Effects of sham-controlled double blind transcranial direct current stimulation in patients with disorders of consciousness

XXth World Congress of Neurology Marrakesh, Morocco 16 November 2011

THIBAUT Aurore PhD candidate

Coma Science Group Cyclotron Research Centre & Neurology Dept & University Hospital of Liège Belgium

Patients

Laureys, Owen and Schiff Lancet Neurology, 2005 Laureys et al, BMC Medicine 2010 Demertzi et al, Exp Rev Neurother, 2008

Introduction | Materials and Methods | Results | Discussion

Why direct current stimulation?

Stimulation	Population	Effects	Authors
Prefrontal cortex	Healthy subjects	Memory	Marshall et al, J Neurosci 2004
	Alzheimer's patients	Memory	Ferrucci et al, Neurology 2008
	Stroke patients	Attention	Jo et al, Am J Phys Med Rehabil 2009
	Aphasic patients	Language	Baker et al, Stroke 2010

- Non-invasive
- Easy to apply
- Cheap equipment

Introduction | Materials and Methods | Results | Discussion

AIM of the study

To assess tDCS effects on cognition in patients with disorders of consciousness

Methods

- Design: sham-controlled double blind
 - 4 CRS-R: pre-post tDCS/pre-post sham
- Patients
 - 55 patients (16 women; aged 43 ± 18 y)
 - 25 VS/UWS, 30 MCS
 - 25 traumatic / 30 non-traumatic

DC Stimulator Plus

- Outcome measure
 - Coma Recovery Scale-Revised (CRS-R, Giacino 2004)
- Hypothesis: tDCS responders:
 - CRS-R total tDCS > pre-tDCS, sham, pre-sham
- Statistical analysis: ANOVA (Stata)

Introduction | Materials and Methods | Results | Discussion |

Group data (n=55)

Introduction | Materials and Methods | Results | Discussion |

VS/UWS vs. MCS

Introduction | Materials and Methods | Results | Consclusions

Conclusions

- Deep Brain Stimulation (Schiff et al., Nature 2008)
- Amantadine (Schnakers, 2008)
- Non-invasive non-pharmacological class A evidence for tDCS induced cognitive improvement in MCS

<section-header><section-header>

Questions to: athibaut@chu.ulg.ac.be

Steven Laureys • Giulio Tononi AP

Responders

25 VS/UWS → 2 responders

2/11 VS/UWS acute

0/14 VS/UWS chronic

30 MCS \longrightarrow **15 responders**

7/9 acute

8/21 chronic

Responders: audition subscale

Responders: subscales - visual

tDCS parameters and safety

- Intensity: 2mA
- Time: 20 minutes
- Voltage: max 26V
- Electrodes: 35cm²
- Max: 0.1mA/cm²

2mA et 10kOhm = 20V OK 2mA and 20kOhm = 40V STOP

tDCS presumed mode of action

Direct effects

Modification of neuronal excitability

Long term effects

Modification of ion channels (Na⁺, Ca²⁺)

Modification of NMDA receptors efficacy

Modification of inter-neurons

still hypothesis

tDCS critisisms

Limitations:

- Short term effect
- Moderate clinical change
- Unknown physiological effects (cathode)
- Improve electrode position?