COMPARISON OF THE LEVELS OF DROWSINESS OBTAINED VIA A NEW PHOTOOCULOGRAPHY-BASED DROWSINESS SCALE AND VIA A SIMPLE VARIATION OF THE KAROLINSKA DROWSINESS SCALE (KDS)

Clémentine FRANÇOIS1, Julie MARCHAT2, Philippe LATOUR1, Jérôme WERTZ1, Robert POIRRIER2, Jacques G. VERLY1
1 INTELSIG Laboratory, Dept. of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium
2 Sleep Laboratory (CETES), University Hospital of Liège, Liège, Belgium

Objective
Drowsiness is a major cause of accidents [1], and oculography is one of the most sensible approaches for monitoring the level of drowsiness [2]. We have thus developed a new method, based on photooculography (POG), for producing a level of drowsiness directly from images of the eye. We talk about a “POG-based level of drowsiness”. Since polysomnography (PSG) is the “gold standard” for sleep, we have also developed a new method for producing a level of drowsiness based upon PSG signals, and called a “PSG-based level of drowsiness”. This method aggregates scores produced by our own interpretation of the “Karolinska Drowsiness Scale (KDS)” [3].

Data acquisition

Our POG- and PSG-based levels of drowsiness

For each 20 sec window of test, we computed:
- PSG-based level of drowsiness (determined manually by scoring PSG signals)
- POG-based level of drowsiness (determined automatically by our POG system)
- mean reaction time (RT)
- percentage of lapses (lapse = RT > 2s or no answer).

Results (1)

Our POG-based level of drowsiness is well “correlated” with our PSG-based level of drowsiness and has the following advantages
- noninvasive and usable in any condition
- no intervention required from the subject.
Our approach thus has significant potential for reliably and objectively quantifying the level of drowsiness of a subject accomplishing a task.

Conclusion

References