A physically motivated pixel-based model for background subtraction in 3D images

M. Braham, A. Lejeune and M. Van Droogenbroeck

INTELSIG, Montefiore Institute, University of Liège, Belgium

IC3D - December 10, 2014

Outline

Introduction

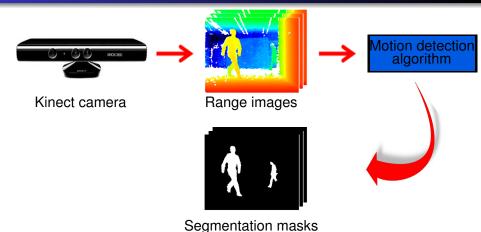
- Topic of this work
- Background subtraction: principle
- Background subtraction in range images
 - Advantages, opportunities and challenges
 - Related work
- Proposed technique
 - Towards a hybrid background model
 - Considering holes in one model
 - Depth-based background model
 - Post-processing

Experimental results

- Benchmarking: dataset and algorithms
- Qualitative results
- Comparison of methods in the ROC space
- Conclusion

Topic of this work Background subtraction: principle

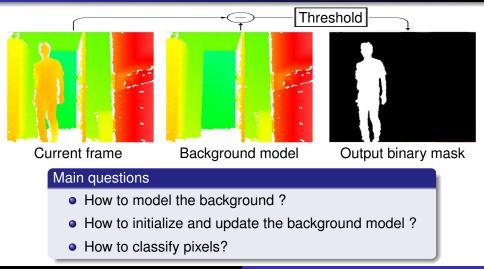
Topic of this work: real-time motion detection in a sequence of range images



Marc Braham, Antoine Lejeune and Marc Van Droogenbroeck

Topic of this work Background subtraction: principle

Motion detection through background subtraction



Marc Braham, Antoine Lejeune and Marc Van Droogenbroeck

Advantages, opportunities and challenges Related work

Background subtraction in range images

Advantages of range images (when compared to color images)

- Insensitive to lighting changes (in a first approximation)
- Insensitive to the true colors of objects

Opportunity

The physical meaning of the depth signal can be leveraged to improve the foreground segmentation.

Challenges

- Holes
- Non-uniform spatial distribution of noise

Advantages, opportunities and challenges Related work

Background subtraction in range images Related work

- Most of the work for motion detection is dedicated to color imaging.
- RGB-D background subtraction techniques focus on the combination of depth and color, not on the depth signal.
- Researchers apply almost exclusively basic methods (static background, exponential filter, ...) or well-known color-based methods (GMM, ViBe, ...) to range images.
- To the best of our knowledge, only one motion detection algorithm is tailored for depth imaging:

del-Blanco *et al.*, "Foreground segmentation in depth imagery using depth and spatial dynamic models for video surveillance applications", January 2014.

Towards a hybrid background model Considering holes in one model Depth-based background model Post-processing

Characteristics of our background model

Our background model is:

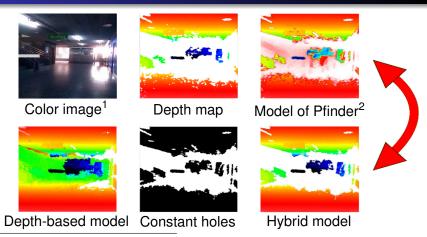
- Pixel-based
- Physically motivated
- Hybrid:
 - Model of constant holes
 - Depth-based background model

Definition

A *constant hole* is a pixel for which the Kinect camera is unable to measure depth when the background is not occluded by a foreground object.

Towards a hybrid background model Considering holes in one model Depth-based background model Post-processing

Relevance of a hybrid background model



¹Taken from an existing database: Spinello *et al.*, "People detection in RGB-D data", 2011 ²Wren *et al.*, "Pfinder: Real-time tracking of the human body", 1997

Towards a hybrid background model Considering holes in one model Depth-based background model Post-processing

Analysis of the dynamics of holes

• Use of *N* counters C_i (*N* = number of pixels) and two global heuristic parameters N_H and T_W with $N_H \ll T_W$.

Definition

 $C_i = k$ indicates that the last depth value in pixel *i* was observed at frame t - k.

Identification of a constant hole

 $C_i \ge N_H \Rightarrow$ pixel *i* is labeled as a constant hole.

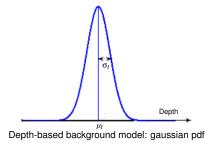
Reset of a constant hole

 $C_i < N_H$ during at least T_W frames \Leftrightarrow pixel *i* switches from the state *constant hole* to the state *standard pixel*.

Towards a hybrid background model Considering holes in one model Depth-based background model Post-processing

Unimodal Gaussian depth-based model

- Parametric model
- Only two parameters memorized for each pixel: μ_t and σ_t.



- μ_t updated with a physical interpretation of the depth signal.
- σ_t updated according to a law defined by the sensor noise.

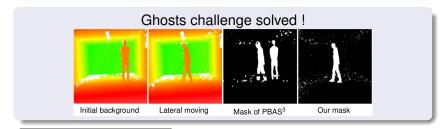
Towards a hybrid background model Considering holes in one model Depth-based background model Post-processing

Physical interpretation of the depth signal

Background is always located behind foreground !

Physically motivated updating strategy of the mean μ_t .

 $\mu_t \approx MAX(D_k)$ for $k \in [0, t]$, where D_k denotes the measured depth at time k.



 3 Hofmann et al., "Background segmentation with feedback: The pixel-based adaptive segmenter", 2012

Towards a hybrid background model Considering holes in one model Depth-based background model Post-processing

Depth-dependent BG/FG decision threshold

The noise of the Kinect depth sensor is depth-dependent. The spatial distribution of noise in range images is thus non-uniform.

- We use Khoshelham's relationship³ to update the standard deviation: $\sigma_t = K_{kinect} \mu_t^2$
- Our BG/FG decision threshold τ_t is thus depth-dependent: $\tau_t = K\sigma_t = KK_{kinect}\mu_t^2$

Consequence: reliable segmentation for all depth values

³Khoshelham, "Accuracy analysis of Kinect depth data", 2011

⁴Cucchiara et al., "Detecting moving objects, ghosts, and shadows in video streams", 2003

Towards a hybrid background model Considering holes in one model Depth-based background model Post-processing

Kinematic constraint on foreground objects

The updating equation $\mu_t \approx MAX(D_k)$ for $k \in [0, t]$ removes ghosts after one frame. \rightarrow How can we eliminate ghosts instantaneously?

Kinematic constraint

The maximum depth jump of the foreground between two consecutive frames is upper bounded by:

$$\triangle P_{max} = \frac{V_{max}}{Fr}$$

where V_{max} is the maximum speed of foreground objects and Fr the frame rate of the camera.

Improved BG/FG classification process

• $\mu_t + K\sigma_t + \triangle P_{max} < D_t \Rightarrow BG$

$$\mu_t + K\sigma_t < D_t \le \mu_t + K\sigma_t + \triangle P_{max} \Rightarrow FG$$

 \rightarrow Ghosts are generally removed instantaneously.

Towards a hybrid background model Considering holes in one model Depth-based background model Post-processing

Summary of the depth-based background model

Definitions

 L_t and H_t are respectively defined by $\mu_t - K\sigma_t$ and $\mu_t + K\sigma_t$.

Updating equations and classification process						
	$K\sigma_t$					D (1
	$0 \qquad \qquad \dot{L}_t \qquad \dot{\mu_t} \qquad \dot{H}_t \qquad \qquad H_t + \dot{\Delta} P_{max}$					$\longrightarrow Depth$
Condition	$D_t = 0$ (hole)	$0 < D_t < L_t$	$L_t \le D_t \le H_t$	$H_t < D_t \le H_t + \Delta P_{max}$	$H_t + \Delta P_{max} < D_t$	
μ_{t+1}	μ_t	μ_t	$(1 - \alpha)\mu_t + \alpha D_t$	D_t	D_t	
σ_{t+1}	σ_t	σ_t	$K_{kinect} \mu_{t+1}^2$	$K_{kinect} \mu_{t+1}^2$	$K_{kinect}\mu_{t+1}^2$	
Class	BG	FG	BG	FG	BG	
Initialization process						
$\mu_0 = D_0$				$\sigma_0 = K_{kinect} \mu_0^2$		

- Recursive filter on µ_t to enhance the estimation of the real background depth
- Sleeping foreground is not absorbed in the background
- Semi-conservative updating strategy

Towards a hybrid background model Considering holes in one model Depth-based background model Post-processing

Post-processing filters

- Background model controller
- Morphological opening with a 3x3 cross as structuring element.
- 7x7 median filter

Benchmarking: dataset and algorithms Qualitative results Comparison of methods in the ROC space

Benchmarking: dataset and algorithms

To evaluate the performances of the proposed technique, we have built a new dataset:

- 8 depth maps sequences acquired with a Kinect camera: 3 sequences taken from an existing depth-based database + 5 sequences representing various challenges.
- 220 ground-truths have been labeled manually at the rate of one ground-truth image per 25 frames for each sequence.

We compare our results with those of 4 algorithms:

- 2 very popular Gaussian mixtures: GMM-STAUFFER¹ and GMM-ZIVKOVIC²
- 2 state-of-the-art algorithms for color videos: SOBS³ and PBAS⁴

²Zivkovic et al., "Efficient adaptive density estimation per image pixel for the task of background subtraction", 2006

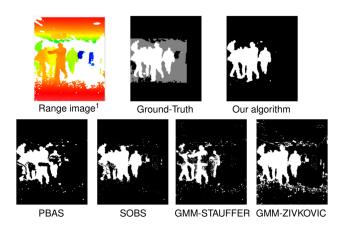
 3 Maddalena *et al.*, "A self-organizing approach to background subtraction for visual surveillance applications", 2008

¹ Hofmann et al., "Background segmentation with feedback: The pixel-based adaptive segmenter", 2012

¹ Stauffer *et al.*, "Adaptive background mixture models for real-time tracking", 1999

Benchmarking: dataset and algorithms Qualitative results Comparison of methods in the ROC space

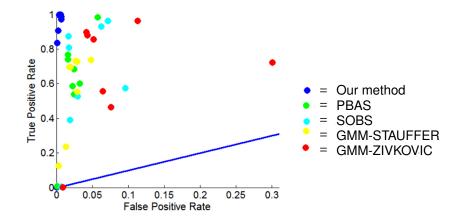
Qualitative results



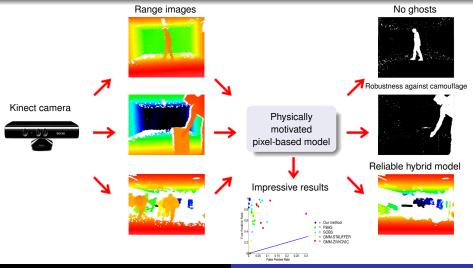
¹Taken from an existing database: Spinello *et al.*, "People detection in RGB-D data", 2011

Benchmarking: dataset and algorithms Qualitative results Comparison of methods in the ROC space

Comparison of methods in the ROC space



Conclusion



Marc Braham, Antoine Lejeune and Marc Van Droogenbroeck

Background subtraction in range images