
Lower bounds in reinforcement
learning: the intelligent agent dream

is getting closer

D. Ernst
University of Liège

TU Delft - The 13th of January 2009

Reinforcement learning for artificial
intelligent agents

An artificial intelligent agent is anything we create that is

capable of taking actions based on information it perceives, on

its own experience, and on its own decisions about which

actions to perform.

Reinforcement Learning (RL) refers to a class of problems

which postulate an artificial intelligent agent exploring an

environment in which the agent perceives information about its

current state and takes actions. The environment, in return,

provides a reward signal (which can be positive or negative).

The agent has as objective to maximize the cumulative reward

signal over the course of the interaction.

1

Some generic difficulties in RL

Inference problem. The environment dynamics and the
mechanism behind the reward signal are (partially)
unknown. “Good policies” need to be inferred from the
information the agent has gathered from interaction with
the system.

Computational complexity. The information has to be
processed within limited computing times and memory.

Exploration-exploitation tradeoff. To obtain a lot of
reward, a reinforcement learning agent must prefer
actions that it has tried in the past and found to be
effective in producing reward. But to discover such
actions, it has to try actions that it has not selected
before.

2

Inference of near-optimal policies from a
set of trajectories

Two main types of approaches:

• Identification of an analytical (or algorithmic) model
and derivation from it of an optimal policy. Approach
favored by the control community.

• Computation of the optimal policies directly from the
trajectories, without relying on the identification of an
analytical model. Approach favored by the computer
science community.

3

The direct approach

Classical strategy: to infer from trajectories state-action
value functions.

Discrete (and not too large) state and action spaces:
state-action value functions can be represented in tabular
form.

Continuous or large state and action spaces: function
approximators need to be used. Also, learning must be
done from finite and generally very sparse sets of
trajectories.

Parametric function approximators with gradient
descent like methods: very popular techniques but do
not generalize well enough to move from the academic to
the real-world.

4

Supervised learning and RL

Problem of generalization over an information space:

occurs also in supervised learning (SL).

What is SL ? To infer from a sample of input-output pairs input

= information state; output = class label or real number a model

which explains “at best” these pairs.

Supervised learning highly successful: state-of-the art SL

algorithms have been successfully applied to problems where

information state = thousands of components.

Recent RL algorithms: use the generalization capabilities of

supervised learning algorithms by solving a sequence of

standard supervised learning problems. Most of them are

instances of the generic “fitted Q iteration” algorithm, a batch

mode reinforcement learning algorithm.
5

Learning from a sample of trajectories:
a typical problem statement

Discrete-time dynamics: xt+1 = f (xt , ut) t = 0, 1, . . ., T − 1
where xt ∈ X and ut ∈ U.
Reward function: ρ(x , u) : X × U → R.
Instantaneous reward: rt = ρ(xt , ut).
Type of policies considered: h : {0, 1, . . . ,T − 1} × X → U.
Return of a policy: Jh(x) =

∑T−1
t=0 ρ(xt , h(t , xt)) with x0 = x .

Optimal policy h∗: Policy that maximizes Jh for all x .

Problem: To find a “good” approximation of h∗.
We do not know: f (x , u) and ρ(x , u).

We know instead: A set of one-step system transitions

F = {(x l , ul , r l , y l)}
|F|
l=1 where y l is the state reached after

taking action ul in state x l and r l the instantaneous reward

associated with the transition.
6

State-action value functions as indirect
vehicles for computing h∗

State-action value functions Qh∗

N : X × U → R:
Qh∗

N (x , u) = ρ(x , u) +
∑T−1

t=T−N+1 ρ(xt , h∗(t , xt)) where
xT−N+1 = f (x , u).
Interpretation: Qh∗

N (x , u) gives the sum of rewards from
t = T − N to T − 1 when (i) the system is in state x at
t = T − N, (ii) action chosen at t = T − N is u and (iii) actions
selected afterwards according to h∗.
Iterative computation of the functions Qh∗

N :
Qh∗

N (x , u) = ρ(x , u) + max
u′∈U

Qh∗

N−1(f (x , u), u′), ∀N > 0 with

Qh∗

0 (x , u) ≡ 0.

Optimality condition: h∗(T − N, x) ∈ arg max
u∈U

Qh∗

N (x , u)

7

Fitted Q iteration: the algorithm

Input: The set of one-step system transitions
F = {(x l ,u l , r l , y l)}

|F|
l=1.

The algorithm:

• Iterative computation of (hopefully good)
approximations of the functions Qh∗

1 , Qh∗

2 , . . ., Qh∗

N by
solving T standard supervised learning problems.

• The training sample for the N th (N > 0) problem is
{(

(x l ,u l), r l + max
u∈U

Q̂h∗

N−1(y
l ,u)

)}|F|

l=1
with

Q̂h∗

0 (x ,u) ≡ 0. From the N th training sample, the
supervised learning algorithm outputs Q̂h∗

N .

Output: The policy ĥ∗(T − N, x) ∈ arg max
u∈U

Q̂h∗

N (x ,u)

8

Fitted Q iteration: some remarks

About the performances: Depend on the supervised
learning method − Second to none (in terms of sample
efficiency) when combined with ensemble of regression
trees − Significant computational requirements -
Problems when the action space grows.

Extensions: Can be extended to a large class of
stochastic optimal control problems.

Theoretical properties: Computed policy converges to
the optimal policy under appropriate assumptions on the
SL method, the sampling process, the system dynamics
and the reward function (typically, Lipschitz continuity).

9

Bicycle balancing and riding

ϕ
h

d + w Fcen
CM

ω

Mg

x-axisψgoal

contact

θ

T

front wheel

back wheel - ground

goal

(xb, yb)

frame of the bike

center of goal (coord. = (xgoal , ygoal))

Stochastic problem − Seven state variables and two
control actions − Time between t and t + 1= 0.01 s −

Long optimisation horizon − Reward function of the type:

r(xt ,ut) =

{

−1 if bicycle has fallen

−coeff . ∗ (|ψgoalt+1 | − |ψgoalt |) otherwise
10

Trajectories generation : actions taken at random, bicycle
initially far from the goal and trajectory ends when bicycle falls.

goal

yb

0 250 500 750 1000

−100

−50

0

50

100

xb

−150
ψ0 = −

3π
4

ψ0 = π

ψ0 = −
π
4

ψ0 = −
π
2

ψ0 = 0

ψ0 = π
4

ψ0 = π
2

ψ0 = 3π
4

ψ0 = −π

100 300 500 700 900 Nb of
trajectories

success
percent

success
percent

hundred
one

zero

Q-learning with neural networks: 100 times more

trajectories are needed.

11

Computation of Structured Treatment
Interruption (STI) for HIV+ patients

STI for HIV: to cycle the patient on and off drug therapy
− In some remarkable cases, STI strategies have
enabled the patients to maintain immune control over the
virus in the absence of treatment.
RL for designing STI strategies: RL techniques have
the potential to infer from clinical data good STI
strategies, without modeling the HIV infection dynamics −

Clinical data: time evolution of patient’s state (CD4+ T
cell count, viral load, etc) recorded at discrete-time
instants and sequence of drugs administered.

12

The trajectories are processed
by using reinforcement learning techniques

patients

A pool of
HIV infected

problem which typically containts the following information:

some (near) optimal STI strategies,
often under the form of a mapping

given time and the drugs he has to take

protocols and are monitored at regular intervals
The patients follow some (possibly suboptimal) STI

The monitoring of each patient generates a trajectory for the optimal STI

drugs taken by the patient between t0 and t1 = t0 + n days
state of the patient at time t0

state of the patient at time t1
drugs taken by the patient between t1 and t2 = t1 + n days
state of the patient at time t2
drugs taken by the patient between t2 and t3 = t2 + n days

Processing of the trajectories gives

between the state of the patient at a

till the next time his state is monitored.

Treatments for many chronic-like diseases could be
designed with a similar approach − An active research
community in statistics (Google Dynamic treatment
regimes) focuses on these problems.

13

Research directions suggested by these
two types of applications

Selection of a concise set of system transitions. The
size of the different SL learning problems grows with the
size of F . After a certain time of interaction, these
samples may become so numerous that batch mode RL
algorithms become computationally impractical. Selecting
a concise set of sufficiently rich representatives of the
one-step system transitions may reduce the
computational burdens.
Performance guarantees on the policy inferred. It is
important to have some guarantees on the quality of the
control policies inferred from the one-step system
transitions.

14

Inferring a lower bound on the
performance of a control policy from

one-step system transitions

Discrete-time dynamics: xt+1 = f (xt , ut) t = 0, 1, . . ., T − 1
where xt ∈ X and ut ∈ U.
Reward function: ρ(x , u) : X × U → R.
Instantaneous reward: rt = ρ(xt , ut).
Type of policies considered: h : {0, 1, . . . ,T − 1} × X → U.
Return of a policy: Jh(x) =

∑T−1
t=0 ρ(xt , h(t , xt)) with x0 = x .

Problem: Find a (tight) lower bound on Jh(x).
We do not know: f (x , u) and ρ(x , u).

We know instead: A set of one-step system transitions

F = {(x l , ul , r l , y l)}
|F|
l=1 where y l is the state reached after

taking action ul in state x l and r l the instantaneous reward

associated with the transition.
15

(Additional assumptions)

The dynamics f , the reward function ρ and the policy h
are Lipschitz continuous, i.e., there exist finite constants
Lf ,Lρ,Lh ∈ R such that:

‖f (x ,u) − f (x ′,u′)‖ ≤ Lf
(

‖x − x ′‖ + ‖u − u′‖
)

, (1)

|ρ(x ,u) − ρ(x ′,u′)| ≤ Lρ

(

‖x − x ′‖ + ‖u − u′‖
)

, (2)

‖h(t , x) − h(t , x ′)‖ ≤ Lh‖x − x ′‖, (3)

∀x , x ′ ∈ X ,∀u,u′ ∈ U,∀t ∈ {0, . . . ,T − 1}.

Let us suppose also that three constants Lf , Lρ, Lh

satisfying the above-written inequalities are known.

16

Computing a lower bound on Jh(x) from
a sequence of one-step system

transitions

Theorem
Let x be an initial state of the system, h a policy,
τ = [(x lt ,u lt , r lt , y lt)]T−1

t=0 a sequence of one-step system
transitions. Then we have the following lower bound:

∑T−1
t=0 (r lt − LQT−t

δt) ≤ Jh(x),

where
δt = ‖x lt − y lt−1‖+ ‖u lt − h(t , y lt−1)‖ ∀t ∈ {0,1, . . . ,T − 1},

and LQN
= Lρ

(

∑N−1
t=0 [Lf (1 + Lh)]

t
)

with y l
−1 = x.

17

A graphical interpretation

18

Finding the highest lower bound

Previously: An approach for computing from a T -length
sequence of one-step system transitions a lower bound
on Jh(x).
Problem: How to find in a computationally efficient way
the sequence of one-step system transitions leading to
the highest lower bound (denoted by B∗

FT (x) later)?

• Naive approach: Exhaustive search over all the
elements of FT .

• Smart approach: See the problem as a problem of
finding the shortest path in a graph − Can be solved
using a Viterbi-like algorithm − Complexity linear
with T and quadratric with |F|.

19

Tightness of the highest lower bound

Previously: (i) An approach for computing from a T -length
sequence of one-step system transitions a lower bound on
Jh(x) (ii) An efficient algorithm for computing the T -length
sequence of elements of F leading to the highest lower bound
(B∗

FT (x)).

Theorem
Let x be an initial state, h a policy, and F = {(x l , ul , r l , y l)}

|F|
l=1 a

set of four-tuples. We suppose that ∃ α ∈ R
+ :

sup
(x,u)∈X×U

{

min
l∈{1,...,|F|}

{‖x l − x‖ + ‖ul − u‖}
}

≤ α, (4)

and we note α∗ the smallest constant which satisfies (4).
Then

∃ C ∈ R
+ : Jh(x) − B∗

FT (x) ≤ Cα∗.

20

Ongoing work and new avenues

Ongoing work:

• Finer delineation of required assumptions.

• Extension to stochastic systems.

New avenues:

• Could serve as the base for designing new RL algorithms
which would output policies that lead to the maximisation
of these lower bounds.

• Could be used in combination with batch-mode
reinforcement learning algorithms for identifying concise
sets of one-step system transitions.

21

