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Abstract. A general algorithm of slit spectra extraction for a system of point-like sources (e.g. multiple lensed
images of a quasar) has been developed, assuming that the point-spread function (PSF) induced by the measuring
instrument and/or atmosphere and the positions of the spectra relative to the CCD frame are unknown. The main
idea of the algorithm is to successively apply the maximum entropy method to each set of parameters, such as
the spectra, the PSF, and the spectra positions, in order to iteratively improve their values. The algorithm uses
all the a priori knowledge about the spectra (e.g. flux positivity, flux ratios between the components, astrometry,
etc.) to compute the initial parameter sets. The main features of the algorithm, its implementation, as well as
some important aspects of its practical use, are discussed in detail. Two sets of simulated spectroscopic data have
been built in order to show the most characteristic properties of the algorithm and to justify its aplication to
the spectra extraction of the gravitational lens system Q1009-0252 A & B (=LBQS1009-0252 A & B). Further
applications of the algorithm are suggested.
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1. Introduction
It is well known that the observed image of a point-like
source deviates from an ideal one because of atmospheric
turbulence, diffraction, instrument aberrations, detector
noise, etc. Moreover, sometimes we are forced to process
data which, for some reason, are incomplete. For exam-
ple, we may only know a rough estimate of the atmosphe-
ric seeing without detailed knowledge of the point-spread
function (PSF) of our instrument and/or atmosphere.

Thus, whenever we deal with observational data, some
restoration techniques are necessary in order to extract as
much information as possible. To improve the reliability
of such an extraction, it is important to supplement the
observational data with prior knowledge about the image.
Powerful examples of such a priori information are the
flux positivity, the flux ratios between the various image
components, the astrometric data, the full width at half
maximum (FWHM) characterizing the seeing and so on.

The aim of this paper is to describe a new, suf-
ficiently general algorithm of spectra extraction. The
algorithm, which works even if the PSF and the spec-
tra shapes/positions within the CCD frame are not well
known, is based on the maximum entropy method (MEM).
Rooted in information theory, the MEM has been suc-
cessfully used in a variety of fields (for general references
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concerning its astronomical applications, see Narayan &
Nityananda 1986). The main arguments justifying the
choice of the MEM as a basic method are as follows: (i) it
makes the least assumption about unknown information,
(ii) structure that is not evident in the data is not intro-
duced in the image, (iii) there is a possibility to express
a priori information in terms of a default image rather
than the properties of the algorithm itself (Cornwell &
Evans 1985; Skilling & Bryan 1984; Skilling 1989).

In Sect. 2 we present some general remarks, introduce
adequate notations, and formulate the main idea of the
proposed algorithm for spectra extraction. Section 3 is de-
voted to a description of the standard MEM scheme with
some helpful generalizations. Then in Sect. 4, we consider
in detail the structure and the most important features of
our algorithm with respect to the restoration of different
parameter sets. Section 5 contains a description of simu-
lated observational data and examples of extracted spec-
tra. We also discuss several aspects regarding the practical
use of the algorithm and justify a posterori the quality of
spectra that have been extracted with our method from
observations of the gravitational lens system Q1009-0252
A & B. Finally, Sect. 6 summarizes our conclusions.

2. General remarks and notations
Let us assume that we deal with standard, sky-subtracted,
CCD observational data of slit spectra of an astronomi-
cal object that consists of several point-like components
(see Fig. 1). Typically, it may be a gravitationally lensed
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Fig. 1. Typical sky-subtracted CCD observational data show-
ing the overlapping slit spectra of two nearby point-like com-
ponents. These spectra appear as two nearly horizontal strips.
The CCD frame has dimensions 990 pxl along the horizon-
tal (spectral) direction and 26 pxl along the vertical (spatial)
one. For a better reproduction, the image has been compressed
along the spectral direction.

quasar or another system of point sources. For conve-
nience, we shall label the spectra with the discrete index a
(a = 1, . . . , Nsp), where Nsp represents their total number.

Usual implementation of spectral observations sup-
poses that the direction of dispersion coincides with one
of the two CCD frame axes. Hereafter, to distinguish be-
tween these two axes, the indices λ and i refer to pixel
coordinates along the spectral and spatial directions of
the CCD frame, respectively. Furthermore, we use the
pixel size as a natural length unit within the CCD frame,
changing to wavelength or angular scales if required. In
an ideal situation, the spectra should look like parallel
straight lines with xa = const., where xa denotes the posi-
tion of the ath spectrum along the spatial direction. But in
practice, due to differential atmospheric refraction and/or
instrumental distortion, spectra deviate from a straight
line. Thus, to perform a correct extraction of spectra, it is
necessary to know their actual shape, i.e. the values xaλ
at every λ.

Now, let φ be the PSF characterizing the image blur-
ring by the observational instrument and atmosphere. The
PSF weakly depends on wavelength but, when extract-
ing spectra, we nearly always can choose a spectral range
within which this dependence may be neglected, even if
the spectra have relative offsets in the spectral direction.
We assume that the PSF is not necessarily a symmetric
function, but it is normalized to unity,∫ +∞

−∞
φ(x)dx = 1, (1)

and represented by its samples φn at Npsf = 2Mpsf + 1
points evenly separated by the interval ∆:

φn = φ[∆(n−Mpsf − 1)], n = 1, . . . , Npsf . (2)

At any other intermediate point, a value of the PSF can
be computed by interpolation. The choice of Mpsf and ∆,
which may differ from the pixel size, is discussed in Sect. 4.
Given the PSF, the flux faλi in the pixel (λ, i) due to the
ath spectrum can be written as

faλi = Caλφ(i− xaλ), (3)

where Caλ is the corresponding spectral flux value.
Generally speaking, there are three sets of unknown

parameters: the spectra Caλ, the set of the PSF values φn,
and the spectra positions xaλ. The main idea of the pro-
posed method is to successively apply the MEM to each

set of parameters in order to iteratively improve their val-
ues. To implement this idea, we follow, with some gen-
eralizations, the simple maximum entropy deconvolution
algorithm proposed by Cornwell & Evans (1985), hereafter
C&E (see also Steinbach 1996). For completeness, let us
briefly describe the main features of this algorithm and
our generalizations of it. The essence of the algorithm is
directly bound to the concept of relative entropy.

3. The maximum entropy method

Suppose that we are to reconstruct some object which is
not necessarily an image but which is represented by sev-
eral discrete sets of uniform positive parameters, like the
three sets previously discussed. Following our main idea,
consider separately one of the sets, say bi (i = 1, . . . ,M),
assuming all the others are known. For convenience, we
shall treat this set as a vector b in the M -dimensional
space. Suppose also that a priori knowledge about the ob-
ject can be expressed in the form of the vector m of the
same dimension. The relative entropy

H(b|m) = −
∑
i

bi[ln(bi/mi)− bi +mi] (4)

then provides a useful measure of the differences between
these two objects. It is easy to see that the relative entropy
has the maximum H = 0 at b = m; i.e. in the case of no
data, optimization of H just gives the a priori object.

If there are some observational data, they will pull the
reconstructed object away from the a priori one. It can be
shown that the MEM selects a single object from a variety
of objects consistent with the data (for a theoretical foun-
dation of the MEM and a discussion of the corresponding
justifications from the information theory, see the papers
mentioned above and the references therein).

The chi-square statistic is usually used to describe the
discrepancies between the observed and the reconstructed
data sets. To write the χ2 function in our case, note that
the contribution of each spectrum to the flux in the pixel
(λ, i) is given by Eq. (3). Denoting the observed flux by Fλi
and the corresponding standard deviation by σλi, we can
write the following expression for the χ2:

χ2 =
∑
λ,i

1
σ2
λi

[∑
a

Caλφ(i− xaλ)− Fλi

]2

. (5)

Thus, in order to reconstruct our object, we should op-
timize the relative entropy (4), subject to the constraint
that the chi-square function (5) has a value which is statis-
tically compatible with the data (see below). Sometimes,
however, it is worth using another constraint G = const.
with some function G(b) whose explicit form depends
on the nature of the parameters under consideration.
According to the general method of the Lagrange mul-
tipliers, we construct the objective function

Q = H − αχ2 − βG, (6)

where α and β are the Lagrange multipliers.
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The optimization problem then consists of finding a
vector b such that the gradient of Q, i.e. the vector ∇Q
whose components are equal to ∂Q/∂bi, is zero. Following
C&E, we use the Newton-Raphson iterative optimization
of the objective function (6) with automatic adjustment of
the Lagrange multipliers α and β at every step of iteration.
The algorithm starts with b = m and α = β = 0. The step
to the next trial vector ∆b is then given by

∆b = (−∇∇Q)−1 ·∇Q. (7)

According to Eq. (7), in order to obtain ∆b, it is necessary
to calculate a matrix inverse to the Hessian ∇∇Q. In the
general case of image reconstruction, when the number
of parameters is very large, typically 106, direct inversion
of the Hessian is impossible, and it is necessary to use
either some refined computational scheme, like that by
Skilling & Bryan (1984), or a suitable approximation to
the Hessian, for example, the diagonal approximation by
Cornwell & Evans in C&E. Fortunately, in our case it is
possible to invert this matrix directly because it is block
diagonal with block dimension of at most Nsp or Npsf .
For this purpose, we use the singular value decomposition
algorithm (Forsythe et al. 1977).

The inverse matrix

g = (−∇∇Q)−1

provides a useful metric for the M -dimensional parameter
space, which can be used to judge the closeness of the
actual vector b to the true MEM one and for adjusting
the Lagrange multipliers α and β. If we define the scalar
product of two M -vectors X and Y as

||X · Y || =
∑
i,k

gikXiYk

and introduce the M -vector 1 whose components are all
equal to unity, then the ratio

R = ||∇Q ·∇Q||/||1 · 1||

provides a good diagnostic of successful iteration.
Normally, this ratio decreases, remaining very small as
the iterations proceed. But, if the optimization problem
is ill-conditioned or has no solution, then R increases up
to unity or even above. Following C&E, we require that,
during iterations,

R < ε, (8)

where ε is usually chosen to be of order 0.01 or less.
It should be stressed that requirement (8) cannot it-

self serve as a criterion to stop the iterations, since we
are interested in the best fit of the observational data.
Therefore, we demand that, along with (8), at least one
of the following two conditions is satisfied as well:

χ2 ≈ N or |∆χ2| < ε̂χ2, (9)

where N is the number of observations. The former con-
dition is the usual chi-square test whereas the latter one

means stopping due to slow convergence of iteration,
which especially takes place if the other sets of param-
eters are not yet fitted. The simplest practical choice for ε̂
is ε̂ ≤ ε.

At any stage of iteration, the required changes in the
Lagrange multipliers α and β are defined by (see C&E)

∆α = −∆χ2/||∇χ2 ·∇χ2||,

∆β = −∆G/||∇G ·∇G||.

Since changing α and β should not violate condition (8),
the lower and upper permissible values for ∆α and ∆β
can be obtained from the inequalities:

||(∇Q−∆α∇χ2) · (∇Q−∆α∇χ2)|| < ε||1 · 1||,

||(∇Q−∆β∇G) · (∇Q−∆β∇G|| < ε||1 · 1||.

After this short general description of the MEM algorithm
based on the C&E paper, we can discuss its special real-
izations for the extraction of the three sets of parameters
mentioned above: the spectra, the PSF, and the spectra
positions.

4. The MEM spectra extraction algorithm

Let S, F , and X denote symbolically the implementations
of the MEM to process the spectra, the PSF, and the spec-
tra positions, respectively. Then the general scheme of our
algorithm may be displayed as a sequence of MEM steps:

Start : S → [F → X → S]→ . . .

→ [F → X → S]→ Stop.

Thus, we start with some initial values of the spectra, the
PSF, and the spectra positions whose choice is dictated
by the wide use of a priori information and will be consid-
ered in detail below. Each step of the algorithm contains
the MEM iteration, as previously described. The transi-
tions from one step to another, which are indicated with
the arrows in the scheme, are carried out after successfully
checking the stopping conditions (8) and (9). Every step
ends with putting m = b, i.e. with improvement of our
prior knowledge about the corresponding set of parame-
ters. The brackets symbolize undivided parts of the algo-
rithm. In other words, computations have to be finished
only after processing the spectra. We proceed in this way
because we are mainly interested in obtaining the spectra.

Now, let us consider the features of each of the three
main steps of the algorithm.

4.1. The MEM step for the spectra

At this step, the components of the vector b are the spec-
tra Caλ. We use the general form of the objective func-
tion (6) and choose total flux conservation as the second
constraint that implies the following form for the func-
tion G:

G =
∑
aλ

Caλ.
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Here, we have taken into account the fact that the PSF is
normalized to unity (1).

A choice of initial values for Caλ depends on our prior
knowledge about the observed object. Suppose that we
know the relative fluxes qa of its components, which are
normalized by

∑
a qa = 1. Then, at a specified CCD row

λ = const, we have Caλ = qaAλ. Adding the fluxes Fλi ≈∑
aCaλφ(i − xaλ) [cf. Eqs. (3) and (5)] from all pixels of

this row and using again the normalization of the PSF, we
obtain Aλ =

∑
i Fλi. This implies the helpful expression

for the start values of Caλ:

Caλ(0) = qa
∑
i

Fλi.

If the relative fluxes qa are unknown, we may either start
with any heuristic value for them or just set qa = 1/Nsp,
i.e. we assume uniform spectra. Another simple possibility
is to use completely flat spectra.

There are no special problems implementing this step
of the algorithm. Note only that to protect against Caλ
becoming negative, especially at the first few iterations,
clipping of possible non-positive values is used (see C&E).

4.2. The MEM step for the PSF

The discrete set of the PSF values (2) should now be
considered as the vector b. The choice of the number of
sampling points Npsf = 2Mpsf + 1 and of the sampling
interval ∆ depends on the adopted, default PSF profile
φn(0) (Gaussian, Moffat’s, etc.) and on the observational
estimate of the FWHM, including the atmospheric seeing.
We take the Gaussian profile with observed FWHM as the
a priori PSF, and choose the sampling interval ∆ using the
sampling theorem (see, for example, Press et al. 1997).

Suppose that the PSF φ(x) is approximately band-
width limited in the Fourier domain. This hypothesis is
rather general and valid, e.g., for a Gaussian PSF because
its Fourier image is also a Gaussian, and for a Moffat
PSF (see Moffat 1969) whose Fourier transform decreases
exponentially at large frequencies. We determine ∆ from
the condition that, for a small given value ε, the Fourier
component of the PSF at the Nyquist frequency 1/2∆
is ε times as large as the one at the zero frequency. For
the Gaussian PSF and ε = 10−3, this condition gives
∆ ≈ 0.36 FWHM , which is used by us for the compu-
tation of the sampling interval. Note that owing to some
deviation of the spectra from a straight line, it is possible
to obtain a correct approximation for the PSF, even if ∆
is less than the pixel size. On the other hand, in order
not to lose information, ∆ should not be larger than the
pixel size, i.e. than unity. Of course, if FWHM ' 1, a cor-
rect restoration of the PSF is impossible due to sampling
limitations. Some trial method should then be used.

The half number of the PSF points Mpsf is chosen from
the condition that the PSF values at the ends of the inter-
val [−∆Mpsf ,+∆Mpsf ] are small, about 10−3 the central
value. For large absolute values of the argument, we use
continuously differentiable matching of the numerical pro-

file with Gaussian ones. A minimum value of Mpsf is taken
to be 5.

It is convenient to introduce the new variables ψn, with
the default values ψn(0) = 1, defined as

φn = ψn φn(0), n = 1, . . . , Npsf , (10)

and to work with them rather than with the PSF itself.
The advantage of this choice is to prevent possible algo-
rithm instabilities at the wings of the PSF.

To interpolate the numerical PSF profile, we use the
approximation which follows from the sampling theorem.
In our notations, we thus have

φ(x) ≈
Npsf∑
n=1

ψnφn(0) sinc [(x+Mpsf + 1− n)/∆] , (11)

where sinc t = sinπt/πt is the well-known function in in-
formation theory and x is counted from the PSF’s “centre
of gravity”

x0 = ∆

Npsf∑
n=1

nφn

/Npsf∑
n=1

φn − (Mpsf + 1)

 .
Equation (11) allows us to compute the corresponding
derivatives with respect to ψn. Due to linearity, only
the first derivatives are not identically equal to zero.
Numerical examination has shown that this approxima-
tion is much better than other possible ones (e.g. using
polynomials, cubic splines, etc.).

Again, we optimize the relative entropy under the con-
straints that the resulting PSF is consistent with the ob-
served data (9) and obeys the normalization condition (1).
The corresponding function G is obtained by approxi-
mation of the integral in (1) with the sum of sampled
PSF values:

G = ∆
Npsf∑
n=1

ψnφn(0).

4.3. The MEM step for the positions

Let us suppose that detailed astrometric information is
available for a given object and that it is possible to com-
pute the relative spectra positions δxa along the spatial
direction. Suppose also that the spectra have no relative
offset, or just a small one, along the dispersion. Then their
positions in each CCD row λ = const are given by

xaλ = xλ + δxa, a = 1, . . . , Nsp,

with the unknown xλ to be determined from the MEM at
this step.

Because δxa are all defined within a constant, it is use-
ful to choose this constant such that

∑
a qaδxa = 0, where

qa are the relative fluxes of the components. xλ refers then
to the centre of brightness, and its initial value xλ(0) can
easily be estimated as a flux-weighted average of the pixel
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number i along the spatial direction, i.e. across the dis-
persion:

xλ(0) =
∑
i

iFλi

/∑
i

Fλi.

Optimizing the relative entropy, we now only use the chi-
square constraint. Additional simplification is that the
Hessian matrix is purely diagonal. But some test should
be included into the algorithm in order to reject values
of xλ being out of the proper range, especially at the start
of the iterations.

Note that if the astrometric data on an observed object
are not reliable enough, it is possible to generalize this step
of the algorithm, considering the positions xaλ as unknown
variables and using the MEM strategy similar to that for
spectra processing.

These are the main features of the three steps followed
in the proposed algorithm. As a rule, it converges rather
quickly owing to a careful choice of the initial values. We
restrict the maximum number of iterations at every step
to be 10 in order to prevent big accidental deviations of
the fitted parameters from their true values. Also, as the
χ2 decreases, we gradually diminish the values of ε and ε̂
in (8) and (9) to prevent the possibility of overfitting.
Note that after stopping the iterations, it is necessary to
renormalize both the spectra and the PSF, because con-
dition (1) remains valid only approximately during the
iterations whereas the χ2 function is invariant under nor-
malizing transformations Caλ → kCaλ, φn → k−1φn with
some positive parameter k whose value is usually near
unity.

In conclusion of this section, let us summarize the main
elements of our algorithm (cf. C&E):
1. Successive use of the MEM for obtaining the spectra,

the PSF, and the spectra positions.
2. Optimization of the relative entropy subject to the fol-

lowing constraints: χ2 and flux conservation during the
processing of spectra, χ2 and the PSF normalizing con-
dition during the PSF processing, only χ2 while the
positions are being processed.

3. Interpolation of the PSF and its derivatives on the
basis of the sampling theorem.

4. A Newton-Raphson approach to optimize the objective
function with direct inversion of the Hessian which is
(block) diagonal.

5. Automatic adjustment of the Lagrange multipliers
which ensures that the obtained gradient of the ob-
jective function is small in comparison with the unit
vector.

5. Some examples and discussion

A computer program that implements the concepts pre-
sented in the previous sections was written in the C lan-
guage. At first, all the different segments as well as the
whole program were carefully tested and continuously
improved, using simulated data without and with noise.
Then the program was successfully applied to observations
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Fig. 2. Spectra that have been used for the CCD data simula-
tions. From top to bottom: bright component (A), faint compo-
nent (versions B1 and B2), night sky (S). See text for details.

of the gravitationally lensed quasar Q1009-0252 A & B
(Claeskens et al. 2001, hereafter CKLSS).

The choice of spectra for simulations is not as simple
as it may seem at first sight. It is always possible and easy
to select examples that exclusively show either advantages
or disadvantages of an algorithm. As a reasonable compro-
mise in this section, we restrict our consideration to only
processing two sets of artificial data in order to reveal most
of the program features as well as to justify the correct-
ness of the extracted spectra for Q1009-0252 A & B (see
CKLSS). The number of overlapping spectra Nsp is taken
to be 2.

The basic spectra which have been used for the
CCD data simulations are presented in Fig. 2, where
and henceforth all spectral fluxes are expressed in analog-
to-digital units (ADU). In this figure, plot A represents
the spectrum of the bright component; for this purpose
we have chosen a slightly smoothed spectrum of Q1009-
0252 A as published in CKLSS. Plots B1 and B2 display
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two different versions of the spectrum of the faint com-
ponent. Spectrum B1 is completely artificial and is ap-
proximately 0.26 as bright as that of A. Spectrum B2 is
obtained from spectrum A by multiplying by 0.1 and in-
cluding some reddening like that observed for the B com-
ponent of Q1009-0252 (CKLSS). Finally, plot S represents
a background spectrum of the night sky. Note that in spite
of their specific differences, all the spectra nearly show the
same global shape due to the wavelength dependence of
the CCD quantum efficiency combined with the transmis-
sion of the instrument and of the atmosphere. Spanning
a very wide range in flux, these spectra allow us to show
how our algorithm works for different values of the S/N.

As previously mentioned, we consider two sets of artifi-
cial spectra, namely combinations A+B1 (model #1) and
A + B2 (model #2), each being supplied with the night
sky background S, and we treat the (angular) separation
between the spectra as a free parameter. We assume, for
simplicity, that the effects due to differential atmospheric
refraction and/or instrumental distortion are linear as a
function of λ so that the spectra may be approximated by
straight lines, slightly inclined with respect to the spectral
direction of the CCD frame.

Following the choice of input spectra, we must now se-
lect the PSF, add noise and subtract the sky background.
Sky subtraction is a common procedure and does not
require special comments. As to the choice of the PSF
profile, we adopt a simple Gaussian PSF that is sam-
pled over a pixel size. Of course we could choose more
complex PSFs, say non-symmetrical ones, but this would
only introduce unnecessary complications to our main
considerations. Due to the same reason, we assume that
the parameters of the PSF neither depend on wavelength
nor on position within the CCD frame. For all the consid-
ered simulations, we adopt a FWHM of 2.5 pxl, a rather
typical value for ground-based spectroscopic observations.

In order to add noise to our artificial spectra, it should
be noted that, following standard reduction of CCD data
(including sky subtraction), one usually deals with two
kinds of noise: the Poisson distributed photon noise due
to the quantum nature of light and the normally dis-
tributed readout noise mainly arising from the on-chip
preamplifier. Let us denote the gain factor of the CCD
by g and consider the total signal I in a given pixel due
to both the spectra and the sky. The corresponding num-
ber of photoelectrons Ne collected by this pixel is given
by Ne = gI. Since Ne, like the number of photons, also
obeys the Poisson distribution, its observed value is ap-
proximately equal to the Poisson’s mean. Now, if we in-
troduce two random variables, a Poisson distributed P(m)
with mean m and a normally distributed G with zero mean
and unit variance, then the noise-added signal in the con-
sidered pixel can be written in the form:

I = P(gI0)/g + σronG, (12)

where I0 is the signal value (in ADU) in the absence of
noise and σron is the readout noise variance (also in ADU).
Thus, given the two parameters g and σron, Eq. (12)

Table 1. Main parameters used for the CCD data simulations.
The spectra are marked in accordance with Fig. 2.

Parameter Model #1 and #2

Spectrum 1 (bright) A
Spectrum 2 (faint) B1 and B2

Flux ratio 0.26 and 0.10
Sky background S
PSF profile pixel averaged Gaussian
Seeing (FWHM) 2.5 pxl
Spectral scale 4 Å/pxl
Image size 990× 26 pxl
CCD gain 2 e−/ADU
CCD readout noise 4 ADU
Spectra separation free parameter

may well serve as the starting point for simulations of
CCD data, including noise. The corresponding random
number generators have been taken from Press et al.
(1997). Note in passing that this equation implies the
known formula for the standard deviation σ of the sig-
nal in a given pixel [see e.g. Horne 1986 and cf. Eq. (5)]:

σ2 = I/g + σ2
ron. (13)

In the remainder, we use the following values for the
CCD parameters: g = 2 e−/ADU and σron = 4 ADU
(= 8 e−). The size of the handled image is taken to be
990× 26 pixels with a spectral scale of 4 Å per pixel, as
in CKLSS. Information on the main parameters for both
models is summarized in Table 1.

As an illustration, Fig. 3 shows a mosaic of simulated
spectral data within model #1 for separations between
the spectra of 2 pxl (left panel) and 4 pxl (right panel).
Both these panels display the spectra before and after sky
subtraction as well as the associated standard deviations
needed for the chi-square test and computed according to
Eq. (13).

Before proceeding any further, let us make some gen-
eral remarks regarding the use of the program. First of all
note that the quality of spectra restoration scales with the
number of useful constraints on the parameters (cf. known
relative separation between the spectra, etc.). Fortunately,
in our case we can reduce the number of parameter sets
from three to two and thereby improve the accuracy of ex-
traction, using a two-stage processing. This is suggested
by the fact that a priori the spectra should look smooth. In
the first stage, we process the observational data with our
general algorithm to obtain rough values for the spectra,
the PSF and the spectra positions. A typical behaviour
of the spectra positions after such an initial processing
is shown in Fig. 4 for model #1 with a known separation
of 1.5 pxl between the spectra. Comparison between Fig. 2
and Fig. 4 shows that the noise degradation affecting the
positions is evidently related to the noise present in the
simulated spectra: high noise corresponds to low S/N and
vice versa. In spite of noise, a reliable estimate of the spec-
tra positions and their shapes is easily obtained. Thus, it
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c

b

a

Fig. 3. Two examples of simulated spectral data in the case of model #1. As in Fig. 1, the size of each single image is 990×26 pxl,
and the direction of dispersion is horizontal. Separations between the spectra along the vertical (spatial) direction are 2 pxl
(left panel) and 4 pxl (right panel). From top to bottom: a) simulated spectral data, b) spectral data after sky subtraction,
c) associated standard deviations.
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Fig. 4. An example of the spectra positions after the first pro-
cessing (model #1, spectra separation of 1.5 pxl). In spite
of noise, a reliable estimate of the spectra positions is easily
obtained.

is quite reasonable to apply any apropriate smoothing pro-
cedure (e.g. least-squares fitting, smoothing filters, etc.) in
order to get reliable spectra positions. After this, we may
pass to the second stage of data processing in which only
the spectra and the PSF are considered to be unknown.

Another useful technique is just to repeat the data pro-
cessing after suitable smoothing of the previously obtained
spectra. The process of spectra extraction is regarded as
complete if no more change in the spectra is seen.

It is important to emphasize that whenever we carry
out the extraction procedure, the (smoothed) parameters
which were derived at the previous processing stage serve
as the initial (default) parameters to the next one (cf.
Sects. 3 and 4).

Yet another remark concerns the PSF. It turns out that
in all considered cases, its profile is perfectly restored. In
fact, this is achieved because of using a uniform profile all
across the spectral range. If the PSF is wavelength depen-
dent or, more generally, varies with the position within the
CCD frame, then we would only get its average shape with
the global processing. Analysis of the residuals usually
provides a good indication for such a dependence. Then
a possible way out is to divide the whole spectral range
into several parts with the application of our strategy to
each part separately. By the way, it is the residual map
that allows, under certain practice, to reveal plausible rea-
sons for parameter discrepancies. Note however that the
MEM produces partially correlated residuals so that it is
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Fig. 5. Model #1: original (thick line) and extracted (thin line)
spectra of the bright component A for a separation of 0.5 pxl
between A and B1.

impossible to determine their distribution which should
be completely homogeneous (see Narayan & Nityananda
1986 and references therein).

Our algorithm is also very reliable regarding flux con-
servation. For all the applications, a relative error smaller
than 0.5% has been reached for the total flux.

The main computational cost in running our pro-
gram comes from the matrix inversions and calculation
of the sinc function and its derivatives. Run time per sin-
gle processing mainly depends on the flux ratio between
the spectra, on the spectra separation, on the FWHM of
the PSF, and typically varies from 1 to 5 min (Pentium III,
450 MHz).

Let us now have a close look at the results obtained for
the spectra extraction. As previously mentioned, we have
stuck in all cases to the following scheme: (i) processing
with three unknown parameter sets, (ii) smoothing and
fixing the spectra positions, (iii) processing with two sets
of unknowns, (iv) smoothing the spectra, and (v) one more
processing with two sets of unknowns. We have carried
out a large number of data simulations for which we have
varied the spectra separation in the [0.5 pxl–4 pxl] range
with a step of 0.5 pxl.

First we consider the spectra that have been extracted
from the data based on model #1 (see Fig. 2 and Table 1)
for which the original spectra have a moderate flux ra-
tio. In Fig. 5 we compare the original and the extracted
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Fig. 6. Model #1: extracted spectra of the faint compo-
nent B1 (thin lines) for several separations between A and B1:
a) 0.5 pxl, b) 1.5 pxl, c) 2.5 pxl, d) 3.5 pxl. For comparison,
the thick lines represent the original spectrum.

spectrum of the bright component A for the case of a
0.5 pxl separation between A and B1. In spite of such a
small separation, the extracted spectrum is in good agree-
ment with the original one except for some minor differ-
ences. It is clear that as the separation increases, the ex-
traction quality improves, especially regarding the faint
component. Therefore, we focus our attention on the spec-
trum of the faint component B1.

Figure 6 presents a sequence of extracted spectra for
this component as a function of the separation between A
and B1. As one can see, at small separation (plot a), the
B1 spectrum is rather noisy, with evident pollution from
peaks present in spectrum A because of the strong overlap
between the two spectra (cf. Fig. 5). At larger separations
(b, c, and d), the spectrum becomes less and less noisy
due to a significant decrease of pollution from the bright

component. Note however that even in the case of a sep-
aration that exceeds the adopted FWHM (plot d), there
remain weak bursts of noise at λλ4600 and 5800 Å which
are apparently due to the corresponding peaks present in
spectrum A.

From this example we conclude that, using the algo-
rithm, one should remain very careful in deciding which
spectral details are spurious and which ones are genuine.
As it was already mentioned, a good protection against
errors and wrong data interpretation is a careful analysis
of the residual map. Thus, if the spectra are recognized to
be incorrect, the extraction procedure should be repeated.
With this in mind, one should make adequate changes be-
forehand in the initial (default) values of the parameters
(for example, by slightly modifying the spectra and/or
smoothing them, setting another value for the FWHM of
the PSF, etc.) In some cases, this strategy leads to much
better results.

Now we turn to model #2 which is based on two sim-
ilar spectra for A and B2, the latter one being slightly
reddened. This corresponds to a quite typical situation for
multiply imaged quasars. Although gravitational lensing
is achromatic, implying that under ideal conditions, the
spectra of several images of the same quasar should look
exactly the same, they turn out, in practice, to be distinct
from each other due to microlensing, extinction effects, in-
trinsic variability of the quasar combined with expected
time delays, etc. (for general references, see Kayser et al.
1986; Refsdal & Surdej 1994; Narayan & Bartelmann 1996;
Jean & Surdej 1998). Nevertheless, the spectra usually re-
tain their similarity, which provides a very important con-
stituent of our prior knowledge, making easier an applica-
tion of the algorithm. Indeed, for such an object, we may
always start the data processing with identical spectra for
the lensed images, as described in Sect. 4.

The basic spectra A and B2 are characterized by a
large flux ratio. Again, as in the previous case, we shall
only consider the extracted spectra of the faint compo-
nent. Inspection of Fig. 7, which is somewhat similar to
Fig. 6, shows how the noise decreases with the increasing
separation between A and B2. Consequently, more and
more features from the original spectrum become recog-
nizable in the extracted one. Reddening of the continuum
is very well reproduced in all cases, even at small separa-
tion, for which the noise level is quite high.

Model #2 as well as the parameters of the CCD have
been chosen in such a way that plot d in Fig. 7, cor-
responding to a separation of 3.5 pxl, looks very much
like the extracted spectrum of component B for the grav-
itationally lensed quasar Q1009-0252 (CKLSS). As we
see, a very good agreement is reached between the sim-
ulated and extracted spectra. One additional argument
in favour of the efficiency of the described MEM algo-
rithm is that the extracted spectra of Q1009-0252 A &
B that were presented in CKLSS were also found to be
in very good agreement with those obtained using a to-
tally independent and more empirical extraction method
(Surdej et al. 1993). Thus, we conclude that, at least in
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Fig. 7. Model #2: extracted spectra of the faint compo-
nent B2 (thin lines) for several separations between A and B2:
a) 0.5 pxl, b) 1.5 pxl, c) 2.5 pxl, d) 3.5 pxl. The original spec-
trum is displayed with a thick line.

this particular case, our algorithm leads to very reliable
results.

6. Conclusions

We have described a MEM-based algorithm for optimal
extraction of overlapping slit spectra. The algorithm uses
all prior knowledge on observational data and may suc-
cessfully work, even if the PSF and the spectra posi-
tions relative to the CCD frame are unknown. Testing
and debugging the corresponding program have clearly
shown that our algorithm is very reliable, robust and
works rather well for a large range of input parameters.
Examples that have been considered in the previous sec-
tion confirm this conclusion.

However, it should be noted that the use of our algo-
rithm does not completely exclude possible ambiguities,
especially in some extreme cases. As we repeatedly men-
tioned above, the simplest and the most reliable method
to protect against errors in spectra decomposition consists
of a careful analysis of the residuals. But this method does
not work, for example, if we deal with two very close over-
lapping spectra, one of which is very faint with respect to
the other. In such a case, even the two-stage technique pro-
posed in Sect. 5 may lead to an uncertain result. Another
danger is to attribute particularly correlated residuals to
the MEM itself rather than to errors of decomposition.
This ambiguity can be eliminated by demanding that the
obtained spectra are consistent with the observed data not
only globally, in the statistical sense, but also locally.

Of course, we fully realize that more applications of the
proposed algorithm should be carried out and we hope to
pursue such applications in the near future, especially in
cases of incomplete observational data. Namely, we intend
to use our algorithm to process additional observations of
gravitational lens systems taken in the framework of the
Gravitational Lensing ESO key program. In parallel, cor-
responding and adequate spectra simulations will enable
us to quantify the reliability of the algorithm as well as to
estimate the flux errors of the extracted spectra, following
a similar approach to that described in the present work.
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