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From trajectories to optimal policies: control community

versus computer science community

Problem of inference of (near) optimal policies from trajectories
has been studied by the control community and the computer
science community.

Control community favors a two-stage approach: identification of
an analytical model and derivation from it of an optimal policy.

Computer science community favors approaches which compute
optimal policies directly from the trajectories, without relying on
the identification of an analytical model.

Learning optimal policies from trajectories is known in the
computer science community as reinforcement learning.
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Reinforcement learning

Classical approach: to infer from trajectories state-action value
functions.

Discrete (and not to large) state and action spaces: state-action
value functions can be represented in tabular form.

Continuous or large state and action spaces: function
approximators need to be used. Also, learning must be done from
finite and generally very sparse sets of trajectories.

Parametric function approximators with gradient descent like
methods: very popular techniques but do not generalize well
enough to move from the academic to the real-world !!!
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Using supervised learning to solve the generalization

problem in reinforcement learning

Problem of generalization over an information space. Occurs also
in supervised learning (SL).

What is SL ? To infer from a sample of input-output pairs (input
= information state; output = class label or real number) a model
which explains “at best” these input-output pairs.

Supervised learning highly successful: state-of-the art SL
algorithms have been successfully applied to problems where
information state = thousands of components.

What we want: we want to use the generalization capabilities
of supervised learning in reinforcement learning.

Our answer: an algorithm named fitted Q iteration which
infers (near) optimal policies from trajectories by solving a
sequence of standard supervised learning problems.
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Learning from a sample of trajectories: the RL approach

Problem formulation Deterministic version

Discrete-time dynamics: xt+1 = f (xt , ut) t = 0, 1, . . . where
xt ∈ X and ut ∈ U.

Cost function: c(x , u) : X × U → R. c(x , u) bounded by Bc .
Instantaneous cost: ct = c(xt , ut)

Discounted infinite horizon cost associated to stationary policy
µ : X → U: Jµ(x) = lim

N→∞

∑N−1
t=0 γ

tc(xt , µ(xt)) where γ ∈ [0, 1[.

Optimal stationary policy µ∗ : Policy that minimizes Jµ for all x .

Objective: Find an optimal policy µ∗.

We do not know: The discrete-time dynamics and the cost
function.

We know instead: A set of trajectories
{(x0, u0, c0, x1, · · · , uT−1, cT−1, xT )i}nbTraj

i=1 .
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Some dynamic programming results

Sequence of state-action value functions QN : X × U → R

QN(x , u) = c(x , u) + γmin
u′∈U

QN−1(f (x , u), u′), ∀N > 1

with Q1(x , u) ≡ c(x , u), converges to the Q-function, unique
solution of the Bellman equation:

Q(x , u) = c(x , u) + γmin
u′∈U

Q(f (x , u), u′).

Necessary and sufficient optimality condition:

µ∗(x) ∈ arg min
u∈U

Q(x , u)

Suboptimal stationary policy µ∗N :

µ∗N(x) ∈ arg min
u∈U

QN(x , u).

Bound on µ∗N :

Jµ
∗
N − Jµ

∗
≤

2γNBc

(1 − γ)2
.
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Fitted Q iteration: the algorithm

Set of trajectories {(x0, u0, c0, x1, · · · , cT−1, uT−1, xT )i}nbTraj
i=1

transformed into a set of system transitions
F = {(x l

t , u
l
t , c

l
t , x

l
t+1)}

#F

l=1 .

Fitted Q iteration computes from F the functions Q̂1, Q̂2, . . .,
Q̂N , approximations of Q1, Q2, . . ., QN .

Computation done iteratively by solving a sequence of standard
supervised learning (SL) problems. Training sample for the kth

(k ≥ 1) problem is

{(

(x l
t , u

l
t), c l

t + γmin
u∈U

Q̂k−1(x
l
t+1, u)

)}#F

l=1

with Q̂0(x , u) ≡ 0. From the kth training sample, the supervised
learning algorithm outputs Q̂k .

µ̂∗N(x) ∈ arg min
u∈U

Q̂N(x , u) is taken as approximation of µ∗(x).
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Fitted Q iteration: some remarks

Performances of the algorithm depends on the supervised learning
(SL) method chosen.

Excellent performances have been observed when combined with
supervised learning methods based on ensemble of regression trees.

Works also for stochastic systems

Consistency can be ensured under appropriate assumptions on the
SL method, the sampling process, the system dynamics and the
cost function.
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Illustration I: Bicycle balancing and riding
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I Stochastic problem
I Seven states variables and two control actions
I Time between t and t + 1= 0.01 s

I Cost function of the type:

c(xt , ut) =

{

1 if bicycle has fallen

coeff . ∗ (|ψgoalt+1
)| − |ψgoalt |) otherwise
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Illustration I: Results

Trajectories generation: action taken at random, bicycle initially far
from the goal and trajectory ends when bicycle falls.
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Q-learning with neural networks: 100, 000 times trajectories
needed to compute a policy that drives the bicycle to the goal !!!!
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Illustration II: Navigation from visual percepts
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Illustration III: Computation of Structured Treatment

Interruption (STI) for HIV+ patients

I STI for HIV: to cycle the patient on and off drug therapy

I In some remarkable cases, STI strategies have enabled the
patients to maintain immune control over the virus in the
absence of treatment

I STIs offer patients periods of relief from treatment

I We want to compute optimal STI strategies.
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Illustration III: What can reinforcement learning techniques

offer ?

I Have the potential to infer from clinical data good STI
strategies, without modeling the HIV infection dynamics.

I Clinical data: time evolution of patient’s state (CD4+ T cell
count, systemic costs of the drugs, etc) recorded at
discrete-time instant and sequence of drugs administered.

I Clinical data can be seen as trajectories of the immune system
responding to treatment.
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The trajectories are processed
by using reinforcement learning techniques

patients

A pool of
HIV infected

problem which typically containts the following information:

some (near) optimal STI strategies,
often under the form of a mapping

given time and the drugs he has to take

protocols and are monitored at regular intervals
The patients follow some (possibly suboptimal) STI

The monitoring of each patient generates a trajectory for the optimal STI

drugs taken by the patient between t0 and t1 = t0 + n days
state of the patient at time t0

state of the patient at time t1
drugs taken by the patient between t1 and t2 = t1 + n days
state of the patient at time t2
drugs taken by the patient between t2 and t3 = t2 + n days

Processing of the trajectories gives

between the state of the patient at a

till the next time his state is monitored.

Figure: Determination of optimal STI strategies from clinical data by
using reinforcement learning algorithms: the overall principle.
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Illustration III: state of the research

I Promising results have been obtained by using “fitted Q

iteration” to analyze some artificially generated clinical data.
I Next step: to analyze real-life clinical data generated by the

SMART study (Smart Management of Anti-Retroviral
Therapies).

Figure: Taken from
http://www.cpcra.org/docs/pubs/2006/croi2006-smart.pdf
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Conclusions

I Fitted Q iteration algorithm (combined with ensemble of
regression trees) has been evaluated on several problems and
was consistently performing much better than other
reinforcement learning algorithms.

I Are its performances sufficient to lead to many successful
real-life applications ? I think YES !!!

I Why has this algorithm not been proposed before ?
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Fitted Q iteration: future research

I Computational burdens grow with the number of trajectories
⇒ problems with on-line applications. Possible solution: to
keep only the most informative trajectories.

I What are really the best supervised learning algorithm to use
in the inner loop of the fitted Q iteration process ? Several
criteria need to be considered: distribution of the data,
computational burdens, numerical stability of the algorithm,
etc.

I Customization of SL methods (e.g. split criteria in trees other
than variance reduction, etc)
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Supervised learning in dynamic programming: general view

I Dynamic programming: resolution of optimal control problems
by extending iteratively the optimization horizon.

I Two main algorithms: value iteration and policy iteration.

I Fitted Q iteration: based on the value iteration algorithm.
Fitted Q iteration can be extended to the case where
dynamics and cost function are known to become an
Approximate Value Iteration algorithm (AVI).

I Approximate Policy Iteration algorithms (API) based on SL
have recently been proposed. Can also be adapted to the case
where only trajectories are available.

I For both SL based AVI and API, problem of generation of the
right trajectories is extremely important.

I How to put all these works into a unified framework ?
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Beyond dynamic programming...

I Standard Model Predictive Control (MPC) formulation: solve
in a receding time manner a sequence of open-loop
deterministic optimal control problems by relying on some
classical optimization algorithms (sequential quadratic
programming, interior point methods, etc)

I Could SL based dynamic programming be good optimizers for
MPC ? Have at least the advantage of not being intrinsically
suboptimal when the system is stochastic !!! But problem with
computation of max

u∈U
model(x , u) when dealing with large U.

I How to extend MPC-like formulations to stochastic systems ?
Solutions have been proposed for problems with discrete
disturbance spaces but dimension of the search space for the
optimization algorithm is
O(number of disturbancesoptimization horizon). Research
direction: selection of a subset of relevant disturbances.
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Planning under uncertainties: an example

Development of MPC-like algorithms for scheduling production
under uncertainties through selection of “interesting disturbance
scenarios”.
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Figure: A typical hydro power plant production scheduling problem.
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