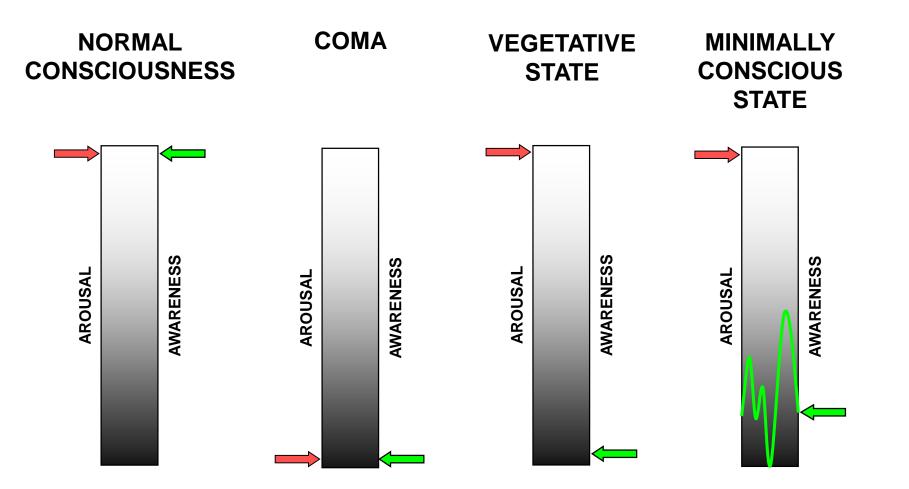
Curative and palliative treatments for patients with disorder of consciousness

THIBAUT Aurore *Coma Science Group University of Liège, Belgium*

& HUANG Wangshan

International vegetative state and consciousness science institute, Hangzhou Normal University, China



Consciousness

Laureys, Owen and Schiff, Lancet Neurology, 2005

Coma Recovery Scale-Revised

Patients in VS and MCS : correct diagnosis

JFK COMA RECOVERY SCALE - RE Record Form	VISED ©2004
Patient: Date:	
AUDITORY FUNCTION SCALE	
4 - Consistent Movement to Command *	
3 - Reproducible Movement to Command *	
2 - Localization to Sound	OROMOTOR/VERBAL FUNCTION SCALE
1 - Auditory Startle	3 - Intelligible Verbalization *
0 - None	2 - Vocalization/Oral Movement
VISUAL FUNCTION SCALE	1 - Oral Reflexive Movement
5 - Object Recognition *	0 - None
4 - Object Localization: Reaching *	COMMUNICATION SCALE
3 - Visual Pursuit *	2 - Functional: Accurate t
2 - Fixation *	1 - Non-Functional: Intentional *
1 - Visual Startle	0 - None
0 - None	AROUSAL SCALE
MOTOR FUNCTION SCALE	3 - Attention
6 - Functional Object Use [†]	2 - Eye Opening w/o Stimulation
5 - Automatic Motor Response *	1 - Eye Opening with Stimulation
4 - Object Manipulation *	0 - Unarousable
3 - Localization to Noxious Stimulation *	TOTAL SCORE
2 - Flexion Withdrawal	
1 - Abnormal Posturing	Denotes emergence from MCS ⁺
0 - None/Flaccid	Denotes MCS *

Treatment in DOC

1. Curative

- Cognitive function
- Physical function

- 1. Pharmacological
- 2. Deep brain stimulation

 Transcranial direct current stimulation (tDCS)

2. Palliative

Decrease side effects

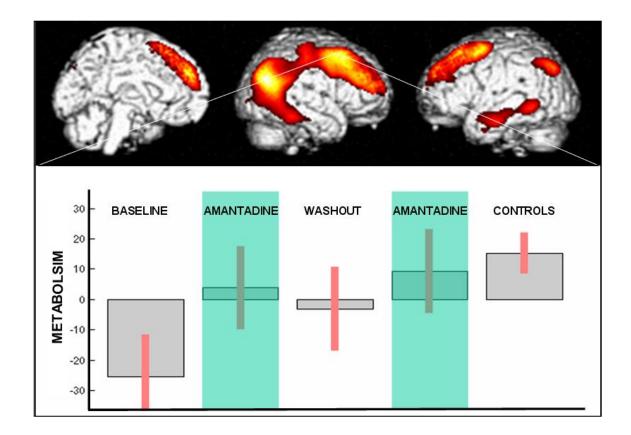
& improve comfort

4. Pain

5. Spasticity

Curative treatments

Pharmacological

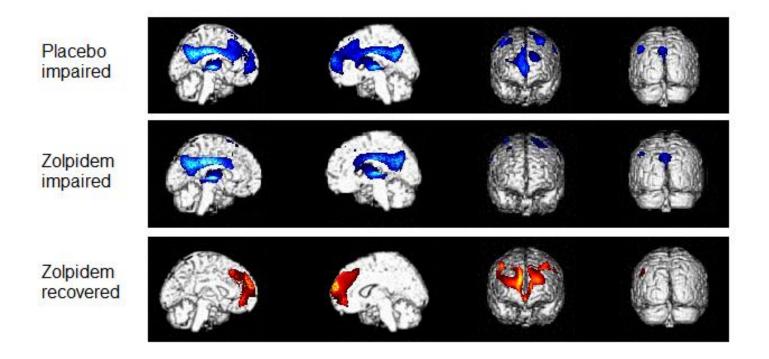

Pharmacological treatment

Drugs	Study (first author, year)	Number of Diagnosis patients and etiology		Placebo control	Reported functional outcome
Dopaminergio	agents				
Amantadine	Giacino (2012)	184 TBI	MCS/VS	Yes	Positive
	Schnakers (2008)	1 anoxic	MCS	No	Positive
	Patrick (2006)		Low responsive level	No	No effect
	Hughes (2005)	123 TBI	Coma	NA	No effect
	Saniova (2004)	41 TBI	'Persistent unconsciousness'	NA	Positive
	Meythaler (2002)	35 TBI	MCS	Yes	Positive
Bromocriptine	Brahmi (2004)	4 intoxication	Coma	No	Positive
Levodopa	Matsuda (2003) 3 TBI		VS	No	Positive
Nonbenzodia	zepine sedative				
Zolpidem	Cohen (2008)	1 anoxic	Lethargic	No	Positive
	Shames (2008)	1 anoxic	MCS	No	Positive
	Singh (2008)	1 TBI	MCS	No	No effect
	Brefel-Courbon (2007)	1 hypoxic	Akinetic mutism	Yes	Positive
	Clauss (2006)	2 TBI, 1 anoxic	VS	No	Positive
	Clauss (2000)	1 TBI	Semi-comatose	No	Positive
GABA agonist					
Baclofen	Sarà (2007)	1 non-TBI	VS	No	Positive

Adapted from Demertzi et al, Expert Rev Neurotherapeutics, 2008

Amantadine

Dopaminergic agent (Parkinson)



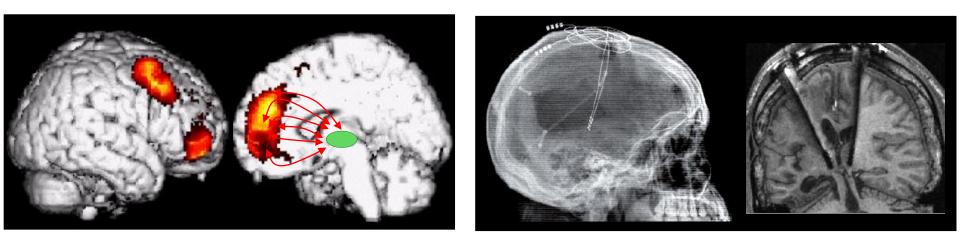
Schnakers et al, JNNP, 2008

Zolpidem

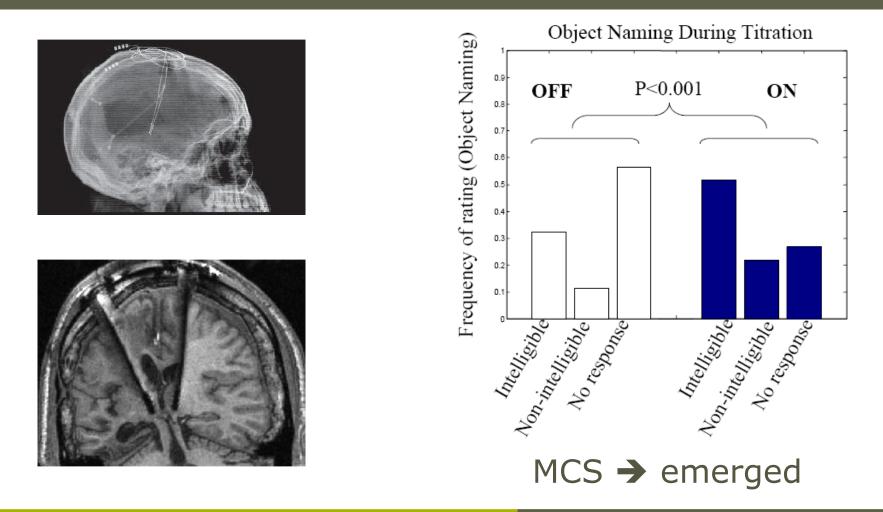
Sedative-hypnotic agent (insomnia)

Indirect agonist of $GABA_A$ receptors

Chatelle & Thibaut, et al., submitted


Curative treatments

Deep brain stimulation


Curative treatment: Deep brain stimulation?

Recovery of consciousness = recovery of thalamo-cortical (prefrontal) connectivity Intralaminar nuclei stimulation induces "recovery" from minimally responsive state

Laureys et al, *Lancet*, 2000 Schiff et al, *Nature*, 2007

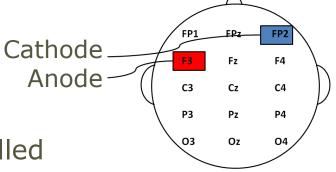
Curative treatment: Deep brain stimulation?

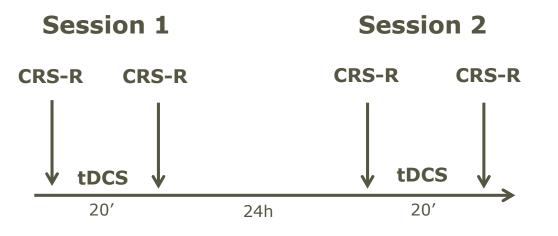
Schiff et al, Nature, 2007

Curative treatments

Transcranial direct current stimulation (tDCS)

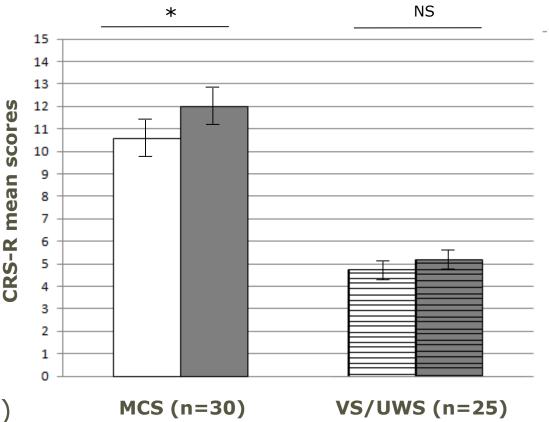
Why direct current?


Stimulation	Population	Effects	Authors
Motor cortex	Healthy subjects	Dexterity	Boggio et al. Neurosci Lett, 2006
	Hemiplegic patients	Dexterity and strength	Hummel et al. Lancet, 2006
	Spastic patients	Spasticity & ADL (activity of daily life)	Wu et al., Arch Phys Med Rehabil 2012
Prefrontal cortex	Healthy subjects	Memory	Marshall et al. J Neurosci, 2004
	Alzheimer's patients	Memory	Ferrucci et al. Neurology, 2008
	Stroke patients	Attention	Jo et al. Am J Phys Med Rehabil, 2009
	Aphasic patients	Language	Baker et al. Stroke, 2010


Cheap & easy to use

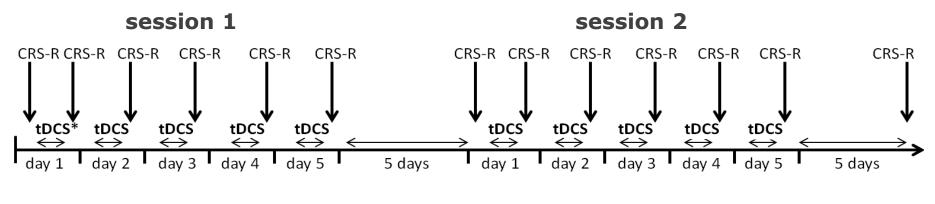
Thibaut et al, Rev Neurol, 2013

Methods


- Direct current
- 2 mA; 20 minutes
- Anode: PFDL (F3)
- Randomised, double blind, sham controlled

Results

- 55 patients (43±18y; 25 VS/UWS, 30 MCS; 25 TBI; 35 chronic (>3 months)
- 15 responders
 Patient who showed
 signs of consciousness
 after tDCS and not
 before tDCS or before
 and after sham
- 2 VS; acute
- 13 MCS (5>1y post insult)



* p < .05

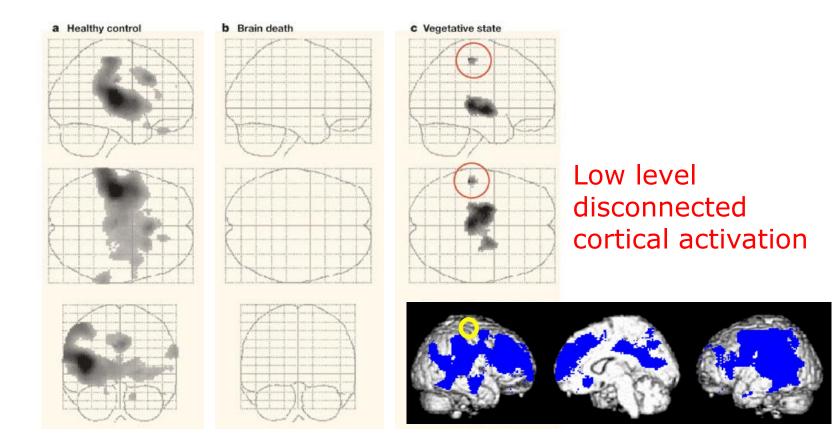
tDCS – long term

► Ffects last ± 90 minutes (Hummel et al., Lancet 2006)
► Short improvement, back to initial state

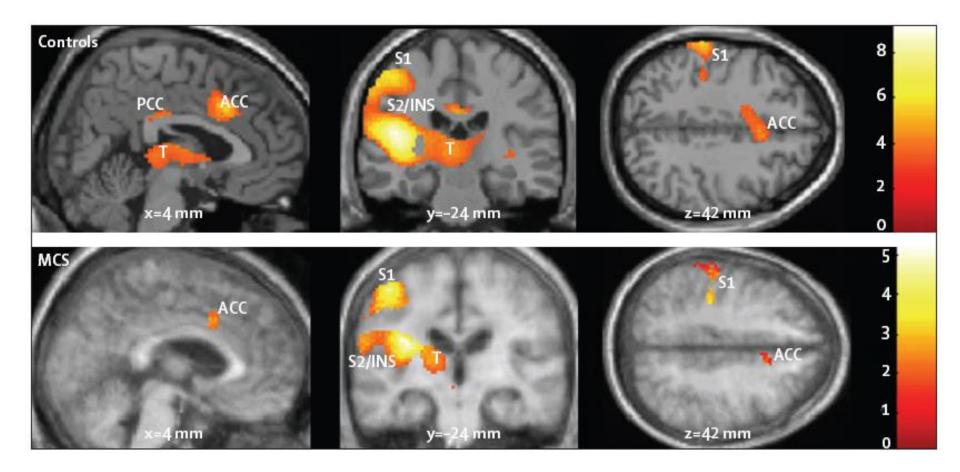
Daily stimulations (5days) (Antal et al., J Pain Symptom Manage 2010) Improvement and extension of benefits Randomised sham controlled double blind study

^{*}tDCS = 20minutes

Prefrontal & precuneus stimulations


Palliative treatments

Pain in disorders of consciousness



Pain in brain death & VS/UWS

Noxious electrical stimulation

Pain in minimally conscious state

Boly et al, Lancet Neurology, 2008

BUT...

Subject number	Sex	Age	ACC	AI	S2	S1	Thalamus	PI	Cerebellum
1	F	52	_	_	+	+	_	_	+
2	F	29	_	+	+	+	+	+	+
3	Μ	46	_	_	+	_	+	_	+
4	Μ	29	+	+	+	+	+	+	+
5	F	31	Т	+	+	+	+	+	+
6	F	35	+	+	+	_	_	+	_
7	Μ	32	+	+	+	+	+	+	_
8	Μ	62	-	_	+	_	_	+	_
9	F	47	_	_	_	+	_	+	_
10	Μ	52	_	- <u>!</u> -	+	+	_	+	_
11	F	58	-	-	+	+	_	_	_
12	Μ	48	+	+	+	+	_	_	_
13	F	28	+	+	+	+	+	+	+
14	Μ	33	_	+	+	+	_	+	+
15	Μ	54	-	_	+	_	_	_	_

ACC = anterior cingulate cortex

AI = anterior insula

S1/S2 = primary and secondary somatosensory areas

Markl et al. Brain & Behavior, 2013

Nociception and pain

Nociception Coma Scale - Revised

Motor response

- 3 Localization to noxious stimulation
- 2 Flexion withdrawal
- 1 Abnormal posturing
- 0 None/flaccid

Verbal response

- 3 Verbalisation (intelligible)
- 2 Vocalisation
- 1 Groaning
- 0 None

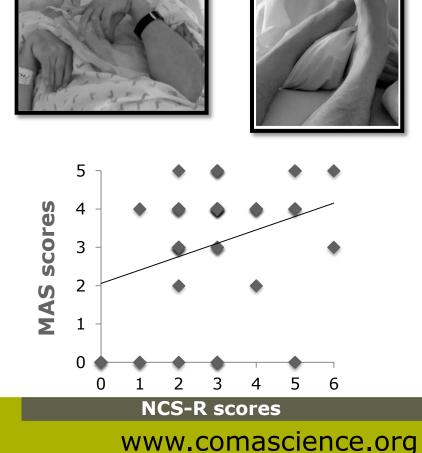
Facial expression

- 3 Cry
- 2 Grimace
- 1 Oral reflexive movement/startle response
- 0 None

Score >3/9 = analgesic treatment

Chatelle et al, JNNP, 2012

Palliative treatments


Spasticity

Spasticity in DOC

Spasticity assessment (MAS*) in VS/UWS and MCS (n=57)

- 84% showed spasticity
 67% had severe spasticity (MAS≥3)
- **Time since insult**: positively correlated with MAS scores
- **Pain** (*Nociception Coma Scale Revised*) : positive correlation
- * MAS=Modified Ashworth Scale

Thibaut et al, in prep

Drugs

Drug	Dose	Mechanism of action	Side effects
Diazepam			Sedation, weakness, hypotension, adverse gastrointestinal effects, memory trouble, confusion,
		presynaptic inhibition and reduction of synaptic reflexes	depression and ataxia
Clonazepam	Clonazepam 0.5-1.00 once Same as above		Weakness, hypotension, ataxia, disco-ordination,
	daily (bed		sedation, depression and memory impairment.
	time)		Prolonged use could increase the risk of addiction
Baclofen	5-20 mg 3-4	Centrally acting GABA analogue. Binds to GABAB	Daytime sedation, dizziness, weakness, fatigue,
	timesdaily	receptor at the presynaptic terminal and thus	nausea; lowers seizure threshold Withdrawal seizures
		inhibits the muscle stretch reflex	and hallucinations with abrupt discontinuation
Tizanidine	4-36 mgdaily	Imidazole derivative, with agonist action on alpha-2	Dry mouth, sedation, dizziness, mild hypotension,
		adrenergic receptors in central nervous system	weakness (less common than with baclofen) Liver
			enzymes should be monitored
Dantrolene	25–100 mg	Interferes with the release of calcium from the	Generalized muscle weakness, mild sedation,
	4 times daily	sarcoplasmic reticulum of the muscle	dizziness, nausea, diahhrea, Hepatotoxicity
Phenol/alcohol	30 mg/kg	Chemical denervation of	Burning and dysesthesias. Damage of the sensory
		the muscles	nerves with pain
Botex	10-15 units/kg	Inhibit the release of acetylcholine at the	minimal side effects. Rarely, children may become
		neuromuscular junction	unusually floppy for a few days or weeks after high
			doses of Botox.
Intratecal	25–1000 mg	Binds to GABAb receptor at the presynaptic	Decreased ambulation speed and muscle weakness
bacloten	daily	terminal and inhibits the muscle stretch reflex	

Thibaut et al, Brain Injury, 2013

Physical therapy

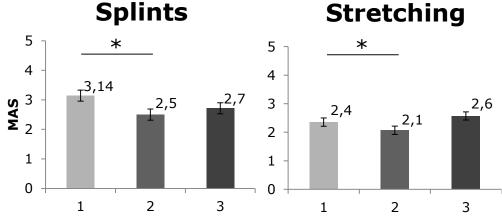
- Stretching is very important to keep physiological amplitude of patient's articulations
 - Every day on each articulation
- Massage could relax patient (but not sufficient)
- Be careful about irritative sources (bedsores, infections, etc)
 - → pain, stress and fatigue increase spasticity
- Splints to hands and feet could be beneficial

Soft splints

• **AIM:** Test the efficacy of soft braces on spastic upper limb to reduce spasticity in chronic VS/UWS & MCS

Avantages:

- Easy to apply
- Patient can be alone
- Soft and confortable
- Several hours/day



www.comascience.org

Thibaut et al, in prep

Soft splints

- **AIM:** Test the efficacy of soft braces on spastic upper limb to reduce spasticity in chronic VS/UWS & MCS
- Clinical benefits:
 - Spasticity decrease on fingers flexors
 - Increase of hand opening
 - Better improvement for patients without tendon retraction
 Splints
 Stretching

Thibaut et al, in prep

Conclusions

Conclusions

- Current treatments: Amantadine, Zolpidem, (+ other drugs?)
- Deep Brain Stimulation
- tDCS could improve cognitive function in severe brain injured patients
- Pain → Nociception Coma Scale-Revised
- Chronic patients → improve their comfort and treat spasticity

Conclusions

- To treat spasticity
 - Botox : localized hypertonicity
 - Intratecal baclofen pomp : generalized hypertonicity
 - Baclofen, Diazepam, etc
 - Physical therapy: stretching & massage every day
 - Soft braces
 - !! Remove irritative causes

THANK YOU

