] or global optimization
procedures such as genetic algorithms [38,39]. This approach,
which can be very efficient in some cases, is, however, highly
dependent on the parametrization used to describe the control
field.

A more general method is based on an extension of the
optimal and local optimization algorithms, which enforces the
zero-area constraint through the introduction of a Lagrange
multiplier. Such algorithms are proposed and investigated in
Ref. [22]. For the sake of completeness of the paper, we briefly
outline below the principles of the different optimization
procedures, and we refer the interested reader to our preceding
work for technical details on the numerical algorithms [22].

The optimal control problem is defined through a cost
functional J oc,

J oc = 〈ψ(tf )|O|ψ(tf )〉 − λ

∫ tf

0
[E(t) − Eref (t)]2/S(t)dt

−μ

[∫ tf

0
E(t)dt

]2

, (11)
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which allows us to maximize the expectation value
〈ψ(tf )|O|ψ(tf )〉 at time t = tf of a given observable O while
penalizing the total energy of the control field and enforcing the
zero-area constraint. The novelty of the computational scheme
resides in the introduction of a new Lagrangian multiplier
μ to account for the zero-area constraint. In Eq. (11), the
positive parameters μ and λ (expressed in a.u.) weight the
different parts of J oc with respect to the expectation value
of O and penalize the area of the field (μ term) and its
energy (λ term). The larger μ is, the closer the time area
of the control field is to zero. In Eq. (11), Eref is a reference
pulse, and S(t) is an envelope shape, which can be chosen
as S(t) = sin2(πt/tf ). As usual, note that the function S(t) is
introduced in the cost functional in order to ensure the field
is smoothly switched on and off at the beginning and at end
of the control. Starting from this new cost functional, it is
straightforward to derive a standard iterative algorithm based
on Krotov’s procedure (as used in this work) [10,12,40–43]
or the gradient procedure [20]. The basic ingredient of the
optimization procedure is the definition, at each step, of a new
control field. At step k, we get

Ek+1 = Ek + S(t)Im[〈χk|H1|ψk+1〉]
2λ

− μ

λ
S(t)Ak, (12)

where |ψk(t)〉 is the state of the system at the kth iteration,
|χk(t)〉 is the adjoint state obtained from backward propagation
of the target O|ψ(tf )〉 taken as an initial state for Eq. (9),
Ek and Ek+1 are the control fields at steps k and k + 1,
respectively, and Ak is the corresponding time-integrated area.
Only the last term on the right-hand side of Eq. (12) is different
from a standard procedure.

The local control theory (LCT) [8,44–46] can also be
extended along the same lines by considering the following
Lyapunov function which accounts for the zero-area con-
straint:

J lc(t) = 〈ψ(t)|O(t)|ψ(t)〉 − μA(t)2, (13)

where O is any operator such that

i
d

dt
O(t) = [H0,O(t)]. (14)

To ensure the monotonic increase of J lc at any time t , i.e.,
J̇ lc > 0, the control field is defined as follows:

E(t) = η[−i〈ψ(t)|(O,H1)|ψ(t)〉 − 2μA(t)], (15)

where η is a positive parameter used to limit the amplitude
of E(t). We will also use the parameter μ̃ = ημ in the
following. Finally, note that the two proposed optimization
procedures can only reduce the time-integrated area without
completely removing it. A filtering process can further be used
to accurately design a zero-area field.

III. CONTROL OF MOLECULAR ORIENTATION

This section is devoted to the control of the orientation
dynamics of polar diatomic molecules [39,47–55] with the
constraint of zero-area fields. The two different approaches
introduced in Sec. II will be considered and discussed. We
introduce a family of pulses characterized by a closed-loop
expression depending on two parameters, which can be

adjusted to enhance the degree of orientation. A second option
is based on the optimization algorithms of Sec. II, which
enforce the zero-area constraint through a Lagrange multiplier.
No analytic expression of the optimal field can be derived in
this case.

A. Description of the model

We consider a molecule described in a rigid-rotor approxi-
mation interacting with E(t), a linearly polarized electromag-
netic pulse along the z axis of the laboratory frame. The
electric field is assumed to be in the THz regime. The CO
molecule in its ground vibronic state is used as an illustrative
example. At zero temperature, the dynamics is governed by the
time-dependent Schrödinger equation (9), where, in a linear
approximation, H0 = BJ 2 and H1 = −d cos θ . The parameter
B is the rotational constant of the molecule, J 2 is the angular
momentum operator, and d is the molecular permanent dipole
moment. The spatial position of the diatomic molecule is
given in the laboratory frame by its spherical coordinates
(θ,φ), with θ being the angle between the molecular axis
and the polarization vector and φ the corresponding azimuthal
angle. The Hilbert space associated with the dynamical system
is spanned by the spherical harmonics |j,m〉, with 0 � j

and −j � m � j . We also recall that, due to the cylindrical
symmetry of the problem, the projection m of the total angular
momentum on the field polarization axis is a good quantum
number, so that H (t) does not depend on the angle φ. When
the laser is switched on at t = 0, the initial condition is
given by |ψ0〉 = |0,0〉. The expectation value 〈cos θ〉(t) =
〈ψ(t)| cos θ |ψ(t)〉 is usually taken as a quantitative measure
of orientation.

In the nonzero-temperature case, the time evolution of the
molecular system is described by the density operator ρ(t)
solution of the von Neumann equation:

i
∂ρ(t)

∂t
= [H (t),ρ(t)]. (16)

The initial condition is a Boltzmann distribution at temperature
T , and the degree of orientation is given by the expectation
value expressed in terms of ρ(t): 〈cos θ〉(t) = Tr[ρ(t) cos θ ].
Numerical values of the molecular parameters are taken as B =
1.9312 cm−1 and d = 0.044 a.u. The rotational period Tper is
of the order of 8.64 ps, or 3.57 × 105 a.u. In the numerical
computations, the maximum number of populated j levels is
of the order of 12.

B. Control at zero temperature

We first consider a class of pulses characterized by a closed-
form expression in order to maximize the molecular orientation
of the CO molecule at zero temperature. The electric field of
this family can be written as follows [51]:

E(t) = E0 cos2

(
π

t

δ

)
sin(2πf t),t ∈ [−δ/2,δ/2],

(17)
E(t) = 0,t /∈ [−δ/2,δ/2],

where E0 is the pulse amplitude, δ is its duration, and f

is its carrier wave frequency. It is straightforward to check
that for any values of δ and f , E(t) actually has a zero
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FIG. 1. (Color online) Orientation efficiency |〈cos θ〉| (vertical
color bar) for the CO molecule as a function of parameters f and
δ, which are defined in Eq. (17). The ellipse indicates the pulse for
which the maximum degree of orientation is achieved.

time-integrated area. The choice of this form is motivated
by the experimental feasibility of such pulses in the THz
regime [28–31,33,34]. We start our analysis with a general
study of the degree of orientation that can be achieved within
this class of fields. The field amplitude is fixed and corresponds
to a peak intensity of 20 TW/cm2, while parameters δ and f

belong to the intervals [0.12Tper ,0.25Tper ] and [0.5,3] THz,
respectively. The maximum orientation achieved during the
field-free evolution is indicated in Fig. 1 by a circle. We
observe that the global degree of orientation is generally low,
except for a zone of high orientation around f = 1 THz and
δ = 0.15Tper . The maximum of |〈cos θ〉| obtained is of the
order of 0.88 for f = 0.7 THz and δ = 0.14Tper . The size of
the high-orientation region shows the robustness of the control
pulse with respect to experimental imperfections while setting
parameters δ and f .

In the second step of the investigation, we use the best
control field derived from the results of Fig. 1 as a guess field
for the optimal control algorithm. To be applied, this algorithm
requires the definition of a target state. Here, we introduce the
target operator T , defined as

T = e−iH0τ cos θeiH0τ , (18)

where τ is taken as the delay between the end of the guess
pulse and the time where |〈cos θ〉|(t) reaches its first maximum
during the field-free evolution of the system. Figure 2 displays
the time evolution of 〈cos θ〉(t) and gives the definition of
the time τ . Figure 2 also illustrates how τ is chosen. In
numerical calculations, the intensity of the guess field and
the parameter λ are fixed to 20 TW/cm2 and 1, respectively,
for the optimizations with and without zero-area constraint.
The delay τ in Eq. (18) is set to 0.95Tper. The dynamics
under the optimized fields is shown in Fig. 3(a), which
compares the effect of standard and zero-area constraint
algorithms. Figure 3(b) shows the guess and the optimized
fields with and without the zero-area constraint. Note that
the global shape of the two optimized fields is similar to
the guess field, except for a small oscillatory behavior. The
optimized pulse without the zero-area constraint leads to
a higher orientation (max |〈cos θ〉| ≈ 0.906) than the pulse
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FIG. 2. (Color online) Time evolution of 〈cos θ〉 induced by the
guess field. The time τ is given by the relation τ ≈ 0.95Tper.

with the zero-area constraint (max |〈cos θ〉| ≈ 0.904), but the
time-integrated area is divided by a factor 60 in the second case,
going from −20.57 to −0.36 a.u., which supports experimental
feasibility. The very good orientation achieved demonstrates
the efficiency of the optimal control algorithms, even if the area
of the field is no longer strictly zero. As expected, we observe
in Fig. 3(c) that the Fourier transform of the three fields is equal
or nearly equal to zero at ω = 0. Since the optimized fields are
very close to the guess pulse, their Fourier transforms show
similar features. However, the optimization slightly shifts the
Fourier transform towards high frequencies.
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FIG. 3. (Color online) (a) Time evolution of 〈cos θ〉 for μ = 0
(optimization without zero area; thin blue solid line) and for μ �=
0 (thick black solid line; μ = 1.0 10−4 a.u.). The red dashed line
represents the orientation dynamics induced by the initial guess field.
(b) and (c) Corresponding control fields and their Fourier transform.
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FIG. 4. (Color online) Same as Fig. 3, but for the nonzero-
temperature case.

C. Control at nonzero temperature

The efficiency of the zero-area constraint algorithm is also
checked for the CO molecule at nonzero temperature. This is a
much more difficult task than controlling the orientation at zero
temperature. We discuss only the case of a long optimization
time, tf = Tper. We have considered as the initial field a
closed-form expression with zero area, which can be written
as the sum of three Hermitian polynomials [see Fig. 4(b) for a
representation of this pulse]. We have changed the maximum
intensity from 20 to 2 TW/cm2. The parameters λ and μ are
set to 20 and 1.8 10−4 a.u., respectively. The temperature is
fixed to 30 K. Figure 4(a) displays the time evolution of the
expectation value of cos θ induced by the guess and optimized
fields. The dynamics under the optimized fields have similar
features but are very distinct from the one induced by the
guess field. Figure 4(b) compares the corresponding optimized
fields together with the guess field. As could be expected, the
optimized fields show similar features. In this example, the
area of the optimized field with the zero-area constraint is two
orders of magnitude smaller than the one obtained without
the zero-area constraint. This is a remarkable result since the
time-integrated area is largely reduced while a satisfactory
orientation of the order of 0.2 is preserved. The price to pay
for increasing the final degree of orientation can be seen in the
Fourier transform of the optimized pulses, which have a much
more complicated structure with an oscillatory behavior at
low frequency. These additional low frequencies found by the
algorithm correspond to the slow oscillations of the optimized
fields which appear after t/Tper > 0.25. By filtering out such
oscillations, we have checked that this oscillatory behavior is
essential to produce a high degree of orientation. Following
Ref. [56], we observe that the low-frequency distribution of
the optimized field coincides with the rotational resonance
frequencies. This suggests an interpretation of the origin of the
oscillatory behavior and a possible control mechanism based
on the excitation of these different frequencies.

IV. CONTROL OF MOLECULAR
PHOTOFRAGMENTATION

Another important application of local and optimal control
strategies is illustrated for molecular photodissociation.

A. Model system

Due to the short duration of the pulses (compared with
the rotational period) a frozen rotation approximation is valid.
In addition, the molecule is assumed to be prealigned along
the z direction of the laboratory frame. Therefore, the diatomic
system is described by its reduced mass m and the internuclear
distance R. We aim at controlling the photodissociation of
HeH+ through the singlet 1� excited states, leading to a
He∗ fragment in the n = 2 shell. We shall consider only
parallel transitions among the singlet 1� states induced by
the dz dipole operator assuming the internuclear axis points
along the z direction. The adiabatic potential-energy curves,
the radial nonadiabatic couplings Fij = 〈�a

i |∂/∂R|�a
j 〉, and

the adiabatic transition elements Ma
ij (R) of the dz dipole

operator have been computed in Ref. [57]. Figure 5(a)
displays the adiabatic potential-energy curves. The partial
photodissociation cross sections computed in Ref. [58] are
displayed in Fig. 5(b).

Dynamics is performed in the diabatic representation
obtained from the adiabatic-to-diabatic transformation matrix
D, which has been derived by integrating ∂D/∂R + FD =
0 from the asymptotic region where both representations
coincide. The total Hamiltonian introduced in Eq. (9) involves

H0 =
N∑

i,j=1

∣∣�d
i

〉[
T δij + V d

ij (R)
]〈
�d

j

∣∣ (19)

FIG. 5. (Color online) (a) Adiabatic potential-energy curves of
the 1� states of HeH+ leading to fragments in the n = 2 shell.
The target states are H+ + He(1s2s) (green dashed line), H+ +
He(1s2p) (red long-dash-dotted line). (b) Partial photodissociation
cross sections together with an enlargement given in the inset. The
legend is the same as in (a).
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and

H1 = −
N∑

i,j=1

∣∣�d
i

〉
Md

ij (R)
〈
�d

j

∣∣, (20)

where V d
ij (R) are the potential matrix elements obtained by

diabatization of the adiabatic potential energies using the
transformation matrix D. The parameter N is the number of
diabatic electronic states |�d

i 〉 under consideration, and T =
−(1/2m)∂2/∂R2. Md

ij (R) are the diabatized dipole transition
matrix elements. The initial state |ψ0〉 is the lowest vibrational
state of the ground electronic adiabatic state.

B. Dissociation control

The goal is to enhance the yield in He∗, n = 2 shell
through the dissociation channels leading to He∗(2s) or to
He∗(2p) [59]. These two target asymptotic states are denoted
by |�a

3〉 (Fig. 5, green dashed curve) and |�a
5〉 (Fig. 5, red

long-dash-dotted curve). In a first attempt we use a zero-area
Gaussian pulse with a carrier frequency chosen from the
photodissociation cross-section maximum. We limit the total
integrated intensity for further comparison with the OCT
strategy. The yields remain very weak, of the order of only 3%,
close to the value predicted by the fragmentation cross section.
We then examine the efficiency of the zero-area constraint
in both the local and optimal control approaches. The local
control can be considered to be a very interesting first step
before using OCT. In the presence of nonadiabatic interactions,
the operator O referred to in Eq. (13) must be chosen carefully
since it has to commute with the field-free Hamiltonian H0

[see Eq. (14)]. The projectors on adiabatic and diabatic states
are thus not appropriate in LCT since they do not commute
with this Hamiltonian due to kinetic and potential couplings,
respectively [59]. This crucial problem can be overcome by
using projectors on eigenstates of H0, i.e., on scattering states
correlated with the controlled exit channels. In this example,
the operator O takes the form

O =
∑
p∈S

∫
dk|ξ−

p (k)〉〈ξ−
p (k)|, (21)

where S represents the two channels leading to the
target He∗(2s,2p) fragments, with the objective being
〈ψ(t)|O|ψ(t)〉. The local control field now reads

E(t) = ηIm

⎡
⎣

⎛
⎝∑

p∈S

∫
dk〈ψ(t)|ξ−

p (k)〉〈ξ−
p (k)|dz|ψ(t)〉

⎞
⎠

⎤
⎦

− 2μ̃A(t), (22)

which involves two adjustable parameters, η and μ̃. The
ingoing scattering states |ξ−

p (k)〉 are estimated using a time-
dependent approach based on Møller operators [3] and are
defined by

|ξ−
p (k)〉 = lim

t→∞ eiH0t e−iHf t |p,k〉, (23)

where |p,k〉 is the outgoing plane wave in channel p with
energy k2/2m and Hf is the Hamiltonian operator of the frag-
ments where all couplings have vanished asymptotically. This
control strategy remains local in time but can preemptively

FIG. 6. (Color online) (top) Fields obtained using the local and
optimal control of the photodissociation. (a) LCT without filtering
of low frequencies. Thick blue line: without constraint, μ̃ = 0; thin
green line: with zero-area constraint, μ̃ = 0.05 a.u. (b) LCT with
residual filtering. Thin red line: μ̃ = 0 a.u.; thick black line: μ̃ =
0.05 a.u. (c) OCT starting from the local field after filtration [thin
red line in (b)]. Thin red line: μ = 0.2 a.u. (bottom) Evolution of the
objectives during the control for the different strategies. (d) The LCT
objective is the population in the selected scattering states. Thick
blue line: without constraint, μ̃ = 0; thin green line: with zero-area
constraint, μ̃ = 0.05 a.u. (e) Population in the adiabatic target states
during the propagation with the filtered LCT pulses. Thin red line:
μ̃ = 0 a.u.; thick black line: μ̃ = 0.05 a.u. (f) Population in the target
states during the propagation with the OCT pulse. Thin red line:
diabatic representation; thick blue line: adiabatic representation. The
asymptotic values give the He∗(2s,2p) yields.

account for nonadiabatic transitions that occur later in the
dynamics. The photodissociation cross section [58] shows that
there is no spectral range where the He∗(2s,2p) dissociation
channels dominate [see Fig. 5(b)]. The local control without
any constraint (μ̃ = 0) has a very complicated electric field
which begins with a regular oscillatory pattern that is followed,
after 10 fs, by a complex, positive real component shape whose
area is obviously not zero [see thick blue curve in Fig. 6(a)].
This erratic positive structure found in the LCT field can be
interpreted as a Stark field. We therefore choose this example
to check the efficiency of the zero-area constraint algorithm.

We first use the zero-area algorithm with η = 4.2 a.u. and
different values of μ̃ (some examples are given in Ref. [22]).
Figure 6(a) (thin green curve) shows the pulse for μ̃ = 0.05 a.u.
The algorithm efficiently reduces the Stark structure without
completely removing it. The average objective [Eq. (21)] for
the two cases without (thick blue curve) and with (thin green
curve) the area constraint are displayed in Fig. 6(d). The
objective is divided by about 2/3. As shown in Ref. [22],
increasing μ̃ to continue to reduce the Stark component
decreases the objective so that a compromise has to be found.
A complementary brute force strategy consists of removing
the main part of the Stark component by filtration of near-zero
frequencies. Starting from the initial LCT pulse, this already
provides a large correction to the nonvanishing area. The field
after filtration of the low frequencies is shown in Fig. 6(b) (thin
red curve). To estimate the efficiency of the filtered pulse, we
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show the occupation of the two target adiabatic channels during
the propagation in Fig. 6(e) (thin red curve). The final value of
3.75% is notably lower than the asymptotic value of the local
objective 8.55% [thick blue curve in Fig. 6(d)]. Figure 6(b)
(thick black curve) shows the pulse with μ̃ = 0.05 a.u.
after a subsequent filtering of the low-frequency components
[compare with the thin green curve in Fig. 6(a)]. The resulting
regular profile confirms the efficiency of this mixed strategy.
The population in the selected adiabatic channels with this
filtered pulse is the thick black curve in Fig. 6(e). The price
to pay for reducing the pulse area is always a decrease in the
target yield, but the best compromise is obtained when using
both the area constraint algorithm and residual filtering.

In the second step, we explore the OCT strategy. Note
that this procedure only refers to the zero-area algorithm
without any subsequent filtration. The yield obtained with
guess Gaussian fields increases only weakly, while better
results are obtained when the trial field is the LCT pulse.
We choose the LCT pulse after filtration [thin red curve in
Fig. 6(b)] as the guess field. Note that the OCT strategy
uses only the zero-area algorithm without any subsequent
filtration. The LCT field can be computed as long as the
components in the excited states have some amplitude in the
range covered by the initial ground vibrational state (roughly
speaking, the Franck-Condon region). This leads to a field
vanishing after about 20 fs. In the global OCT strategy, the field
is optimized for a time which may be longer. This opens the
flexibility to exploit additional transitions towards the target
states. We choose a final time tf = 40 fs. The spatial grid is
calibrated so that the target wave-packet components do not
reach the absorbing potential in the asymptotic region. The
OCT objective is simply built from the projector onto the
diabatic states, and the operator O takes the form

O =
∑
p∈S

∣∣�d
p

〉〈
�d

p

∣∣. (24)

As the objective is defined by the wave packet at the
final time tf , this corresponds to the required optimization
of the decoupled scattering states. At each iteration, the
final condition of the Lagrange multiplier is the asymptotic
components in the target channels and no amplitude in all
the other ones. The parameter λ is chosen automatically by
constraining the integrated intensity to 0.06 a.u. (see Ref. [11]).
The field corresponding to the best μ = 0.2 a.u. is shown in
Fig. 6(c) with a yield reaching 21.54%. As the simulation
is performed in the diabatic basis set, the time evolution of
the objective [see thin red curve in Fig. 6(f)] corresponds
to the population in the sum of these two diabatic channels.
The very strong oscillations reveal that the mechanism found
by OCT in the last step is strongly nondiabatic because the
selected states are coupled with the other states during the
process and decouple only at the end of the control. The
mechanism is simpler in the adiabatic representation, as can
be seen by the evolution of the total population in the two
adiabatic states correlated to the target fragments [thick blue
curve in Fig. 6(f)]. Figure 7 compares the occupation of
the adiabatic electronic states during the propagation with
the guess field [Fig. 7(a)] and the best zero-area criterion
optimal control pulse [Fig. 7(b)]. The increase in the global

FIG. 7. (Color online) (top) Evolution of the adiabatic population
in the different channels during the dissociation of HeH+. (a) Local
control after filtration taken as the guess field for OCT [thin red curve
in Fig. 6(b)]. (b) Optimal control with μ = 0.2 a.u. [thin red curve
in Fig. 6(c)]. The legend is the same for (a) and (b). The target states
are H+ + He(1s2s) (green dashed line) and H+ + He(1s2p) (red
dash-dotted line). (bottom) Spectrograms of the fields. A color code
with an arbitrary unit is given in (c) and (d) to estimate the relative
intensities.

target in OCT mainly comes from the enhancement of
|�a

3〉(He*2s) (dashed green curve). OCT also reduces the
unwanted transitions towards all other channels. The bottom
panels in Fig. 7 show the spectrograms of the filtered LCT
and OCT fields. The main operating frequency of the local
field corresponds to that predicted by the photodissociation
cross section (at about 1.3 a.u.) for maximizing both channels.
The inset in Fig. 5(b) shows that this frequency corresponds
to the maximum yield for the fragment |�a

3〉(He*2p). The
additional mechanism due to a nonoptical Stark effect is
thus suppressed by filtering very low frequencies. The OCT
field first uses a low-frequency component centered at about
0.8 a.u. This frequency favors channel |�a

3〉(He*2s), which
explains the steep increase in that population and the vanishing
influence of channel |�a

5〉(He*2p). The |�a
2〉 channel is also

more involved. After 20 fs, when the wave packet is out of
the Franck-Condon region, one observes a new mechanism
proceeding via transitions between the target and the |�a

4〉
and |�a

5〉 channels. These transitions require lower frequencies
(about 0.3 a.u.), corresponding to the gap between the states
[see Fig. 5(a)].

V. CONCLUSION

After discussing the physical origin of the time-integrated
zero-area constraint on the laser control of molecular dy-
namics, we showed that this fundamental requirement can be
included in the standard optimization computational schemes.
A detailed description of the dynamics achieved with such
zero-area control fields is given and applied to two specific
examples of molecular dynamics, namely, the control of
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molecular orientation and that of molecular fragmentation.
Very encouraging results have been obtained even in the
case of complicated quantum systems. In particular, we have
derived, for molecular orientation, a closed-form expression
of the control field depending on only two free parameters.
The zero-area constraint is satisfied for any value of these
parameters. At zero temperature, this approach proves to be
very efficient even when compared with the optimal solution.
However, we have observed that the modified optimal control
algorithm used in this work remains the best tool to handle
more involved control problems, which cannot be solved by
LCT or analytical fields with sufficient efficiency.

This work and the possibility of including experimental
constraints in optimal control algorithms pave the way for

future experimental implementations in quantum control. In
other words, such results help bridge the gap between control
theory and control experiments.
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