Learning for exploration-exploitation
in reinforcement learning.

The dusk of the small formulas’ reign.

Damien Ernst
University of Liége, Belgium

25th of November 2011
SEQUEL project, INRIA Lille - Nord Europe.

Exploration-exploitation in RL

Reinforcement Learning (RL): an agent interacts with an
environment in which it perceives information about its current
state and takes actions. The environment, in return, provides a
reward signal. The agent’s objective is to maximize the
(expected) cumulative reward signal. He may have a priori
knowledge on its environment before taking an action and has
limited computational resources.

Exploration-exploitation: The agent needs to take actions so as
to gather information that may help him to discover how to
obtain high rewards in the long-term (exploration) and, at the
same time, he has to exploit at best its current information to
obtain high short-term rewards.

Pure exploration: The agent first interacts with its environment
to collect information without paying attention to the rewards.
The information is used afterwards to take actions leading to
high rewards.

Pure exploration with model of the environment: Typical
problem met when an agent with limited computational
resources computes actions based on (pieces of) simulated
trajectories.

Example 1: Multi-armed bandit problems

Definition: A gambler (agent) has T coins, and at each step he
may choose among one of K slots (or arms) to allocate one of
these coins, and then earns some money (his reward)
depending on the response of the machine he selected.
Rewards are sampled from an unknown probability distribution
dependent on the selected arm. Goal of the agent: to collect
the largest cumulated reward once he has exhausted his coins.

Standard solutions: Index based policies; use an index for
ranking the arms and pick at each play the arm with the highest
index; the index for each arm k is a small formula that takes
for example as input the average rewards collected (r), the
standard deviations of these rewards (), the total number of
plays t, the number of times arm k has been played (T), etc.

Upper Confidence Bound index as example: Ty + 2"“

Example 2: Tree search

Tree search: Pure exploration problem with model of the
environment. The agent represents possible strategies by a
tree. He cannot explore the tree exhaustively because of
limited computational resources. When computational
resources are exhausted, he needs to take an action. Often
used with time receding horizon strategies.

Example of tree exploration algorithms: A*, Monte Carlo Tree
Search, optimistic planning for deterministic systems, etc. In all
these algorithms, terminal nodes to be developed are chosen
based on small formulas .

Example 3: Exploration-exploitation in a MDP

Markov Decision Process (MDP): At time t, the agent is in state
Xt € X and may choose any action u; € U. The environment
responds by randomly moving into a new state

Xe4+1 ~ P(-|Xt, Ut), and giving the agent the reward r; ~ p(Xt, Ut).

An approach for interacting with MDPs when P and r unknown:
a layer that learns (directly or indirectly) an approximate
state-action value function Q : X x U — R atop of which comes
the exploration/exploitation policy. Typical
exploration-exploration policies are made of small formulas .

e-Greedy: u; = arg maxQ(x, u) with probability 1 — ¢ and u; at
ueu

random wiht probability e.

Softmax policy: Uy ~ Psm(+) where Pgm(u) expR0e)/

- ZUEU epr(xtvu)/T :

Pros and cons for small formulas

Pros: (i) Lend themselves to a theoretical analysis (i) No
computing time required for designing a solution (iii) No a priori
knowledge on the problem required.

Cons: (i) Formulas published not used as such in practice and
solutions often engineered to the problem at hand (typically the
case for Monte-Carlo Tree Search (MCTS) techniques) (ii)
Computing time often available before starting the
exploration-exploitation task (iii) A priori knowledge on the
problem often available and not exploited by the formulas.

Learning for exploration-(exploitation) in RL

1. Define a set of training problems (TP) for
exploration-(exploitation). A priori knowledge can (should) be
used for defining the set TP.

2. Define a rich set of candidate exploration-(exploitation)
strategies (CS) with numerical parametrizations/with formulas.
3. Define a performance criterion PC : CS x TP — R such that
PC(strategy, training_problem) gives the performance of
strategy on training_problem.

4. Solve argmax >y aining prob.ctp PC(Strategy, training_prob.)
strategy €CS -

using an optimisation tool.

NB: approach inspired by current methods for tuning the parameters of
existing formulas; differs by the fact that (i) it searches in much richer spaces of

strategies (ii) the search procedure is much more systematic.

Example 1: Learning for multi-armed bandit
problems

Multi-armed bandit problem: Leti € {1,2,...,K} be the K
arms of the bandit problem. v; is the reward distribution of arm
i and y; its expected value. T is the total number of plays. by is
the arm played by the agent at round t and r; ~ vy, is the
reward it obtains.

Information: H; = [ba,r1,ba, 1o, ..., by, 1] is a vector that
gathers all the information the agent has collected during the
firstt plays. H the set of all possible histories of any length t.

Policy: The agent's policy = : H — {1,2,...,K} processes at
play t the information H;_1 to selectthe arm b; € {1,2,...,K}:
bt = W(Ht_l).

Notion of regret: Let u* = max ux be the expected reward of
the optimal arm. The regret of wis : RT = Tp* — S._, ri. The
expected regret is E[RT] = 25:1 E[T(T)](p* — 1) where
Tk(T) is the number of times the policy has drawn arm k on
the first T rounds.

Objective: Find a policy 7* that for a given K minimizes the
expected regret, ideally for any T and any {;}K_, (equivalent to
maximizing the expected sum of rewards obtained).
Index-based policy: (i) During the first K plays, play
sequentially each arm (ii) For each t > K, compute for every
machine k the score index (H¥ ,,t) where Hf , is the history of
rewards for machine k (iii) Play the arm with the largest score.

1. Define a set of training problems (TP) for
exploration-exploitation. A priori knowledge can (should) be
used for defining the set TP.

In our simulations a training set is made of 100 bandit
problems with Bernouilli distributions, two arms and the same
horizon T. Every Bernouilli distribution is generated by
selecting at random in [0, 1] its expectation.

Three training sets generated, one for each value of the
training horizon T € {10, 100, 1000}.

NB: In the spirit of supervised learning, the learned strategies are evaluated on
test problems different from the training problems. The first three test sets are
generated using the same procedure. The second three test sets are also
generated in a similar way but by considering truncated Gaussian distributions
in the interval [0, 1] for the rewards. The mean and the standard deviation of
the Gaussian distributions are selected at random in [0, 1]. The test sets count
10,000 elements.

10

2. Define a rich set of candidate exploration-exploitation
strategies (CS).

Candidate exploration-exploitation strategies are index-based
policies.

Set of index-based policies contains all the policies that can be
represented by: index (Hf, t) = 6 - ¢(HK, t) where 6 is the vector
of parameters to be optimized and ¢(-, -) a hand-designed
feature extraction function.

We suggest to use as feature extraction function the one that
leads the indexes:

where 6, j x| are parameters.

p = 2 in our simulations = 81 parameters to be learned.

11

3. Define a performance criterion PC : CS x TP — R such that
PC(strategy, training_problem) gives the performance of
strategy on training_problem.

Performance criterion of an index-based policy on a
multi-armed bandit problem is chosen as the expected regret
obtained by this policy.

NB: Again in the spirit of supervised learning, a regularization term could be
added to the above mentioned performance criterion to avoid overfitting.

12

4. Solve argmax 3y aining prob.ctp PC(Strategy, training_prob.)
strategy €CS

using an optimisation tool.

Objective function has a complex relation with the parameter
and may contain many local minima. Global optimisation
approaches are advocated.

Estimation of Distribution Algorithms (EDA) are used here as
global optimization tool. EDASs rely on a probabilistic model to
describe promising regions of the search space and to sample
good candidate solutions. This is performed by repeating
iterations that first sample a population of n, candidates using
the current probabilistic model and then fit a new probabilistic
model given the b < n, best candidates.

13

Simulation results

Policy quality on a test set measured by its average expected
regret on this test set.

Learned index based-policies compared with 5 other
index-based policies: UCB1, UCB1-BERNOULLI, UCB2,
UCB1-NORMAL, UCB-V.

These 5 policies are made of small formulas which may have
parameters. Two cases studied: (i) default values for the
parameters or (ii) parameters optimized on a training set.

14

Policy Training Parameters Bernoulli test problems
Horizon T=10 T=100 T=1000

Policies based on small formulas. Default parameters

ucCB1 - c=2 1.07 557 20.1
UCB1-BERNOULLI - 0.75 2.28 5.43
UCB1-NORMAL - 1.71 13.1 31.7
ucCB2 - a =103 0.97 3.13 7.26
ucB-Vv - c=1,¢=1 1.45 8.59 25.5
en-GREEDY - c=1d=1 1.07 3.21 115

Learned policies

T=10 . 0.72 2.37 15.7
T=100 | (81 parameters) | 0.76 1.82 5.81
T=1000 . 0.83 2.07 3.95

Observations: (i) UCB1-BERNOULLI is the best policy based on small
formulas. (ii) The learned policy for a training horizon is always better than any
policy based on a small formula if the test horizon is the same. (iii)
Performances of the learned policies with respect to the formulas based

policies degrade when the training horizon is not equal to the test horizon.

15

Policy Training Parameters Bernoulli test problems

Horizon T=10 T=100 T=1000
Policies based on small formulas. Optimized parameters

T=10 C =0.170 0.74 2.05 4.85

ucBl T=100 C =0.173 0.74 2.05 4.84

T=1000 C =10.187 0.74 2.08 491

T=10 a = 0.0316 0.97 3.15 7.39

uCB2 T=100 «a = 0.000749 0.97 3.12 7.26

T=1000 o = 0.00398 0.97 3.13 7.25

T=10 c=1.542,(=0.0631 | 0.75 2.36 5.15

UCB-V T=100 | ¢ =1.681,(=0.0347 | 0.75 2.28 7.07

T=1000 | ¢ =1.304,(=0.0852 | 0.77 243 5.14

T=10 ¢ =0.0499,d = 1.505 | 0.79 3.86 325

en-GREEDY T=100 ¢ =1.096,d = 1.349 0.95 3.19 14.8

T=1000 | ¢ =0.845,d =0.738 1.23 3.48 9.93

Learned policies

T=10 e 0.72 2.37 15.7

T=100 (81 parameters) 0.76 1.82 5.81

T=1000 0.83 2.07 3.95

Main observation:

The learned policy for a training horizon is always better

than any policy based on a small formula if the test horizon is the same.

16

Policy Training Parameters Gaussian test problems

Horizon T=10 T=100 T=1000
Policies based on small formulas. Optimized parameters

T=10 C =0.170 1.05 6.05 32.1

ucBl T=100 C =0.173 1.05 6.06 323

T=1000 C =10.187 1.05 6.17 33.0

T=10 a = 0.0316 1.28 7.91 40.5

uCB2 T=100 «a = 0.000749 1.33 8.14 40.4

T=1000 o = 0.00398 1.28 7.89 40.0

T=10 c=1.542,(=0.0631 | 1.01 5.75 26.8

UCB-V T=100 | ¢ =1.681,(=0.0347 | 1.01 5.30 27.4

T=1000 | ¢ =1.304,({ =0.0852 | 1.13 5.99 275

T=10 ¢ =0.0499,d =1.505 | 1.01 7.31 67.57

en-GREEDY T=100 ¢ =1.096,d = 1.349 1.12 6.38 46.6

T=1000 | ¢ =0.845,d =0.738 1.32 6.28 37.7

Learned policies

T=10 e 0.97 6.16 55.5

T=100 (81 parameters) 1.05 5.03 29.6

T=1000 112 5.61 27.3

Main observation:

A learned policy is always better than any policy based on

a small formula if the test horizon is equal to the training horizon.

17

Example 2: Learning for tree search. The case of
look-ahead trees for deterministic planning

Deterministic planning: At time t, the agent is in state x; € X
and may choose any action u; € U. The environment responds
by moving into a new state x;;1 = f(Xi, U;), and giving the
agent the reward r; = p(Xi, Ut). The agent wants to maximize
its return defined as: > _,°, ~'r; where ~ € [0, 1. Functions f
and r are known.

Look-ahead tree: Particular type of policy that represents at
every instant t the set of all possible trajectories starting from
Xt by a tree. A look-ahead tree policy explores this tree until the
computational resources (measured here in terms of number of
tree nodes developed) are exhausted. When exhausted, it
outputs the first action of the branch along which the highest
discounted rewards are collected.

18

Ut—7.-" Xt—1
p(Xe—1,Ug—1).""
Xt .-

Xt42 Xt4-2

Scoring the terminal nodes for exploration: The tree is
developed incrementally by always expending first the terminal
node which has the highest score. Scoring functions are
usually small formulas. (“best-first search” tree-exploration
approach).

Objective : Find an exploration strategy for the look-ahead tree
policy that maximizes the return of the agent, whatever the
initial state of the system.

19

1. Define a set of training problems (TP) for
exploration-(exploitation). A priori knowledge can (should) be
used for defining the set TP.

The training problems are made of the elements of the
deterministic planning problem. They only differ by the initial
state.

If information is available on the true initial state of the problem,
it should be used for defining the set of initial states Xy used for
defining the training set.

If the initial state is known perfectly well, one may consider only
one training problem.

20

2. Define a rich set of candidate exploration strategies (CS).

The candidate exploration strategies all grow the tree
incrementally, expending always the terminal node which has
the highest score according to a scoring function.

The set of scoring functions contain all the functions that take
as input a tree and a terminal _node and that can be
represented by: 0 - ¢(tree, terminal _node) where 6 is the vector
of parameters to be optimized and ¢(-, -) a hand-designed
feature extraction function.

For problem where X ¢ R™, we use as ¢:
(x[1],...,x[m],dx[1],...,dx[m],rx[1],...,rx[m]) where x is the
state associated with the terminal_node, d is its depth and r is
the reward collected before reaching this node.

21

3. Define a performance criterion PC : CS x TP — R such that
PC(strategy, training_problem) gives the performance of
strategy on training_problem.

The performance criterion of a scoring function is the return on
the test problem of the look-ahead policy it leads to.

The computational budget for the tree development when
evaluating the performance criterion should be chosen equal to
the computational budget available when controlling the 'real
system’.

22

4. Solve argmax 3y aining_prob.ctp PC(Strategy, training_prob.)
strategy €CS o

using an optimisation tool.

Obijective function has a complex relation with the parameter
and may contain many local minima. Global optimisation
approaches are advocated.

Estimation of Distribution Algorithms (EDA) are used here as
global optimization tool.

NB: Gaussian processes for global optimisation have also been tested. They
are more complex optimisation tools and they have been found to be able to
require significantly less evaluation of objective function to identify a
near-optimal solution.

23

Simulation results

Small formulas based scoring functions used for comparison:

score™ndePth — _(depth_terminal_node)
score¥®! — reward_obtained_before_reaching_terminal_node

score¥®2 — sum_of_disc._rew._from_top_to_terminal_node
o depth__terminal_node
SCoreoptlmlstlc _ SCOl,egreedyZ + i T Br
-7

where B, is an upperbound on the reward function.

In the results hereafter, performance of a scoring function
evaluated by averaging the return of the agent over a set of
initial states. Results generated for different computational
budgets. The score function has always been optimized for the
budget used for performance evaluation.

24

2-dimensional test problem

Dynamics: (Yii1,Vit1) = (Ye, Vi) + (Vi, U)0.1; X = R?;

U = {-1,+1}; p((yt, 1), ur) = max(1 —y2,,0); v = 0.9. The
initial states chosen at random in [—1, 1] x [-2, 2] for building
the training problems. Same states used for evaluation.

74 T T T T
T2 o+ o4+ + o+ o+ ~
+
7L +—+ i
Optimized — +
&
Greedy 1 -
68 - B
FodokF
66 L ++++*+*+++* |
¥
*oF
5_4 L 1 1 1 1
1 0 100 1000 10000 100000 1e+08

Budgst
Main observation: (i) Optimized trees outperform other methods (ii) Small

computational budget needed for reaching near-optimal performances.

25

HIV infection control problem

Problem with six state variables, two control actions and a
highly non linear dynamics. A single training 'initial state’ is
used. Policies first evaluated when the system starts from this
state.

1e+10 T T T T

1e+09 | E
1e+08 | Optimized e
Greedy 1 —*—

1e+07 | =

1e+06 & 5 % + ¥ * ¥ &

100000 ; . ! !
1 10 100 1000 10000 100000

Budget

26

1e+10 T T T T
1e+09 | Optimized 4
Optimistic (Br = 10"6) —#—
1e+08 | E
” * * N

H—k *

1e+07 | /]
1e+06 1 e

100000 L L L L

1 10 100 1000 10000 100000
Budget

Main observations: (i) Optimized look ahead trees clearly outperforms other
methods. (ii) Very small computational budget required for reaching near

optimal performances.

27

Policies evaluated when the system starts from a state rather
far from the initial state used for training:

1e+10 T T T

1e+09 | 4

1e+08 F E
Optimize

16407 L Greedy 1 * N

1e+06 i v — % ¥ " % 3

100000 4 A .
1 10 100 1000

Budget

Main observation: Optimized look ahead trees perform very well even when

the ’training state’ is not the test state.

A side note on these optimized look-ahead trees

Optimizing look-ahead trees is a direct policy search method
for which parameters to be optimized are those of the tree
exploration procedure rather than those of standard function
approximators (e.g, neural networks, RBFs) as it is usually the
case.

Require very little memory (compared to dynamic
programming methods and even other policy search
techniques); not that many parameters need to be optimized;
robust with respect to the initial states chosen for training, etc.

Right problem statement for comparing different techniques:
“How to compute the best policy given an amount of off-line
and on-line computational resources knowing fully the
environment and not the initial state?”

29

Complement to other techniques rather than competitor:

look-ahead tree policies could be used as an “on-line
correction mechanism” for policies computed off-line.

Xt+2 Xt+2

Other policy used for scoring the nodes
(for tree exploration and selection of action u;)

30

Example 3: Learning for exploration-exploitation
in finite MDPs

Instantiation of the general learning paradigm for
exploration-exploitation for RL to this case is very much similar
to what has been described for multi-bandit problems.

Good results already obtained by considering large set of
canditate exploration-exploitation policies made of small
formulas.

Next step would be to experiment the approach on MDPs with
continuous spaces.

31

Automatic learning of (small) formulas for
exploration-exploitation?

Remind: There are pros for using small formulas !

The learning approach for exploration-exploitation in RL could
help to find new (small) formulas people have not thought of
before by considering as candidate strategies a large set of
(small) formulas.

An example of formula for index-based policies found to
perform very well on bandit problems by such an approach:
e + T%

32

Conclusion and future works

Learning for exploration/exploitation: excellent performances
that suggest a bright future for this approach.

Several directions for future research:

Optimisation criterion: Approach targets an
exploration-exploitation policy that gives the best average
performances on a set of problems. Risk adverse criteria could
also be thought of. Regularization terms could also be added
to avoid overfitting.

Design of customized optimisation tools: Particularly relevant
when the set of candidate policies is made of formulas.
Theoretical analysis: E.g., what are the properties ofthe

strategies learned in generalization?

33

Presentation based on (order of appearance)

“Learning to play K-armed bandit problems”. F. Maes, L. Wehenkel and D.
Ernst. In Proceedings of the 4th International Conference on Agents and
Artificial Intelligence (ICAART 2012), Vilamoura, Algarve, Portugal, 6-8
February 2012. (8 pages).

“Optimized look-ahead tree search policies”. F. Maes, L. Wehenkel and D.
Ernst. In Proceedings of the 9th European Workshop on Reinforcement
Learning (EWRL 2011), Athens, Greece, September 9-11, 2011. (12 pages).
“Learning exploration/exploitation strategies for single trajectory reinforcement
learning”. M. Castronovo, F. Maes, R. Fonteneau and D. Ernst. In Proceedings
of the 10th European Workshop on Reinforcement Learning (EWRL 2012),
Edinburgh, Scotland, June 30-July 1 2012. (8 pages).

“Automatic discovery of ranking formulas for playing with multi-armed bandits”.
F. Maes, L. Wehenkel and D. Ernst. In Proceedings of the 9th European
Workshop on Reinforcement Learning (EWRL 2011), Athens, Greece,
September 9-11, 2011. (12 pages).

“Optimized look-ahead tree policies: a bridge between look-ahead tree policies
and direct policy search”. T. Jung, D. Ernst, L.Wehenkel and F. Maes.
Submitted.

“Learning exploration/exploitation strategies: the multi-armed bandit case” F.
Maes, L. Wehenkel and D. Ernst. Submitted.

34

