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Introduction

Micro-organisms are the richest source of novel bioac-

tive compounds. Historically, most bioactive microbial

products have been obtained from two taxonomic

groups (actinomycetes and filamentous fungi) and

mainly from terrestrial habitats. In recent decades, the

diffusion of bacterial resistance to antibiotics has stimu-

lated the exploration of new environments and the

screening of less exploited microbial groups endowed

with a more versatile secondary metabolism such as

myxobacteria (Gaspari et al. 2005) and cyanobacteria

(Burja et al. 2001). To achieve this, the development of

specific isolation and cultivation methods and the

opportunity to access geographically diverse sampling

areas and different ecological niches are of fundamental

importance. In this context, a joint academic and indus-

trial research project [MICROMAT EU Project BIO4-98-

0040 (http://www.nerc-bas.ac.uk/public/mlsd/micromat)]

was carried out aimed at the characterization and

Keywords

Antarctic lakes, antibiotics, antitumours,

bioactivity, cyanobacteria, mass cultivation,

microbial mats, screening.

Correspondence

Mario R. Tredici, Dipartimento di

Biotecnologie Agrarie, Piazzale delle Cascine

24, 50144 Firenze, Italy.

E-mail: mario.tredici@unifi.it

2007 ⁄ 1033: received 2 July 2007, revised 10

December 2007 and accepted 10 December

2007

doi:10.1111/j.1365-2672.2007.03716.x

Abstract

Aims: To exploit the cyanobacterial diversity of microbial mats growing in the

benthic environment of Antarctic lakes for the discovery of novel antibiotic

and antitumour activities.

Methods and results: In all, 51 Antarctic cyanobacteria isolated from benthic

mats were cultivated in the laboratory by optimizing temperature, irradiance

and mixing. Productivity was generally very low (£60 mg l)1 d)1) with growth

rates (l) in the range of 0Æ02–0Æ44 d)1. Growth rates were limited by photosen-

sitivity, sensitivity to air bubbling, polysaccharide production or cell aggrega-

tion. Despite this, 126 extracts were prepared from 48 strains and screened for

antimicrobial and cytotoxic activities. Seventeen cyanobacteria showed antimi-

crobial activity (against the Gram-positive Staphylococcus aureus, the filamen-

tous fungus Aspergillus fumigatus or the yeast Cryptococcus neoformans), and 25

were cytotoxic. The bioactivities were not in accordance with the phylogenetic

grouping, but rather strain-specific. One active strain was cultivated in a 10-l

photobioreactor.

Conclusions: Isolation and mass cultivation of Antarctic cyanobacteria and LC-

MS (liquid chromatography ⁄ mass spectrometry) fractionation of extracts from

a subset of those strains (hits) that exhibited relatively potent antibacterial

and ⁄ or antifungal activities, evidenced a chemical novelty worthy of further

investigation.

Significance and impact of the study: Development of isolation, cultivation

and screening methods for Antarctic cyanobacteria has led to the discovery of

strains endowed with interesting antimicrobial and antitumour activities.
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biotechnological exploitation of the metabolic diversity

of bacteria and fungi living in microbial mats at the

bottom of Antarctic lakes (Tindall et al. 2000; Brambilla

et al. 2001; Van Trappen et al. 2002; Taton et al. 2003,

2006a,b; Marinelli et al. 2004). Antarctica is the coldest

and windiest continent; it is remote, hostile and unin-

habited and it offers, as well as its surrounding seas, a

unique opportunity to investigate and exploit the bio-

diversity of unexplored microbial communities (Tindall

2004). The extreme climate of Antarctica has favoured

the evolution of indigenous species and novel biochemi-

cal adaptations. The Antarctic benthic mats, which have

accumulated for thousands of years virtually undis-

turbed, due to the extreme climatic conditions and the

absence of higher metazoans, are dominated by cyano-

bacteria, including many taxa that have never been iso-

lated and ⁄ or cultivated before. In these dense microbial

communities, the production of antibiotics and toxins

may confer a competitive survival advantage (Wiegand

and Pflugmacher 2005). Although the search for bioac-

tive products (i.e. antitumour, antifungal, antibacterial

and antiviral molecules) from cyanobacteria has intensi-

fied during the last few decades (Burja et al. 2001,

2003), to our knowledge, this is the first report on mass

cultivation and pharmaceutical screening of a significant

number of Antarctic cyanobacteria. The work aimed at

an industrially oriented characterization of the isolated

cyanobacteria by testing their bioactivities with the vali-

dated protocols of a pharmaceutical company, and by

evaluating their growth capacity in order to select strains

which, besides interesting bioactivities, were endowed of

a good mass cultivation potential, necessary to produce

high amounts of bioactive biomass.

Materials and methods

Strain isolation and characterization

Fifty-nine cyanobacterial strains were isolated from 27

benthic microbial mat samples (Fig. 1) collected during

the Antarctic summers 1997–1998 and 1998–1999 from

23 lakes and ponds in the Larsemann Hills, Bølingen

Islands, Vestfold Hills, Rauer Islands and the McMurdo

Dry Valleys. Isolation methods and morphological-

molecular characterization of these strains have been

described in detail elsewhere (Taton et al. 2006b). From

the molecular analysis, several OTUs (Operational Taxo-

nomic Unit) were defined as groups of partial 16S

rRNA gene sequences that exhibit more than 97Æ5%

similarity, using the Escherichia coli positions 405–780,

not taking into account indels and ambiguous bases

(Stackebrandt and Goebel 1994; Taton et al. 2003,

2006a).

Mass cultivation

Fifty-one out of the 59 isolates were mass cultivated in

the laboratory to obtain sufficient biomass for bioactivity

screenings. The remaining eight strains grew too slowly to

allow mass cultivation during this project. The 51 strains

were cultivated in batch under sterile conditions in 500–

1100 ml glass tubes bubbled with air ⁄ CO2 (98 ⁄ 2, v ⁄ v) or

in 1000 ml Erlenmeyer flasks (400 ml culture volume)

kept in an orbital shaker flushed with air ⁄ CO2 (95 ⁄ 5,

v ⁄ v). Continuous light was provided by daylight fluores-

cent tubes (Osram Lumilux L 58W) and its intensity ran-

ged from 10 to 30 lmol photons m)2 s)1, except for few

strains which were cultivated at about 90 lmol photons

m)2 s)1. PAR (Photosynthetic Active Radiation) irradi-

ance was measured using an Li185A quantum meter

equipped with an Li190SB cosine quantum sensor

(Li-Cor, Lincoln, NE, USA). Temperature was maintained

at 20 ± 2�C for all the cultures. Freshwater cyanobacteria

were cultivated in BG11 (Rippka et al. 1979) or BG11

without NO3
) (BG110), added with NaHCO3 (0Æ5%) as a

Figure 1 Mat from a lake in the Larsemann Hills showing a finely

laminated structure that has accumulated over several thousand years.

Microbial mats were collected using a gravity corer with a clear plastic

core tube. Samples for cyanobacteria isolation, mass cultivation and

screening were taken from the living surface layer of the mat.

Screening of Antarctic cyanobacteria N. Biondi et al.
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buffer. ASNIII (Waterbury and Stanier 1981) at half con-

centration was used for strains isolated from saline lakes.

Bacterial contamination of the cultures was evaluated by

observation using an optical microscope. Biomass was

harvested at the end of the linear growth phase by filtra-

tion on a nylon net and carefully washed with saline solu-

tion (1 g l)1 for cultures in BG11 and 4 g l)1 for those in

half strength ASNIII) under vacuum. Contamination was

very low and was significantly reduced after the washing.

When high amounts of polysaccharide were produced,

harvesting was carried out by centrifugation. Part of the

harvested biomass was dried in a stove at 100�C to con-

stant weight in order to determine its water content and

calculate the productivity (mg l)1 d)1) on the basis of the

dry weight. The productivity was calculated as the bio-

mass concentration increase from inoculum to harvesting

time (end of the linear growth phase). At 20–22�C, three

strains did not grow; for 15 strains it was possible to

perform only one batch. From three to six batches were

carried out for 16 strains and 8–12 batches for the

remaining 17 strains. The productivity was calculated as

the mean of the productivities obtained in the different

batches. The coefficient of variation was used to evaluate

the variability in productivity.

In order to obtain a larger amount of biomass and fur-

ther characterize the active molecule of one of the

selected hits (ANT.L52.6), the cyanobacterium was mass

cultivated in a 10-l photobioreactor constituted by a glass

cylinder of 10 cm diameter and 1Æ5 m height, illuminated

by daylight fluorescent tubes (at about 30 lmol photons

m)2 s)1). The culture was bubbled with an air ⁄ CO2 mix-

ture (98 ⁄ 2, v ⁄ v) provided through a gas diffuser placed at

the bottom of the reactor. Temperature was kept at 18–

20�C. The culture was carried out in semi-continuous

conditions for 88 days with a harvest rate of 40–50%

every 2 weeks.

Extract preparation

Five different extraction protocols were set up on the

basis of biomass availability, but also considering techni-

cal drawbacks and indications obtained from the preli-

minary results with the extracts already processed

(Table 1). Ethyl acetate extraction (48 strains) was always

performed and it was preferred to methanol extraction

(36 strains), as the resulting extract was less turbid and

required less manipulation before the bioactivity tests. For

the last group of 13 strains (see Table 1), thawing water

(already obtained from 35 strains) was not produced and

biomass was lyophilized.

To prepare the extracts, 1 g of biomass (dry weight)

was extracted in 50 ml of solvent overnight. The suspen-

sion was then filtered on paper and the solvent evapo-

rated under vacuum. When thawing water was obtained

from frozen material, the water derived from 1 g of bio-

mass (dry weight) was frozen again, lyophilised and

extracted with 50 ml of methanol (Biondi et al. 2004).

Finally, all the dry residues were re-dissolved in

DMSO : H2O 1 : 9 (v ⁄ v) in a proportion of 2 ml per

gram of biomass extracted. When £0Æ5 g of biomass were

extracted a proportion of 5 ml g)1 was used.

Screening for antimicrobial activities

Procedures used for the antimicrobial screening by mi-

crotiter assay in liquid have been previously described

(Gaspari et al. 2005). The following human pathogens

were used as target organisms: Staphylococcus aureus

Table 1 Scheme of the extraction protocols applied to the biomasses of the cultivated cyanobacterial strains

Method

no.

No. strains

extracted Biomass treatment Scheme of the extraction

1 14 Frozen, then thawed obtaining thawing

water and thawed biomass

1 g biomass in ethylacetate

1 g biomass in methanol

Lyophilised thawing water from 2 g of biomass in methanol

2 11 As in method 1 1 g biomass in ethylacetate

Lyophilised thawing water from 1 g of biomass in methanol

3 7 As in method 1 0Æ5 g biomass in ethylacetate

Successively, the same biomass in methanol

Lyophilised thawing water from 0Æ5 g biomass in methanol

4 4 As in method 1 2 g biomass in methanol

Successively, the same biomass in ethylacetate

Lyophilised thawing water from 2 g biomass in methanol

1 g biomass in ethylacetate

5 13 Lyophilised 0Æ2 to 0Æ8 g biomass in ethylacetate

Successively, the same biomass in methanol
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ATCC 6538 and Aspergillus fumigatus ATCC 90112 from

the American Type Culture Collection; E. coli L 47 and

Candida albicans L 145 from the Lepetit Culture Collec-

tion c ⁄ o Vicuron Pharmaceuticals, Gerenzano, Varese,

Italy; Cryptococcus neoformans IUM 94698 from the

collection of the Istituto di Igiene, Università di Milano,

Italy. Staph. aureus and E. coli were cultivated in cation-

adjusted Mueller Hinton broth (CAMHB, Difco) and C.

albicans, A. fumigatus and C. neoformans in antibiotic

medium no. 3 + 2% glucose (AM3, Difco). 1 · 104 CFU

or conidia ml)1 of each strain were inoculated into 90 ll

of appropriate culture broth added to 40 ll of the cyano-

bacterial extract to be screened. Incubation time was

18–24 h, except for C. neoformans and A. fumigatus

(48 h). Incubation was carried out under aerobic condi-

tions at 35�C, except for A. fumigatus (30�C). Optical

density at 620 nm was measured to detect pathogen

growth inhibition. One point test was used to select the

‘active’ strains, i.e. those inhibiting more than 80% of the

pathogen growth in comparison with the control (set as

100%) when only DMSO ⁄ H2O was added to the patho-

gen inoculum. The broth micro-dilution method was

used to confirm positive broths and to assay their potency

(Gaspari et al. 2005). The activity is expressed as grams of

extracted biomass (dry weight) necessary to inhibit the

growth of the target organism in 1 l of inoculated

medium of at least 80% compared to the control (Biondi

et al. 2004).

Cytotoxic assay

Human cervix epitheloid carcinoma cells (HeLa cells),

obtained from the Istituto Zooprofilattico di Brescia,

Italy, were continuously cultured in a complete medium

(RPMI 1640 supplemented with 10% foetal calf serum,

Penicillin 100 units ml)1 and Streptomycin 100 lg ml)1)

at 37�C and 5% CO2 and split at confluence using tryp-

sin. Cells for testing were seeded in microtiter plates at

a density of 105 cells per well. 90 ll of complete med-

ium plus 10 ll of the cyanobacterial extract or control

DMSO ⁄ H2O solutions were added. Plates were incubated

at 37�C and 5% CO2 for 24 h. The cells were then

washed with 200 ll per well of a phosphate buffer solu-

tion at pH 7Æ3 and pulsed for 4 h with 3H-thymidine

0Æ1 lCi (Amersham TRK61) in 100 ll per well of

complete medium without serum. Cells were trypsinized

and harvested on a glass fibre filter with a semi-auto-

mated cell harvester (Wallac, Gaithersburg, MD, USA).

The incorporated radioactivity was measured using a

Betaplate scintillation counter (Wallac). Those samples

able to inhibit 40% cell thymidine uptake relative to

the control were flagged as cytotoxic. The broth micro-

dilution method was used to confirm positive broths

and to assay their potency (Marinelli et al. 2004; Gaspari

et al. 2005).

The activity is expressed as the concentration of

extracted biomass (dry weight) necessary to inhibit 40%

cell thymidine uptake relative to the control.

Liquid chromatography and mass spectrometry of active

fractions

Extracts were fractionated by high performance liquid

chromatography (HPLC) using a Waters Chromatograph

(Milford, MA, USA) on a Waters Simmetry-shield C18,

5 lm (250 · 4Æ6 mm) eluted at 1 ml min)1 flow rate at

room temperature. Elution followed a linear gradient from

9% to 85% of phase B in 28 min and isocratic at 85% for

the last 4 min. Phase A was acetonitrile: 20 mM ammo-

nium formate buffer pH = 4Æ5, 5 : 95 v ⁄ v, and phase B was

acetonitrile (HPLC grade). Detection was performed by a

photodiode array from 220 to 600 nm and by mass spec-

trometer. The eluent from the column was split in a ratio

10 : 90 and the larger amount (about 900 ll min)1) was

diverted to an ultraviolet detector and then collected in a

microtiter support for further assays (1 min collection for

each testing tube: 32 tubes). The remaining 100 ll min)1

were diverted to the ESI interface of the ion trap mass spec-

trometer (ThermoQuest, Finningan MAT, San Jose, CA,

USA). Mass spectrometric analysis was performed under

the following conditions. Sample inlet: sheath gas (nitro-

gen) 60 psi; auxiliar gas (nitrogen) 5 psi; capillary heater

210�C. Sample inlet voltage setting: polarity both positive

and negative; ion spray voltage ±5 kV; capillary voltage

±19 V. Scan conditions: maximum ion time 200 ms; ion

time 5 ms; full microscan 3; scan range: 150–2000 m ⁄ z,

both positive and negative polarity. Duration of acquisi-

tion: 29 min (from minute 3 to minute 32 of the chro-

matographic analysis). Bioautographies of the HPLC

fractions were performed with test organisms in liquid

microtiter plate assay as described above.

Results

Growth features of Antarctic cyanobacteria

The growth of the 51 isolates was tested at three different

temperature ranges: 7–10, 20–22 and 28–30�C. At 7–

10�C, all the strains were able to grow, but at very low

rates. This temperature range was adopted for mainte-

nance. At 20–22�C, 48 out of the 51 strains were able to

grow, and sufficient biomass for bioactivity assays could

be produced. Three did not grow, but remained alive. At

28–30�C, most of the strains died.

Table 2 reports the description of the 51 cyanobacterial

strains for which laboratory mass cultivation was

Screening of Antarctic cyanobacteria N. Biondi et al.
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attempted. On the basis of the morphological character-

ization previously reported (Taton et al. 2006b), ca 80%

of the strains belong to the Oscillatoriales and ca 20% to

the Nostocales. Within the Nostocales, six strains were

assigned to the genus Nostoc and five to the genus Calo-

thrix. Oscillatorian strains were assigned to six morpho-

species, defined in agreement with Komárek and

Anagnostidis (2005). Three of them (Phormidium priest-

leyi, Leptolyngbya frigida, Leptolyngbya antarctica) were

considered as endemic to the Antarctica by Komárek

(1999). Sequencing of 16S rRNA gene led to the assign-

ment of the 51 strains to 17 OTUs previously described

(Taton et al. 2006b). As shown in Table 2, oscillatorian

species are grouped in 14 OTUs (from 16ST01 to

16ST14), which include six novel (at least 2Æ5% dissimi-

larity with the sequences deposited in databases) and

three exclusively Antarctic (sequences already found, but

only in Antarctic samples) OTUs. All Nostoc strains

belong to the 16ST16 OTU. Within the Calothrix genus,

two strains were assigned to different OTUs, of which

one was considered as novel. We were unable to obtain

the sequences of the three remaining isolates.

At 20–22�C, 13 classes of biomass productivity of

10 mg l)1 d)1 range each were recognized. Most of the

strains (43 out of 48) attained a productivity lower than

60 mg l)1 d)1. Only one strain produced more than

120 mg l)1 d)1. The variability of productivity among the

batches was in general very high, with a coefficient of var-

iation ranging from 40% to 100% (see Table 2). There

was a certain relationship between productivity and OTU

assignment. All the most productive strains belonged to

the same oscillatorian OTU (16ST01New), whereas many

of the less productive strains, were grouped in the oscilla-

torian 16ST11Ant OTU. Two strains of the 16ST11Ant

OTU (ANT.LWA.1 and ANT.LWAV6.1) together with

the other endemic L. antarctica ANT.BFI.1 (16ST13Ant),

even if viable, did not grow in any of the conditions

tested at 20–22�C.

One common feature which limited growth of many of

the less productive isolates was their inability to grow at

high irradiance (photosensitivity) (Table 2). At 40 lmol

photons m)2 s)1, 10 strains (eight Oscillatoriales belong-

ing to different OTUs and two Nostocales), showed

strong depigmentation followed by death and were con-

sidered photosensitive. When cultivated at 30 lmol pho-

tons m)2 s)1, their productivity was lower than 40 mg

l)1 d)1. Twenty-three strains (20 Oscillatoriales and three

Nostocales) showed some depigmentation and low pro-

ductivity at irradiances higher than 30 lmol photons

m)2 s)1 and were considered slightly photosensitive.

Fifteen strains (nine Oscillatoriales, one Nostoc and all the

five Calothrix isolates) were not photosensitive. Among

these, four strains of Pseudophormidium sp. belonging to

the 16ST01New OTU could be grown at 90 lmol photons

m)2 s)1 and reached the highest productivities (90–

130 mg l)1 d)1).

Another factor responsible for low productivity was

sensitivity to air bubbling (Table 2): 34 cyanobacteria

grew well with air bubbling, whereas the remaining 14

strains could be grown only with orbital shaking. These

air-bubbling sensitive strains were among the lower pro-

ducers (£10 mg l)1 d)1, in general). Among these, four

strains were assigned to L. frigida and belonged to

16ST07New, 16ST08New and 16ST09New OTUs, other four

to L. antarctica (16ST11Ant) and one to Pseudophormidi-

um sp. (16ST02). None of the Calothrix strains grew

when air-bubbled, but they reached productivities of 20–

30 mg l)1 d)1, when grown with orbital shaking. Other

factors that negatively influenced productivity were the

production of high amounts of polysaccharide, observed

in one Nostoc (16ST16) and in one Leptolyngbya cf. fragi-

lis (16ST02), and the formation of large aggregates, which

very likely reduce light availability to the cells, as in one

P. priestleyi (16ST03New) and in all the strains belonging

to Phormidium murrayi (16ST14) and Calothrix sp.

(Table 2).

Phormidium priestleyi strain ANT.L52.6 (16ST03New)

selected, as reported below, on account of its potent anti-

fungal activity, was cultivated for 88 days in a 10-l photo-

bioreactor in a semi-continuous harvesting regimen and

at an average concentration of 1Æ2 g l)1. The maximum

growth rate and productivity were 0Æ14 d)1, correspond-

ing to a generation time of 5 days, and about 95 mg

l)1 d)1. After 3 months, contamination by a green alga

was observed and thus the whole culture was harvested.

Over the whole cultivation period more than 43 g of

biomass (dry weight) were produced.

Bioactivities of Antarctic cyanobacteria

In all, 126 samples, prepared from 48 cyanobacterial

strains, grown as described above, were assayed against a

panel of human pathogens and for cytotoxicity. Except in

cases of very low productivity, on average, three extrac-

tion methods, two using the biomass and one using the

thawing water (see Materials and Methods and Table 1),

were applied to each strain to favour the recovery of

active metabolites with different molecular weights and

lipo ⁄ hydrophilic properties ⁄ polarities. Ethyl acetate was

found to be the most appropriate solvent to extract

bioactivity from these biomasses (Table 2). For all the

strains, except ANT.L52.6, only one type of extract

resulted active, whereas half of the cytotoxic strains

showed toxicity in more than one type of extract.

Of the 48 strains tested, 17 (35%) were active. Among

them seven showed only antibacterial activity, three only
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antifungal activity and seven both antibacterial and anti-

fungal activity (Table 2). No activity was detected vs the

Gram-negative E. coli and the yeast C. albicans (data not

shown), whereas the frequency of activity against the

Gram-positive Staph. aureus was 29%. The growth of A.

fumigatus and C. neoformans was inhibited by 4% and

20% of the tested strains, respectively. When tested in an

in vitro assay, previously developed for the rapid identifi-

cation of extracts active on cancer mammalian cells

(Marinelli et al. 2004), half of the isolates were found to

be cytotoxic (Table 2). The highest frequency of antimi-

crobial activity was detected in Pseudophormidium sp.

(16ST01New) and P. priestleyi (16ST03New) that belong to

novel OTUs, as well as in Nostoc sp. (16ST16). None of

the strains assigned to Leptolyngbya cf. fragilis (16ST02),

L. frigida (16ST07New, 16ST08New, 16ST09New and

16ST10) and Calotrhix sp. morphospecies appeared to be

microbiologically active. Among the eight L. antarctica

isolates (16ST11Ant, 16ST12), three strains showed anti-

bacterial activity. Four strains belonging to P. priestleyi or

P. murrayi were slightly active vs Staph. aureus, whereas

two (ANT.L52.4 and ANT.L52.6) out of the three P.

priestleyi assigned to the 16ST03New OTU showed potent

antifungal activity (Table 2).

The distribution of cytotoxicity did not correlate with

the pattern of antimicrobial activities.

Eight out of the 17 microbiologically inactive strains of

Leptolyngbya cf. fragilis, L. frigida and Calotrhix sp. were

cytotoxic. Among L. antarctica, only one of the three

strains endowed with antibacterial activity and two

microbiologically inactive isolates produced toxins. On

the other hand, most of the microbiologically active

Pseudophormidium sp. (16ST01New), P. priestleyi

(16ST03New, 16ST04) and Nostoc sp. (16ST16) were also

cytotoxic. As the crude extracts contain a variety of differ-

ent components, at this level of screening it was not pos-

sible to establish if the same or different metabolites were

responsible for the cytotoxic and antibacterial ⁄ antifungal

activities. Thus, preliminary analytical studies were per-

formed with a subset of the strains (hits) that exhibited

relatively potent antibacterial and ⁄ or antifungal activities.

The fractions active against A. fumigatus from the

strains P. priestleyi ANT.L52.4 and ANT.L52.6

(16ST03New) showed very similar chromatographic pro-

files and eluted with the same retention time (from 18 to

19 min), whereas the cytotoxic fraction (present only in

ANT.L52.6) was clearly separated and eluted with a reten-

tion time of 26 min. Table 3 shows the antifungal and

cytotoxic activities of the different fractions from strain

ANT.L52.6, measured as endpoints in the microdilution

method (Gaspari et al. 2005). In the same liquid chroma-

tography ⁄ mass spectrometry system, Pseudophormidium

sp. ANT.LPR.2 (16ST01New), L. antarctica ANT.LG2.3

(16ST11Ant) and Nostoc sp. L34.1 (16ST16) showed that

the fractions active against Staph. aureus eluted with simi-

lar retention times, suggesting that the three strains

produced chemically similar antibacterial compounds.

Cytotoxicity was associated with a peak eluting later on

in the chromatogram, which was present both in Pseudo-

phormidium sp. ANT.LPR.2 and L. antarctica ANT.LG2.3,

but not in Nostoc sp. ANT.L34.1 (data not shown). When

the mass spectra obtained from the peaks corresponding

to the antifungal, antibacterial and cytotoxic activities

from the selected hits so far investigated were compared

with those related to active microbial products stored

either in the Vicuron proprietary database on microbial

products (Lazzarini et al. 2001) or in the commercially

available Dictionary of Natural Products (Anonymous

2003), no known antimicrobial metabolite was identified,

suggesting a chemical novelty at the basis of the activity

of these Antarctic cyanobacteria, which needs to be fur-

ther investigated.

Discussion

Several studies have focused on cyanobacterial diversity in

microbial mats of Antarctic lakes. Nevertheless, the num-

ber of Antarctic cyanobacterial strains available in culture

is limited and little is known concerning their optimum

cultivation conditions, physiology and metabolic diversity.

Following our recent effort to obtain a wide variety of cy-

anobacterial strains from this biota and characterize them

at the morphological and molecular level (Taton et al.

2006b), this study aimed to a first evaluation of their

potential as a novel source of pharmaceutically valuable

compounds. An essential requirement to this end was the

development of cultivation and screening techniques,

Table 3 Activity of the raw methanolic extract of the biomass from

the strain Phormidium priestleyi ANT.L52.6 cultivated in a 10-l photo-

bioreactor and bioautography of HPLC fractions of the extract

Fraction (retention

time in min)

Antifungal activity on

Aspergillus fumigatus*

Cytotoxicity to

HeLA cells�

Raw extract 1 : 256 1 : 40

1–17 <1 : 4 no

18 1 : 4 no

19 1 : 4 no

20–25 <1 : 4 no

26 <1 : 4 1 : 20

27–32 <1 : 4 no

*Antifungal activity is measured as an endpoint in microdilution the

method, i.e. the highest dilution which inhibits 80% of test strain

growth.

�Cytotoxicity is measured as endpoint in microdilution method, i.e.

the highest dilution which inhibits 40% of HeLa cell thymidine

uptake.
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which allowed the identification of strains producing

interesting bioactivities (hits), and the supply of sufficient

material for the biological and chemical characterization

of the active metabolites. In this work, we found that

most of the cyanobacteria isolated from microbial mats in

a variety of Antarctic lakes (Taton et al. 2006b) grew

better around 20�C than at lower or higher temperatures,

confirming the usual psychrotolerant – not psychrophilic

– nature of Antarctic cyanobacterial communities (Sea-

burg et al. 1981; Tang et al. 1997; Tang and Vincent

1999). Despite the mesophilic nature of these organisms,

that allowed to grow them at relatively high temperatures,

productivity was generally very low (£60 mg l)1 d)1) with

growth rates (l) in the range of 0Æ02–0Æ44 d)1, values

similar to those reported for other polar cyanobacteria

(Roos and Vincent 1988; Tang et al. 1997; Tang and Vin-

cent 1999). Photosensitivity partially explained the low

productivity and low growth rate of many strains. In par-

ticular, this was the case for strains isolated from benthic

lacustrine mats under a 8–12 month ice layer and thus

probably adapted to low irradiances (Hodgson et al.

2004). On the contrary, almost all the strains that were

not photosensitive were isolated from lakes with a maxi-

mum depth of less than 1 m (Taton et al. 2003, 2006a),

and hence they were presumably adapted to high irradi-

ances. Other factors limiting productivity depended on

the mode of cyanobacterial growth in mass culture, e.g.

formation of large aggregates, sensitivity to air bubbling,

and production of high amounts of polysaccharide. The

high variability of productivity observed among replicated

cultures of the same strain evidenced a general high sensi-

tivity of these isolates to small variations in the culture

conditions, especially for the polysaccharide-producing

strains. This variability can be partly explained with the

short time elapsed from strain isolation to cultivation,

that could have not allowed the ‘selection’ of the cell

population better adapted to the laboratory conditions.

For these reasons, a clear-cut correlation of growth fea-

tures with morphological and 16S rRNA OTU grouping

was not always traceable. Acclimation to light-limited

culture conditions and cultivation under relatively high

irradiances in photobioreactors of higher volume under

careful control of temperature, irradiance, pH and med-

ium composition are the sequence of steps needed for the

exploitation of selected strains (hits) (Tredici 2004). For

this, one of these hits, P. priestleyi ANT.L52.6, was culti-

vated for 88 days in a 10-l photobioreactor, allowing the

production of more than 40 g of biomass dry weight,

necessary for the further bioactivity characterization. The

maximum growth rate achieved was similar to that

obtained in the smaller reactors, but a higher maximum

productivity was achieved (95 mg l)1 d)1 vs 48 mg

l)1 d)1). However, in a scaling-up perspective, the low

irradiance required by this organism and its low growth

rate that makes it a bad competitor against contaminants,

might severely limit the outdoor cultivation and exploita-

tion of this strain.

In this work, for screening purposes, extraction meth-

ods were devised to process differing amounts of biomass

produced and this allowed a first insight into the meta-

bolic diversity of a relatively large number of cyano-

bacterial isolates from Antarctica. Many of them were

Oscillatoriales and Nostocales belonging to novel or

endemic Antarctic taxa, or showed phylogenetic relation-

ships with other polar cyanobacteria (Taton et al. 2006b).

Burja et al. (2001) reported that 15 Oscillatoriales and 41

Nostocales produced 197 and 126 different bioactive

metabolites, respectively. These two subsections thus

appear as the most metabolically versatile within the

cyanobacteria. The widely represented chemical classes

were lipopeptides, depsipeptides, macrolides, macrocycles,

indoles and alkaloids. In the course of our screening, the

majority of the microbiologically active strains inhibited

a Gram-positive pathogen, whereas no activities were

found against Gram-negative and yeast representatives.

This is in agreement with the few data available in the

literature about antimicrobial activity frequency in cyano-

bacteria screenings (Kreitlow et al. 1999). Cytotoxicity

was common among the cyanobacteria investigated in

this work. As previously reported (Namikoshi and Rine-

hart 1996; Burja et al. 2001), cyanobacteria constitute a

major source of toxins. Alkaloid neurotoxins and the

cyclic peptide hepatotoxins are often produced by cyano-

bacterial water blooms worldwide. Recently some cyto-

toxins have been evaluated as anticancer compounds

(Liang et al. 2005). The pattern of antimicrobial and

cytotoxic activities from our cyanobacterial isolates were

not in accordance with the phylogenetic relationships,

but rather specific to certain strains. This confirms our

previous findings that strains with identical 16S rRNA

sequences isolated either from the same lake or from dif-

ferent lakes may produce different patterns of bioactivity,

or that strains belonging to different morphospecies and

OTUs may produce the same active metabolite (Taton

et al. 2006b). For example, in this work, only two out of

the three P. priestleyi strains belonging to the 16ST03New

OTU inhibited A. fumigatus growth. The two active

strains were isolated from the same lake and exhibited

identical partial 16S rRNA gene sequences (Taton et al.

2006a,b), but only one was cytotoxic. On the contrary, a

similar antibacterial activity was identified in three differ-

ent morphospecies, Pseudophormidium sp., L. antarctica,

and Nostoc sp.

The chemical diversity of the active fractions, as evi-

denced by the mass spectra, of the isolated Antarctic

strains shows the potential of this microbial group and
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confirms the utility of isolating novel strains from pecu-

liar geographical locations before screening for bioactive

compounds.
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