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Abstract

This study addresses the mitigation of a nonlinear resonance of a mechanical
system. In view of the narrow bandwidth of the classical linear tuned vibration
absorber, a nonlinear absorber, termed the nonlinear tuned vibration absorber
(NLTVA), is introduced in this paper. An unconventional aspect of the NLTVA
is that the mathematical form of its restoring force is tailored according to the
nonlinear restoring force of the primary system. The NLTVA parameters are then
determined using a nonlinear generalization of Den Hartog’s equal-peak method.
The mitigation of the resonant vibrations of a Duffing oscillator is considered to
illustrate the proposed developments.
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1 Introduction

With continual interest in expanding the performance envelope of engineering systems,
nonlinear components are increasingly utilized in real-world applications. Mitigating the
resonant vibrations of nonlinear structures is therefore becoming a problem of great prac-
tical significance [1]; it is the focus of the present study. It also represents an important
challenge, because nonlinear systems exhibit rich and complex phenomena, which linear
systems cannot. Specifically, one key characteristic of nonlinear oscillations is that their
frequency depends intrinsically on motion amplitude.

Nonlinear vibration absorbers, including the autoparametric vibration absorber [2, 3], the
nonlinear energy sink (NES) [4, 5, 6, 7, 8] and other variants [9, 10, 11, 12, 13, 14], can
absorb disturbances in wide ranges of frequencies due to their increased bandwidth. For
instance, it was shown that an NES, i.e., an essentially nonlinear absorber, can extract
energy from virtually any mode of a host structure [15]. The NES can also carry out
targeted energy transfer, which is an irreversible channeling of vibrational energy from
the host structure to the absorber [16]. This makes nonlinear vibration absorbers suitable
candidates for vibration mitigation of nonlinear primary structures. However, the per-
formance of existing nonlinear vibration absorbers is known to exhibit marked sensitivity
to motion amplitudes. For instance, there exists a well-defined threshold of input energy
below which no significant energy dissipation can be induced in an NES [5]. Likewise, the
saturation phenomenon — characteristic of autoparametric vibration absorbers — occurs
only when the forcing amplitude exceeds a certain threshold [2].

This paper builds upon previous developments [17, 18] to introduce a nonlinear vibration
absorber for mitigating the vibrations around a nonlinear resonance. The absorber is
termed the nonlinear tuned vibration absorber (NLTVA), because its nonlinear restoring
force is tuned according to the nonlinear restoring force of the host structure. In other
words, we propose to synthesize the absorber’s load-deflection characteristic so that the
NLTVA can mitigate the considered nonlinear resonance in wide ranges of motion ampli-
tudes. In view of the existing literature on nonlinear vibration absorbers, this synthesis
represents an unconventional aspect of this work. Interestingly, this objective is similar in
essence to what was achieved with centrifugal pendulum vibration absorbers in rotating
machinery [19, 20, 21]. Because pendulum absorbers have a natural frequency that scales
with the rate of rotation, they can be tuned over a continuous range of rotor speeds,
e.g., to follow an engine order line. In the same way, Lacarbonara et al. [22] proposed a
carefully-tuned secondary pendulating mass in order to reduce the vibrations of a planar
pendulum in a relatively large interval of disturbance amplitudes. Other studies looked
at the influence of absorber nonlinearity on vibration suppression performance. For in-
stance, two nonlinear damping mechanisms for a tuned mass damper were compared for
the suppression of self-excited oscillations in [23]. Febbo and Machado [24] showed that a
nonlinear absorber with saturable nonlinearity is more effective than a cubic nonlinearity
for vibration mitigation of nonlinear primary oscillators. Finally, Agnes suggested to use
softening (hardening) absorbers in the presence of hardening (softening) primary systems
[25].

Another contribution of this research is to develop a nonlinear generalization of Den
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Hartog’s equal-peak method which is widely used for designing linear vibration absorbers.
The basic idea of the nonlinear tuning rule is to select the nonlinear coefficient of the
absorber that ensures equal peaks in the nonlinear receptance function for an as large as
possible range of forcing amplitudes. We will show that this is only feasible when the
mathematical form of the NLTVA’s restoring force is carefully chosen, which justifies the
proposed synthesis of the absorber’s load-deflection curve.

The paper is organized as follows. Section 2 briefly reviews Den Hartog’s equal-peak
method and revisits the dynamics of the classical linear tuned vibration absorber coupled
to a Duffing oscillator. Section 3 lays down the foundations of the NLTVA by proposing a
tuning rule for the absorber’s restoring force. The NLTVA parameters are then determined
using a nonlinear generalization of Den Hartog’s equal-peak method. The performance of
the absorber is carefully assessed in Section 4 using a Duffing oscillator as host system.
The conclusions of the present study are summarized in Section 5.

2 The linear tuned vibration absorber (LTVA)

2.1 LTVA coupled to a linear oscillator: equal-peak method

The steady-state response of an undamped mass-spring system subjected to a harmonic
excitation at a constant frequency can be suppressed using an undamped linear tuned
vibration absorber (LTVA), as proposed by Frahm in 1909 [26]. However, the LTVA
performance deteriorates significantly when the excitation frequency varies. To improve
the performance robustness, damping was introduced in the absorber by Ormondroyd and
Den Hartog [27]. The equations of motion of the coupled system are

m1ẍ1 + k1x1 + c2(ẋ1 − ẋ2) + k2(x1 − x2) = F cosωt
m2ẍ2 + c2(ẋ2 − ẋ1) + k2(x2 − x1) = 0 (1)

where x1(t) and x2(t) are the displacements of the harmonically-forced primary system
and of the damped LTVA, respectively. Den Hartog realized that the receptance function
of the primary mass passes through two invariant points independent of absorber damping.
He proposed to adjust the absorber stiffness to have two fixed points of equal heights in
the receptance curve and to select the absorber damping so that the curve presents a
horizontal tangent through one of the fixed points. This laid down the foundations of
the so-called equal-peak method. Den Hartog [28] and Brock [29] derived approximate
analytic formulas for the absorber stiffness and damping, respectively. Interestingly, an
exact closed-form solution for this classical problem was found only ten years ago [30]:

λ = ωn2

ωn1
=

√
k2m1

k1m2
= 2

1 + ε

√√√√2
[
16 + 23ε+ 9ε2 + 2(2 + ε)

√
4 + 3ε

]
3(64 + 80ε+ 27ε2)

µ2 = c2

2
√
k2m2

= 1
4

√
8 + 9ε− 4

√
4 + 3ε

1 + ε
(2)
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Figure 1: Illustration of Den Hartog’s equal-peak method, ε = 0.05 and k2 = 0.0454N/m.

where ωn1 and ωn2 are the natural frequencies of the primary system and of the absorber,
respectively, ε = m2/m1 is the mass ratio and µ2 is the damping ratio. For m1 = 1 kg,
k1 = 1N/m and ε = 0.05, the equal-peak method yields λ = 0.952 and µ2 = 0.134, and,
hence, k2 = 0.0454N/m and c2 = 0.0128Ns/m. As illustrated in Figure 1, this tuning
condition minimizes the maximum response amplitude of the primary system. It is still
widely used, as discussed in the review paper [31].

2.2 LTVA coupled to a Duffing oscillator

The primary system considered throughout this paper is a harmonically-forced, lightly-
damped Duffing oscillator. The performance of the LTVA attached to this nonlinear
system is investigated. The augmented equations of motion are

m1ẍ1 + c1ẋ1 + k1x1 + knl1x
3
1 + c2(ẋ1 − ẋ2) + k2(x1 − x2) = F cosωt

m2ẍ2 + c2(ẋ2 − ẋ1) + k2(x2 − x1) = 0 (3)

The parameters are m1 = 1 kg, c1 = 0.002Ns/m, k1 = 1N/m and knl1 = 1N/m3. An
absorber with a mass ratio ε of 5% is considered for obvious practical reasons. Even if
formulas (2) are strictly valid only for an undamped primary system, they are still used
to determine the LTVA parameters in view of the very light damping considered (i.e.,
damping ratio of 0.1%).

Figure 2 shows the displacement response of the primary mass for various forcing am-
plitudes F ranging from 0.001N to 0.07N. Because the dynamics of a nonlinear system
is considered, these curves were computed using a path-following algorithm combining
shooting and pseudo-arclength continuation. The algorithm is similar to that used in [32]
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Figure 2: Frequency response of a Duffing oscillator with an attached LTVA. (a) F =
0.001N; (b) F = 0.02N; (c) F = 0.06N, and (d) F = 0.07N.
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Figure 3: Frequency response of a Duffing oscillator with an attached LTVA (ε = 0.03,
F = 0.035N).
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for the computation of nonlinear normal modes. At 0.001N in Figure 2(a), the system
behaves linearly, and two peaks of equal amplitude can be observed in accordance with
linear theory. When the forcing amplitude is increased, the cubic nonlinearity of the pri-
mary system is activated. At 0.02N, Figure 2(b) shows a slight detuning of the absorber,
but this detuning is not yet too detrimental to absorber performance. At 0.06N in Figure
2(c), the LTVA is no longer effective due to the important difference in the amplitude of
the two resonances. A hardening behavior characteristic of cubic springs with positive
coefficients is also present in the second resonance peak; it indicates that the regime of
motion is no longer weakly nonlinear. When the forcing amplitude increases from 0.06N
to 0.07N, the LTVA becomes completely detuned by the nonlinear effects. The primary
mass displacement increases by a factor of 2 between Figures 2(c) and 2(d), a clear sign
of the absence of superposition principle for this coupled system. Clearly, in view of the
frequency-energy dependence of nonlinear oscillations and of the narrow bandwidth of
the LTVA, this absorber can only be effective in weakly nonlinear regimes of motion.
Moreover, due to the non-uniqueness of nonlinear solutions, additional resonances can
be observed when a LTVA is coupled to a nonlinear system. This is depicted in Figure
3 where a detached resonance curve appears for a lower mass ratio of 3% and a forcing
amplitude of 0.035N.

3 The nonlinear tuned vibration absorber (NLTVA)

In view of the results presented in the previous section, it is meaningful to examine the
performance of nonlinear absorbers for vibration mitigation of nonlinear primary struc-
tures. Roberson was the first to observe a broadening of the suppression band through
the addition of a nonlinear spring that he chose to be cubic for facilitating its practi-
cal realization [33]. However, as pointed out in the introductory section, this increased
bandwidth may come at the price of a marked sensitivity to external forcing amplitude.

To mitigate a nonlinear resonance in an as large as possible range of forcing amplitudes, we
introduce the nonlinear tuned vibration absorber (NLTVA). One unconventional feature of
this absorber is that the mathematical form of its nonlinear restoring force is not imposed
a priori, as it is the case for most existing nonlinear absorbers. Instead, we propose to
fully exploit the additional design parameter offered by nonlinear devices and, hence, to
synthesize the absorber’s load-deflection curve according to the nonlinear restoring force
of the primary structure.

3.1 Synthesis of the nonlinear restoring force of the absorber

The dynamics of a Duffing oscillator with an attached NLTVA as depicted in Figure 4 is
considered:

m1ẍ1 + c1ẋ1 + k1x1 + knl1x
3
1 + c2(ẋ1 − ẋ2) + g(x1 − x2) = F cosωt

m2ẍ2 + c2(ẋ2 − ẋ1)− g(x1 − x2) = 0 (4)
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Figure 4: Schematic representation of an NLTVA attached to a Duffing oscillator.

The NLTVA is assumed to have a generic smooth restoring force g (x1 − x2) with g(0) = 0.
After the definition of the dimensionless time τ = ωn1t, where ωn1 =

√
k1/m1, and the

application of the transformation r(t) = x1(t)− x2(t) yields

x′′1 + 2µ1x
′
1 + x1 + 4

3 α̃3x
3
1 + 2µ2λεr

′ + ε

m2ω2
n1
g (r) = f cos γτ

r′′ + 2µ1x
′
1 + x1 + 4

3 α̃3x
3
1 + 2µ2λ (ε+ 1) r′ + ε+ 1

m2ω2
n1
g (r) = f cos γτ (5)

where prime denotes differentiation with respect to time τ , 2µ1 = c1/(m1ωn1), α̃3 =
3/4knl1/k1, 2µ2 = c2/(m2ωn2), λ = ωn2/ωn1, ε = m2/m1, f = F/k1 and γ = ω/ωn1. We
note that ωn2 is the linearized frequency of the NLTVA.

Expanding g(r) in Taylor series around r = 0 and normalizing the system using q1 = x1/f
and q2 = r/f , we obtain

q′′1 + 2µ1q
′
1 + q1 + 4

3 α̃3f
2q3

1 + 2µ2λεq
′
2 + λ2εq2 + ε

m2ω2
n1

∞∑
k=2

fk−1

k!
dkg

drk

∣∣∣∣
r=0

qk
2 = cos γτ

q′′2 + 2µ1q
′
1 + q1 + 4

3 α̃3f
2q3

1 + 2µ2λ (ε+ 1) q′2 + λ2 (ε+ 1) q2 + ε+ 1
m2ω2

n1

∞∑
k=2

fk−1

k!
dkg

drk

∣∣∣∣
r=0

qk
2 = cos γτ (6)

where ωn2 =
√
dg/dq2|q2=0/m2.

In Equations (6), the linear terms are independent of the forcing amplitude f , which
confirms that a purely linear absorber attached to a linear oscillator is effective irrespective
of the considered forcing amplitude. Focusing now on the complete system, f appears in
the nonlinear coefficients of both the primary system and the absorber, which reminds that
it is equivalent to consider the system strongly nonlinear or strongly excited. Specifically,
Equations (6) show that the forcing amplitude modifies linearly the quadratic terms,
quadratically the cubic terms and so on. This suggests that, if an optimal set of absorber
parameters is chosen for a specific value of f , variations of f will detune the nonlinear
absorber, unless the nonlinear coefficients of the primary system and of the absorber
undergo a similar variation with f . According to Equations (6), this can be achieved by
selecting the same mathematical function for the absorber as that of the primary system.
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When coupled to a Duffing oscillator, the NLTVA should therefore possess a cubic spring:

q′′1 + 2µ1q
′
1 + q1 + 4

3α3q
3
1 + 2µ2λεq

′
2 + λ2εq2 + 4

3εβ3q
3
2 = cos γτ

q′′2 + 2µ1q
′
1 + q1 + 4

3α3q
3
1 + 2µ2λ (ε+ 1) q′2 + λ2 (ε+ 1) q2 + 4

3 (ε+ 1) β3q
3
2 = cos γτ (7)

where
α3 = α̃3f

2 and β3 = 3
4
f 2g′′′(r)|r=0

3!m2ω2
n1

. (8)

The NLTVA spring should also possess a linear component so that it is effective at low
forcing amplitudes where the cubic component of the Duffing oscillator is not activated.

In summary, the proposed nonlinear tuning rule is to choose the mathematical form of the
NLTVA’s restoring force so that it is a ‘mirror’ of the primary system.

3.2 Nonlinear generalization of the equal-peak method

The next objective is to determine the NLTVA parameters, namely ε, λ, µ2 and β3.
The mass ratio ε is chosen according to practical constraints. The linear parameters
λ and µ2 are determined using Equations (2). Because an exact analytic estimation
of β3 is not within reach, an approximate solution is sought using the harmonic bal-
ance method limited to one harmonic component, q1 = A1 cos γτ + B1 sin γτ and q2 =
A2 cos γτ +B2 sin γτ . Substituting this ansatz in Equations (7), applying the approxima-
tions cos3 γτ ≈ 3/4 cos γτ and sin3 γτ ≈ 3/4 sin γτ , and balancing cosine and sine terms,
the system of polynomial equations

α3A
3
1 + α3A1B

2
1 + β3εA

3
2 + β3εA2B

2
2 +

(
1− γ2

)
A1 + 2µ1γB1 + λ2εA2 + 2µ2λεγB2 = 1

α3A
3
1 + α3A1B

2
1 + β3 (ε+ 1)A3

2 + β3 (ε+ 1)A2B
2
2 +A1 + 2µ1γB1 +

(
λ2 (ε+ 1)− γ2

)
A2 +

2µ2λ (ε+ 1) γB2 = 1
α3A

2
1B1 + α3B

3
1 + β3εA

2
2B2 + β3εB

3
2 − 2µ1γA1 +

(
1− γ2

)
B1 − 2µ2λεγA2 + λ2εB2 = 0

α3A
2
1B1 + α3B

3
1 + β3 (ε+ 1)A2

2B2 + β3 (ε+ 1)B3
2 − 2µ1γA1 +B1 − 2µ2λ (ε+ 1) γA2 +(

λ2 (ε+ 1)− γ2
)
B2 = 0 (9)

is obtained. This system is solved for fixed values of µ1 = 0.001, µ2 = 0.134, λ = 0.952,
for different values of ε and α3, and for a range of excitation frequencies γ encompassing
the system’s resonances. Starting with weakly nonlinear regimes, i.e., α3 > 0, we seek
the value of β3, which gives two resonance peaks of equal amplitude. The procedure
is repeated for increasing values of α3, which allows to consider stronger and stronger
nonlinear regimes of motion.

The outcome of this numerical procedure is displayed in Figure 5(a). This plot is inter-
esting, because β3 is almost linearly related to α3 for the different mass ratios considered,
i.e., β3 ∼= aα3. This linear relation implies that the nonlinear coefficient of the NLTVA
that realizes equal peaks does not depend on forcing amplitude:

β3 ∼= aα3 →
3
4
f 2g′′′(r)|r=0

3!m2ω2
n1

∼= a
3
4
f 2knl1

k1
→ g′′′(r)|r=0 ∼= 6aεknl1 (10)
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ing α3 and different ε; (b) values of β3 realizing equal peaks for increasing ε and different
α3; the solid line is the result of the numerical computations, and the dashed line is the
regression β3 = 2α3ε/(1 + 4ε).

The coefficient a is determined by representing β3 in function of ε for different values of
α3, as in Figure 5(b). It turns out that the regression β3 = 2α3ε/(1 + 4ε) provides an
excellent approximation to the numerical results; so a = 2ε/(1 + 4ε).

Equations (7) are now solved considering this analytic expression of β3 for different values
of α3 and γ, and results are presented in Figure 6. We stress that these results were not
computed using the one-term harmonic balance approximation but rather using the path-
following algorithm mentioned in Section 2.2. This algorithm provides a very accurate
numerical solution to the equations of motion. Figure 6(a) shows that the NLTVA can
enforce equal peaks in the frequency response q1 of the Duffing oscillator for values of
α3 ranging from 0.0001 to 0.0075. This result is remarkable in view of the variation of
the resonance frequencies. For instance, the first resonance peak occurs at γ = 0.9 for
α3 = 0.0001 and beyond γ = 1 for α3 = 0.0075. Another interesting observation is that
the amplitude of the resonance peaks does not change substantially when α3 increases,
which means that the response of the coupled system is almost proportional to the forcing
amplitude, as it would be the case for a linear system. Conversely, Figure 6(b) illustrates
that the LTVA is strongly detuned. All these results confirm the efficacy of the proposed
NLTVA design.

In summary, given m1, c1, k1 and knl1 for a Duffing oscillator and given a mass ratio ε,
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the NLTVA parameters can be determined using the following analytic formulas:

m2 = εm1

k2 =
8εk1

[
16 + 23ε+ 9ε2 + 2(2 + ε)

√
4 + 3ε

]
3(1 + ε)2(64 + 80ε+ 27ε2)

c2 =

√√√√k2m2(8 + 9ε− 4
√

4 + 3ε)
4(1 + ε)

knl2 = 2ε2knl1

(1 + 4ε) (11)

These formulas form the basis of a new tuning rule for nonlinear absorbers that may
be viewed as a nonlinear generalization of Den Hartog’s equal-peak method. We note,
however, that there are no invariant points in the nonlinear case. There is thus no complete
equivalence with the linear equal-peak method.

4 Performance of the nonlinear tuned vibration ab-
sorber

The previous theoretical developments are further validated and illustrated in the present
section. An NLTVA possessing a linear and a cubic spring is attached to a Duffing
oscillator with m1 = 1 kg, c1 = 0.002Ns/m, k1 = 1N/m and knl1 = 1N/m3. The mass
ratio is 5%. According to Equations (11), the NLTVA parameters should be m2 = 0.05 kg,
c2 = 0.0128Ns/m, k2 = 0.0454N/m and knl2 = 0.0042N/m3. Figure 7(a) presents the
displacement of the primary system for a forcing amplitude F = 0.07N and for nonlinear
coefficients knl2 between 0.001 to 0.007N/m3. As illustrated in Figure 7(b), resonance
peaks of equal amplitude are obtained when knl2 = 0.0042N/m3. The response with an
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attached LTVA is also superposed and confirms the substantial improvement brought by
the NLTVA. Figure 8 plots the displacement of the Duffing oscillator for F ranging from
0.001N to 0.07N and for knl2 = 0.0042N/m3. This figure is to be compared with Figure
2.

For a more global comparison between the two absorbers, Figure 9(a) represents the
amplitude of the resonance peaks of the Duffing oscillator as a function of F . If the LTVA
gets rapidly detuned, the amplitude of the two resonance peaks for the NLTVA remains
almost identical. In addition, the amplitude is almost linearly related to forcing amplitude,
as if the system would obey the superposition principle. This result is unexpected in view
of the strongly nonlinear regimes investigated. It therefore seems that adding a properly
chosen nonlinearity to an already nonlinear system can somehow linearize the dynamics of
the coupled system. On the contrary, the amplitude of the resonance peaks for the LTVA
exhibits a marked nonlinear dependence with respect to forcing amplitude. Figure 9(b)
illustrates that the NLTVA performance is always superior to that of the LTVA, which is
a further appealing feature of this device.

If the dynamics is investigated for even larger amplitudes, an important detuning of
the NLTVA occurs in Figure 10. This detuning can be explained by the presence of a
detached resonance curve, also termed an isola, which is similar in essence to that reported
for the LTVA in Section 2.2. For F = 0.17N, Figure 11(a) shows that equal peaks are
still maintained, but they co-exist with the isola. The characterization of the isola was
carried out numerically using a co-dimension 2 bifurcation tracking procedure based on
the harmonic balance method. The description of this methodology is beyond the scope
of this paper. The interested reader may refer to reference [37] for further details.

The amplitude of the limit points of the isola as a function of forcing amplitude is displayed
in Figure 10. The underlying dynamical mechanism is as follows. The isola is created by
a pair of saddle-node bifurcations close to F = 0.12N. For increasing forcing amplitudes,
the two bifurcations move away from each other, as depicted in Figure 10(b), until one
of them meets the saddle-node bifurcation defining the second resonance peak. The isola
then coalesces with this resonance, which gives rise to a new resonance peak with a much
larger amplitude, as represented in Figure 11(b) for F = 0.19N. The coalescence occurs
for F = 0.18N; this forcing amplitude therefore represents an upper limit beyond which
the nonlinear equal-peak method is no longer applicable. Despite the presence of the
isola, we note that the NLTVA still remains more effective than the LTVA. Furthermore,
if the basin of attraction of the isola is relatively small, the absorber can work properly
also in coexistence of the isola itself.

Going back to Figures 5(a,b), the isola explains why the curves were discontinued, i.e.,
why equal peaks could no longer be achieved. From these plots, we can observe that isolas
occur for comparatively larger values of α3 and smaller values of the mass ratio ε. Isolas
are generic for nonlinear vibration absorbers and neutralizers [34, 35, 36]. They will be
investigated more closely in future studies.

Another dynamical instability that exists in the coupled system is a combination reso-
nance leading to quasiperiodic regimes of motions. It appears because the NLTVA is
designed such that the desired operating frequency is approximately the mean of the
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Figure 9: Performance of the NLVTA/LTVA for increasing forcing amplitudes. (a) Am-
plitude of the resonances peaks of the Duffing oscillator (solid lines: NLTVA, dashed lines:
LTVA); (b) percentage of improvement brought by the NLTVA with respect to the LTVA.
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Figure 10: Peak amplitude of the Duffing oscillator (solid lines: NLTVA, dashed lines:
LTVA).
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Figure 11: Detuning of the NLTVA. (a) F = 0.17N: presence of a detached resonance
curve; (b) F = 0.19N: the detached resonance curve has merged with the largest resonance
peak.

two nonlinear resonant frequencies of the system [9]. Quasiperiodic motion is observed
between F = 0.10N and F = 0.19N, and the corresponding peak amplitudes are rep-
resented in Figure 12. For illustration, a quasiperiodic branch computed through direct
numerical simulations is depicted in Figure 13(a) for F = 0.12N, and a time series is
shown in Figure 13(b). Unlike what was observed in [9], the quasiperiodic motions have
an amplitude comparable to the amplitude of the resonance peaks. They do not destroy
the effectiveness of the NLTVA. We note that, for a nonlinear energy sink, quasiperiodic
motions can even be beneficial, because they replace a resonance with motions of much
smaller amplitudes [36].

To conclude the validation of the nonlinear equal-peak method, the nonlinear coefficient
knl2 that realizes equal resonance peaks for various forcing amplitudes is computed using
the path-following algorithm. Three different nonlinearities for the NLTVA, namely x2,
x3 and x5, are considered. Figure 14(a) confirms that the coefficient of the cubic spring
does not exhibit variability when the forcing amplitude is increased. Its value is in very
close agreement with the closed-form solution (11). For a NLTVA with a quadratic spring,
Figure 14(b) evidences that the nonlinear coefficient undergoes a strong variation with
forcing amplitude, as it was predicted by the discussion in Section 3.1. The variation is
even more important for a quintic spring in Figure 14(c).

5 Conclusion

Our purpose in this study is the development of a nonlinear absorber, the NLTVA, for
mitigating the vibrations of a nonlinear resonance of a mechanical system. A specific
objective is to ensure the effectiveness of the absorber in weakly as well as strongly non-
linear regimes of motion for which the primary system’s resonance frequency can undergo
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Figure 12: Peak amplitude of the Duffing oscillator with an attached NLTVA; the
quasiperiodic motion of the NLTVA is represented with black crosses.
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Figure 13: Quasiperiodic motion of the NLTVA for F = 0.12N. (a) Frequency response
of the Duffing oscillator; (b) displacement of the Duffing oscillator for ω = 1.15 rad/s.
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Figure 14: Value of knl2 realizing equal peaks at different forcing amplitudes. (a) Cubic
spring; (b) quadratic spring; (c) quintic spring.

substantial variations.

To this end, the additional design parameter offered by nonlinear devices, i.e., the math-
ematical form of the absorber’s restoring force, is exploited thereby synthesizing non-
linearity for enhanced performance. We show that, if the NLTVA is ‘a mirror’ of the
primary system, a nonlinear counterpart of Den Hartog’s equal-peak method can be
established. Simple, though accurate, analytic formulas are derived for this nonlinear
equal-peak method. They lead to the design of an absorber with excellent performance in
a relatively large range of forcing amplitudes. Interestingly, the coupled system Duffing-
NLTVA is found to exhibit dynamics that bear resemblance to that of a linear system.

For very strongly nonlinear regimes, inherently nonlinear dynamical instabilities, namely
detached resonance curves and quasiperiodic solutions, appear. Despite these instabilities,
the performance of the NLTVA remains always superior to the classical LTVA. Further
research should study how these instabilities can be mitigated or eliminated. The ex-
tension of the present results to multi-degree-of-freedom primary structures will also be
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considered. Finally, another promising application of the NLTVA that deserves further
investigation is the suppression of limit cycle oscillations [38], which exist, for instance,
in aircraft wings and automotive disc brakes.
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