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Prof. Rodolphe Sepulchre (Supervisor) University of Liège
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UNIVERSITY OF LIÈGE

Abstract
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Department of Electrical Engineering and Computer Science

by Bamdev Mishra

This thesis deals with least-squares optimization on a manifold of equivalence relations, e.g., in the pres-

ence of symmetries which arise frequently in many applications. While least-squares cost functions remain

a popular way to model large-scale problems, the additional symmetry constraint should be interpreted

as a way to make the modeling robust. Two fundamental examples are the matrix completion problem,

a least-squares problem with rank constraints and the generalized eigenvalue problem, a least-squares

problem with orthogonality constraints. The possible large-scale nature of these problems demands to

exploit the problem structure as much as possible in order to design numerically efficient algorithms.

The constrained least-squares problems are tackled in the framework of Riemannian optimization that

has gained much popularity in recent years because of the special nature of orthogonality and rank

constraints that have particular symmetries. Previous work on Riemannian optimization has mostly

focused on the search space, exploiting the differential geometry of the constraint but disregarding the

role of the cost function. We, on the other hand, propose to take both cost and constraints into account

to propose a tailored Riemannian geometry. This is achieved by proposing novel Riemannian metrics.

To this end, we show a basic connection between sequential quadratic programming and Riemannian

gradient optimization and address the general question of selecting a metric in Riemannian optimization.

We revisit quadratic optimization problems with orthogonality and rank constraints by generalizing

various existing methods, like power, inverse and Rayleigh quotient iterations, and proposing novel ones

that empirically compete with state-of-the-art algorithms.

Overall, this thesis deals with exploiting two fundamental structures, least-squares and symmetry, in

nonlinear optimization.
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Cette thèse de doctorat traite de l’optimisation au sens des moindres carrés sur une variété de relations

d’équivalence, i.e., en présence de symétries qui apparaissent fréquemment dans plusieurs applications.

Alors que les fonctions de coût de moindres carrés restent un moyen répandu de modéliser les problèmes

à grande dimension, la contrainte additionnelle de symétrie peut être interprétée comme un moyen

de rendre la modélisation robuste. Deux exemples fondamentaux sont le problème de complétion de

matrices, un problème aux moindres carrés où des contraintes de rang sont présentes, et le problème des

valeurs propres généralisées, un problème aux moindres carrés soumis à des contraintes d’orthogonalité.

Les dimensions potentiellement importantes de ces problèmes appellent à en exploiter au maximum la

structure , dans le but de développer des algorithmes numériquement efficients.

Les problèmes aux moindres carrés contraints sont ici résolus en utilisant l’ensemble des outils de

l’optimisation Riemannienne, qui a récemment gagné en popularité grâce à la possibilité qu’elle offre

de gérer la nature spéciale des contraintes d’orthogonalité et de rang aux symétries particulières. Les

précédents travaux d’optimisation Riemannienne se sont principalement attachés à l’espace de recherche,

en exploitant la géométrie différentielle des contraintes, mais sans s’intéresser au rôle de la fonction de

coût. Dans ce travail, au contraire, nous proposons de prendre en compte les contraintes et le coût, dans

le but de proposer une géométrie Riemannienne ajustée. Ceci est rendu possible par l’introduction de

nouvelles métriques Riemanniennes. Dans ce but, nous montrons une connexion basique entre la pro-

grammation quadratique séquentielle et l’algorithme du gradient Riemannien. La question générale de

la sélection d’une métrique pour l’optimisation Riemannienne est aussi abordée. L’optimisation quadra-

tique pour les problèmes aux contraintes de rang et d’orthogonalité est revisitée, en généralisant plusieurs

méthodes existantes telles que les méthodes itératives utilisant la puissance, l’inverse, ou le quotient de

Rayleigh. De nouvelles méthodes sont aussi proposées, qui sont empiriquement compétitives avec les

techniques de l’état de l’art.

D’une manière générale, cette thèse de doctorat concerne l’exploitation de deux structures fondamentales,

les moindres carrés et la symétrie, pour l’optimisation non-linéaire.
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Chapter 1

Introduction

In most online shopping activities today, recommendations form an integral part of consumer-company

interaction which in turn result from predicting the online buying preferences of a consumer. A well-

know example is the prediction of movie ratings, popularized by the MovieLens recommendation website

(MovieLens, 1997) and the famous Netflix prize problem (Netflix, 2006). The problem in such tasks

amounts to estimating missing entries of a movie ratings matrix, a very sparse matrix with few ratings

per user, from a limited number of its known entries, where an entry of the matrix corresponds to a

user’s rating for a specific movie. The aim then is to predict ratings that the user might have had for the

unseen movies, had he or she seen them before. For example, the dataset MovieLens (1997) has a million

known ratings that correspond to about 4% of the total ratings. Similarly, the dataset Netflix (2006) has

a hundred million ratings that correspond to 1% of the total number of ratings. Such tasks fall in the

arena of, what is called, collaborative filtering (Abernethy et al., 2009; Rennie and Srebro, 2005).

A prior assumption that is frequently used in such prediction tasks is that the underlying matrix is

low-rank, i.e., the rank of the matrix is very small compared to the dimensions of the matrix. Prediction

of unknown ratings with a low-rank prior has the interpretation that users’ preferences of movies depend

only on few movie (but unknown) genres, which is often the case in practice. The importance of the

rank constraint in the Netflix prize problem has been highlighted in the blog by Amatriain and Basilico

(2012), where they quote:

“We looked at the two underlying algorithms with the best performance in the ensemble:

Matrix Factorization (which the community generally called SVD, Singular Value Decompo-

sition) and Restricted Boltzmann Machines (RBM). SVD by itself provided a 0.8914 Root

Mean Square Error (RMSE), while RBM alone provided a competitive but slightly worse

0.8990 RMSE. A linear blend of these two reduced the error to 0.88. To put these algorithms

to use, we had to work to overcome some limitations, for instance that they were built to

handle 100 million ratings, instead of the more than 5 billion that we have, and that they

were not built to adapt as members added more ratings. But once we overcame those chal-

lenges, we put the two algorithms into production, where they are still used as part of our

recommendation engine. . . ”,

1



2 Chapter 1. Introduction

which clearly stresses the importance of rank constraint in the Netflix recommendation task by empha-

sizing the role of singular value decomposition. It should be stated that the singular value decomposition

is a fundamental tool in matrix analysis (Golub and Van Loan, 1996).

In an academic setup the above prediction problem is simplified to an optimization problem that mini-

mizes a least-squares cost function with a low-rank constraint. Reconstruction or completion of a low-rank

matrix under particular assumptions on the distribution of known entries and by exploiting the rank con-

straint parameterizations have been proposed by Candès and Recht (2009); Gross (2011); Keshavan et al.

(2010). This includes both the fixed-rank approach and the convex relaxation approach with trace norm

(also called nuclear norm) (Candès and Recht, 2009; Fazel, 2002; Recht et al., 2010). Simultaneously,

this has also led to much research in developing computationally efficient algorithms (Boumal and Absil,

2011; Cai et al., 2010; Jain et al., 2010; Keshavan et al., 2010; Lee and Bresler, 2010; Mazumder et al.,

2010; Meyer et al., 2011a; Ngo and Saad, 2012; Rennie and Srebro, 2005; Vandereycken, 2013). An

iterative algorithm is understood to scale well when its cost per iteration scales linearly with data. In

most cases, fixed-rank matrix factorizations (including the singular value decomposition) play a critical

role in achieving computational efficiency (Absil et al., 2014; Bonnabel and Sepulchre, 2009; Boumal

and Absil, 2011; Burer and Monteiro, 2003; Dai et al., 2012; Journée et al., 2010; Keshavan et al., 2010;

Meyer et al., 2011a; Ngo and Saad, 2012; Vandereycken, 2013).

The importance of matrix factorizations and rank constraint is not confined to low-rank matrix com-

pletion alone and it plays a fundamental role in problems spanning classification (Amit et al., 2007),

image clustering (Joulin et al., 2010), learning on pairs (Abernethy et al., 2009), learning low-rank dis-

tances (Kulis et al., 2009; Meyer et al., 2011b), structured low-rank approximation (Markovsky, 2008,

2014), neuroimaging (Vounou et al., 2010), control systems applications (Benner and Saak, 2013), tensor

completion (Da Silva and Herrmann, 2014; Kressner et al., 2013) to name a few.

A different set of constraints that connect naturally to the rank constraint are orthogonality constraints

which have also been a topic of much research over the years (Absil et al., 2004a; Edelman et al., 1998;

Eldén and Park, 1999; Manton, 2002; Wen and Yin, 2013). A fundamental example concerning or-

thogonality constraints is the generalized eigenvalue problem, a least-squares problem with orthogonality

constraints (Absil et al., 2002; Edelman et al., 1998; Golub and Van Loan, 1996). Some important appli-

cations include subspace identification (Balzano et al., 2010), analysis of gene expression data (Journée

et al., 2010; Teschendorff et al., 2007), synchronization of rotations (Boumal et al., 2013), system iden-

tification (Usevich and Markovsky, 2014), and the orthogonal Procustes problem (Viklands, 2006).

Both orthogonality and rank constraints are nonlinear and nonconvex but nevertheless very special. In

particular, they have the structure of a quotient manifold, a topological space arising from structured

symmetries on a matrix manifold (Absil et al., 2008; Edelman et al., 1998; Meyer, 2011). The precise

definition of a quotient manifold can be found in the book by Lee (2003, Chapter 9). A matrix man-

ifold has the property that its elements have suitable matrix characterizations. Structured symmetries

here refer to particular equivalence relations that may exist on matrix manifolds. Consequently, both

rank-constrained matrix completion and generalized eigenvalue problems are optimization problems over

quotient manifolds. A further motivation as to why acknowledging the quotient structure is critical in

optimization is discussed in Section 2.3.
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Although the study of matrix manifolds, per se, is a classical subject (see Lee (2003) and the references

therein), the development of numerical optimization techniques over matrix manifolds, including quotient

manifolds, have arose significant interest only recently, primarily driven by concrete applications. An

important reference is the seminal work of Edelman et al. (1998) that bridges the gap between abstract

differential geometric objects and their efficient matrix representations. Particularly, it shows the de-

velopment of algorithms for problems with orthogonality constraints. A general treatment of deriving

concretely a number of first-order and second-order algorithms for optimization on matrix manifolds

(including quotient manifolds) is given in the recent monograph by Absil et al. (2008). The references

from Absil et al. (2008); Edelman et al. (1998) form the foundation on which the present thesis rests.

Consider an optimization problem that minimizes a cost function over a set of equality constraints.

(We assume here that the set of equality constraints is a differentiable manifold.) For this case, the

advocated Riemannian framework of Absil et al. (2008); Edelman et al. (1998) proceeds by endowing the

set of equality constraints with a Riemannian metric structure, i.e., a Riemannian manifold structure

that is endowed with a Riemannian metric (a smooth inner product on the manifold). As a result,

the constrained optimization problem (minimization of a smooth cost function over a set of equality

constraints) is conceptually translated into an optimization problem on a Riemannian manifold (structure

of the set of equality constraints). This has the interpretation of an unconstrained optimization problem

over a Riemannian manifold which paves the way to extend a number of unconstrained methods to the

manifold setup. The Riemannian algorithms have been shown to be competitive with various state-

of-the-art on many different benchmarks across many different applications. See Absil (2003); Boumal

(2014); Edelman et al. (1998); Journée (2009); Meyer (2011); Vandereycken (2010) for the application of

Riemannian algorithms on various problems. The benefits of the Riemannian optimization framework

are twofold. First, it takes the intrinsic geometry of the problem into account and provides a cluster of

algorithms that come with rigorous convergence analysis. It also lays down a systematic procedure to

handle symmetries, the theme of the present thesis. The second benefit of the framework is the recent

and ongoing developments of competitive softwares such as Manopt (Boumal et al., 2014) to support the

numerical implementation of Riemannian algorithms.

It should also be mentioned that most of the aforementioned optimization problems involve minimizing

least-squares cost functions. Least-squares have been a popular class of optimization problems in various

fields of engineering applications (Nocedal and Wright, 2006, Chapter 10). The primary reason for

this popularity arises from the fact that the least-squares structure of the cost function leads to an

efficient computation of first-order derivatives (gradient information) and also an efficient approximation

of second-order derivatives. The least-squares structure becomes all the more relevant when dealing

with large dimensional problems, where even computation of first-order derivatives are computationally

demanding. A second source of least-squares problems arise naturally while solving systems of linear and

nonlinear equations (Nocedal and Wright, 2006, Chapter 11). Quite often, the exercise to solve a system

of equations (linear or nonlinear) translates to solving an optimization problem where the critical points

of a (chosen) least-squares cost are identified with zeros of the system of equations that is sought to be

solved.



4 Chapter 1. Introduction

While, individually, both least-squares and the geometry of rank and orthogonality constraints are well-

studied in literature, this thesis exploits these two fundamental structures simultaneously in the Rieman-

nian optimization setup. Our particular emphasis lies on exploiting the Riemannian metric structure on

the sets of orthogonality and rank constraints in optimization problems. The thesis deals with a number

of specific (and popular) least-squares optimization problems to showcase this contribution of the thesis.

1.1 Contributions of the thesis and the related publications

The thesis is primarily motivated by the low-rank matrix completion problem that is viewed as a least-

squares problem on a matrix manifold with symmetries. The manifold here is the manifold of fixed-

rank matrices. The main ideas in this thesis, however, extend beyond the low-rank matrix completion

example to other least-squares problems involving rank and orthogonality constraints. We show this by

considering the problems of generalized eigenvalue decomposition, large-scale matrix Lyapunov equations,

and multivariate linear regression. All these problems are tackled in the framework of Riemannian

manifold optimization with the main emphasis on proposing computationally efficient algorithms.

The main contribution of the thesis is to stress the benefit of a Riemannian structure that depends on

both the constraints and the cost function. The conventional way is to disregard the role of cost function

in deciding the Riemannian structure on the constraints.

The specific contributions of the thesis and the related publications are as follows.

• We review a number of fixed-rank matrix factorizations and study their underlying symmetries. It

is emphasized that the symmetries arise from the interplay of few (but individually well-studied)

matrix manifolds.

This is discussed in Chapter 2 and the main theme is based on the publication (Mishra et al., 2014).

• In Chapter 3, we explore the connection between Riemannian gradient optimization and sequential

quadratic programming (for equality constraints). The question of selecting a Riemannian metric on

a Riemannian manifold is addressed. Traditionally, this question has been answered by exploiting

the differential geometric framework of the search space but disregarding the role of the cost

function in an optimization problem. Instead, we propose to take both the cost function and the

constraints of an optimization problem into account to decide a metric structure. To this end,

sequential quadratic programming is shown to provide a systematic guidance to choose a metric

in Riemannian optimization. This choice of metric has a preconditioning effect on optimization

problems, often an advantage in dealing with ill-conditioned data. The relevance of metric tuning

is shown on least-squares problems with rank and orthogonality constraints. Specifically, on the

generalized eigenvalue problem and the problem of computing low-rank solution to matrix Lyapunov

equations. For the generalized eigenvalue problem, we show connection to power, inverse, and

Rayleigh quotient iteration. For the matrix Lyapunov equations, we propose a simpler metric that

has shown promising initial results.

This work has been reported in the technical report (Mishra and Sepulchre, 2014b) and is currently

under review.
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• We apply the metric tuning idea to the low-rank matrix completion problem by proposing two

Riemannian metric structures on the fixed-rank manifold (the set of fixed-rank matrices) in Chapter

4. Concrete implementation of the Riemannian conjugate-gradient algorithms are shown with a

detailed numerical cost analysis. Our proposed algorithms generalize to a number of state-of-the-art

algorithms in this field.

The material of Chapter 4 is reported in the technical reports (Mishra and Sepulchre, 2014a; Mishra

et al., 2012). The technical report (Mishra and Sepulchre, 2014a) has, subsequently, been accepted

for publication in the Proceedings of the 53rd IEEE Conference on Decision and Control, 2014.

• The problem of large-scale optimization with low-rank regularization is addressed in Chapter 5.

We propose a numerically efficient algorithm that alternates between fixed-rank optimization and

rank-one updates. The fixed-rank optimization is characterized by an efficient matrix factorization.

In many regularization problems, often a requirement is to compute a grid of solutions, also called a

regularization path, corresponding to different values of the regularization parameter. The manifold

setup is exploited to construct a regularization path efficiently. Finally, the performance of the

proposed algorithm is illustrated on the least-squares problems of low-rank matrix completion and

multivariate linear regression.

This work has has been published in the SIAM Journal on Optimization, 2013 (Mishra et al.,

2013).

• On the algorithmic side, we deal with both first-order (steepest-descent and conjugate-gradients)

and second-order (trust-regions) methods in the thesis. The matrix representations of all the

optimization-related ingredients are tabulated for all the considered problems. It readily allows for

an implementation of all the algorithms proposed in this thesis in Manopt, the Matlab toolbox for

optimization on manifolds (Boumal et al., 2014).

A contribution of the thesis is the development of the Manopt toolbox and is presented in a paper

published in the Journal of Machine Learning Research, 2014 (Boumal et al., 2014). Specific

algorithmic implementations in Manopt that are related to the thesis are also available from http:

//www.montefiore.ulg.ac.be/~mishra/.

In addition, the following publications are related to the work done during the course of the PhD study,

but are not discussed in the thesis.

• Mishra B, Vandereycken B (2014) A Riemannian approach to low-rank algebraic Riccati equations.

In: Proceedings of the 21st International Symposium on Mathematical Theory of Networks and

Systems (MTNS), pp 965–968 (Mishra and Vandereycken, 2014).

• Mishra B, Meyer G, Sepulchre R (2011) Low-rank optimization for distance matrix completion.

In: Proceedings of the 50th IEEE Conference on Decision and Control (CDC-ECC), pp 4455–4460

(Mishra et al., 2011).

http://www.montefiore.ulg.ac.be/~mishra/
http://www.montefiore.ulg.ac.be/~mishra/


6 Chapter 1. Introduction

1.2 Brief outline of the thesis

The outline of the thesis is as follows. In Chapter 2, we motivate the low-rank matrix completion and

the generalized eigenvalue problems as least-squares problems on manifolds of symmetries. The need

for taking symmetries in optimization problems into account is emphasized. Chapter 3 first reviews the

Riemannian optimization framework and its connection with standard sequential quadratic programming.

Building upon this connection, we address the question of selecting a Riemannian metric that exploits

both the cost function nature, specifically least-squares, and the constraints. It is shown that for the

particular case of quadratic optimization with rank and orthogonality constraints, the chosen metrics

admit a simpler form. The metric tuning idea of Chapter 3 leads to novel conjugate-gradient algorithms

for the low-rank matrix completion problem which is the subject of Chapter 4. Chapter 5 focuses on

the general large-scale convex trace norm minimization problem, where a low-rank constraint is enforced

“softly”. Efficient computation of a regularization path of solutions is shown by exploiting the structure

of the trace norm constraint. Finally, the main ideas of the thesis are summarized in Chapter 6 along

with few future research perspectives.

1.3 Abbreviations and notations

Most of the abbreviations, notations, and acronyms are defined within the text where they are used.

However for the sake of completeness, we list here the notations that are frequently used in this thesis.

We are concerned with the following sets of matrices with real entries.

Rn The set of all n-dimensional real column vectors.

Rn×m The set of all n×m real matrices.

Rn×mr The set of rank-r matrices of size n×m and r ≤ min(n,m).

S+(r, n) The set of symmetric positive semidefinite matrices of size n × n of rank r ≤
min(n,m).

Rn×r∗ The set of full column-rank matrices of size n× r with r ≤ n.

St(r, n) The Stiefel manifold of full column-rank matrices of size n×r with orthonormal

columns and r ≤ n.

Gr(r, n) The Grassmann manifold of r-dimensional subspaces in Rn.

S++(r) The set of symmetric positive definite matrices of size r × r.
Diag++(r) The set of symmetric diagonal matrices of size r × r with positive entries.

O(r) The set orthogonal matrices of size r× r with positive entries. It is also called

the orthogonal group.

GL(r) The general linear group of r× r matrices with non-zero determinant, i.e., full

rank matrices.

·× · The cartesian product of two sets.

Given a matrix X ∈ Rn×m (n ≥ m), we define the following operations. Without loss generality, we also

assume that m ≤ n.
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XT The transpose of X.

Sym(X) It computes (X + XT )/2, provided X is a square matrix.

Skew(X) It computes (X−XT )/2, provided X is a square matrix.

Trace(X) The sum of the diagonal entries of X, provided X is a square matrix.

X � 0 Positive definiteness of a symmetric matrix X, i.e., all the eigenvalues of X are

strictly positive.

X � 0 Positive semidefiniteness of a symmetric matrix X, i.e., all the eigenvalues of

X are nonnegative.

expm(X) The matrix exponential of X, provided X is a square matrix.

logm(X) The matrix logarithm of X, provided X is a square matrix.

X1/2 The matrix square root of X, provided X is a square matrix. For a symmet-

ric positive semidefinite matrix X, we choose the unique symmetric positive

definite matrix square root.

uf(X) The factor U of the polar decomposition of X such that X = US, where

U ∈ Rn×m has orthonormal columns and S ∈ Rm×m is a symmetric posi-

tive semidefinite matrix. If X is full column-rank, then uf(X) is computed as

X(XTX)−1/2.

qf(X) The factor Q of the QR decomposition of X such that X = QR, where Q ∈
Rn×m has orthonormal columns and R ∈ Rm×m is an upper triangular matrix.

〈X,Y〉 It computes Trace(XTY) for matrices X,Y ∈ Rn×m.

X�Y The element-wise multiplication of matrices X,Y ∈ Rn×m.

rank(X) The number of non-zero singular values of X.

‖X‖F The Frobenius norm of X, i.e., the square root of the sum of the squares of the

entries of the matrix X, ‖X‖F =
√

Trace(XTX).

‖X‖∗ The trace norm of X, i.e., the sum of the singular values of X.

‖X‖op The operator norm of X, i.e., the largest singular value of X.

Given a differentiable manifold M, we use the following notations.

x, y The elements of M.

TxM The tangent space of the manifold M at x.

ξx, ηx The tangent vectors in the tangent space TxM.

gx The Riemannian metric at x ∈M.

gx(ξxηx) The Riemannian metric between tangent vectors ξx and ηx at x ∈M.

∇ξxηx The Riemannian connection of ηx with respect to ξx, where ξx, ηx ∈ TxM.

Rx(ξx) The retraction mapping at x ∈M along ξx ∈ TxM.

Tηxξx The vector transport of the tangent vector ξx along the tangent vector ηx.

Ψx The orthogonal projector on the tangent space TxM from the ambient space.

Given a differentiable manifold M equipped with an equivalence relation ∼, we have the following

additional notations.

[x] The equivalence class of x ∈M, defined as [x] := {y ∈M : x ∼ y}.
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M/ ∼ The quotient manifold of M by ∼, i.e., the set of equivalence classes.

Vx The vertical space at x ∈ M. It provides a computational representation to

the abstract tangent space T[x](M/ ∼), where [x] is the equivalence class of x

and M/ ∼ is the quotient manifold.

Hx The horizontal space at x ∈M.

Πx The orthogonal projector onto the horizontal space Hx from the tangent space

TxM.

Given a smooth function f :M→ R : x 7→ f(x) on the manifold M, we use the following notations.

gradxf The Riemannian gradient of the function f at x ∈ M with respect to the

equipped Riemannian metric gx.

Hessxf [ξx] The Riemannian Hessian of the function f at x ∈ M along the the tangent

vector ξx ∈ TxM, with respect to the equipped Riemannian metric gx. Using

the Riemannian connection notation ∇, Hessxf [ξx] is equivalent to ∇ξxgradxf .

Given a smooth function F : Rn×m → R : X 7→ F (X), we use the following notations.

GradXF The Euclidean gradient of the function F at X in Rn×m.

DF (X)[Z] The first-order Euclidean directional derivative of the function F along Z ∈
Rn×m, i.e., lim

t→0
(F (X + tZ)− F (X))/t.

D2F (X)[Z] The second-order Euclidean directional derivative of the function F along

Z ∈ Rn×m, i.e., lim
t→0

(GradX+tZF − GradXF )/t. It should be noted that

D2F (X)[Z] = DGradXF [Z], where GradXF is defined earlier.

We use the following acronyms in the thesis.

SVD Singular value decomposition.

SQP Sequential quadratic programming.



Chapter 2

The geometry of constraints with

symmetries

The present chapter deals motivates optimization problems on quotient manifolds and stresses particular

structure of rank and orthogonality constraints.

The organization of the chapter is as follows. Section 2.1 motivates the low-rank matrix completion

problem and the generalized eigenvalue problem. Specific optimization formulations are listed. The

quotient geometrical structure of rank and orthogonality constraints is presented in Section 2.3. In

particular, we show that the quotient structure arises from the interplay of well-studied matrix manifolds.

Finally, the need for an optimization framework to deal with optimization with symmetries is discussed

in Section 2.3.

2.1 Motivation

In this section, we specifically motivate the low-rank matrix completion problem, a least-squares problem

with rank constraint and the generalized eigenvalue problem, a least-squares problem with orthogonality

constraints.

The choice of these two examples rests on the fact that these are fundamental problems in many appli-

cations (Absil et al., 2002; Edelman et al., 1998; Meyer, 2011; Vandereycken, 2010). Consequently, these

problems offer a number of benchmark algorithms to compare and contrast. A study of these optimiza-

tion problems also allows us to extend the basic ideas that we propose in the subsequent chapters to

other related problems of least-squares.

9
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2.1.1 The low-rank matrix completion problem: a least-squares problem

with rank constraint

The problem of low-rank matrix completion amounts to estimating the missing entries of a matrix from

a limited number of its entries. Let X? ∈ Rn×m be a matrix whose entries X?
ij are only given for some

indices (i, j) ∈ Ω, where Ω is a subset of the complete set of indices {(i, j) : i ∈ {1, . . . , n} and j ∈
{1, . . . ,m}}. The completion problem amounts to identifying the unknown entries of X? with the as-

sumption that the matrix to recover is low-rank, i.e., the rank r � (n,m). The low-rank constraint

captures redundant patterns in X? and ties the known and unknown entries together. Usually in prob-

lems, the number of given entries |Ω| is of order O(nr+mr− r2) which corresponds to the dimension of

rank-r matrices that is much smaller than nm, the total number of entries in X?, where r � min(n,m).

There has been a large number of research contributions on this subject over the last few years, addressing

the problem both from a theoretical (Candès and Recht, 2009; Gross, 2011; Keshavan et al., 2010) and

from an algorithmic point of view (Boumal and Absil, 2011; Cai et al., 2010; Jain et al., 2010; Keshavan

et al., 2010; Lee and Bresler, 2010; Mazumder et al., 2010; Meka et al., 2009; Ngo and Saad, 2012;

Rennie and Srebro, 2005; Simonsson and Eldén, 2010; Vandereycken, 2013). An important and popular

application of the low-rank matrix completion problem is in movie recommendation systems (mentioned

earlier in Chapter 1). The matrix to complete is a matrix of movie ratings of different users; a very sparse

matrix with few ratings per user. The predictions of unknown ratings with a low-rank prior would have

the interpretation that users’ preferences only depend on few latent genres (MovieLens, 1997; Netflix,

2006).

In the optimization setup, the problem of low-rank matrix completion translates to solving for X ∈ Rn×m

by minimizing the rank of X while best fitting with the known entries in X?. Equivalently,

min
X∈Rn×m

rank(X)

subject to Xij = X?
ij for all (i, j) ∈ Ω,

(2.1)

where rank(X) is the rank of the matrix X.

The above formulation, although intuitive, is difficult to solve as noted by Cai et al. (2010); Candès and

Recht (2009). As a result, several practically useful formulations, including numerical implementations,

to the problem (2.1) have been considered in the literature. A list of algorithms is collected by Carron

(2014).

Two popular formulations of the low-rank matrix completion problem that encompass a number of

recent contributions are presented later in this section. A first formulation is obtained by fixing the rank

explicitly. The second formulation is obtained when the rank constraint is replaced by its convex surrogate,

the trace norm (Fazel, 2002, Chapter 5). Both these formulations have been well-studied and recent

contributions provide conditions on the number of known entries under which an exact reconstruction is

possible from the sampled entries. Notable are the papers by Candès and Recht (2009); Gross (2011);

Keshavan et al. (2010). Both these formulations also highlight the role of fixed-rank matrix factorizations

in the low-rank matrix completion problem. In Section 2.2.1 we present few popular matrix factorizations
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and give an overview of their geometry. In particular, we show that the factorizations have non-uniqueness

that make the solutions of (2.2) non-isolated on the matrix factorization search space.

Formulation with the fixed-rank constraint

The low-rank matrix completion problem with the fixed-rank formulation is

min
X∈Rn×m

∑
(i,j)∈Ω

(Xij −X?
ij)

2

subject to rank(X) = r,
(2.2)

where Ω is the set of indices of the known entries of X? and |Ω| is the cardinality of Ω, i.e., it is equal to

the number of known entries.

It should be noted that the problem (2.2) is a nonconvex problem (the set of rank-r matrices is not a

convex set). The problem (2.2) admits a closed-form solution only when the set Ω contains all the indices

of X?, that is, when all the entries of X? are known. This corresponds to the classical rank-r singular

value decomposition of X? (Golub and Van Loan, 1996). In all other cases, the problem (2.2) calls for

iterative algorithms. In principle, only critical points and not global minima of the problem (2.2) are to

be expected with any iterative optimization algorithm. Despite the nonconvexity, the formulation (2.2)

is often preferred in many applications. Primarily, it has the main advantage of drastically reducing the

number of search variables from nm to nr+mr− r2 (the dimension of the set of rank-r matrices of size

n × m) which is especially the case when r � min(n,m). The other observation is that the problem

formulation (2.2) gives good results in many practical problems, e.g., the works that specifically exploit

the fixed-rank formulation (2.2) include (Boumal and Absil, 2011, 2012; Keshavan et al., 2010; Meyer

et al., 2011a; Ngo and Saad, 2012; Vandereycken, 2013; Wen et al., 2012).

Later in Section 2.2.1, we characterize the set of rank-r matrices of size n×m precisely by invoking fixed-

rank matrix factorizations. In particular, it is characterized as a smooth quotient manifold (discussed later

in Section 2.2.1). Chapter 4 exploits this smooth manifold structure (of the set of fixed-rank matrices) to

propose numerically efficient algorithms for (2.2) that compete effectively with state-of-the-art algorithms

on various benchmarks.

Formulation with the convex relaxation approach

A second formulation for the low-rank matrix completion is

min
X∈Rn×m

∑
(i,j)∈Ω

(Xij −X?
ij)

2 + λ‖X‖∗, (2.3)

where ‖X‖∗ is the trace norm of X, i.e., the sum of the singular values of X (Cai et al., 2010; Fazel,

2002; Recht et al., 2010), λ > 0 is the regularization parameter, and Ω is the set of indices of the known

entries of X?.

The trace norm is a convex alternative to the fixed-rank constraint that induces low-rank solutions

implicitly instead of the explicit enforcement, as is the case in (2.2). Enforcement of low-rank solutions
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in (2.3) by having a sufficiently large value of λ. Tuning the value of λ also provides a trade-off between

minimizing data-fitting error (fitting with the known entries) and minimizing the rank of solutions. A

large value of λ would seek very low-rank solutions. On the other hand, a smaller value of λ would seek

better data-fitting with the known entries.

Overall, the problem (2.3) is a convex optimization problem that has the structure of a smooth convex

least-squares cost
∑

(i,j)∈Ω

(Xij − X?
ij)

2 and nonsmooth-convex term ‖X‖∗. Numerically efficient convex

optimization algorithms with strong global and local convergence guarantees exist for such problems (Ma

et al., 2011; Nesterov, 2003; Toh and Yun, 2010). The works that specifically exploit the trace norm

formulation (2.3) to propose efficient convex optimization algorithms are, among others, from Cai et al.

(2010); Ma et al. (2011); Mazumder et al. (2010); Toh and Yun (2010).

A critical issue in most convex optimization algorithms that directly deal with (2.3) is that the ranks of

intermediate iterates seem to be uncontrolled and only asymptotically, a low-rank solution is expected.

This poses significant practical challenges when dealing with large-scale instances. To circumvent this

issue, low-rank projection of iterates, that is, curtailing smaller singular values of iterates, is often rec-

ommend to accelerate convergence of the algorithms (Toh and Yun, 2010). This observation suggests

that combining trace norm ‖X‖∗ (implicit enforcement of low-rank solutions) and fixed-rank constraint

(explicit enforcement of low-rank solutions) is beneficial in large-scale algorithmic implementations. This

is the topic of discussion in Chapter 5, where we exploit the manifold structure of the set of fixed-rank

matrices (discussed later in Section 2.2.1) to our advantage in tackling the trace norm regularization

problem in a very general setup. We also revisit the trace norm regularized matrix completion problem

(2.3) in Section 5.6.2. A second advantage of combining trace norm and fixed-rank constraints in opti-

mization is that it leads to an efficient construction of the regularization path of solutions, discussed in

Section 5.5. The regularization path of solutions is the sequence of minimizers of (2.3) corresponding to

different values of λ.

2.1.2 The generalized eigenvalue problem: a least-squares problem with

orthogonality constraints

A second example of interest in this thesis is the generalized eigenvalue problem that seeks to compute

the extreme eigenvalues and eigenvectors of a matrix. In an optimization setup, this amounts to solving

the least-squares problem

min
X∈Rn×r

1
2Trace(XTAX)

subject to XTBX = I,
(2.4)

where A is a symmetric n×n matrix and B is an n×n symmetric positive definite matrix. The constraint

XTBX = I is called the orthogonality constraint that imposes orthogonality among the columns of X.

It is well-known that the global minimizer of the problem (2.4) is the smallest r-dimensional subspace of

the matrix B−
1
2 AB−

1
2 (Absil et al., 2008, Proposition 2.1.1).

The problem (2.4) has attracted much interest in the numerical optimization community and is fundamen-

tal in a wide range of applications that require extremal (dominant or smallest) eigenspace information

(Absil, 2003). For example, when B is I and A � 0, the maximization of Trace(XTAX) with XTX = I
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leads to identification of the principal components of A, a popular tool in statistical analysis. See

(Journée, 2009) and the references therein for a recent survey on the topic. Similarly, the nonsymmetric

extension of (2.4) leads to identifying singular vectors of a matrix, i.e., the formulation

min
U∈Rn×r

V∈Rm×r

1
2Trace(UTAV)

subject to UTU = I

VTV = I,

(2.5)

where A ∈ Rn×m. The solution to (2.5) computes the dominant singular vectors of A.

It should be noted that the cost, Trace(XTAX) in (2.4), remains invariant under the transformation

X 7→ XO for all matrices O ∈ O(r) (the orthogonal group, that is, the set of r × r such that OTO =

OOT = I). As a consequence, the minimizers of the problem (2.4) are not isolated, i.e., if X? is a solution

to (2.4), then all the matrices XO for O ∈ O(r) are also the solutions. This has profound implications in

the convergence analysis of any optimization algorithm for (2.4) (Absil et al., 2008; Edelman et al., 1998;

Nocedal and Wright, 2006). To take the symmetry into account, the search space is reduced in dimension.

In Section 2.2.2 we characterize the search space of (2.4) concretely to deal with the invariance of the

cost. We provide an algorithmic treatment to (2.4) in Section 3.3.

2.2 The characterization of rank and orthogonality constraints

Both fixed-rank matrices and orthogonality constraints have underlying symmetries that are structured.

In particular, the search spaces spanned by the set of fixed-rank matrices and by the set of orthogonality

constraints have the structure of a quotient space, that result from equivalence relations (Absil et al., 2002;

Edelman et al., 1998; Meyer, 2011). The quotient spaces are abstract spaces. Working with a quotient

space calls, by necessity, for a computational space where the elements have matrix representations. This

space is called the total space.

We discuss the quotient nature of rank and orthogonality constraints below.

2.2.1 The quotient nature of rank constraint

We review three popular matrix factorizations for fixed-rank non-symmetric matrices that parameterize

the rank constraint, e.g., rank(X) = r, where X ∈ Rn×m. The fixed-rank matrix factorizations result

from the thin singular value decomposition (SVD) of a rank-r, i.e., rank deficient, matrix X ∈ Rn×m

(Golub and Van Loan, 1996, Theorems 2.5.2 and 2.5.3). Figure 2.1 shows the matrix factorization

schemes that are of relevance to this thesis. Specifically, the SVD of a rank-r X ∈ Rn×m decomposes it

into the product of three matrices as

X = UΣVT , (2.6)

where U is an n×r matrix with orthogonal columns, that is, an element of the Stiefel manifold St(r, n) =

{U ∈ Rn×r : UTU = I}, V ∈ St(r,m), and Σ ∈ Diag++(r) is a r×r diagonal matrix with positive entries

called the singular values (which are ordered). I is the identity matrix (with appropriate dimensions).
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=

Rn×r
∗

St(r, n)

St(r,m)Rm×r
∗

Rn×m
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Rm×r
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∗
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Rn×m
r

After taking the symmetry into account, the search space is the quotient space characterized by

Total space Rn×r
∗ × Rm×r

∗ St(r, n)× S++(r)× St(r,m) St(r, n)× Rm×r
∗

S++(r)

Group action
that keeps X
unchanged

(G,H) 7→
(GM−1,HMT )
for any M ∈ GL(r)

(U,BV) 7→
(UO,OTRO,VO)
for any O ∈ O(r)

(U,Y) 7→
(UO,YOT )
for any O ∈ O(r)

Figure 2.1: Fixed-rank matrix factorizations lead to quotient search spaces due to their intrinsic
symmetries. The pictures emphasize the situation of interest, i.e., the rank r is small compared to
the matrix dimensions. Matrix factorizations admit product structures of well-studied differentiable
manifolds St(r, n), Rn×r∗ , GL(r), and S++(r) (Bhatia, 2007; Edelman et al., 1998). Similarly, the group

actions are by GL(r) and O(r) with well-known characterizations (Lee, 2003).

2.2.1.1 Full-rank factorization (beyond Cholesky-type decomposition)

The most popular low-rank factorization is obtained when the singular value decomposition (SVD) is

rearranged as

X = (UΣ
1
2 )(Σ

1
2 VT ) = GHT ,

where G = UΣ
1
2 ∈ Rn×r∗ , H = VΣ

1
2 ∈ Rm×r∗ , and Rn×r∗ is the set of full column rank n × r matrices;

also known as the full-rank matrix factorization. The resulting factorization is not unique because the

transformation

(G,H) 7→ (GM−1,HMT ), (2.7)

where M ∈ GL(r) := {M ∈ Rr×r : determinant(M) 6= 0}, leaves the original matrix X unchanged

(Piziak and Odell, 1999). This symmetry comes from the fact that the row and column spaces are

invariant to change of coordinates. The classical remedy to remove this indeterminacy in the case of

symmetric positive semidefinite matrices is the Cholesky factorization, which imposes further (triangular-

like) structure in the factors (Golub and Van Loan, 1996, Section 4.2). The LU decomposition plays a

similar role for non-symmetric matrices (Jeffrey, 2010). In a manifold setting, we instead encode the

invariance map (2.7) in an abstract search space by optimizing over a set of equivalence classes defined

as

[(G,H)] = {(GM−1,HMT ) : M ∈ GL(r)}, (2.8)

instead of the product space Rn×r∗ × Rm×r∗ . The set of equivalence classes is denoted as

Rn×mr ' Rn×r∗ × Rm×r∗ /GL(r). (2.9)

The product space Rn×r∗ × Rm×r∗ is called the total space or the computational space. The set GL(r) is

called the fiber space. The set of equivalence classes [(G,H)] is called the quotient space.
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2.2.1.2 Polar factorization (beyond SVD)

The second quotient structure for the set Rn×mr is obtained by considering the following group action on

the SVD (Bonnabel and Sepulchre, 2009; Meyer, 2011),

(U,Σ,V) 7→ (UO,OTΣO,VO),

where O is any r × r orthogonal matrix, that is, any element of the set

O(r) = {O ∈ Rr×r : OTO = OOT = I}.

This results in the polar factorization

X = UBVT , (2.10)

where U ∈ St(r, n) (the Stiefel manifold), V ∈ St(r,m), and B is now a r× r symmetric positive definite

matrix, that is, an element of

S++(r) := {B ∈ Rr×r : BT = B � 0}.

The polar factorization reflects the original geometric purpose of singular value decomposition as repre-

senting an arbitrary linear transformation as the composition of two isometries and a scaling (Golub and

Van Loan, 1996, Section 2.5.3). Allowing the scaling B to be positive definite rather than diagonal gives

more flexibility to optimization algorithms and removes the discrete symmetries induced by interchang-

ing the order on the singular values. Empirical evidence to support the choice of S++(r) over Diag++(r)

(the set of diagonal matrices with positive entries) for the middle factor B is shown in Section 5.6.1. The

resulting search space is again the set of equivalence classes defined by

[(U,B,V)] = {(UO,OTBO,VO) : O ∈ O(r)}. (2.11)

The total space is now St(r, n) × S++(r) × St(r,m). The fiber space is O(r) and the resulting quotient

space is the set of equivalence classes

Rn×mr ' St(r, n)× S++(r)× St(r,m)/O(r). (2.12)

Yet another factorization is obtained by defining the group action

(U,Σ,V) 7→ (UO1,O
T
1 ΣO2,VO2)

on the SVD, where O1,O2 ∈ O(r). This results in the factorization

X = URVT , (2.13)

where U ∈ St(r, n), V ∈ St(r,m), and R ∈ GL(r). This further relaxes the symmetric positive constraint

on the factor B of (2.10) while retaining separation between isometries and scaling. The total space is

now St(r, n)×GL(r)× St(r,m). The fiber space is O(r)×O(r) and the resulting quotient space is the
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set of equivalence classes

Rn×mr ' St(r, n)×GL(r)× St(r,m)/(O(r)×O(r)). (2.14)

2.2.1.3 Subspace-projection factorization (beyond QR decomposition)

The third low-rank factorization is obtained from the SVD when two factors are grouped together,

X = U(ΣVT ) = UYT ,

where U ∈ St(r, n) and Y ∈ Rm×r∗ and is referred to as subspace-projection factorization. The column

subspace of X matrix is represented by U while Y is the (left) projection or coefficient matrix of X.

The factorization is not unique as it is invariant with respect to the group action (U,Y) 7→ (UO,YO),

whenever O ∈ O(r). The classical remedy to remove this indeterminacy is the QR factorization for which

Y is chosen upper triangular (Golub and Van Loan, 1996, Section 5.2). Here again we work with the set

of equivalence classes

[(U,Y)] = {(UO,YO) : O ∈ O(r)}. (2.15)

The search space is the quotient space

Rn×mr ' St(r, n)× Rm×r∗ /O(r), (2.16)

where the total space is St(r, n) × Rm×r∗ and the fiber space is O(r). Recent contributions exploiting

this factorization include the works of Boumal and Absil (2011); Dai et al. (2011); Simonsson and Eldén

(2010).

2.2.2 The quotient nature of orthogonality constraints

The basis of symmetry in the set of orthogonality constraints in (2.4) is the invariance of the cost function,

Trace(XTAX), with the transformation X 7→ XO for all matrices O ∈ O(r) (the orthogonal group),

where X ∈ St(r, n). This implies that the search space in (2.4) is not set spanned by XTBX = I but

rather the set of equivalence classes

[X] := {XO : O ∈ O(r)}.

Consequently, the search space of (2.4) is characterized as the quotient space StB(r, n)/O(r), where

StB(r, n) := {X ∈ Rn×r : XTBX = I}. The total space, that is, the computational space is StB(r, n)

and the fiber space is the set O(r).

For the specific case when B = I, the quotient space StB(r, n)/O(r) is the Grassmann manifold Gr(r, n),

the set of r-dimensional subspaces in Rn (Edelman et al., 1998). It should be mentioned that there

exists other characterizations of the Grassmann manifold, similar to different characterizations of the

rank constraint in Section 2.2.1. We point to one particular characterization of the Grassmann manifold

presented by Absil et al. (2004a), where the Grassmann manifold Gr(r, n) is identified with the quotient
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Rn×r
∗

St(r, n)
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GL(r)
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∗

St(r, n)

GL(r)

O(r)

Figure 2.2: A list of matrix manifolds that appear in rank and orthogonality constraints. Individually,
each of them is well-studied. The notations can be followed from Section 1.3.

space Rn×r∗ /GL(r). Here Rn×r∗ is the set of full column-rank matrices of size n× r and GL(r) is the set

of non-singular r × r matrices.

2.3 Optimization on matrix manifolds with symmetries

Following the previous section it is clear that the problems of low-rank matrix completion with fixed-rank

(Section 2.1.1) and generalized eigenvalue computation (Section 2.1.2) should be treated as optimization

problems on quotient spaces. Additionally, these quotient spaces result from the interplay of individually

well-studied matrix manifolds, shown in Figure 2.2. More appropriately, the resulting quotient spaces of

rank and orthogonality constraints have the structure of quotient manifolds (Lee, 2003, Theorem 9.16;

Absil et al., 2008, Section 3.4.1; Meyer, 2011). To understand why taking the quotient structure into

account in optimization problems is critical, we consider the Rayleigh quotient minimization problem

(Golub and Van Loan, 1996, Chapter 8)

min
x∈Rn∗

xTAx

xTx
(2.17)

which computes the smallest (algebraic) eigenvalue-eigenvector pair of the symmetric n × n matrix A

(simplicity of the smallest eigenvalue is assumed), where Rn∗ := Rn − {0}. It should be stated the

problem (2.17) is a particular case of the generalized eigenvalue problem (2.4). The cost function in

(2.17) is invariant to multiplication of x by a non-zero scalar, i.e., x → αx for α ∈ R − {0} keeps the

cost function unchanged. This symmetry is reflected in the Newton iteration for (2.17) which yields

the iteration x → 2x implying that the failure of the Newton method when symmetry is not taken

into account (Absil et al., 2008, Proposition 2.1.2). In fact, this result is not particular to the Rayleigh

quotient problem (2.1) but rather holds for any homogenous function of degree zero (Absil et al., 2008,

Section 2.1.1). Indeed, the search space in (2.17) is the set of equivalence classes [x] = {αx : α ∈ R−{0}}
for all x ∈ Rn∗ , rather than the set Rn∗ . This set of equivalence classes is the real projective space, Rn∗/R∗.

Any iterative optimization algorithm on a quotient manifold involves computing a search direction (e.g.,

the gradient direction) and then “moving in that direction”. Both these optimization-related operations

admit simple matrix representations in the Riemannian optimization framework (Absil et al., 2008;
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Edelman et al., 1998). The first step is to endow the search space, that is a quotient space in our case,

with a Riemannian manifold structure and a metric (a smooth inner product on the manifold). Once

the structure is in place, the Riemannian framework conceptually transforms a constrained optimization

problem like (2.2) into an unconstrained optimization problem on a Riemannian quotient manifold.

Consequently, all unconstrained optimization algorithms can be extended to the Riemannian setup. The

monograph from Absil et al. (2008) provides a systematic introduction to the Riemannian optimization

framework with a list of algorithms that come with rigorous convergences guarantees.

The subsequent chapters of this thesis exploit the Riemannian optimization framework for the problems

(2.1.1) and (2.1.2). In Chapter 3, along with the quotient nature of the search space, we specifically

exploit the least-squares nature of the cost function to define a number of useful metrics on the search

space.

2.4 Chapter summary

In this chapter, we have presented the optimization problems of low-rank matrix completion and general-

ized eigenvalue computation. These are motivated as optimization problems on quotient manifolds that

arise from structured symmetries in the search space. The quotient nature of rank and orthogonality

constraints are discussed in Section 2.3. We have emphasized that the quotient structure is captured by

the interplay of few well-studied matrix manifolds shown in Figure 2.2. Finally, the motivation for the

Riemannian optimization framework is presented.

The main theme of the chapter is based on the publication (Mishra et al., 2014).



Chapter 3

Metric tuning in Riemannian

optimization and its application to

least-squares problems

In this chapter, we exploit a basic connection between sequential quadratic programming and Riemannian

gradient optimization to address the general question of selecting a metric in Riemannian optimization.

The proposed method is shown to be particularly insightful and efficient in quadratic optimization with

orthogonality and/or rank constraints, which covers most current applications of Riemannian optimiza-

tion in matrix manifolds. We view this approach of selecting a metric from SQP as a form of Riemannian

preconditioning. Similar to the notion of preconditioning in the unconstrained case (Nocedal and Wright,

2006, Chapter 5), the chosen Riemannian metrics have a preconditioning effect on optimization algo-

rithms. We do not aim at a comprehensive treatment on the topic but rather focus on connections

between several classical branches of matrix calculus: matrix factorizations and shifts in numerical lin-

ear algebra, Riemannian submersions in differential geometry, and sequential quadratic programming in

constrained optimization.

The organization of the chapter is as follows. A brief motivation of metric tuning is presented in Section

3.1. The general idea of using sequential quadratic programming (SQP) to select a metric in Riemannian

optimization is presented in Section 3.2. SQP and the Riemannian optimization framework are specifically

introduced in sections 3.2.1 and 3.2.2, respectively. We show that under quite general assumptions, the

SQP approach defines a Riemannian metric and that sequential quadratic programming is equivalent to

Riemannian steepest-descent optimization for this metric. We further discuss the choice of the metric

depending on the curvature properties of both the cost and the constraint and the interpretation of

the Lagrange parameter as a shift. Section 3.3 develops the specific situation of quadratic cost and

orthogonality constraints, revisiting the classical generalized eigenvalue problem. Section 3.4 further

develops the specific situation of quadratic cost and rank constraints, with applications to solving large-

scale matrix Lyapunov equations. All numerical illustrations use the Matlab toolbox Manopt (Boumal

et al., 2014).

19
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3.1 Motivation

Gradient algorithms are a method of choice for large-scale optimization, but their convergence proper-

ties critically depend on the choice of a suitable metric. Good adaptive metrics can lead to superlinear

convergence whereas bad metrics can lead to very slow convergence (Nocedal and Wright, 2006, Chap-

ter 3). The goodness of the metric depends on its ability to encode second-order information about the

optimization problem. For general optimization problems with equality constraints, sequential quadratic

programming (SQP) methods provide an efficient selection procedure based on (approximating) the Hes-

sian of a local quadratic approximation of the problem (Nocedal and Wright, 2006, Chapter 18). This

approach is Lagrangian, that is, it lifts the constraint into the cost function. An alternative is to embed

the constraint into the search space, leading to unconstrained optimization on a nonlinear search space.

Selecting the metric then amounts to equipping the search space with a Riemannian structure (Absil

et al., 2008; Edelman et al., 1998). A current limitation of Riemannian optimization is however in the

choice of the metric. Previous work has mostly focused on the search space, exploiting the differential

geometry of the constraint but disregarding the role of the cost function. This limitation was pointed

out early (Manton, 2002) and has been addressed in a number of recent contributions that emphasized

the importance of preconditioning (Ngo and Saad, 2012; Vandereycken and Vandewalle, 2010) but with

no general procedure. The simple observation of the present chapter is that sequential quadratic pro-

gramming provides a systematic framework to choose a metric in Riemannian optimization in a way that

takes into consideration both the cost function and the constrained search space. This connection seems

novel and insightful.

The use of sequential quadratic programming to select a metric in Riemannian optimization is general

and connects two rather independent areas of constrained optimization. We focus in particular on the

special case of quadratic cost functions with orthogonality and/or rank constraints. This particular situ-

ation encompasses a great deal of current successful applications of Riemannian optimization, including

the popular generalized eigenvalue problem (Absil et al., 2002; Edelman et al., 1998) and linear matrix

equation problems (Benner and Saak, 2013; Vandereycken and Vandewalle, 2010). Even in these highly

researched problems, we show that SQP methods unify a number of recent disparate results and provide

novel metrics. In the eigenvalue problem, where both the cost and constraints are quadratic, the SQP

method suggests a parameterized family of Riemannian metrics that provides novel insights on the role

of shifts in the power, inverse, and Rayleigh quotient iteration methods. In the problem of solving linear

matrix equations, low-rank matrix factorizations make the cost function quadratic in each of the factors,

leading to Riemannian metrics rooted in block diagonal approximations of the Hessian. In all of the

mentioned applications, we stress the complementary but not equivalent role of sequential quadratic

programming and Riemannian programming: the SQP method provides a systematic procedure to select

the metric while the Riemannian framework provides the necessary generalization of unconstrained op-

timization to quotient manifolds, allowing for rigorous design and convergence analysis of a broad class

of quasi-Newton algorithms in optimization problems over classes of equivalences of matrices.
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min
x∈Rn

f (x)

subject to h(x) = 0

min
x∈M

f (x),

where M = {x : h(x) = 0}
has dimension p

max
λ∈Rp

min
x∈Rn

f (x)− 〈λ, h(x)〉,
where λ is the Lagrange multiplier

Riemannian frameworkSequential quadratic programming

(constraints are embedded

into the cost function)

(constraints are encoded

into the seach space)

Figure 3.1: Two complementary viewpoints on optimization with equality constraints.

3.2 Locally selecting the metric of a gradient scheme

Consider the optimization problem

min
x∈Rn

f(x)

subject to h(x) = 0,
(3.1)

where f : Rn → R and h : Rn → Rp are smooth functions. We assume that the set M = {x : h(x) = 0}
has the structure of an embedded submanifold of Rn (Absil et al., 2008, Section 3.3).

In this section we discuss two complementary approaches for the problem (3.1), namely the sequential

quadratic approach and the Riemannian approach. The schematic view is shown in Figure 3.1. We aim

at connecting these two approaches in order to tune the metric on the search space in such a way that

it incorporates second-order information of the problem.

3.2.1 The constrained optimization viewpoint (SQP)

Sequential quadratic programming (SQP) is a particularly well-known approach for equality constrained

nonlinear optimization (Nocedal and Wright, 2006, Chapter 18). The core idea is to optimize the uncon-

strained Lagrangian function L : Rn × Rp → R : (x, λ) 7→ L(x, λ), defined as

L(x, λ) = f(x)− 〈λ, h(x)〉, (3.2)

over the two sets of parameters, x ∈ Rn and λ ∈ Rp, where 〈·, ·〉 is the standard Euclidean inner product

and λ is the Lagrange multiplier. This leads to a primal-dual iterative algorithm in (x, λ) ∈ Rn × Rp.
Linearity of λ in (3.2) is further exploited to reduce the number of variables. For example, locally in the

neighborhood of the minimum, the best least-squares estimate of the Lagrangian multiplier is

λx = (hx(x)(hx(x))T )−1hx(x)fx(x), (3.3)
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The SQP algorithm for
min
x∈Rn

f(x)

subject to h(x) = 0

1. Compute the search direction ζ∗x that is the solution of (3.4).

2. The next iterate x+ is obtained by projecting x + sζ∗x onto the constrained
space, where the step-size s is obtained by a backtracking line search.

3. Repeat until convergence.

Table 3.1: The SQP algorithm.

where hx(x) and fx(x) are the first-order derivatives of the functions h and f at x, respectively (Nocedal

and Wright, 2006, Equation (18.20)). It should be noted that other estimates of λ near the minimum

are also equally in valid in SQP (Absil et al., 2009). Substituting λ with λx transforms the primal-

dual iteration in (x, λ) to a purely primal iteration in the variable x alone (Nocedal and Wright, 2006,

Page 539). Once the Lagrangian multiplier is estimated, the SQP optimization approach proceeds by

minimizing the quadratic programming problem

arg min
ζx∈Rn

f(x) + 〈fx(x), ζx〉+ 1
2 〈ζx,D2L(x, λx)[ζx]〉

subject to Dh(x)[ζx] = 0
(3.4)

at each iteration, where fx(x) is the derivative of the cost function f , D2Lx(x, λx)[ζx] is the second-order

partial derivative of L(x, λx) with respect to x (keeping λx fixed) that is applied in the direction ζx ∈
Rn, 〈·, ·〉 is the standard Euclidean inner product, and Dh(x)[ζx] is the standard Euclidean directional

derivative of h(x) in the direction ζx ∈ Rn, i.e., Dh(x)[ζx] = limt→0(h(x+ tζx)−h(x))/t. If the quantity

〈ζx,D2L(x, λx)[ζx]〉 is strictly positive in the tangent space of constraints, then the problem (3.4) is

convex and has a unique solution (Nocedal and Wright, 2006, Section 18.1).

The next iterate x+ in the SQP algorithm is obtained by projecting x + ζ∗x onto the constrained space

to maintain strict feasibility of the iterates, where ζ∗x is the solution to (3.4). The resulting iterative

algorithm is shown in Table 3.1 and has the properties of a quasi-Newton algorithm with favorable

convergence properties (Nocedal and Wright, 2006, Section 18.3).

The SQP approach is appealing for the simplicity of its formulation. But its convergence properties

asymptotically rely on the regularity of the Hessian of the Lagrangian L(x, λ) (Nocedal and Wright, 2006,

Assumptions 18.2). In many applications, underlying symmetries make the Hessian of the Lagrangian

singular. It is here that the quotient manifold optimization comes into play.

3.2.2 The Riemannian optimization viewpoint

The general philosophy of optimization on manifolds is to recast a constrained optimization problem in

the Euclidean space into an unconstrained optimization on a nonlinear search space that encodes the

constraint. For special constraints that are sufficiently structured, the framework leads to an efficient

computational framework (Absil et al., 2008). This is particularly so when the constraint set is an
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Figure 3.2: Optimization on a Riemannian quotient manifold. The points y and x in the total
(computational) spaceM belong to the same equivalence class and they represent a single point [x] :=
{y ∈ M : y ∼ x} in the quotient space M/ ∼. An algorithm by necessity is implemented in the
computation space but conceptually, the search is on the quotient manifold. With the Riemannian
metric g (3.5), the quotient manifold M/ ∼ is submersed into M. The horizontal space Hx provides a
matrix representation to the abstract tangent space T[x](M/ ∼) of the Riemannian quotient manifold.
Consequently, tangent vectors on the quotient space are lifted to the Horizontal space. The mapping
Rx maps a horizontal vector ξx onto an element on the total space. Here ξx is the horizontal lift, i.e.,

matrix representation of the tangent vector ξ[x] on the abstract space.

embedded manifoldM up to an equivalence relationship ∼. The search space is then a set of equivalence

classes. Optima are not isolated in the computational total space M, but they become isolated on the

quotient space M/ ∼. If the total space can be equipped with a metric that turns both the total space

M and its quotient space M/ ∼ into a differentiable Riemannian manifold, then any unconstrained

optimization algorithm can be realized in the total space but analyzed in the quotient space (Absil et al.,

2008; Edelman et al., 1998; Smith, 1994). The exposition for quotient manifolds here follows from Absil

et al. (2008, Chapters 3, 5,and 8).

Consider an equivalence relation ∼ in the total (computational) spaceM. The quotient manifoldM/ ∼
generated by this equivalence property consists of elements that are equivalence classes of the form

[x] = {y ∈ M : y ∼ x}. In other words, if [x] is an element in M/ ∼, then its matrix representation in

M is x. For example, the Grassmann manifold Gr(r, n), which is the set of r-dimensional subspaces in

Rn, is obtained by the equivalence relationship Gr(r, n) = St(r, n)/O(r). St(r, n) is the set of matrices of

size n× r with orthogonal columns and O(r) is the set of square r× r orthogonal matrices. Each element

in the total space M := St(r, n) = {X ∈ Rn×r : XTX = I} is characterized by a matrix X ∈ Rn×r such

that XTX = I. And an abstract element on the Grassmann manifold Gr(r, n) is characterized by the

equivalence class [X] = {XO : O ∈ O(r)} at X ∈ St(r, n).

Since the manifold M/ ∼ is an abstract space, the elements of its tangent space T[x](M/ ∼) at [x]

also call for a matrix representation in the total space M that respects the equivalence relationship ∼.

Equivalently, matrix representation of T[x](M/ ∼) should be restricted to the directions in the tangent

space TxM on the total space M at x that do not induce a displacement along the equivalence class

[x]. This is realized by decomposing TxM into complementary subspaces, the vertical and horizontal

subspaces such that Vx⊕Hx = TxM. The vertical space Vx is the tangent space of the equivalence class

[x]. On the other hand, the horizontal space Hx, which is the complementary space of Vx, provides a

valid matrix representation of the abstract tangent space T[x](M/ ∼) (Absil et al., 2008, Section 3.5.8).
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The Riemannian steepest-descent algorithm for

min
x∈M

f(x)

1. Search direction: compute the negative Riemannian gradient ξx = −gradxf
with respect to the Riemannian metric gx (3.5). Equivalently, by solving the
problem (3.8).

2. Retract with backtracking line search: the next iterate is computed using the
retraction (3.9) such that x+ = Rx(sξx), where the step-size s is obtained by a
backtracking line search.

3. Repeat until convergence.

Table 3.2: The Riemannian steepest-descent algorithm.

An abstract tangent vector ξ[x] ∈ T[x](M/ ∼) at [x] has a unique element in the horizontal space ξx ∈ Hx
that is called its horizontal lift.

The other critical ingredient is the Riemannian metric. A metric gx at x ∈M in the total space defines

a valid Riemannian metric g[x] on the quotient manifold M/ ∼ if

g[x](ξ[x], η[x]) := gx(ξx, ηx), (3.5)

where ξ[x] and η[x] are any tangent vectors in T[x](M/ ∼), and ξx, ηx are their horizontal lifts in Hx. In

other words, the metric gx (3.5) inM induces a Riemannian metric g[x] on the quotient manifoldM/ ∼,

provided gx(ξx, ζx) = gy(ξy, ζy) for all x, y ∈ [x]; where ξx, ζx ∈ Hx and ξy, ζy ∈ Hy are the horizontal

lifts of ξ[x], ζ[x] ∈ T[x](M/ ∼) along the same equivalence class [x] (Absil et al., 2008, Section 3.6.2). In

words, the metric gx is invariant along the equivalence class [x]. Endowed with this Riemannian metric,

the quotient manifold M/ ∼ is called a Riemannian quotient manifold of M.

The choice of the metric (3.5), which is invariant along the equivalence class [x], and of the horizontal

space Hx as the orthogonal complement of Vx, in the sense of the Riemannian metric (3.5), makes the

spaceM/ ∼ a Riemannian submersion and allows for a convenient matrix representation of the gradient

of a cost function. Figure 3.2 presents a schematic view of the search space. Consequently, the steepest-

descent algorithm on the manifold M that respects the equivalence property ∼ on the space acquires

the form shown in Table 3.2. Convergence of the steepest-descent algorithm in the neighborhood of the

minimum is shown by Absil et al. (2008, Theorems 4.3.1 and 4.5.1). The main ingredients of Table 3.2

are the gradient direction and the retraction mapping.

Riemannian gradient

The horizontal lift of the Riemannian gradient grad[x] of a cost function, say f :M→ R, on the quotient

manifold M/ ∼ is uniquely represented by the matrix representation

horizontal lift of grad[x]f = gradxf, (3.6)
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where gradxf is the gradient on the computational space M. The equality in (3.6) is possible due to

invariance of the cost function along the equivalence class [x] (Absil et al., 2008, Section 3.6.2).

The gradient on the computational space gradxf is computed from its definition: it is the unique element

of TxM that satisfies (Absil et al., 2008, Equation 3.31)

Df(x)[ηx] = gx(gradxf, ηx) for all ηx ∈ TxM, (3.7)

where gx is the Riemannian metric (3.5) and Df(x)[ηx] is the standard Euclidean directional derivative

of f in the direction ηx, i.e., Df(x)[ηx] = limt→0(f(x+ tηx) − f(x))/t (Absil et al., 2008, Section 3.6).

An equivalent way of computing gradxf is by solving the convex quadratic problem

gradxf = arg min
ζx∈TxM

f(x)− 〈fx(x), ζx〉+ 1
2gx(ζx, ζx), (3.8)

where fx(x) is the derivative of the cost function f , 〈·, ·〉 is the standard inner product, and gx is the

Riemannian metric (3.5) at x ∈M. It should be noted that 〈fx(x), ζx〉 = Df(x)[ζx] which is the standard

Euclidean directional derivative of f in the direction ζx ∈ TxM. The equivalence between solution to

(3.7) and (3.8) is established by observing that the condition (3.7) is, in fact, equivalent to the optimality

condition of the convex quadratic problem (3.8).

Retraction

An iterative optimization algorithm involves computing a search direction and then “moving in that

direction”. The default option on a Riemannian manifold is to move along geodesics, leading to the

definition of the exponential map (Lee, 2003, Chapter 20). Because the calculation of the exponential

map can be computationally demanding, it is customary in the context of manifold optimization to relax

the constraint of moving along geodesics. The exponential map is then relaxed to a retraction, which is

any map Rx : Hx →M that locally approximates the exponential map, up to first-order, on the manifold

(Absil et al., 2008, Definition 4.1.1). A natural update on the manifold is, thus, based on the update

formula

x+ = Rx(ξx), (3.9)

where ξx ∈ Hx is a search direction and x+ ∈ M. The retraction Rx defines a valid retraction on the

Riemannian quotient manifold M/ ∼ such that R[x](ξ[x]) := [Rx(ξx)], where ξx is the horizontal lift of

an abstract tangent vector ξ[x] ∈ T[x](M/ ∼) in Hx and [·] is the equivalence class defined earlier in the

section.

3.2.3 Connecting SQP to the Riemannian framework

The practical performance of the Riemannian steepest-descent algorithm in Table 3.2 greatly depends

on the choice of the metric (3.5). The dominant trend in Riemannian optimization has been to infer the

metric from the geometry of the search space. Symmetry properties of the search space suggest to choose

invariant metrics, that is, metrics that are not affected by a symmetry transformation of variables. In
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many situations, invariance properties single out the choice of a unique metric (Absil et al., 2008; Edelman

et al., 1998). However, the metrics that are motivated solely by the search space may not perform well

in an optimization setup as they do not take into consideration the cost function (Manton, 2002).

To address the above issue, we connect the SQP approach in Table 3.1 to the Riemannian steepest-descent

algorithm in Table 3.2 with a specific metric that is induced by the Lagrangian (3.2) on the horizontal

space Hx. The connection has a twofold objective. First, it provides a guidance in choosing metrics on

a manifold. Second, it provides a framework to analyze the performance of SQP for constraints with

equivalence relations.

Theorem 3.1. Assume that both M and M/ ∼ have the structure of a differentiable manifold and that

the function f :M→ R is a smooth function with isolated minima on the quotient manifold M/ ∼. If

x∗ ∈ M is a local minimum of f : M → R on M that is endowed with an equivalence relationship ∼,

then

(i) 〈ηx∗ ,D2L(x∗, λx∗)[ηx∗ ]〉 = 0 for all ηx∗ ∈ Vx∗ ,

〈ξx∗ ,D2L(x∗, λx∗)[ξx∗ ]〉 > 0 for all ξx∗ ∈ Hx∗ , and

(ii) The quantity 〈ξx∗ ,D2L(x∗, λx∗)[ξx∗ ]〉 at optimality is equal to the second-order term of the Taylor

expansion f with any Riemannian metric structure imposed on M/ ∼,

where Vx∗ is the vertical space, Hx∗ is horizontal space (the subspace of Tx∗M that is complementary

to Vx∗), 〈·, ·〉 is the standard inner product, and D2L(x∗, λx∗)[ξx∗ ] is the second-order partial derivative

of L(x, λx) with respect to x at x∗ ∈ M applied in the direction ξx∗ ∈ Hx∗ , keeping λx∗ fixed to its

least-squares estimate (3.3).

Proof. The Lagrangian L(x, λx), because both the cost and constraint terms remain invariant under the

equivalence relationship ∼, is constant along the equivalence class [x] := {y ∈M : y ∼ x}. Consequently

from the Taylor expansion of L(x, λx) along the linearization of the equivalence class [x], that is the

vertical space Vx, all the Taylor terms equate to zero. Hence, the first equality in (i) follows immediately.

The second inequality in (ii), 〈ξx∗ ,D2L(x∗, λx∗)[ξx∗ ]〉 > 0 for all ξx∗ ∈ Hx∗ , follows from the second-

order optimality conditions of the problem on the quotient manifold. Consider the first-order optimality

condition for the problem that states Lx(x∗, λ∗x) = 0 at the minimum, where Lx(x, λx) is the first-

order derivative of L(x, λx) = f(x) − 〈λx, h(x)〉 with respect to x (Edelman et al., 1998, Section 4.9).

Additionally from calculus, the second-order necessary condition for x∗ ∈ M to be a local minimum of

a smooth function f :M→ R on the constraint set M is

d2

dt2
f(x(t))

∣∣∣∣
t=0

≥ 0,

where t ∈ R and x(t) ∈ M is a curve originating from x∗ such that x(0) = x∗. By twice-differentiating

L(x(t), λx∗) = f(x(t)) − 〈λx∗ , h(x(t))〉 and h(x(t)) = 0 at t = 0, we have 〈ζx∗ ,D2L(x∗, λx∗)[ζx∗ ]〉 ≥ 0

for all tangent vectors ζx∗ ∈ Tx∗M. With the decomposition Tx∗M = Vx∗ ⊕Hx∗ (the decomposition is

complementary) and the equality 〈ηx∗ ,D2L(x∗, λx∗)[ηx∗ ]〉 = 0 for all ηx∗ ∈ Vx∗ , the necessary condition

for a local minimum on the quotient manifold boils down to 〈ξx∗ ,D2L(x∗, λx∗)[ξx∗ ]〉 ≥ 0 for all ξx∗ ∈ Hx∗ .
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However, as x∗ (by definition) represents an isolated (non-degenerate) local minimum on the quotient

manifold M/ ∼, i.e., the function f(x(t)) > f(x∗) in the neighborhood of x(0) = x∗ on the quotient

manifold, implying that 〈ξx∗ ,D2L(x∗, λx∗)[ξx∗ ]〉 > 0 for all ξx∗ ∈ Hx∗ .

To prove the statement (ii) of the theorem, consider a Riemannian metric ḡ on the manifold M that

submerses M/ ∼ in M (Absil et al., 2008, Chapter 3). The theory of Riemannian submersion states

that the horizontal space Hx is the orthogonal to the vertical space Vx with the metric ḡx and allows us

to compute the Riemannian gradient and Hessian of f onM/ ∼ using the orthogonal projection of their

counterparts in the total space M. From the computation of the Riemannian gradient gradxf and the

first-derivative of the Lagrangian we have (Absil et al., 2008, Equation 3.31)

Df(x)[ξx] = 〈Lx(x, λx), ξx〉 = ḡx(gradxf, ξx)

for all ξx ∈ TxM. Taking the directional derivative of the above equation x∗ along ξx∗ ∈ Hx∗ with the

additional information that gradx∗f = 0 (x∗ is a local minimum),

〈ξx∗ ,D2f(x∗)[ξx∗ ]〉 = 〈ξx∗ ,D2L(x∗, λx∗)[ξx∗ ]〉 = ḡx∗(ξx∗ ,Dgradx∗f [ξx∗ ]). (3.10)

Defining Πx : Rn → Hx be the orthogonal projection operator in the metric ḡx, and Hessxf [ξx] be the

Riemannian Hessian in the total spaceM applied along the direction ξx ∈ Hx, the second-order term of

the Taylor expansion of f along ξx∗ ∈ Hx∗ is

ḡx∗(ξx∗ ,Πx∗(Hessx∗f [ξx∗ ])︸ ︷︷ ︸
Hessian on M/∼

) = ḡx∗(ξx∗ ,Hessx∗f [ξx∗ ]︸ ︷︷ ︸
Hessian on M

) for Πx∗(ξx∗) = ξx∗

= ḡx∗(ξx∗ ,Dgradx∗f [ξx∗ ]) for gradx∗f = 0

= 〈ξx∗ ,D2L(x∗, λx∗)[ξx∗ ]〉 from (3.10).

This proves the statement (ii).

Theorem 3.1 states that even though the underlying symmetries make the Hessian of the Lagrangian

singular in the tangent space TxM of the total space M, the Hessian of the Lagrangian is non-singular

on the horizontal space Hx and its singularity is only along the vertical space Vx. The other important

observation is that the quantity 〈ξx,D2L(x, λx)[ξx]〉 captures the full second-order information at the

local minimum along the horizontal space, where the horizontal space is any subspace of TxM that is

complementary to the vertical space Vx.

Constructing a metric from SQP

As an immediate consequence of Theorem 3.1, we observe that in the neighborhood of the minimum, a

valid selection of the search direction is given by solving

arg min
ζx∈Hx

f(x) + 〈fx(x), ζx〉+ 1
2 〈ζx,D2L(x, λx)[ζx]〉. (3.11)
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Followed by a retraction operation (Section 3.2.2), (3.11) defines locally a steepest-descent algorithm on

the quotient manifoldM/ ∼, that is, an algorithm that iterates on the classes of equivalences. This holds

for any characterization of the horizontal space Hx. Here 〈·, ·〉 is the standard Euclidean inner product

and fx(x) is the first-order derivative of the function f . The scheme with (3.11) has the interpretation of

a steepest descent algorithm on the quotient manifold M/ ∼. This result is of significance because the

computational problem (3.11) is considerably simpler than the computational machinery needed for a

steepest-descent algorithm on a general quotient manifold. However, it is no obvious how to extend (3.11)

away from the local minimum, nor how to use the same metric in more general optimization algorithms.

A remedy to those limitations is to use the insight from (3.11) to build a Riemannian metric gx :

TxM × TxM → R induced from the Hessian of the Lagrangian L(x, λx) that apart from satisfying

standard metric properties (Absil et al., 2008, Section 3.6), should also

• satisfy the inequality gx(ξx, ξx) > 0 for all ξx ∈ TxM for all x ∈M,

• exploit the full Hessian of the Lagrangian information only at the minimum, that is, it converges

to

gx(ξx, ηx) = 〈ξx,D2L(x, λx)[ηx]〉 for all ξx, ηx ∈ TxM, (3.12)

where λx is the least-squares estimate (3.3), and

• is invariant along the equivalence class [x] = {y ∈M : y ∼ x} at x ∈M.

To construct metrics with the above properties the Lagrangian structure L(x, λx) = f(x) − 〈λx, h(x)〉
(3.2), that has terms arising from cost and constraints, plays a critical role. Construction of a family of

Riemannian metrics by exploiting this structure for specific scenarios is discussed later in Section 3.2.4.

In addition to the properties listed in (3.11), if the horizontal space Hx is also chosen as the orthogonal

subspace to the vertical space Vx with respect to the constructed Riemannian metric g (3.12), then the

manifoldM/ ∼ has the structure of a Riemannian submersion (Absil et al., 2008; Edelman et al., 1998).

Consequently, computation of the search direction has a simpler characterization, that is, it is equivalent

to solving the problem

arg min
ζx∈TxM

f(x) + 〈fx(x), ζx〉+ 1
2gx(ζx, ζx), (3.13)

where 〈·, ·〉 is the standard Euclidean inner product and fx(x) is the first-order derivative of the function

f , and g(·, ·) is the Riemannian metric that is induced from Hessian of the Lagrangian (3.12). It should

be stated that even though the minimization (3.13) is on the tangent space TxM, the solution ζ∗x to

(3.13), by construction, also belongs to the chosen horizontal space Hx (orthogonal to Vx).

The resulting algorithms arising both from (3.11) and (3.13), and followed with a retraction operation

(Section 3.2.2), by construction, define a steepest-descent algorithm on the quotient manifold. They are

summarized in Figure 3.3 for completeness. The performance characterization of these algorithms onM,

equipped with the equivalence relationship ∼, follows from the (local) analysis of SQP by Absil et al.

(2008, Section 6.3.1), Absil et al. (2009, Proposition 4.1), Nocedal and Wright (2006, Theorem 18.4).

Theorem 3.1 emphasizes the fact that SQP provides a systematic guidance to identify Riemannian metrics

that locally in the neighborhood of the minimum exploit second-order information of the function.
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Search direction computation

Any horizontal space

characterization

Valid locally in the

neighborhood of

a local minimum

Horizontal space is

orthogonal to

the vertical space

Riemannian submersion

Possibly valid globally

arg min
ζx∈Hx

f (x) + 〈fx(x), ζx〉
+1

2〈ζx,D2L(x, λx)[ζx]〉

arg min
ζx∈TxM

f (x) + 〈fx(x), ζx〉
+1

2gx(ζx, ζx)

Comments

Figure 3.3: Two ways computing a search direction on the quotient manifold.

3.2.4 Riemannian optimization and local convexity

As mentioned in Section 3.2.3, the Riemannian metrics for the Riemannian steepest-descent algorithm

in Table 3.2 are identified from the second-order partial derivative of L(x, λx) with respect to x keeping

λx fixed to its least-squares estimate (3.3), where hx(x) and fx(x) are first-order derivatives of h and f ,

respectively. Because the Lagrangian L(x, λx) consists of contributions from the cost function as well as

the constraints, the metric g (3.12) admits the simple decomposition

gx(ξx, ηx) = 〈ξx,D2L(x, λx)[ηx]〉
= 〈ξx,D2f(x)[ηx]〉︸ ︷︷ ︸

cost related

+ 〈ξx,D2c(x, λx)[ηx]〉︸ ︷︷ ︸
constraint related

, (3.14)

where ξx, ηx are any tangent vectors in TxM, c(x, λx) = −〈λx, h(x)〉, and D2c(x, λx)[ηx] is the second-

order partial derivative of c(x, λx) with respect to x keeping λx fixed, applied in the direction ηx.

The decomposition (3.14) between cost and constraint terms can be weighted in a way that turns (3.14)

into a proper metric, i.e., gx(ξx, ξx) > 0 for all ξx ∈ TxM. The discussion is problem dependent but

illustrated in Figure 3.4. Additionally, updating the weighing parameter ω, that weighs different terms of

(3.14), is also discussed in the context of globalizing the metrics, i.e., extending the proposed Riemannian

metrics away from the neighborhood. We further discuss two scenarios that suggest how to exploit the

available structure to construct novel Riemannian metrics. The problem structure can be exploited in

more general situations along the same lines.

Case I: minimizing a strictly convex function

Consider the case when f is a strictly convex function. In this case the second-order derivative fxx(x) � 0

(due to strict convexity assumption) is a good metric candidate. In addition, locally in the neighborhood

of the minimum, the family of Riemannian metrics is identified as

gx(ξx, ηx) = 〈ξx,D2f(x)[ηx]〉︸ ︷︷ ︸
fxx�0 and dominating

+ω〈ξx,D2c(x, λx)[ηx]〉,
(3.15)
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f (x) c(x, λx) = −〈λx, h(x)〉

Convex Concave

Concave Convex

Case I

Case II

Metric

candidate

fxx(x) + ωcxx(x, λx)

ωfxx(x) + cxx(x, λx)

Figure 3.4: Choosing metrics for the Riemannian steepest-descent algorithm in Table 3.2. Shown
are two extreme situations in which the Lagrangian (3.2) provides a clear metric candidate locally in
the neighborhood of the minimum. fxx(x) is the second-order derivative of f(x) and cxx(x, λx) is the
second-order partial derivative of c(x, λx) with respect to x keeping λx fixed. Because of the local
convexity of the Lagrangian (on the tangent space) at the minimum, convex and concave structures of
the function f lead to well-defined family of metrics parameterized by the weight ω ∈ [0, 1). It locally
captures the second-order information of the problem. To extend the metrics away from the minimum,
the weight ω is updated at every iteration with a barrier function that tends to 1 as iterations tend to

infinity.

where the weight ω ∈ [0, 1), ξx, ηx are any tangent vectors in TxM, c(x) = −〈λx, h(x)〉, and D2c(x, λx)[ηx]

is the second-order partial derivative of c(x, λx) with respect to x keeping λx fixed, applied in the direction

ηx. It should be noted that for ω ∈ [0, 1), gx(ξx, ξx) > 0 locally in the neighborhood of the minimum for

all ξx ∈ TxM.

Case II: maximizing a strictly convex function

Consider the problem of maximizing a convex cost function, that is equivalent to minimizing a concave

cost function, on a manifold. In this case, fxx(x, λx) ≺ 0, and locally in the neighborhood of the

minimum, the second-order information of c(x) = −〈λx, h(x)〉 is the proper source of convexity. This

fact follows from the second-order optimality condition of the optimization problem (Nocedal and Wright,

2006, Chapter 18). Here the problem structure suggests the family of Riemannian metrics

gx(ξx, ηx) = ω〈ξx,D2f(x)[ηx]〉+ 〈ξx,D2c(x, λx)[ηx]〉︸ ︷︷ ︸
cxx is locally positive definite

,
(3.16)

where the weight ω ∈ [0, 1), ξx, ηx are any tangent vectors in TxM, c(x) = −〈λx, h(x)〉, cxx(x, λx) is the

second-order partial derivative of c(x, λx) with respect to x keeping λx fixed. Once again for ω ∈ [0, 1),

gx(ξx, ξx) > 0 locally in the neighborhood of the minimum for all ξx ∈ TxM.

Globalizing the local metrics

The weight ω ∈ [0, 1) in the metrics (3.15) and (3.16), apart from providing a family of Riemannian met-

rics, also plays a critical role in the numerical performance of the Riemannian steepest-descent algorithm
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in Table 3.2. With ω = 0, the Riemannian metric captures only part of the second-order information

and therefore, locally in the neighborhood of the minimum, the Riemannian steepest-descent algorithm

may converge poorly, e.g., linearly. On the other hand with ω = 1, the Riemannian metric captures

the full second-order information and the Riemannian steepest-descent algorithm is expected to show

better convergence. A numerical technique to interpolate between these two extreme scenarios is to vary

ω = [0, 1) at every iteration with a increasing barrier function that tends to 1 as the number of iterations

increase. A simple updating technique is ω(k) = 1−2k−1, where k is the iteration number. A strategy to

safeguard against a non-descent search direction (by solving the quadratic programming problem (3.4))

is to ignore the updated ω that resulted in a non-descent direction (checking this is straightforward) and

restart the procedure of updating ω again.

A different technique is to modify ω as and when required. For example, defining δ = 1−ω, we have the

strategy where at the kth iteration

δk =

{
1
2δk−1, when a descent direction is obtained

4δk−1, when a non− descent direction is obtained
(3.17)

with δ0 = 1. Care is taken to ensure that ω ∈ [0, 1) for all iterations.

Safeguards similar to the trust-regions, i.e., by constraining the norm of the search direction, can also be

implemented to ensure that the search direction computed with the Riemannian metric remains a locally

descent direction (Nocedal and Wright, 2006, Section 18.5).

3.3 Quadratic optimization with orthogonality constraints:

revisiting the generalized eigenvalue problem

Constrained quadratic optimization problems arise naturally in a number of applications, especially

while solving linear systems of matrix equations (Absil et al., 2008, Section 2.2). Also popular are the

orthogonality constraints in large-scale problems that are imposed to identify relevant smaller dimensional

subspaces (Edelman et al., 1998). Specific optimization problems include the generalized eigenvalue

problem (Absil and Van Dooren, 2010; Absil et al., 2002; Edelman et al., 1998), the generalized orthogonal

Procrustes problem (Eldén and Park, 1999), and the joint diagonalization problem in signal processing

(Theis et al., 2009), to name a few.

For the sake of illustration, we specifically focus on the well-studied generalized eigenvalue problem that

computes the smallest eigenvalues and eigenvectors of the matrix B−1A, where A is a symmetric matrix of

size n× n and B is a symmetric positive definite matrix of size n× n (Edelman et al., 1998, Section 4.5;

Golub and Van Loan, 1996, Chapter 8). This is realized by solving the optimization problem below

iteratively, an extensively researched question in literature (Golub and Van Loan, 1996, Chapter 8; Absil

et al., 2004b). In this section we exploit the quadratic nature of the cost function and the constraints

to show that the family of Riemannian metrics has a simple characterization. It is also shown that the

algorithms that result from the proposed metrics connect to a number of established algorithms. Each

of which is interpreted as a steepest-descent algorithm with a specific Riemannian metric.
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The minimal r-eigenspace of B−1A is computed iteratively by solving the constrained quadratic opti-

mization problem

min
X∈Rn×r

1
2Trace(XTAX)

subject to XTBX = I,
(3.18)

where the constraint set of n × r matrices that satisfy XTBX = I is known as the generalized Stiefel

manifold StB(r, n). The constraint enforces orthogonality among vectors in coordinates spanned by

B1/2. Specifically when B = I, the generalized Stiefel manifold is the popular Stiefel manifold St(r, n) :=

{X ∈ Rn×r : XTX = I} (Edelman et al., 1998). The symmetry in the cost function Trace(XTAX)/2

comes from its invariance under the transformation X 7→ XO for all O ∈ O(r). O(r) is the set of r × r
orthogonal matrices.

The symmetry in the cost function translates the property that an orthogonal set of vectors characterize

a subspace modulo rotations in the subspace, i.e., the eigenspace is invariant to rotations of vectors in the

eigenspace. As a consequence, the problem (3.18) is an optimization problem on the abstract quotient

space StB(r, n)/O(r), also known as the generalized Grassmann manifold. For the case B = I, this again

boils down to the well known Grassmann manifold Gr(r, n), the set of r-dimensional subspaces in Rn

(Edelman et al., 1998). The optimization problem (3.18) is, therefore, reformulated on the generalized

Grassmann quotient manifold, i.e.,

min
X∈Rn×r

1
2Trace(XTAX)

subject to [X] ∈ StB(r, n)/O(r),
(3.19)

where the optimization is on the set of equivalence classes [X] = {XO : O ∈ O(r)} at X ∈ StB(r, n).

The conventional metric of choice in the Riemannian framework is

gx(ηx, ξx) = Trace(ηTx ξx), (3.20)

where x = X ∈ StB(r, n) and ξx, ηx are tangent vectors in the tangent space of the constraints (the

matrix characterization the tangent space is shown in Table 3.3). It is the unique metric that is invariant

to the group action of O(r). Because of its simplicity and its geometric consideration, this metric is

advocated by Absil et al. (2008); Edelman et al. (1998).

In contrast, the developments in Section 3.2.3 suggest a family of Riemannian metrics that take the

complete problem structure into account by computing the Lagrangian and its derivatives. We have the

matrix representations in (3.21). It should be noted that we introduce an additional factor of 1/2 in the

constraint penalization term of the Lagrangian to make resulting expressions simpler.

L(x, λx) = Trace(XTAX)/2− 〈λx,XTBX− I〉/2
⇒ Lx(x, λx) = AX−BXλx

⇒ D2L(x, λx)[ξx] = Aξx −Bξxλx,

(3.21)

where x has the matrix representation X ∈ StB(r, n), 〈·, ·〉 is the standard inner product, and the least-

squares Lagrange multiplier is λx = Sym((XTBBX)−1(XTBAX)) from (3.3) with the additional sym-

metry condition from the constraint, where Sym(·) extracts the symmetric part of a square matrix, i.e.,
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Sym(D) = (D+DT )/2. Here Lx(x, λx) is the first-order partial derivative of L(x, λx) and D2L(x, λx)[ξx]

is the second-order partial derivative of L(x, λx) applied in the direction ξx, both computed while keeping

λx fixed.

It should be noted that λx = Sym((XTBBX)−1(XTBAX)) is the solution to the problem arg minλ∈Rr×r

‖AX − BXλ‖2Q such that λ is symmetric, where ‖AX − BXλ‖2Q = Trace((AX − BXλ)TQ(AX −
BXλ)) and Q = BX(XTBBX)−2XTB. A different estimate of λx is obtained by solving the problem

arg minλ∈Rr×r ‖AX−BXλ‖2F such that λ is symmetric.

It is readily checked that the Lagrangian L(x, λx) in (3.21) remains unchanged under the action X 7→ XO

for any O ∈ O(r). Finally, based on the matrix characterizations (3.21), we have the following proposition

for constructing a family of Riemannian metrics for the quadratic optimization problem (3.19).

Proposition 3.2. The family of Riemannian metrics, locally in the neighborhood of the minimum, for

the quadratic optimization problem (3.19) has the form

gx(ξx, ηx) = 〈ξx,Aηx〉︸ ︷︷ ︸
cost related

− 〈ξx,Bηxλx〉,︸ ︷︷ ︸
constraints related

(3.22)

where ξx, ηx are any tangent vectors in tangent space of the constraints at x = X such that XTBX = I

and λx = Sym((XTBBX)−1(XTBAX)), where Sym(·) extracts the symmetric part of a square matrix,

i.e., Sym(D) = (D + DT )/2.

Proof. This follows directly from the second-order partial derivative of the Lagrangian in (3.21) with

respect to x.

Matrix characterizations of various optimization related ingredients are summarized in Table 3.3. The

retraction operator is the standard generalization of the retraction operator on the Stiefel manifold

St(r, n) (Absil et al., 2008, Example 4.1.3).

3.3.1 Metric tuning and shift policies

Due to the quadratic nature of both cost and constraints, the metric (3.22) has the appealing feature of

being parameterized by the Lagrangian parameter λx. This object is low-dimensional when r � n. It

provides an interesting interpretation of various “shift” policies developed in numerical linear algebra for

eigenspace computations (Golub and Van Loan, 1996, Chapter 8). We further specialize the selection

of (3.22) when A � 0 and when A 6� 0. In both these cases, we propose metrics with that connect to

a number of classical algorithms for the generalized eigenvalue problem (Absil and Van Dooren, 2010;

Absil et al., 2002, 2004b).

When A � 0

This instance falls under Case I in Figure 3.4 and therefore, the family of proposed Riemannian metrics

has the structure

gx(ξx, ζx) = Trace(ξTx Aζx)− ωTrace(ξTx Bζxλx), (3.23)
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min
X∈Rn×r

Trace(XTAX)/2

subject to XTBX = I

Matrix representation
of an element in M

x = X

Computational space M StB(r, n) = {X ∈ Rn×r : XTBX = I}

Group action XO, ∀O ∈ O(r) such that OTO = OOT = I

Quotient space StB(r, n)/O(r)

Tangent vectors in TxM {ξx ∈ Rn×r : ξTx BX + XTBξx = 0}

Metric gx(ξx, ζx)
for any ξx, ζx ∈ TxM

gx(ξx, ζx) = Trace(ζTx Aξx)
−Trace(ζTx Bξxλx)

or the metrics proposed in Section 3.3.1,
where λx = Sym((XTBBX)−1(XTBAX))

Cost function f(x) = Trace(XTAX)/2

First− order derivative of
f(x)

fx(x) = AX

Search direction arg min
ζx∈TxM

f(x) + 〈fx(x), ζx〉+ 1
2
gx(ζx, ζx)

Retraction Rx(ξx) that
maps a search direction ξx
onto M

U(UTBU)−1/2,
where U is the Q− factor of the QR decomposition of
X + ξx

Table 3.3: Optimization-related ingredients for computing the extreme eigenvalues of B−1A. Three
choices of metrics with their shifts connect to and generalize the popular power iteration, inverse
iteration, and Rayleigh quotient iteration algorithms. The numeric complexity per iteration depends
on solving the quadratic programming problem. In many instances exploiting sparsity in matrices A

and B leads to numerically efficient schemes. Here Sym(·) extracts the symmetric part of a square

matrix, i.e., Sym(D) = (D + DT )/2

where ξx and ζx are any tangent vectors in the tangent space of constraints, the least-squares Lagrange

multiplier λx = Sym((XTBBX)−1(XTBAX)), and ω = [0, 1).

The metric (3.23) provides two insightful connections to the literature. First, the proposed metric (3.23)

with ω = 0 generalizes the well-known inverse iteration algorithm for computing the smallest eigenvalues

of a symmetric matrix (Golub and Van Loan, 1996, Section 8.2.2). For the case when B = I, the negative

Riemannian gradient with the metric with (3.23) ω = 0 is computed as in Table 3.3 as

arg min
ζx∈Rn×r

ζTx X+XT ζx=0

〈AX, ζx〉+ 1
2Trace(ζTx Aζx)

}
= A−1X(XTA−1X)−1 −X.

The Riemannian steepest-descent update with unit step-size, thus, is x+ = Rx(A−1X(XTA−1X)−1
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− X) = qf(A−1X(XTA−1X)−1) = qf(A−1X), where Rx(·) is the retraction operator defined later in

Table 3.3, and qf(A−1X) is the Q-factor of the QR decomposition of A−1X. This is precisely the classical

inverse iteration update (Golub and Van Loan, 1996, Section 8.2.2). This shows that the inverse iteration

has the interpretation of a Riemannian steepest-descent algorithm with the metric (3.27) for ω = 0.

A second insight is obtained for the case when ω is updated with iterations, the Riemannian steepest

descent algorithm with the metric (3.23) generalizes the popular Rayleigh quotient iteration algorithm

(Golub and Van Loan, 1996, Section 8.2.3; Absil et al., 2002; Absil et al., 2004b). Consider again the

case when B = I. At each iteration of the Riemannian steepest-descent algorithm with the metric (3.23),

we are required to solve the system of linear equations (by looking at the optimality conditions of the

quadratic program for computing the search direction) for ζx ∈ Rn×r and µx ∈ Rr×r of the form

Aζx − ωζxλx = Xµx −AX

XT ζx + ζTx X = 0,
(3.24)

where the weight ω ∈ [0, 1), ζx is the search direction, and µx is the matrix scaling that guarantees that

the search direction ζx belongs to the tangent space of the constraints. It should be noted that the linear

system of equations (3.24) can be solved efficiently by exploiting additional sparsity structure in A (Absil

et al., 2002). The Riemannian steepest-descent update x+ with unit step-size is

Aζ∗x − ωζ∗xλx = Xµ∗x −AX

x+ = Rx(ζ∗x) = qf(X + ζ∗x)

}

⇒
{

AZ− ωZλx = X(µ∗x − ωλx)

x+ = qf(Z),

(3.25)

where ζ∗x and µ∗x are solutions to (3.24), Z = X + ζ∗x, Rx(·) is the retraction operation defined in Table

3.3, and qf(Z) is the Q-factor of a the QR decomposition of Z. It should be emphasized that the update

(3.25) is equivalent, in the neighborhood of the minimum, to the update proposed by Absil et al. (2002).

In other words, the algorithm proposed by Absil et al. (2002) has the interpretation of a Riemannian

steepest-descent algorithm with the metric (3.27).

When A 6� 0

Consider first the case when A ≺ 0 that falls under Case II in Figure 3.4, suggesting (locally) the family

of Riemannian metrics has the form

gx(ξx, ζx) = ωTrace(ξTx Aζx)− Trace(ξTx Bζxλx), (3.26)

where ξx and ζx are any tangent vectors in the tangent space of constraints and ω ∈ [0, 1). The expression

for the least-squares Lagrange multiplier from (3.3) is λx = Sym((XTBBX)−1(XTBAX)), where Sym(·)
extracts the symmetric part of a square matrix, i.e., Sym(D) = (D+DT )/2. It should be noted that −λx
is only guaranteed to be positive definite locally in the neighborhood of the minimum. To circumvent
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the issue, we modify the metric (3.26) by replacing −λx with (λTx λx)1/2 resulting in the metric

gx(ξx, ζx) = ωTrace(ξTx Aζx) + Trace(ξTx Bζx(λTx λx)1/2), (3.27)

where (λTx λx)1/2 is the matrix square root of λTx λx that is well defined as long as λx is full rank, and

therefore the metric (3.27) is a smooth inner product. The modified metric (3.27) is also a good candidate

for the case when A is symmetric indefinite since (λTx λx)1/2 is also positive definite in this case.

The proposed metric (3.27) with ω = 0 generalizes the well-known power iteration algorithm for com-

puting the dominant eigenvalues of a matrix (Golub and Van Loan, 1996, Section 8.2.1). Consider

the case B = I, where the update of the Riemannian steepest-descent algorithm unit step-size has

the characterization, after few computations, x+ = Rx(X(I + λx(λTx λx)−1/2) −AX(λTx λx)−1/2), where

Rx(·) is the retraction operator defined in Table 3.3. Locally, in the neighborhood of the minimum,

I + λx(λTx λx)−1/2 ≈ 0, and therefore, the equivalent update is x+ = Rx(AX) which is the standard

power iteration update (Golub and Van Loan, 1996, Section 8.2.1). In other words, the power algorithm

has the interpretation of a Riemannian steepest-descent algorithm with the metric (3.27) with ω = 0.

Similarly, the steepest-descent algorithm with shifted version of the metric (3.27), i.e., for ω updated

with iterations, generalizes the algorithm proposed of Absil et al. (2002).

It should be noted that a similar insight still holds when the quadratic cost is generalized to a strictly

concave function, i.e., minimizing a concave cost (or maximizing a convex cost) with orthogonality

constraints. For the metric with ω = 0, i.e., taking only the constraint-related term, this is the essence

of the generalized power method proposed by Journée et al. (2010).

3.3.2 A numerical illustration

As a numerical comparison, we consider the example proposed by Manton (2002, Section 8). A is a diag-

onal matrix of size 500×500 with entries evenly placed on the interval [10, 11]. B is chosen as the identity

matrix of size 500×500. In Figure 3.5, we seek to compute the r = 5 smallest eigenvalues of B−1A. The

algorithms compared are the Riemannian steepest-descent algorithms with the standard metric (3.20)

and the preconditioned Riemannian metric in (3.23) with the ω-updating procedure (3.17). Both the

algorithms are stopped when either the norm of the gradient is below 10−8 or when they complete 500

iterations. Distances of the iterates to the solution ares plotted for the algorithms. The distance of an

iterate X to the solution Xopt is defined as the square root of the the sum of canonical angles between

X and Xopt. In Matlab it is computed using the command norm(acos(svd(orth(X)’*orth(Xopt)))).

Figure 3.5 shows that tuning the metric to the problem structure leads to improved performance.

3.4 Quadratic optimization with rank constraints

This class of problems have met with considerable interest in recent years. Applications include collabora-

tive filtering (Rennie and Srebro, 2005), multivariate linear regression (Amit et al., 2007), dimensionality

reduction (Cai et al., 2007), learning of low-rank distances (Kulis et al., 2009; Meyer et al., 2011b), filter
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Figure 3.5: Benefits of the proposed metric (3.23) for the generalized eigenvalue problem to compute
the extreme 5-dimensional subspace (corresponding to the smallest 5 eigenvalues) of the matrix pencil
(A,B) of size 500 × 500. The problem instance is described in Section 3.3.2. Shown are 10 runs of
the Riemannian steepest-descent algorithms with random initializations for the problem instance. The
distance to the solution is defined as the square root of the the sum of canonical angles between the

current subspace and the dominant 5-dimensional subspace of B−1A.

design problems (Manton, 2002), model reduction in dynamical systems (Benner and Saak, 2013; Li

and White, 2004; Vandereycken and Vandewalle, 2010), sparse principal components analysis (Burer and

Monteiro, 2003; Journée et al., 2010), computing maximal cut of a graph (Burer and Monteiro, 2003;

Journée et al., 2010), and low-rank matrix completion (Boumal and Absil, 2011; Keshavan et al., 2010;

Ngo and Saad, 2012), to name a few.

In all those applications, SQP provides preconditioned Riemannian metrics.

A popular way to characterize the set of fixed-rank matrices is through fixed-rank matrix factorizations

as mentioned in Chapter 2. Most matrix factorizations have symmetry properties that make them

non-unique. Rn×mr , the set of rank r of n × m matrices, is identified with structured (smooth and

differentiable) quotient spaces. Figure 2.1 shows three different fixed-rank matrix factorizations and the

quotient manifold structure of the set Rn×mr .

To identify proper Riemannian metrics on the low-rank manifold, we consider minimization of a quadratic

cost function on the low-rank manifold Rn×mr . Specifically, we focus on the low-rank manifold parameter-

ization X = GHT , where X ∈ Rn×mr , G ∈ Rn×r∗ (the set of full column-rank matrices), and H ∈ Rm×r∗ .

Other fixed-rank matrix factorizations are dealt with similarly. Consider the optimization problem

min
X∈Rn×m

r

1
2Trace(XTAXB) + Trace(XTC), (3.28)

where A � 0 of size n×n, B � 0 of size m×m, and C ∈ Rn×m. Positive definiteness of A and B implies

that the cost function is bounded from below and is convex in X. Invoking the low-rank parameterization
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X = GHT , shown in Figure 2.1, the problem (3.28) translates to

min
(G,H)∈Rn×r×Rm×r

1
2Trace(HGTAGHTB) + Trace(HGTC)

subject to [(G,H)] ∈ Rn×r∗ × Rm×r∗ /GL(r),

where the equivalences class [(G,H)] = {(GM−1,HMT ) : M ∈ GL(r)} and GL(r) is the set of r × r
square matrices of non-zero determinant.

A standard way to handle this symmetry in the Riemannian framework is with the natural metric on

the set Rn×r∗ (Absil et al., 2008, Section 3.6.4). Since the computational space M is the product space

Rn×r∗ × Rm×r∗ , the metric is

gx(ηx, ξx) = Trace((GTG)−1ηTGξG) + Trace((HTH)−1ηTHξH),

where x has the matrix representation (G,H) ∈ Rn×r∗ × Rm×r∗ and ξx, ηx are vectors belonging to the

tangent space Rn×r × Rm×r, i.e., ξx has the matrix representation (ξG, ξH) ∈ Rn×r × Rm×r.

In contrast, we follow the developments in Section 3.2.3 to propose a family of metrics that takes the

problem structure into account by exploiting the structure of the Lagrangian. Since the set Rn×r∗ ×Rm×r∗

is an open subset of the space Rn×r × Rm×r, the Lagrangian L(x, λx) is only characterized by the cost

function, i.e.,

L(x) = Trace(HGTAGHTB)/2 + Trace(HGTC)

⇒ Lx(x) = (AGHTBH + CH,BHGTAG + CTG)

⇒ D2L(x)[ξx] = (AξGHTBH + 2AGSym(HTBξH) + CξH,

BξHGTAG + 2BHSym(GTAξG) + CT ξG),

(3.29)

where x has the matrix representation (G,H) ∈ Rn×r∗ ×Rm×r∗ , ξx has the matrix representation (ξG, ξH) ∈
Rn×r × Rm×r, Lx(x) is the first-order derivative of L(x), D2L(x)[ξx] is the second-order derivative

of L(x) applied in the direction ξx, and Sym(·) extracts the symmetric part of a square matrix, i.e.,

Sym(D) = (DT + D)/2. It is readily checked that the Lagrangian L(x) remains unchanged under the

transformation (G,H) 7→ (GM−1,HMT ) for all M ∈ GL(r). Subsequently, we have the following

proposition for constructing the Riemannian metric for (3.28).

Proposition 3.3. For the problem (3.28), the expression

gx(ξx, ηx) = 〈ηG,AξGHTBH + 2AGSym(HTBξH) + CξH〉
+〈ηH,BξHGTAG + 2BHSym(GTAξG) + CT ξG〉,

(3.30)

defines a family of Riemannian metrics, locally in the neighborhood of the minimum, where x = (G,H) ∈
Rn×r∗ × Rm×r∗ , ξx, ηx any tangent vectors in the tangent space.

Proof. The proof follows directly by computing the second-order derivative of the Lagrangian (3.29).

Matrix characterizations of various optimization related ingredients are summarized in Table 3.4. The

retraction operator is the standard generalization of the retraction operator on the manifold Rn×r∗ defined

by Absil et al. (2008, Example 3.6.4).
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min
G∈Rn×r

H∈Rm×r

Trace(HGTAGHTB)/2 + Trace(HGTC)

Matrix representation x = (G,H)

Computational space M Rn×r∗ × Rm×r∗

Group action (GM−1,HMT ) , ∀M ∈ GL(r)

Quotient space Rn×r∗ × Rm×r∗ /GL(r)

Tangent vectors in TxM ξx = (ξG, ξH) ∈ Rn×r × Rm×r

Metric gx(ξx, ζx)
for any ξx, ζx ∈ TxM

gx(ξx, ηx) = 〈ηG,AξGHTBH + 2AGSym(HTBξH) + CξH〉
+〈ηH,BξHGTAG + 2BHSym(GTAξG) + CT ξG〉,

or the metrics proposed in Section 3.4.1

Cost function f(x) = Trace(HGTAGHTB)/2 + Trace(HGTC)

First− order derivative of
f(x)

fx(x) = (SH,STG),
where S = AGHTB + C

Search direction arg min
ζx∈TxM

f(x) + 〈fx(x), ζx〉+ 1
2
gx(ζx, ζx)

Retraction Rx(ξx) that
maps a search direction ξx
onto M

(G + ξG,H + ξH)

Table 3.4: Optimization-related ingredients for the problem (3.28). The numerical complexity per
iteration of the Riemannian steepest-descent algorithm depends on solving for ζx, where sparsity in
matrices A and B considerably reduces the computation cost. The retraction mapping is the cartesian
product of the standard retraction mapping on the manifold Rn×r∗ (Absil et al., 2008, Example 3.6.4).

It should be noted that numerical performance of algorithms depend on computing the Riemannian

gradient efficiently with the metric (3.30). This may become a numerically cumbersome task due to

a number of coupled terms that are involved in the metric (3.30). However, below we show that the

problem structure can be further exploited to decompose the metric (3.30) into a locally dominating

part with a simpler metric structure and a weighted remainder. The dominant approximation may be

preferred in a number of situations.

3.4.1 Metric tuning and shift policies

It should be emphasized that the cost function in (3.28) is convex and quadratic in X. Consequently, the

cost function is also convex and quadratic in the arguments (G,H) individually. As a consequence, the

block diagonal elements of the second-order derivative Lxx(x) of the Lagrangian (3.29) is strictly positive
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definite. This enables us to construct a family of Riemannian metrics with shifts of the form

gx(ξx, ηx) = ω〈ηG, 2AGSym(HTBξH) + CξH〉
+ω〈ηH, 2BHSym(GTAξG) + CT ξG〉
+ 〈ηG,AξGHTBH〉+ 〈ηH,BξHGTAG〉,︸ ︷︷ ︸

Block diagonal approximation of Lxx(x)

(3.31)

where x = (G,H) ∈ Rn×r∗ × Rm×r∗ , ξx, ηx are tangent vectors in Rn×r × Rm×r, and ω ∈ [0, 1) is

updated with iterations (Section 3.2.4). This implies that we exploit the full second-order information

of the problem only in the neighborhood of the minimum. Away from the neighborhood, the metric

(3.31) with ω = 0 becomes a good metric candidate as HTBH and GTAG are positive definite for all

(G,H) ∈ Rn×r∗ ×Rm×r∗ . The other benefit of ω being 0 is that the resulting metric has a simpler matrix

characterization, and hence, may be preferred in numerically demanding instances.

3.4.2 Symmetric positive definite matrices

A popular subset of fixed-rank matrices is the set of symmetric positive semidefinite matrices (Burer

and Monteiro, 2003; Journée et al., 2010; Meyer et al., 2011b). The set S+(r, n), the set of rank-r

symmetric positive semidefinite matrices of size n × n, is equivalent to the set Rn×mr with symmetry

imposed on the rows and columns, and therefore, it admits a number of factorizations similar to those

in Figure 2.1. Consequently, the low-rank parameterization discussed earlier, in the context of the

general case, has the counterpart X = YYT , where X ∈ S+(r, n) and Y ∈ Rn×r∗ (full column rank

matrices of size n× r). This parameterization is not unique as X ∈ S+(r, n) = YYT remains unchanged

under the transformation Y 7→ YO for any O ∈ O(r), where O(r) is set of orthogonal matrices of size

r × r such that OOT = OTO = I. The resulting search space is, thus, the set of equivalence classes

[Y] = {YO : O ∈ O(r)} and is the quotient manifold Rn×r∗ /O(r) (Journée et al., 2010). Finally, we have

the following proposition that summarizes the discussion for the case of symmetric positive semidefinite

matrices.

Proposition 3.4. Consider the optimization problem

min
X∈Rn×n

1
2Trace(XAXB) + Trace(XC)

subject to X ∈ S+(r, n),
(3.32)

where A,B � 0 of size n × n and C ∈ Rn×m is a symmetric matrix. Consider also the factorization

X = YYT of rank-r symmetric positive semidefinite matrices to encode the rank constraint, where

Y ∈ Rn×r∗ (full column-rank matrices).

The family of Riemannian metrics, locally in the neighborhood of the minimum, for the problem (3.32)

has the form

gx(ξx, ηx) = ω〈ηx, 2AYSym(YTBξx) + 2BYSym(YTAξx) + 2Cξx〉
+ 〈ηx,AξxYTBY + BξxY

TAY〉,︸ ︷︷ ︸
Dominant positive definite approximation of Lxx(x)

(3.33)
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where x = Y ∈ Rn×r∗ , ξx, ηx any tangent vectors in the tangent space Rn×r, Lxx(x) is the second-order

derivative of the Lagrangian, ω ∈ [0, 1) is a positive weight that is updated (increased) with increasing

iteration number (Section 3.2.4). Beyond the neighborhood, the metric (3.33) with ω = 0 becomes a good

metric candidate as YTBY and YTAY are positive definite for all Y ∈ Rn×r∗ .

Proof. The proof follows directly from the earlier discussion in Section 3.4.1.

3.4.3 A numerical illustration

We showcase the Riemannian preconditioning approach for computing low-rank solutions to the gener-

alized Lyapunov equation of the form

AXB + BXA = C, (3.34)

where A,B � 0, and C is a low-rank symmetric positive semidefinite matrix. Matrices have appropriate

dimensions. A is referred to as the system matrix and B is referred to as the mass matrix. As a result,

the solution of (3.34) is also expected to be low-rank symmetric positive semidefinite (Benner and Saak,

2013; Li and White, 2004; Vandereycken and Vandewalle, 2010).

To compute low-rank solutions to (3.34), we minimize a suitable cost function to over the set of rank-r

symmetric and positive semidefinite matrices S+(r, n). For the present case of interest, one could either

minimize the energy norm Trace(XAXB) − Trace(XC) or the residual norm ‖AXB + BXA = C‖2F
(Vandereycken and Vandewalle, 2010). Here we only show minimization of the energy norm over S+(r, n).

Note that this is similar to the optimization problem (3.32) and we have the characterization of the family

of metrics in Proposition 3.4.

In contrast to the proposed preconditioned metric (3.33), an alternative is to consider the standard

Euclidean metric, i.e.,

gx(ξx, ζx) = Trace(ζTx ξx), (3.35)

where x = Y and ξx and ζx are tangent vectors. This is, for example, the Riemannian metric proposed

by Journée et al. (2010). It is invariant to the group action Y 7→ YO for any O ∈ O(r). Although the

alternative choice (3.35) is appealing for its numerical simplicity, the following test case clearly illustrates

the benefits of the Riemannian preconditioning approach.

We consider the standard benchmark problem from Penzl (1999, Example 2.1) that corresponds to

discretization of a one-dimensional heat equation from heat flow in a thin rod. For this example, A is a

tridiagonal matrix of size 500×500. The main diagonal of A has all the elements equal to 2. In addition,

the first diagonals below and above the main diagonal of A have all the entries equal to −1. A is an ill-

conditioned matrix with condition number 105. The mass matrix B is an identity matrix of size 500×500.

The matrix C is a rank one matrix of the form eeT , where eT is a row vector of length 500 of the form

[0 0 . . . 0 1]. We seek to find a rank-5 that best solves the generalized Lyapunov equation (3.34). Both

the algorithms are stopped when either the norm of the gradient is below 10−8 or when they complete 500

iterations. The plots in Figure 3.6 show the progress of relative residual ‖AXB+BXA−C‖F /‖C‖F with

iterations over 10 random initializations, where ‖ · ‖F is the Frobenius norm of a matrix and X = YYT .
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Figure 3.6: The generalized low-rank Lyapunov equation problem (3.34). The test case is the bench-
mark problem from Penzl (1999, Example 2.1) with n = 500. The proposed Riemannian preconditioning
approach with the metric (3.33) and ω = 0 drastically improves the performance over the algorithm
based on the standard metric (3.35). ω = 0 leads to a simpler metric structure that can be exploited in
a large-scale setup. Here we show the convergence of the relative residual ‖AXB+BXA−C‖F /‖C‖F

(not the cost function Trace(XAXB)− Trace(XC)) that is often used as a measure of recovery.

The Riemannian algorithm with the metric (3.33) and ω = 0 convincingly outperforms the algorithm

based on the standard metric (3.35) in Figure 3.6 for a number of runs.

3.5 Chapter summary

The chapter addresses the important issue of selecting a metric in the Riemannian optimization frame-

work. We have shown that sequential quadratic programming provides an insight into selecting a family

of Riemannian metrics that takes the second-order information of the problem. Quadratic optimization

with orthogonality or rank constraints provides a class of nonconvex problems for which the method is

particularly insightful, thanks to the local convexity of the cost and constraint when taken separately.

In those instances, the notion of metric tuning connects to a number of existing algorithms and provides

a geometric interpretation of a number of “shift” policies in numerical linear algebra.

The results of this chapter have been reported in the technical report (Mishra and Sepulchre, 2014b).



Chapter 4

Riemannian conjugate-gradients for

low-rank matrix completion

In this chapter, we propose efficient conjugate-gradient algorithms for the low-rank matrix completion

problem (2.2). Following the notion of metric tuning introduced in Chapter 3, we select the metric for the

problem (2.2) and discuss two different geometries studied in sections 2.2.1.1 and 2.2.1.2. The problem

(2.2) is rewritten below for the sake of completeness.

min
X∈Rn×m

1
|Ω|‖PΩ(X)− PΩ(X?)‖2F

subject to rank(X) = r,
(4.1)

where Ω is the subset of the complete set of indices {(i, j) : i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}} for which

the entries are known, ‖ · ‖F is the Frobenius norm, and the operator PΩ, called the orthogonal sampling

operator, is introduced for notational convenience and is defined as PΩ(X)ij = Xij for (i, j) ∈ Ω and

PΩ(X)ij = 0 otherwise. It should be noted that ‖PΩ(X)− PΩ(X?)‖2F =
∑

(i,j)∈Ω

(Xij −X?
ij)

2.

The organization of the chapter is as follows. A brief motivation of employing metric tuning in low-

rank matrix completion is presented in Section 4.1. Section 4.2 discusses the quotient nature of two

fixed-rank matrix factorizations and paves way to propose novel Riemannian metrics (4.2), that are

specifically tailored to the cost function of the matrix completion problem (4.1). A template of an off-

the-shelf Riemannian conjugate-gradient on a manifold method is shown in Algorithm 1. Concrete matrix

formulas for the implementation of the Riemannian nonlinear conjugate-gradient algorithm are listed in

Section 4.4. Section 4.6.1 shows the efficacy of the proposed metrics as against conventional choices.

In Section 4.6.2 we make connections with state-of-the-art algorithms. The numerical comparisons in

Section 4.6 show the good performance of the resulting algorithms across different problem instances,

focusing in particular, on scarcely sampled and ill-conditioned problems. A Matlab implementation of

our proposed algorithms is available from http://www.montefiore.ulg.ac.be/~mishra/pubs.html.
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4.1 Motivation

Out of a lot of different works on matrix completion and low-rank optimization, we are primarily moti-

vated by the recent algorithms from Keshavan et al. (2010); Ngo and Saad (2012); Wen et al. (2012) that

have shown better performance in a number of challenging scenarios. Keshavan et al. (2010) use the fixed-

rank factorization X = USVT to embed the rank constraint, where X is a rank r matrix of size n×m, U

and V are column-orthonormal full rank matrices of size n×r and m×r, and S ∈ Rr×r. At each iteration,

Keshavan et al. (2010) first update U and V on the bi-Grassmann manifold Gr(r, n)×Gr(r,m), where

Gr(r, n) is the set of r-dimensional subspaces in Rn. Subsequently, a least-squares problem is solved to

update S. Building upon the work of Keshavan et al. (2010), Ngo and Saad (2012) propose a matrix

scaling on the bi-Grassmann manifold to accelerate the algorithm of Keshavan et al. (2010). In particu-

lar, Ngo and Saad (2012) motivate the matrix scaling as an adaptive preconditioner for the optimization

problem (4.1) and implement a conjugate-gradient algorithm. The same matrix scaling also appears the

algorithm proposed by Wen et al. (2012) where the authors motivate their Gauss-Seidel algorithm on

the fixed-rank matrix factorization X = GHT , where G and H are full column-rank matrices of size

n× r and m× r, respectively. G and H are updated alternatively and update of each of the arguments,

while fixing the other, admits a closed form expression. A potential limitation of these algorithms is

that they are alternating minimization and first-order algorithms, and extending them to other classes

of optimization methods is not trivial.

In order to get the best of these methods, we reinterpret the matrix-scaling of Wen et al. (2012) and Ngo

and Saad (2012) as an instance of tuned metrics in the Riemannian framework for matrix completion. We

then exploit the metric tuning concept, proposed in Chapter 3, to propose novel Riemannian geometries

for fixed-rank matrix factorizations, trading-off second-order information of the cost function with sym-

metries in the search space. As a result, the proposed Riemannian metrics confer a geometric foundation

to the algorithms of Ngo and Saad (2012); Wen et al. (2012). Once the Riemannian metrics are proposed,

we follow Absil et al. (2008, Chapters 3, 5 and, 8) to list various optimization-related ingredients and their

concrete matrix formulas that are required to implement an off-the-shelf Riemannian conjugate-gradient

algorithm, Algorithm 1. Although the new Riemannian geometries enable us to propose second-order

methods like the Riemannian trust-region method, we specifically focus on conjugate-gradients as they

offer an appropriate balance between convergence and computational cost. They have shown superior

performance in our examples.

4.2 Metric tuning for low-rank matrix completion

We parameterize any n×m rank-r matrix X ∈ Rn×mr as

X = GHT (two− factor factorization)

X = URVT (three− factor factorization),
(4.2)

where (G,H) ∈ Rn×r∗ × Rm×r∗ and (U,R,V) ∈ St(r, n) × GL(r) × St(r,m). The factorizations have

been discussed in Section 2.2.1. Here Rn×r∗ is the set of full column rank matrices, St(r, n) is the set of
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Two− factor
decomposition

Three− factor
decomposition

X = GHT X = URVT

Matrix
representation

x = (G,H) x = (U,R,V)

Total space M Rn×r∗ × Rm×r∗ St(r, n)×GL(r)× St(r,m)

Group action (GM−1,HMT )
M ∈ GL(r)

(UO1,O
T
1 RO2,VO2)

O1,O2 ∈ O(r)

Equivalence
class [x]

[(G,H)] = {(GM−1,HMT ) :
M ∈ GL(r)}

[(U,R,V)] = {(UO1,O
T
1 RO2,VO2) :

(O1,O2) ∈ O(r)×O(r)}

Quotient space
M/ ∼

Rn×r∗ × Rm×r∗
/GL(r)

St(r, n)×GL(r)× St(r,m)
/(O(r)×O(r))

Table 4.1: Fixed-rank matrix factorizations and their quotient manifold representations. The action
of Lie groups GL(r) and (O(r)×O(r)) make the quotient spaces smooth quotient manifolds (Lee, 2003,
Theorem 9.16). Here Rn×r∗ is the set of full column rank matrices, St(r, n) is the set of matrices of size

n× r with orthonormal columns, and GL(r) is the set of r × r non-singular matrices.

matrices of size n× r with orthonormal columns, and GL(r) is the set of r× r non-singular matrices. For

each of the factorizations in (4.2), the matrix characterizations of the total space (computational space)

M equipped with the equivalence relation ∼ and the resulting quotient spaceM/ ∼ are shown in Table

4.1. The equivalence class of a given point x ∈ M is the represented by the set [x] = {y ∈ M : y ∼ x}.
The set M/ ∼ contains all such equivalence classes.

It should be stated that the total space of each of the two considered fixed-rank matrix factorizations

(4.2) admits a product structure of well-known matrix manifolds, e.g., Rn×r∗ , St(r, n), and GL(r). Each of

these manifolds is smooth and, therefore, their product structures also preserve the smoothness property

(Absil et al., 2008, Section 3.1.6). Similarly, the quotient spaces generated by smooth group actions

(Table 4.1) have the structure of a smooth quotient manifold (Lee, 2003, Theorem 9.16).

The tangent space TxM at x ∈ M admits a product structure following the product structure of the

total space M. Because the total space is a product space of matrix manifolds, its tangent space TxM
at x embodies the product space of the tangent spaces of individual manifolds, e.g, Rn×r∗ , St(r, n), and

GL(r), the characterizations of which are well-known. Refer Edelman et al. (1998, Section 2.2) or Absil

et al. (2008, Example 3.5.2) for the characterization of the tangent space of St(r, n). The tangent spaces

of Rn×r∗ and GL(r) are Rn×r and Rr×r, respectively.

4.2.1 A simpler cost function

The abstract quotient search space M/ ∼ is given the structure of a Riemannian quotient manifold by

choosing a Riemannian metric, that respects the symmetry (shown in Table 4.1) on manifold M (Absil

et al., 2008). The metric defines an inner product between tangent vectors on the tangent space TxM.

Building upon the product structure of the total spaceM, a valid metric on TxM is derived from choosing
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natural metrics of the individual manifolds, the characterization of which are also well-known (this is

discussed in Section 4.6.1). However, this is not the only choice. Here we derive different metrics that

better exploit the structure of the cost function at hand (4.1). It should be noted that the second-order

derivative of the cost function ‖PΩ(X)−PΩ(X?)‖2F in (4.1) with respect to X ∈ Rn×m is computationally

costly to deal with and is rank deficient (Buchanan and Fitzgibbon, 2005). To circumvent the issue, we

consider a simplified (but related) version of the cost function in (4.1). Specifically, consider the least-

squares cost function ‖X−X?‖2F /2 that is a simplification of (4.1) by assuming that Ω contains all the

indices. The cost function ‖X−X?‖2F /2 now acts as a surrogate for ‖PΩ(X)−PΩ(X?)‖2F which we exploit

to understand the underlying structure. It should be emphasized that the cost function ‖X −X?‖2F /2
is strictly convex and quadratic in X and, therefore, also strictly convex and quadratic in each of the

individual arguments of different matrix factorizations. For example, ‖GHT −X?‖2F is strictly convex

in G ∈ Rn×r∗ and H ∈ Rm×r∗ individually for X = GHT (4.2). Minimizing ‖GHT −X?‖2F with respect

to G and H amounts to computing the dominant rank-r subspace of X?.

4.2.2 A novel Riemannian metric

Observing that ‖X−X?‖2F /2 = ‖X?‖2F /2 + Trace(XTX)/2− Trace(XTX?), we apply propositions 3.3

and 3.2, that exploit quadratic cost functions with orthogonality and rank constraints, to the simplified

optimization problem

min
X∈Rn×m

1
2Trace(XTX)− Trace(XTX?)

subject to rank(X) = r
(4.3)

in order to propose metrics for the original problem (4.1). Forming Lagrangians and computing their

second-order derivatives as in Section 3.2.3 leads to the following matrix characterizations of the Rie-

mannian metrics for the two particular factorizations of interest in this chapter:

Two− factor :

gx(ξx, ηx) = ω〈ηG, 2GSym(HT ξH)−X?ξH〉
+ω〈ηH, 2HSym(GT ξG)−X?T ξG〉
+ 〈ηG, ξGHTH〉+ 〈ηH, ξHGTG〉,︸ ︷︷ ︸

Block diagonal approximation of the simplified cost function

(4.4a)

Three− factor :

gx(ξx, ηx) = ω〈ηU, 2URSym(VT ξV)RT + 2USym(RξTR)−X?(ξVRT + VξR
T )〉

+ω〈ηR, 2Sym(UT ξU)R + 2RSym(VT ξV)−UTX?ξV − ξTUX?V〉
+ω〈ηV, 2VRTSym(UT ξU)R + 2VSym(RT ξR)−X?T (ξUR + UξR)〉
−ω〈ηU, ξUSym(RRT −UTX?VRT )〉
−ω〈ηV, ξVSym(RTR−VTX?TUR)〉
+ 〈ηU, ξURRT 〉+ 〈ηR, ξU〉+ 〈ηV, ξVRTR〉,︸ ︷︷ ︸

Block diagonal approximation of the simplified cost function

(4.4b)

where gx : TxM×TxM→ R : (ξx, ηx) 7→ gx(ξx, ηx) is the proposed Riemannian metric onM, ω ∈ [0, 1),

〈·, ·〉 is the standard Euclidean inner product, and Sym(·) extract the symmetric part of a square matrix,

e.g., Sym(A) = (A + AT )/2 for a square matrix A. An element x ∈M has the matrix characterization
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(G,H) and (U,R,V) for the two-factor and three-factor fixed-rank factorizations, respectively. Similarly,

(ξG, ξH) and (ξU, ξR, ξV) are the matrix representations of the tangent vector ξx ∈ TxM (shown in Table

4.2).

In the decomposition of (4.4), the terms not multiplied by the parameter ω are the block diagonal

terms of the Hessian, which are positive definite because the quadratic cost function is convex in each of

the variables. Mimicking the developments in Section 3.4, all the remaining terms are multiplied by the

weighting parameter as they do not guarantee positive definiteness of the metric away from the minimum,

i.e., these contain off diagonal terms of the cost Hessian (4.4a and 4.4b) and terms from the constraint

Hessian (4.4b).

Because the motivation in this chapter is to tackle large-scale problems and because the metric derivation

does not capture the exact cost function anyway, we adopt the default choice ω = 0 in (4.4), which

means its online adaptation as in Chapter 3 (Section 3.2.4 in particular) is not considered worth the

extra computation effort that it involves. Retaining only the positive definite block diagonal term from

the full second-order information of the problems (4.3) thus leads to choice

Two− factor : gx(ξx, ηx) = 〈ηG, ξGHTH〉+ 〈ηH, ξHGTG〉 (4.5a)

Three− factor : gx(ξx, ηx) = 〈ηU, ξURRT 〉+ 〈ηR, ξU〉+ 〈ηV, ξVRTR〉 (4.5b)

for the problem (4.1), where gx : TxM× TxM→ R is the metric imposed on TxM, ξx, ηx ∈ TxM, and

x has the matrix characterizations (G,H) and (U,R,V) for the two-factor and three-factor fixed-rank

factorizations (4.2), respectively.

4.3 Relevant matrix characterizations

The metric g[x] : T[x](M/ ∼) × T[x](M/ ∼) → R : (ξ[x], η[x]) 7→ g[x](ξ[x], η[x]) on the abstract tangent

space T[x](M/ ∼) of the quotient manifold M/ ∼ is the restriction of the proposed metric gx (4.5)

to the horizontal space Hx, i.e., to a subspace of TxM that characterizes T[x](M/ ∼). Equivalently,

g[x](ξ[x], η[x]) := gx(ξx, ηx), where

• [x] ∈M/ ∼,

• ξ[x] and η[x] are abstract tangent vectors in T[x](M/ ∼), and

• ξx, ηx are the matrix characterizations of ξ[x] and η[x], respectively, in Hx.

Consequently, the abstract quotient manifoldM/ ∼ has the structure of a Riemannian submersion ofM
with the metric g (4.5) (Absil et al., 2008, Chapter 3). This particular structure enables us to compute

the following relevant matrix representations relating to the abstract quotient manifold T[x](M/ ∼) that

are necessary for implementing any iterative optimization algorithm on a quotient manifold, including

the conjugate-gradient method.

• The matrix representations of the tangent space TxM and the horizontal space Hx at x ∈ M,

including projection operators on these spaces which (Absil et al., 2008, Chapter 3)
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Two− factor
decomposition

Three− factor
decomposition

X = GHT X = URVT

Tangent vectors in
TxM

{(ξG, ξH) ∈ Rn×r × Rm×r} {(ξU, ξR, ξV) ∈ Rn×r × Rr×r × Rm×r :
UT ξU + ξTUU = 0,
VT ξV + ξTVV = 0}

Metric gx(ξx, ηx)
for any
ξx, ηx ∈ TxM

〈ηG, ξG(HTH)〉
+〈ηH, ξH(GTG)〉

〈ηU, ξU(RRT )〉
+〈ηR, ξR〉
+〈ηV, ξV(RTR)〉

Vertical tangent
vectors in Vx

{(−GΛ,HΛT ) :
Λ ∈ Rr×r}

{(UΩ1,RΩ2 −Ω1R,VΩ2) :
Ω1,Ω2 ∈ Rr×r,
ΩT

1 = −Ω1,Ω
T
2 = −Ω2}

Horizontal tangent
vectors in Hx

{(ζG, ζH) ∈ Rn×r × Rm×r :
GT ζGHTH = GTGζTHH}

{(ζU, ζR, ζV) ∈ TxM :
RRT ηTUU + ηRRT is symmetric,
RTRηTVV −RT ηR is symmetric}

Table 4.2: With the proposed Riemannian metric (4.5) the quotient manifold has the structure of
a Riemannian manifold. The Riemannian metric gx makes the matrix representation of the abstract

tangent space TxM unique in the horizontal space Hx.

• A way to “move” on the quotient manifold given a search direction ξx ∈ TxM. This is accomplished

with a retraction mapping on M (Absil et al., 2008, Chapter 4). Care is taken so that we move

from equivalence classes to equivalence classes and not only from point to point onM. This makes

sure that the mapping is valid on the quotient manifold M/ ∼.

• Specifically in the case of conjugate-gradients algorithm, a notion of comparing tangent vectors at

different points, e.g., gradients of a function, on the manifold is also needed. This basic comparison

is captured by a vector transport on a manifold (Absil et al., 2008, Section 8.1).

4.3.1 Tangent vector representation as horizontal lifts

The matrix representation of the tangent space T[x](M/ ∼) of the abstract quotient manifold M/ ∼
is identified with a subspace of the tangent space of the total space TxM that does not produce a

displacement along the equivalence classes [x] = {y ∈ M : y ∼ x}. This is identified by decomposing

the tangent space into two complementary subspaces as TxM = Hx ⊕ Vx. This decomposition is with

respect to the metric proposed in (4.5). Tangent vectors in the quotient manifoldM/ ∼ are horizontally

lifted to the horizontal space Hx. The final matrix characterizations are shown in Table 4.2.

We work with the horizontal lifts to optimize any smooth cost function on the quotient space. Table 4.3

summarizes the concrete matrix operations involved in computing horizontal vectors. Starting from an

arbitrary matrix (with appropriate dimensions), two linear projections are needed: the first projection Ψx

is onto the tangent space of the total space TxM, while the second projection Πx is onto the horizontal

subspace Hx.
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The projection onto the tangent space TxM is accomplished by extracting the component in the ambient

space that is normal to the tangent space, i.e, the tangent space and the normal space together span the

entire ambient space. Removing further the vertical component (the characterization of which is shown

in Table 4.2) gives a horizontal vector. The Lyapunov equations involved in these projection operations,

shown in Table 4.3, are solved efficiently and in closed form by diagonalizing R and performing similarity

transforms on the variables. See Appendix A for the solution approach. Solving the Lyapunov equation

costs O(r3). The computational cost of forming other matrix-matrix products is O(nr2 + mr2 + r3).

Overall, the cost of using the projection operators is linear in the matrix dimensions n and m. This is

critical for the computational efficiency of any iterative algorithm.

4.3.2 Retractions from the tangent space to the manifold

A retraction is a mapping that maps vectors in the horizontal space to points on M (Absil et al., 2008,

Chapter 4)). It provides a natural way to iterate on the manifold along a search direction. Due to the

product structure of the total space M, a retraction Mis obtained by combining the retraction updates

on Rn×r∗ (Absil et al., 2008, Example 4.1.5), St(r, n) (Absil et al., 2008, Example 4.1.3), and GL(r) (Absil

et al., 2008, Chapter 4). The cartesian product of the retractions also defines a valid retraction on the

quotient manifoldM/ ∼ (Absil et al., 2008, Proposition 4.1.3). The retractions for the fixed-rank matrix

factorizations are

Two− factor : Rx(ξx) = (G + ξG,H + ξH),

Three− factor : Rx(ξx) = (uf(U + ξU),R + ξR,uf(V + ξV)),
(4.6)

where ξx ∈ Hx is a search direction and uf(·) extracts the orthogonal factor of the polar decomposition

of a full column rank matrix, i.e., uf(A) = A(ATA)−1/2 which is computed efficiently by performing the

singular value decomposition of A. The computational cost of a retraction operation is O(nr2+mr2+r3).

The retraction Rx (4.6) defines a valid retraction on the Riemannian quotient manifoldM/ ∼ such that

R[x](ξ[x]) := [Rx(ξx)], where ξx is the horizontal lift of an abstract tangent vector ξ[x] ∈ T[x](M/ ∼) in

Hx and [x] and [Rx(ξx)] are the equivalence classes defined in Table 4.1.

4.3.3 Vector transport on the manifold

A vector transport T : TxM× TxM → TRx(ηx)M : (ηx, ξx) 7→ Tηxξx on a manifold M is a smooth

mapping that transports a tangent vector ξx ∈ TxM at x ∈ M to a vector in the tangent space at

Rx(ηx) (Absil et al., 2008, Chapter 8). The Riemannian submersion structure of the quotient manifold

M/ ∼ allows us to compute the matrix representation of the vector transport Tη[x]ξ[x] on the quotient

manifoldM/ ∼ with projections operators and the retraction mapping in the total spaceM (Absil et al.,

2008, sections 8.1.3 and 8.1.4). In particular from the theory of Riemannian submersion, the horizontal

lift of the vector transport Tη[x]ξ[x] is given as

horizontal lift of Tη[x]ξ[x] = ΠRx(ηx)(Tηxξx),



50 Chapter 4. Riemannian conjugate-gradients for low-rank matrix completion

Two− factor
decomposition

Three− factor
decomposition

X = GHT X = URVT

Matrix
representation
of the
ambient space

(ZG,ZH) ∈ Rn×r × Rm×r (ZU,ZR,ZV) ∈ Rn×r × Rr×r × Rm×r

Normal space ∅ (UN1, 0,VN2) :
N1,N2 ∈ Rr×r,
N1RRT is symmetric,
N2R

TR is symmetric

Ψx,
projection onto
the tangent space

↓
Projection of an
ambient vector
onto TxM

Ψx(ZG,ZH)
= (ZG,ZH)

Ψx(ZU,ZR,ZV)
= (ZU −UBU(RRT )−1,ZR,

ZV −VBV(RTR)−1),

where BU and BV are symmetric matrices
of size r × r obtained by solving the
Lyapunov equations

RRTBU + BURRT =
2RRTSym(UTZU)RRT

RTRBV + BVRTR =
2RTRSym(VTZV)RTR

Πx,
projection onto
the horizontal space

↓
Projection of a
tangent vector
ηx ∈ TxM onto
Hx

Πx(ηx)
= (ηG + GΛ, ηH −HΛT ),

where
Λ = 0.5(ηTHH(HTH)−1

−(GTG)−1GT ηG)

Πx(ηx)
= (ηU −UΩ1, ηR − (RΩ2 −Ω1R),

ηV −VΩ2),
where Ω1 and Ω2

are the unique solutions
to the coupled Lyapunov equation
RΩ2R

T −RRTΩ1 −Ω1RRT =
Skew(UT ξURRT ) + Skew(RξTR)

RTΩ1R−RTRΩ2 −Ω2R
TR =

Skew(VT ξVRTR) + Skew(RT ξR)

Table 4.3: The matrix representations of the projection operations using Ψx and Πx. Ψx projects
a matrix in the Euclidean space onto the tangent space TxM by removing the normal component.

Πx further extracts the horizontal component of a tangent vector ξx. Here the operators Sym(·)

and Skew(·) extract the symmetric and skew-symmetric parts of a square matrix and are defined as

Sym(A) = (A + AT )/2 and Skew(A) = (A−AT )/2 for any square matrix A.
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Algorithm 1 The Riemannian conjugate-gradient method for minimizing f :M→ R on M/ ∼
Input: The Riemannian structure on M/ ∼ with the metric g (4.5),

initial iterate x0 ∈M, and the search vector η0 = 0.
Ouput: Sequence of iterates {xi}.
1: Compute the Riemannian gradient ξi = gradxif ∈ Hxi . . (4.11)
2: Compute the conjugate search direction by Polak-Ribière (PR+) that takes a particular linear com-

bination of the previous search vector with the current Riemannian gradient as
ηi = −ξi + βiΠxi(Ψxi(ηi−1)), ηi ∈ Hxi . . Section 4.4.2 and (4.13)

3: Check whether the search direction is a descent direction, i.e.,
verify that gxi(ηi, ξi) > 0. If not, then ηi = −ξi . Reset

4: Determine an initial step-size si. . Section 4.4.3
5: Retract with backtracking line search starting from the step-size si to arrive at a step-size si/2

p

(p ≥ 0 integer), and the next iterate is xi+1 = Rxi(
si
2p ηi). . (4.6)

6: Repeat until convergence.

where Tηxξx is the vector transport in the total space M, ηx and ξx are horizontal lifts in Hx of ξ[x]

and η[x] that belong to T[x](M/ ∼), ΠRx(ηx)(·) is the projection operator that extract the horizontal

component of a tangent vector (defined in Table 4.3) at Rx(ηx), and Rx(ηx) ∈M is the retraction along

ηx ∈ Hx defined in (4.6). Exploiting the Riemannian structure further, the vector transport Tηxξx in the

total space M admits the expression

Tηxξx = ΨRx(ηx)(ξx),

where Ψx(·) is the projection operator defined in Table 4.3 that projects an ambient vector onto the

tangent space TxM and Rx(ηx) is the retraction along ηx ∈ Hx defined in (4.6).

Finally, the horizontal lift of Tη[x]ξ[x] in the horizontal space Hx has the formula

horizontal lift of Tη[x]ξ[x] = ΠRx(ηx)(ΨRx(ηx)(ξx)), (4.7)

Πx(·) and Ψx(·) are projection operations defined in Table 4.3, xix and ηx are horizontal lifts of ξ[x] and

η[x], and Rx(·) is the retraction mapping (4.6). The computational cost of transporting a vector solely

depends on projection and retraction operations which cost O(nr2 +mr2 + r3).

4.4 Algorithmic details

For the sake of illustration, we consider the conjugate-gradient method which can be easily implemented

using notions developed in the previous section. Tables 4.1, 4.2, and 4.3; combined with retraction (4.6),

and vector transport (4.7) operations give all the necessary ingredients for optimizing any smooth cost

function on the Riemannian quotient manifold of fixed-rank matrix factorizations. For example, consider

a smooth cost function f : M → R : x 7→ f(x) and the optimization problem (with slight abuse of

notations)

min
x∈M

f(x)

subject to [x] ∈M/ ∼,
(4.8)

where [x] = {y ∈ M : y ∼ x}. The characterizations for M and M/ ∼ are in Table 4.1. The function f

has the following characterization for the low-rank matrix completion problem (4.1).
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Two− factor :

f : Rn×r∗ × Rm×r∗ → R : (G,H) 7→ 1
|Ω|‖PΩ(GHT )− PΩ(X?)‖2F

Three− factor :

f : St(r, n)×GL(r)× St(r,m)→ R : (U,R,V) 7→ 1
|Ω|‖PΩ(URVT )− PΩ(X?)‖2F ,

(4.9)

where Ω is the set of known indices of the incomplete matrix X? and PΩ(·) is the orthogonal sampling

operator. Here Rn×r∗ is the set of full column rank matrices, St(r, n) is the set of matrices of size n × r
with orthonormal columns, and GL(r) is the set of r × r non-singular matrices.

The skeletal version of the Riemannian conjugate-gradient method for the problem (4.8) is shown in

Algorithm 1. The basic steps of the method include computing the Riemannian gradient of M/ ∼,

computing the conjugate search direction that is a linear combination of the current gradient and β-

scaled previous search direction, and performing backtracking linesearch to compute the subsequent

iterate. Each of these steps is worked out in detail in this section for the cost function (4.9). The

structure of f in (4.9) is also exploited to compute an initial guess for the step-size along a given search

direction.

The convergence of the Riemannian conjugate-gradient algorithm to a critical point of (4.8) follows from

the convergence analysis of Ring and Wirth (2012); Sato and Iwai (2013). Step 3 of Algorithm 1, in par-

ticular, ensures that the sequence {ηi}, ηi ∈ Hxi is gradient-related (Absil et al., 2008, Definition 4.2.1).

Consequently, Algorithm 1 converges to a critical point of (4.8) (Absil et al., 2008, Theorem 4.3.1). The

rate of convergence analysis of Algorithm 1, on the other hand, is difficult to establish. Empirically,

however, good performance is reported on all our examples.

4.4.1 The Riemannian gradient computation

The horizontal lift (matrix representation) of the Riemannian gradient grad[x]f of f (4.9) on the quotient

manifoldM/ ∼ at x ∈M is obtained by solving the convex quadratic programming problem, presented

in (3.8),

horizontal lift of grad[x]f = gradxf

= arg min
ζx∈TxM

f(x)− 〈fx(x), ζx〉+ 1
2gx(ζx, ζx),

(4.10)

where gradxf is the gradient on the computational space M, fx(x) is the first-order derivative of f ,

TxM is the tangent space of M at x, 〈·, ·〉 is the standard Euclidean derivative, and gx is the metric

(4.5). The equality between the horizontal lift grad[x]f and gradxf in (4.10) is the standard result of the

Riemannian submersion theory (Absil et al., 2008, sections 3.6.1 and 3.6.2).
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The problem (4.10) admits a closed form solution as we shown below. The tangent space TxM charac-

terization follows from Table 4.2.

Two− factor :

fx(x) = (SHT ,STG),

where S = 2(PΩ(GHT )− PΩ(X?))/|Ω|.
gradxf = arg min

ζx∈TxM
f(x)− 〈fx(x), ζx〉+ 1

2gx(ζx, ζx)

= arg min
ζG∈Rn×r

ζH∈Rm×r

−〈SHT , ζG〉 − 〈STG, ζH〉
+ 1

2 (〈ζG, ζGHTH〉+ 〈ζH, ζHGTG〉)
= (SH(HTH)−1,STG(GTG)−1).

(4.11a)

Three− factor :

fx(x) = (SVRT ,UTSV,STUR),

where S = 2(PΩ(URVT )− PΩ(X?))/|Ω|.
gradxf = arg min

ζx∈TxM
f(x)− 〈fx(x), ζx〉+ 1

2gx(ζx, ζx)

= arg min
ζU∈Rn×r,
ζR∈Rr×r,
ζV∈Rm×r

−〈SVRT , ζU〉 − 〈UTSV, ζR〉 − 〈STUR, ζV〉
+ 1

2 (〈ζU, ζURRT 〉+ 〈ζR, ζU〉+ 〈ζV, ζVRTR〉)

subject to UT ζU + ζTUU = 0,VT ζV + ζTVV = 0

= (SVRT (RRT )−1 −UBU(RRT )−1,UTSV,

STUR(RTR)−1 −VBV(RTR)−1),

where BU and BV are solutions to the Lyapunov equations

RRTBU + BURRT = 2Sym(RRTUTSVRT )

RTRBV + BVRTR = 2Sym(RTRVTSTUR).

(4.11b)

Here Sym(·) extracts the symmetric part of a square matrix, i.e., Sym(A) = (A + AT )/2. The total

numerical cost of computing the Riemannian gradient (4.11) is O(|Ω|r + nr2 +mr2 + r3).

4.4.2 The conjugate direction computation

As mentioned earlier, at the ith iteration the conjugate direction ηi in Algorithm 1 is obtained by a

linearly combining the Riemannian gradient gradxif with previous search direction ηi−1. However, it

should be stressed that gradxif ∈ Hxi and ηi−1 ∈ Hxi−1
belong to different horizontal spaces onM. This

is tackled by invoking the concept of vector transport on manifold (Section 4.3.3) and ηi−1 is transported

to from xi−1 to xi by using the vector transport operation T (·) in Section 4.3.3 that, by definition,

produces a vector in the horizontal space Hxi at xi. Finally using the formula (4.7), the update proposed

is

ηi = −gradxif + βiΠxi(Ψxi(ηi−1)), ηi ∈ Hxi , (4.12)

where βi is the scaling parameter at the ith iteration that ensures approximate conjugacy of search

directions. Out of many choices for β, a popular choice is the Polak-Ribière (PR+) (Absil et al., 2008,
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Section 8.3) formula with automatic restart property (Nocedal and Wright, 2006, Chapter 5)

βi = max(
gxi(gradxif, gradxif −Πxi(Ψxi(gradxi−1

f)))

gxi−1
(gradxi−1

f, gradxi−1
f)

, 0), (4.13)

where gradxif at xi is the Riemannian gradient at ith iteration, Πxi(Ψxi(gradxi−1
f)) is the matrix

representation of the vector transport of the Riemannian gradient gradxi−1
at xi−1 to xi, and gx(·, ·) is

the Riemannian metric (4.5).

It should be noted that if β is fixed to 0, then the conjugate direction is simply the negative Riemannian

gradient direction, turning Algorithm 1 into the standard steepest-descent algorithm.

The computational cost of computing the conjugate direction at each iteration is equal to cost of com-

puting the vector transport and the metric,, the sum total of which costs O(nr2 +mr2 + r3).

4.4.3 Initial guess for the step-size

Computing a good step-size guess has a significant effect on the performance of a nonlinear conjugate-

gradient algorithm (Nocedal and Wright, 2006, Chapter 5). The extra cost of computing an approximate

step-size is usually compensated by a faster rate of convergence. To this end, we exploit the least-

squares nature of the matrix completion cost function to compute a linearized step-size guess efficiently

(Vandereycken, 2013). Given a search direction ηx ∈ Hx, the optimization problems that we solve at

each iteration are

Two− factor : s∗ = arg min
s∈R

‖PΩ((G− sηG)(H− sηH)T )− PΩ(X?)‖2F
Three− factor : s∗ = arg min

s∈R
‖PΩ((U− sηU)(R− sηR)(V − sηV)T )− PΩ(X?)‖2F .

(4.14)

For the two-factor factorization in (4.14), it should be noted that the cost function of the optimization

problem is a degree 4 polynomial in s. The minima are, therefore, the roots of its first derivative which

is a degree 3 polynomial. Efficient algorithms exist (including closed-form expressions) for finding the

roots of a degree 3 polynomial and hence, finding the optimal s∗ is numerically straightforward. Total

numerical cost is O(|Ω|r).

Similarly for the three-factor factorization in (4.14), the cost function is a degree 6 polynomial in s and

thus, the global minimum s∗ can be obtained numerically (and computationally efficiently) by finding

the roots of its degree 5 derivative polynomial. However, this can be further relaxed by considering a

degree 2 polynomial approximation, i.e.,

saccel
∗ = arg min

s∈R
‖PΩ(URVT + sηURVT + sUηRVT + sURηTV)− PΩ(X?)‖2F (4.15)

that has a closed form solution. Computing saccel
∗ (4.15) for the three-factor factorization is about three

times faster than computing s∗ in (4.14) with a numerical cost of O(|Ω|r).
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4.5 Updating rank

In many problems a good rank of the solution is either not known a priori or the notion of numerical

rank is too vague to define it precisely, e.g., matrices with exponential decay of singular values. In such

instances, it makes sense to traverse through a number of ranks, and not just one, in a systematic manner

while ensuring that the cost function of (4.1) is minimized. One way is to use fixed-rank optimization

(by fixing the rank) in conjunction with a rank-update strategy. Such schemes have been quite popular

in solving large-scale semidefinite programming problems (Burer and Monteiro, 2003; Journée et al.,

2010). To this end, we propose the meta scheme shown in Table (4.4) for low-rank matrix completion

that alternates between fixed-rank optimization (with a Riemannian conjugate-gradient algorithm) and

rank-one updates. The rank-one update is based on the idea of moving along the dominant rank-one

projection of the negative gradient of the mean square error ‖PΩ(X) − PΩ(X?)‖2F in the space Rn×m.

The scheme in Table 4.4 ensures a monotonic decrease of the cost function (‖PΩ(X)−PΩ(X?)‖2F /)/|Ω|
in (4.1).

Given an n×m rank-r matrix X, the rank-one update corresponds to computing (fixed-rank factorizations

of) a rank-(r + 1) matrix X+ such that

Two− factor :

X+ = X− σuvT
G+HT

+ = GHT − σuvT

Three− factor :

X+ = X− σuvT
U+R+VT

+ = URVT − σuvT ,

(4.16)

where u ∈ Rn and v ∈ Rm are the dominant unit-norm left and right singular vectors of 2(PΩ(X) −
PΩ(X?))/|Ω| and σ > 0 is the dominant singular value, (G+,H+) ∈ Rn×(r+1)

∗ ×Rm×(r+1)
∗ , and (U+,R+,V+) ∈

St(r + 1, n)×GL(r)×St(r + 1,m). Here Rn×r∗ is the set of full column rank matrices, St(r, n) is the set of

matrices of size n×r with orthonormal columns, and GL(r) is the set of r×r non-singular matrices. The

rank-one updating (4.16) can be done numerically efficiently (Brand, 2006). The total computational

cost is O(|Ω|+ nr2 +mr2 + r3).

The rank-update procedure shown in Table 4.4 is continued till a satisfied mean square error ‖PΩ(X)−
PΩ(X?)‖2F is identified. Not surprisingly, this procedure of alternating between fixed-rank optimization

and rank-updates is computationally more intensive as we traverse through a number of ranks one by one,

minimizing ‖PΩ(X)− PΩ(X?)‖2F at each rank. On the other hand, it leads to better accuracy (smaller

errors ‖PΩ(X) − PΩ(X?)‖2F at lower ranks) in matrix completion problems which are approximately

low-rank, i.e., their singular values decay exponentially but are not zero. This scenario is discussed in

Case (d) of Section 4.6. Secondly, the rank-update procedure also plays a pivotal role in trace norm

regularization problems, the convex alternative to fixing the rank, where it helps in computing a series

of convex solutions efficiently. This is discussed in Chapter 5.
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Given • Initial rank r0, e.g., r0 = 1 and initial iterate X0 ∈ Rn×mr0 .

Scheme We alternate between the following two steps until a threshold
is reached.

Step i) Compute a stationary point X ∈ Rn×mr of the fixed-rank
optimization problem (4.1) with the Riemannian conjugate-
gradient algorithm proposed in Section 4.4 initialized from X0.

Step ii) Update the rank r to r + 1 and initialize X0 = X − σuvT ,
where u ∈ Rn and v ∈ Rm are the dominant left and right
singular vectors of 2(PΩ(X) − PΩ(X?))/|Ω| and σ > 0 is the
dominant singular value, and t > 0 is an appropriate step-size
computed by backtracking.

Table 4.4: A meta scheme for minimizing ‖PΩ(X)−PΩ(X?)‖2F with a smaller rank solution X ∈ Rn×m.

4.6 Numerical comparisons

Our Riemannian conjugate-gradient algorithms based the two-factor and three-factor factorizations are

referred to as R2MC and R3MC, respectively. The Matlab implementations are available from the website

http://www.montefiore.ulg.ac.be/~mishra and the generic implementations of the two fixed-rank

geometries are provided in the Manopt optimization toolbox (Boumal et al., 2014) which has additional

algorithmic implementations, e.g., the trust-regions.

In this section, we show numerical comparisons of R2MC and R3MC with a number of state-of-the-art

algorithms. We show that our proposed algorithms connect closely to a number of competing methods.

In addition to this, we bring out a few conceptual differences between the competing algorithms and

ours. Finally, the numerical comparisons suggest that our geometric algorithms compete favorably with

state-of-the-art algorithms.

State-of-the-art algorithms considered for comparisons are the following. In ScGrassMC, LRGeom, and

Polar Factorization, we use their conjugate-gradient implementations together with linearized step-size

guesses. R3MC uses the accelerated step-size computation (4.15) while R2MC uses the step-size compu-

tation (4.14).

1. RTRMC (Boumal and Absil, 2011): It considers the decomposition of a rank-r matrix X into

X = UYT , where U ∈ St(r, n) (n × r matrices with orthonormal columns) and Y ∈ Rm×r∗ (full

column-rank m × r matrices). The fixed-rank optimization problem (4.1) is reformulated as an

optimization problem on the Grassmann manifold Gr(r, n) of dimension nr − r2 by eliminating

the variable Y. This is done by exploiting the least-squares structure of the matrix-completion

problem (Dai et al., 2012). Consequently, the resulting algorithm is efficient in situations where

n� m as optimization is on a smaller search space of dimension nr − r2 instead of nr +mr − r2.

Optimization on the Grassmann manifold is performed in the Riemannian optimization framework

which enables to develop both first-order and second-order algorithms. For numerical comparisons

in this section, we use the second-order Riemannian trust-region code of RTRMC with default

parameters as suggested by Boumal and Absil (2012).

http://www.montefiore.ulg.ac.be/~mishra
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2. LMaFit (Wen et al., 2012): It relies on the factorization X = GHT (4.2) of a fixed-rank matrix X

to alternatively update the matrices X, G and H while better minimizing the mean square error

‖PΩ(X) − PΩ(X?)‖2F . The LMaFit algorithm has been a popular benchmark owing to simpler

updates of iterates and tuned step-size updates in turn leading to a superior time per iteration

complexity. More details are in Section 4.6.2.

3. ScGrassMC (Ngo and Saad, 2012): It relies on the factorization X = URVT of the form (4.2). It

alternatively updates R and (U,V) (Keshavan et al., 2010). Fixing U ∈ St(r, n) and V ∈ St(r,m),

the factor R is updated by solving the least-squares problem

min
R∈Rr×r

‖PΩ(URVT )− PΩ(X?)‖2F

that has a closed form solution. However, a practical implementation of ScGrassMC computes

R approximately. Fixing R, the factors (U,V) are updated on the bi-Grassmann search space

Gr(r, n)×Gr(r,m) using an iteration for the problem

min
(U,V)∈Gr(r,n)×Gr(r,m)

‖PΩ(URVT )− PΩ(X?)‖2F , (4.17)

where Gr(r, n) is the set of r-dimensional subspaces in Rn. ScGrassMC specifically considers

scaled conjugate-gradient algorithm for (4.17), where the scaling is interpreted as an adaptive

preconditioner that well-conditions the level sets of the cost function. More details are in Section

4.6.2.

4. LRGeom (Vandereycken, 2013): Many works, including ours, view the set of fixed-rank matrices

as the product space of well-studied matrix manifolds. A different viewpoint is that of an em-

bedded submanifold, i.e, the search space Rn×mr has the structure of a Riemannian submanifold

in the space Rn×m (Vandereycken, 2013, Proposition 2.1). The metric imposed on Rn×mr is the

restriction of the standard Euclidean inner product from Rn×m. The recent papers by Shalit et al.

(2010); Vandereycken (2013) investigate the search space in detail and develop the notions of min-

imizing a smooth cost function. While conceptually the iterates of an iterative algorithm move

on the embedded submanifold, numerically the implementation is done efficiently using fixed-rank

factorizations, e.g, the two-factor factorization is used by Shalit et al. (2010) and the compact

singular value decomposition by Vandereycken (2013). For numerical comparisons, we consider the

conjugate-gradient implementation of Vandereycken (2013).

5. Polar Factorization (Meyer et al., 2011a): It considers a Riemannian quotient geometry based

on a three-factor factorization model similar to ours in (4.2) but with the additional constraint

that the factor R is symmetric and positive definite, i.e, R � 0. The Riemannian metric defined

on the space is the geometric product metric, i.e., it is a summation of the natural metric on

St(r, n) (Absil et al., 2008, Chapter 3) and the bi-invariant metric on the positive cone R � 0

(Bhatia, 2007, Section 6.1). The imposed geometry thus generalizes the Riemannian geometry

for the symmetric positive semidefinite matrices proposed by Bonnabel and Sepulchre (2009). For

numerical comparisons, we consider the conjugate-gradient implementation of (Meyer et al., 2011a).

The choice of these algorithms as state-of-the-art rests on recent publications (Boumal and Absil, 2011;

Meyer et al., 2011a; Ngo and Saad, 2012; Vandereycken, 2013; Wen et al., 2012) that solve the low-

rank matrix completion problem with a fixed-rank constraint, e.g., (4.1). Other problems formulations
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like matrix completion with nuclear norm regularization (Cai et al., 2010; Toh and Yun, 2010) have

not been discussed here as the main motivation of the present chapter is to look specifically look at

algorithms that exploit the search space of fixed-rank matrices. It should, however, be stated that all the

considered algorithms can be exploited, though it is not trivial, to have online, stochastic, and parallel

implementations (Balzano et al., 2010; Recht and Ré, 2013).

Implementation details and stopping criteria

All simulations in this section are performed in Matlab on a 2.53 GHz Intel Core i5 machine with 4 GB

RAM. We use Matlab codes for all the considered algorithms. Each simulation shows the behavior of the

cost function 1
|Ω|‖PΩ(X) − PΩ(X?)‖2F as a function of time taken or iterations used. For each example

considered here, an n×m random matrix of rank r is generated as proposed by Cai et al. (2010). Two

matrices A ∈ Rn×r and B ∈ Rm×r are generated according to a Gaussian distribution with zero mean

and unit standard deviation. The matrix product ABT gives a random matrix of rank r. A fraction of

the entries are randomly removed with uniform probability. It should be noted that the dimension of

the space of n×m matrices of rank r is (n+m− r)r and the number of entries known is a multiple of

this dimension. This multiple or ratio is called the over-sampling ratio or simply, over-sampling (OS).

The over-sampling ratio (OS) determines the number of entries that are known. A OS = 6 means that

6(n+m− r)r of randomly and uniformly selected entries are known a priori out of a total of nm entries.

The maximum number of iterations of all except RTRMC is set to 500. For RTRMC, the maximum

number of outer iterations is set to 200 (we expect a better rate of convergence) and the number of inner

iterations (for the trust-regions subproblem) is set to 100. Finally, all the algorithms are terminated

when the cost function value is below 10−20. The algorithms are initialized randomly.

4.6.1 Comparison of Riemannian metrics

In contrast to the tuned Riemannian metrics proposed in (4.5), an alternative choice is to use the

conventional approach of exploiting the product structure ofM to propose Riemannian metrics. A valid

Riemannian metric on M is defined by combining the individual natural metrics for Rn×r∗ (Absil et al.,

2008, Example 3.6.4), St(r, n) (Absil et al., 2008, Example 3.6.2), and the right-invariant metric on

GL(r) (Vandereycken et al., 2013, (3.10)). The resulting metric on M is called the geometric product

metric that is a summation of the Riemannian metrics on the product spaces (Lee, 2003, Example 13.2);

Two− factor : gx(ξx, ηx) = 〈ξG, ηG(GTG)−1〉+ 〈ξH, ηH(HTH)−1〉 (4.18a)

Three− factor : gx(ξx, ηx) = 〈ξU, ηU〉+ 〈ξRR−1, ηRR−1〉+ 〈ξV, ζV〉 (4.18b)

where 〈·, ·〉 is the standard Euclidean inner product and (G,H) and (U,R,V) are the matrix represen-

tations of the two-factor and three-factor fixed-rank factorizations, respectively. Similarly, (ξG, ξH) and

(ξU, ξR, ξV) are the matrix representations of the tangent vector ξx ∈ TxM the characterization is shown

in Table 4.2. Likewise for ζx ∈ TxM. Consequently, the manifold M (the characterization is shown in

Table 4.1) with the geometric product metrics (4.18) has also the structure of a Riemannian submersion.
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Figure 4.1: Comparison of between different choices of Riemannian metrics. n = m = 1000 and
r = 20. The gradient descent algorithms based on the tuned Riemannian metric (4.5) consistently
perform better than their counterparts based on the conventional Riemannian metric (4.18). The
matrix scaling in the Riemannian gradient obtained from one is the inverse of the scaling obtained from

the other, as shown in (4.19).

It should be stressed that the matrix scaling obtained by (4.5) is quite different from the one obtained

from the metrics (4.18). To see this consider the two-factor fixed-rank factorization case. The matrix

representations of the Riemannian gradient gradxf for the cost function (4.9) has the matrix expressions

Metric (4.5a) : gradxf = (SH(HTH)−1,STG(GTG)−1)

Metric (4.18a) : gradxf = (SH(GTG),STG(HTH)),
(4.19)

where S = 2(PΩ(X) − PΩ(X?))/|Ω| and x = (G,H) ∈ M. Moving to a different matrix representative

of the same equivalence class [G,H] := {(GM−1,HMT ) : M ∈ GL(r)} with the property GTG =

HTH (there exists a continuum of such matrix representations in [G,H]), we see that in (4.19) the

matrix scalings produced by (4.5) and (4.18) are inverse to each other. This also suggests that the

geometric product metric (4.18) is expected to perform poorly in matrix completion instances where

a large number of entries are already known where our proposed metric (4.5) captures a part of the

second-order information of (4.1).

We illustrate here the empirical evidence that the metric (4.5) tailored to the cost function performs
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better than the conventional geometric product metric (4.18). To this end, we consider the simplest

implementation of a gradient descent algorithm for the matrix completion problem (4.1) by setting the

parameter β = 0 in Algorithm 1. A 1000 × 1000 matrix of rank 20 is generated. The entries are

removed with different over-sampling ratios (OS). As the OS is increased, the behavior of steepest-

descent algorithms based on the metrics (4.18) and (4.5) separate out in Figure 4.1, thereby confirming

the observation made in the previous paragraph.

4.6.2 Connection with LMaFit and ScGrassMC

In this section we connect our Riemannian conjugate-gradient algorithms R2MC and R3MC to LMaFit

(Wen et al., 2012) and ScGrassMC (Ngo and Saad, 2012), respectively.

As mentioned earlier, the Gauss-Seidel algorithm LMaFit of Wen et al. (2012) is an alternating mini-

mization scheme on the search space (X,G,H) ∈ Rn×mr × Rn×r × Rm×r for the optimization problem

min
G∈Rn×r

H∈Rm×r

X∈Rn×m
r

‖GHT −X‖2F

subject to Xij = X?
ij , (i, j) ∈ Ω

(4.20)

where Rn×mr is the set of rank-r matrices of size n×m and Ω is the set of indices for which the entries

in X? are known. Each variable in (X,G,H) is updated sequentially by fixing the others, as is common

in an alternating minimization algorithm. The specific update proposed by Wen et al. (2012, Equation

(2.8)) to compute a new iterate (X+,G+,H+) are

G+(ω) = (1− ω)G + ωXH(HTH)−1

H+(ω) = (1− ω)H + ωXTG+(ω)(G+(ω)TG+(ω))−1

X+(ω) = G+(ω)H+(ω)T + PΩ(X? −G+(ω)H+(ω)T ),

(4.21)

where PΩ(·) is the orthogonal sampling operator defined in (4.1) and the weight ω ≥ 1 is updated using

a strategy that is similar to adjusting the radius in the trust-region method (Nocedal and Wright, 2006,

Chapter 4). After eliminating the variable X(ω) from (4.21), the equivalent updates are

G+(ω) = (1− ω)G + ω(GHT + PΩ(X? −GHT ))H(HTH)−1

H+(ω) = (1− ω)H + ω(HGT + PΩ(X?T −HGT ))G+(ω)(G+(ω)TG+(ω))−1.
(4.22)

If now instead of the sequential update of the variables (G,H) as in (4.22) a simultaneous update of the

variables (G,H) is allowed, then the update (4.22) becomes

G+(ω) = G− ωSH(HTH)−1

H+(ω) = H− ωSTG(GTG)−1,
(4.23)

where S = PΩ(GHT −X?).

It should be noted that the update (4.23) of the variables (G,H) is precisely the same update (up to

a normalization constant) that results from a Riemannian steepest-descent algorithm update for the
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two-factor factorization with respect to the metric (4.5), i.e., R2MC with β = 0, with the step-size ω,

i.e.,

x+ = x− ωgradxf

⇒ (G+,H+) = (G,H)− ω(SH(HTH)−1,STG(GTG)−1),

where x = (G,H) ∈M (the characterization is shown in Table 4.1) and S = 2PΩ(GHT −X?)/|Ω|. This

leads us to the conclusion that the LMaFit algorithm is the sequential version of our geometric algorithm

R2MC with β = 0 (steepest-descent). In other words, the Riemannian metric (4.5) confers a geometric

foundation to LMaFit and at the same time allows to retain its good properties.

ScGrassMC alternatively updates R ∈ Rr×r and (U,V) ∈ Gr(r, n)×Gr(r,m) using the three-factor fac-

torization (4.2). The connection with ScGrassMC is apparent from the fact that it considers a matrix scal-

ing of the Riemannian gradient for the variables (U,V) on Gr(r, n)×Gr(r,m) by ((RRT )−1, (RTR)−1).

It should be emphasized that this is the same matrix scaling that is obtained by our metric (4.5) in

the computation of the Riemannian gradient (4.11). Additionally, we have linear projections to respect

orthogonality of the factors (U,V). On the other hand, the difference with respect to ScGrassMC is on

two fronts.

• First, R3MC performs a simultaneous update of the variables (U,R,V) while ScGrassMC alter-

nates between updating (U,V) and R.

• Second, while preconditioning in ScGrassMC is motivated by Ngo and Saad (2012) as a way to

accelerate the algorithm of Keshavan et al. (2010), we view preconditioning as an outcome of a

particular Riemannian metric that can be employed in an arbitrary unconstrained optimization

algorithm. This is a fundamentally different view from the one of Ngo and Saad (2012).

4.6.3 Comparisons with state-of-the-art

In this section, we provide a comparative review of the algorithms across different scenarios of low-rank

matrix completion instances including on the popular MovieLens-1M dataset http://grouplens.org/

datasets/movielens/.

Case (a): influence of over-sampling

We consider a moderate size matrix of size 10000×10000 of rank 10, generated randomly. Four instances

of incomplete matrices with different over-sampling ratios, i.e., with different proportion of known entries,

have been considered. For larger values of OS, most of the algorithms perform similarly and show a nice

behavior; and both R2MC and R3MC compete effectively with state-of-the-art. With smaller OS ratios,

the algorithms, however, perform differently. In fact in Figure 4.2, for the case of OS = 2.1 only R3MC

and Polar Factorization algorithms converged. It should be added that second-order algorithms like

RTRMC exhibit a modestly better behavior with non-random initialization, e.g., by taking the dominant

r singular value decomposition of the sparse matrix PΩ(X?). However, it does not alter the main

observation, i.e., the algorithms that exploit separation of scaling and subspace information of a matrix,

e.g., SVD-based factorizations, exhibit better behavior.

http://grouplens.org/datasets/movielens/
http://grouplens.org/datasets/movielens/
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(c) OS = 2.5
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Figure 4.2: Case (a). For higher OS ratios, the performance behavior of all algorithms is similar.
However under low sampling (smaller OS ratios), the Riemannian algorithms based on three-factor
matrix factorization, including Polar Factorization, that separated scaling and subspace information

perform better. R3MC is particularly efficient in a number of instances.

Case (b): influence of conditioning

We consider matrices of size 5000 × 5000 of rank 10 and impose an exponential decay of singular val-

ues. The ratio of the largest to the lowest singular value is known as the condition number (CN) of

the matrix. At rank 10 the singular values with condition number 100 is obtained using the Matlab

command logspace(-2,0,10). The over-sampling ratio for these instances is 3. Matrix completion

instances become challenging as the CN of matrices is increased. In Figure 4.3 we consider four differ-

ent ill-conditioned matrices with different condition numbers. For low condition numbers, both R2MC

and R3MC perform than others. For CN = 100, only R3MC, LRGeom, and RTRMC converged with

RTRMC taking a much longer time. In instances with higher condition numbers, R3MC outperforms

both LRGeom and RTRMC. It should be noted that, for lower accuracies (e.g., the cost function less

than 10−6) both R2MC and R3MC perform better than others.
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Figure 4.3: Case (b). R3MC is robust to different instances of ill-conditioned data. When solutions
of lower accuracies are required, both R2MC and R3MC perform better than others.

Case (c): influence of low sampling + ill-conditioning

In this test, we look at problem instances that result from both scarcely sampled and ill-conditioned

data. The test requires completing relatively large matrices of size 25000 × 25000 of rank 10 with

different condition numbers and OS ratios. In Figure 4.4 R3MC outperforms all other algorithms. For

lower accuracies, however, R2MC performs slightly better than R3MC. Both compete favorably to others.

Case (d): ill-conditioning + rank-one updates

We create a random matrix of size 5000× 5000 of rank 20 with exponentially decaying singular values so

that the condition number is 1010 and over-sampling ratio 2 (computed for rank 10). In Figure 4.5 we show

the mean square error obtained on a set of entries Γ that is different from the set Ω (on which we minimize

the cost function). First, in Figure 4.5(a) we compare the algorithms for rank 10 directly where R3MC

shows a significantly better performance than others. The performance of RTRMC improves modestly

with regularization. Second, in Figure 4.5(b) we use R3MC with the rank-one updating procedure in

Section 4.5 starting from rank 1. It results in a better recovery at rank 10 and almost complete recovery
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Figure 4.4: Case (c). R3MC especially exhibits a robust behavior in scenarios that combine scarcely
sampled and ill-conditioned data.

at rank 17. This also suggests that fixed-rank algorithms including ours perform better with the rank

updating procedure for very ill-conditioned data.

Case (e): rectangular matrices

Here we are particularly interested in instances with n � m, i.e., rectangular matrices. For these in-

stances, most simulations suggest that the algorithm RTRMC of Boumal and Absil (2011) performs

numerically very efficiently than others. This is not surprising as the underlying geometry of RTRMC

exploits the fact that the least-square formulation (4.1) is solvable by fixing one of the fixed-rank fac-

tors. Consequently, the resulting problem becomes an optimization problem on the Grassmann manifold

Gr(r, n) in the lower dimension n.

To adapt algorithms like R2MC and R3MC (including RTRMC) to rectangular matrices under the

standard assumption of the Gaussian distribution of the known entries, we propose to deal with smaller

size matrices with fewer columns. Instead of considering the entire matrix X? of size n×m, we consider a

truncated sub-matrix of size n×p, shown in Figure 4.6. The sub-matrix matrix consists of all the rows of

X? but contains only p (out of m) columns. The columns are randomly chosen. A simple analysis shows
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Figure 4.5: Case (d). In general fixed-rank algorithms along with the rank-one updating (Section 4.5)
show a much better performance for highly ill-conditioned data.

n

m

n

p

Truncated incomplete sub-matrix

Original incomplete matrix

X⋆

Figure 4.6: Case (e). In matrix completion instances with n � m, we propose to construct a sub-
matrix that consists of only p > n randomly chosen columns from the original incomplete matrix.
In scenarios where an exact rank-r matrix completion for the full problem is expected, the smaller
truncated problem gives concrete information about the rank-r left subspace spanning the columns.
In other scenarios, the rank-r left subspace of the smaller truncated problem provides a good starting

point to deal with the full problem.

that if the over-sampling ratio of the original problem is OS, then the OS for the truncated problem, i.e.,

matrix completion of the truncated sub-matrix, is OStruncated = OSα/(1 + α), where α = p/n.

Although the dimension of the truncated problem (nr + αnr − r2) is much smaller than that of the full

problem (nr +mr − r2), the truncated problem is much more challenging to solve for smaller values α.

However by tuning α > 1, i.e., p > n it is possible to have a competitive trade-off between difficulty

and computational efficiency. It should, however, be noted that both the incomplete matrices (original

and the truncated version) share the same left subspace under the assumption that an exact matrix

reconstruction of the original problem is indeed possible. A different point of view is that if columns

of the original incomplete matrix X? belong to a time-invariant left subspace, then the same subspace

also appears in the truncated sub-matrix. This basic assumption has led to subspace tracking algorithms

being successfully applied to low-rank matrix completion problems (Balzano et al., 2010; Dai et al., 2011).

With the basic assumption of time-invariance the left subspace, we show our meta scheme in Table 4.5.

While the algorithm of Balzano et al. (2010) tracks the r-dimensional subspace column-by-column (in a

theoretical setting m tends to infinity but in a practical setting m is usually a large number), we propose
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Rank-r matrix completion of an n×m X? with n� m.

1. Construct a sub-matrix of dimensions n × p (> n) by picking only p
columns out of m randomly.

2. Compute the rank-r left subspace U ∈ St(r, n) (with orthonormal
columns) that best solves the truncated sub-matrix completion problem

3. Once the left subspace U ∈ St(r, n) is identified from the truncated sub-
matrix, the weighting factor, e.g., the matrix Y ∈ Rn×r∗ of the factoriza-
tion X = UYT of the full problem is obtained by solving a least-squares
problem by fixing U (Boumal and Absil, 2011). (U,Y) provides a good
initialization to algorithms like R2MC and RTRMC for the full problem.
Similarly, an additional QR factorization of Y gives an initialization to
the factors R ∈ GL(r) and V ∈ St(r,m), such that Y = VRT . The re-
sulting (U,R,V) provides a good initialization to algorithms like R3MC
for the full problem.

Table 4.5: A meta scheme for rectangular matrix completion problems under the standard assumption
of the Gaussian distribution of the known entries.

to compute the left subspace of the smaller sub-matrix as a way to initialize algorithms for the full

problem.
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Figure 4.7: Case (e). We consider a random rank-5 matrix completion instance of a moderately ill-
conditioned with CN = 10 rectangular matrix of size 1000×50000 and over-sampling ratio OS = 5. The
truncated matrix completion problem is obtained by choosing 2 × 1000 = 2000 columns out of 50000.
Consequently, the over-sampling ratio of the truncated problem is reduced to ≈ 5α/(1 + α) = (2/3)5 =
3.3. The plots show that both R3MC and RTRMC that solve the truncated problem first to initialize
the full problem (appended by +) are significantly faster than their full problem counterparts. Under
moderate ill-conditioning of the data, R3MC shows a better performance than RTRMC. In rectangular
problems with high ill-conditioned data, the performance of R3MC amd RTRMC are similar in a

number of situations.

To demonstrate the idea, we consider a rank 5 matrix of size 1000 × 50000. The over-sampling ratio is

5. An incomplete truncated matrix of size 1000× 2000 is formed by picking 2000 columns randomly out

of 50000, i.e., α = 2 and OStruncated = OSα/(1 + α) = 5(2/3) = 3.3. Figure 4.7 shows that both R3MC

and RTRMC with the meta-scheme above are significantly faster than the ones which deal directly with

the full incomplete matrix. To show the efficacy of the scheme to recover the unknown entries, we show

the mean square error obtained on a set of entries Γ that is different from the set Ω in Figure 4.7(b).
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Rank r R3MC R2MC Pol.
Fac.

ScGrassMC LRGeom LMaFit RTRMC

3 0.7713 0.7771 0.7710 0.7967 0.7723 0.7762 0.7858
4 0.7677 0.7758 0.7675 0.7730 0.7689 0.7727 0.8022
5 0.7666 0.7781 0.7850 0.8280 0.7660 0.8224 0.8314
6 0.7634 0.7893 0.7651 0.7910 0.7698 0.8194 0.8802
7 0.7684 0.7996 0.7980 0.8368 0.7810 0.8074

(max.
iters.)

0.8241

With rank
updating
strategy
(optimal
rank)

0.7370
(9)

0.7434
(8)

0.7435
(20
max.
rank)

0.7323
(10)

0.7381
(9)

0.7435
(9)

Did-not
give better
results

Table 4.6: MSEs obtained on the test set of the MovieLens-1M dataset.

Case (f): MovieLens dataset

As a final test, we compare all the considered algorithms on the popular MovieLens-1M dataset down-

loaded from the website http://grouplens.org/datasets/movielens/. The dataset has a million

ratings corresponding to 6040 users and 3952 movies. We perform 10 random 80/10/10 - train/vali-

dation/test partitions of the rating data. The algorithms are run one each of these partitions and the

results are averaged. Minimization of the cost function is on the training set. The algorithms are run for

a maximum 1000 iterations (200 for RTRMC) and are stopped before if the mean square error (MSE)

on the validation set (not the test set) starts to increase. Finally, the results are reported on the testing

set. In RTRMC we also set the parameter λ to 10−6 to avoid an error due to non-uniqueness of the

least-squares solution that it considers at each iteration.

Table 4.6 shows the MSEs on the testing set of ratings with standard deviations ±10−5 for fixed-rank

problems (the rank updating procedure is not used) at different ranks with random initialization. The

best score of 0.7634 is obtained by R3MC at rank 6. The timing performance of different algorithms

at rank 6 are shown in Figure 4.8(a) where R3MC, R2MC, and LRGeom are considerably faster than

others. Similar plots are also observed at other ranks.

We also run the algorithms with the rank-updating procedure in Section 4.5 to simultaneously find a

“good” rank. We traverse through all ranks from rank 1 to 20. Rank is updated only when the error on

the validation set starts to increase. RTRMC with rank-one updating did not give better results than the

one without the procedure and is omitted. Fig 4.8(b) shows all the MSEs on the testing set across ranks

that are traversed with the rank-updating procedure. The last row of Table 4.6 compiles the best MSEs

on the test set where the optimal ranks are shown in brackets. The best test score of 0.7323 is obtained by

ScGrassMC at rank 10 followed by the score 0.7370 of R3MC at rank 9. As for the timing performance,

R3MC is twice faster than ScGrassMC as shown in Figure 4.8(c) which also validates the observation in

Figure 4.8(a) that R3MC, R2MC, and LRGeom are, in general, faster than others. Overall, employing

http://grouplens.org/datasets/movielens/
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(b) MSE on the testing set with the rank-updating procedure
in Section 4.5
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(c) Timing performance with rank-updating

Figure 4.8: Case (f), MovieLens-1M dataset. Above: R2MC, R3MC, and LRGeom are faster than
others on this dataset. Below : with respect to accuracy, algorithms with the rank-updating procedure

(Section 4.5) give better scores.

the rank-updating strategy in Section 4.5 on the MovieLens-1M dataset improves the test scores for all

the considered algorithms.

Remarks

The case studies (a) to (f) are challenging instances of low-rank matrix completion because they combine

ill-conditioning and low sampling in the data. Even though the above case studies are not fully exhaustive,

they show a general trend of the performance of algorithms. The conclusions drawn from each case study

are based on a number of runs. Each figure, however, shows a typical run. Similarly, even though we

have shown convergence of the algorithms to very high accuracies, the conclusions drawn are equally

valid for lower accuracies. In all the examples, R3MC and R2MC have shown faster convergence. R3MC

has particularly shown a more robust performance.
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4.7 Chapter summary

We have discussed two efficient Riemannian conjugate-gradient algorithms namely, R2MC and R3MC,

for the low-rank matrix completion problem. Concrete matrix formulas have been summarized in tables.

The algorithms stem from two specific Riemannian quotient geometries, by virtue of specially chosen

Riemannian metrics on the set of two fixed-rank matrix factorizations. Various numerical comparisons

suggest a competitive performance of our proposed algorithms. On a theoretical level, we have shown

that the versatile nature of the Riemannian optimization framework not only lends itself excellently to

the search space of fixed-rank matrices, but it is also possible to customize it to the least-squares nature

of the cost function at hand.

The results of this chapter have been presented in (Mishra and Sepulchre, 2014a; Mishra et al., 2012).
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Chapter 5

Solving large-scale convex problems

with low-rank optimization

The present chapter focuses on the convex program

min
X∈Rn×m

F (X) + λ‖X‖∗, (5.1)

where F : Rn×m → R is a smooth convex function, ‖X‖∗ is the trace norm (also known as nuclear norm)

which is the sum of the singular values of X (Cai et al., 2010; Fazel, 2002; Recht et al., 2010), and λ > 0

is the regularization parameter. Convex programs of this type have attracted much attention in recent

years as efficient convex relaxations of intractable rank minimization problems (Fazel, 2002). The rank

of the optimal minimizer of (5.1) as a function of the regularization parameter λ, i.e., X∗(λ), decreases

to zero as the regularization parameter grows unbounded (Bach, 2008). As a consequence, generating

efficiently a regularization path {X∗(λi)} for i = {1, . . . , N}, for a whole range of values of λi-minimizers,

is a convenient convex proxy to obtain sub-optimal low-rank minimizers of F .

The chapter is organized as follows. In Section 5.2 the problem of fixed-rank optimization is related to

the trace norm minimization problem. Section 5.3 proposes a Riemannian second-order geometry for the

fixed-rank problem with a detailed numerical complexity analysis. An algorithm for (5.1) that alternates

between fixed-rank optimization and rank-one updates is proposed in Section 5.4. A novel predictor-

corrector approach to generate a regularization path of (5.1) for a grid of values of λ is discussed in Section

5.5. For the sake of illustration and empirical comparison with state-of-the-art algorithms we consider

two particular applications, low-rank matrix completion (Candès and Plan, 2009) and multivariate linear

regression (Yuan et al., 2007) in Section 5.6. In both cases, we obtain iterative algorithms with a

numerical complexity that is linear in the number of observations and with favorable convergence and

precision properties.

71
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5.1 Motivation

Motivated by machine learning and statistical large-scale regression problems (Ma et al., 2011; Recht

et al., 2010; Toh and Yun, 2010; Vounou et al., 2010; Yuan et al., 2007), we are interested in very low-rank

solutions (p < 102) of very high-dimensional problems (n > 106). To this end, we propose an algorithm

that guarantees locally second-order convergence to the solutions of (5.1) while ensuring a tight control

on the data storage requirements (storage is linear in n and m) and on the numerical complexity of each

iteration. In addition, we show an efficient computation of a regularization path of solutions to (5.1) by

exploiting the problem structure and the geometry of rank constraints.

The proposed algorithm is based on the fixed-rank factorization (2.2.1.2) of a rank-p matrix, similar to the

compact singular value decomposition (SVD), X = UBVT . Like in SVD, U ∈ St(p, n) (with orthonormal

columns) and V ∈ St(p,m) that span row and column spaces of X, respectively. In contrast, the p × p
scaling factor B = BT � 0 is allowed to be non-diagonal which makes the factorization non-unique. Our

algorithm alternates between fixed-rank optimization and rank-one updates. When the rank is fixed, the

problem is no longer convex but the search space has a Riemannian structure. We use the framework

of optimization on Riemannian quotient manifolds to propose a Riemannian trust-region algorithm that

generates low-cost (linear in n) iterates that converge super-linearly to a local minimum. Local minima

are escaped by incrementing the rank until the global minimum in reached. The rank-one update is

always selected to ensure a decrease of the cost.

Implementing the complete algorithm for a fixed value of the regularization parameter λ leads to a

monotone convergence to the global minimum through a sequence of local minima of increasing ranks.

Instead, we also modify λ along the way with a predictor-corrector method, thereby transforming most

local minima of (5.1) (for fixed λ and fixed rank) into global minima of (5.1) for different values of λ.

The resulting procedure, thus, provides a full regularization path of solutions at a very efficient numerical

cost.

Not surprisingly, the proposed approach has links with several earlier contributions in the literature. Pri-

marily, the idea of interlacing fixed-rank optimization with rank-one updates has been used in semidefinite

programming (Burer and Monteiro, 2003; Journée et al., 2010). It is here extended to a nonsymmetric

framework using the Riemannian geometry recently developed by Bonnabel and Sepulchre (2009); Meyer

(2011); Meyer et al. (2011a). An improvement with respect to the earlier work of Burer and Monteiro

(2003); Journée et al. (2010) is the use of duality gap certificate to discriminate between local and global

minima and its efficient computation thanks to the chosen parameterization.

Schemes that combine fixed-rank optimization and special rank-one updates have appeared recently in

the particular context of matrix completion (Keshavan et al., 2010; Wen et al., 2012). The framework

presented here is in the same spirit but in a more general setting and with a global convergence analysis.

Most other fixed-rank algorithms (Boumal and Absil, 2011; Keshavan et al., 2010; Meka et al., 2009;

Meyer, 2011; Simonsson and Eldén, 2010; Srebro and Jaakkola, 2003; Vandereycken, 2013; Wen et al.,

2012) for matrix completion fix the rank before. It is difficult to provide a tight comparison of the

proposed algorithm to trace norm minimization algorithms that do not fix the rank a priori (Amit et al.,

2007; Cai et al., 2010; Mazumder et al., 2010; Yuan et al., 2007). It should be emphasized, however,
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that most trace norm minimization algorithms use singular value thresholding operation at each iteration.

This is the most numerically demanding step for these algorithms. For the matrix completion application,

it involves computing (potentially all) the singular values of a low-rank + sparse matrix (Cai et al., 2010).

In contrast, the proposed approach requires only dense linear algebra (linear in n) and rank-one updates

using only dominant singular vectors and value of a sparse matrix. The main potential of the algorithm

appears when computing the solution not for a single parameter λ but for a number of values of λ. We

compute the entire regularization path with an efficient predictor-corrector strategy that convincingly

outperforms the warm-restart strategy.

5.2 Relationship between convex program and fixed-rank

formulation

Among different factorizations that exist to represent low-rank matrices, we use the factorization of

Bonnabel and Sepulchre (2009); Meyer et al. (2011a) that decomposes a rank-p matrix X ∈ Rn×m into

X = UBVT , (5.2)

where U ∈ St(p, n), V ∈ St(p,m) and B ∈ S++(p). St(p, n) is the Stiefel manifold or the set of n × p
matrices with orthonormal columns. S++(p) is the cone of p × p positive definite matrices. We stress

that the scaling B = BT � 0 is not required to be diagonal. The redundancy of this parameterization

has non-trivial algorithmic implications (in Section 5.3) but we believe that it is also the key to success

of the approach. Refer to (Keshavan et al., 2010; Meyer et al., 2011a) for earlier algorithms advocating

matrix scaling and Section 5.6.1 for a numerical illustration. With the factorization X = UBVT , the

trace norm is ‖X‖∗ = Trace(B) which is now differentiable. For a fixed rank p, the optimization problem

(5.1) is recast as

min
U∈St(p,n)
B∈S++(p)
V∈St(p,m)

F (UBVT ) + λTrace(B).
(5.3)

The search space of (5.3) is not Euclidean but the product space of two well-studied manifolds, namely,

the Stiefel manifold St(p, n) (Edelman et al., 1998) and the cone of positive definite matrices S++(p)

(Bhatia, 2007; Smith, 2005). The column and row spaces of X are represented on St(p, n) and St(p,m)

whereas the scaling factor is absorbed into S++(p). A proper metric on the space takes into account

both rotational and scaling invariance. We propose one that respects the rich geometry of the cone of

positive definite matrices.

5.2.1 First-order optimality conditions

In order to relate the fixed-rank problem (5.3) to the convex optimization problem (5.1) we look at the

necessary and sufficient optimality conditions that govern the solutions. The first-order necessary and

sufficient optimality condition for the convex program (5.1) is (Bach, 2008; Recht et al., 2010)

0 ∈ GradXF + λ∂‖X‖∗, (5.4)
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where GradXF is the Euclidean gradient of F at X ∈ Rn×m and ∂‖X‖∗ is the sub-differential of the

trace norm (Boyd and Vandenberghe, 2004; Cai et al., 2010; Toh and Yun, 2010). The first-order

optimality conditions for the fixed-rank optimization problem (5.3) are given in Proposition 5.1 below.

Subsequently, Proposition 5.2 gives the criterion under which a critical point of (5.3) is identified with

the global minimizer of (5.1).

Proposition 5.1. The first-order necessary optimality conditions of (5.3) are

SVB−USym(UTSVB) = 0

Sym(UTSV + λI) = 0

STUB−VSym(VTSTUB) = 0,

(5.5)

where X = UBVT (5.2), Sym(∆) = (∆ + ∆T )/2 for any square matrix ∆ and S = GradXF . S is

referred to as the dual variable throughout the chapter.

Proof. The first-order optimality conditions are derived either by writing the Lagrangian function of the

problem (5.3) and looking at the KKT first-order conditions or by deriving the (Riemannian) gradient of

the cost function (5.5) on the product space St(p, n)×S++(p)×St(p,m) with the metric (5.12) proposed

in Section 5.3. These two ways correspond to the two different viewpoints on equality constrained

optimization shown in Figure 3.1.

Proposition 5.2. A local minimum of (5.3) X = UBVT is also the global optimum of (5.1) iff ‖S‖op = λ

where S = GradXF and ‖S‖op is the operator norm, i.e., the dominant singular value of S. Moreover,

‖S‖op ≥ λ and equality holds only at optimality. Consequently, a local minimum of (5.3) is identified

with the global minimum of (5.1) if ‖S‖op − λ ≤ ε where ε is a defined threshold.

Proof. This is in fact rewriting the first-order optimality condition of (5.1) (Cai et al., 2010; Ma et al.,

2011). The proof is as follows.

From the characterization of sub-differential of trace norm (Recht et al., 2010) we have the following.

∂‖X‖∗ = {UVT + W : W and X have orthogonal column and row spaces,

W ∈ Rn×m and ‖W‖op ≤ 1},
(5.6)

where X = UBVT (5.2). Since X is also a stationary point for the problem (5.3), the conditions (5.5)

are satisfied including Sym(UTSV) + λI = 0, where Sym(·) extracts the symmetric part of a matrix,

i.e., Sym(∆) = (∆ + ∆T )/2 for any square matrix ∆. Based on the properties of a matrix norm we also

have
λI = −Sym(UTSV)

⇒ λ = ‖Sym(UTSV)‖op ≤ ‖UTSV‖op ≤ ‖S‖op,

where equality holds if and only if U and V correspond to the dominant row and column subspace of S,

respectively. That is, if S = −λUVT + U⊥ΣV⊥
T where UTU⊥ = 0, VTV⊥ = 0, U⊥ ∈ St(n− p, n),

V⊥ ∈ St(m− p,m) and Σ ∈ R(n−p)×(m−p) is a diagonal matrix with positive entries with ‖Σ‖op ≤ λ.

For example, if n ≤ m, then the left (n − p) × (n − p) part Σ is diagonal with positive entries and the
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rest all are zeros. It should be noted that this also means that S ∈ λ∂‖X‖∗ such that W = U⊥ΣV⊥
T

which satisfies (5.6), and the global optimality condition (5.4) is attained. This completes the proof.

5.2.2 Duality gap computation

Proposition 5.2 provides a criterion to check global optimality of a local solution of (5.3). However, it

provides no guarantees on closeness to the global solution. A better way of certifying optimality for

the optimization problem (5.1) is provided by the notion of duality gap. The duality gap characterizes

the difference of the obtained solution from the optimal solution and is always non-negative (Boyd and

Vandenberghe, 2004, Chapter 5).

Proposition 5.3. The Lagrangian dual formulation of (5.1) is

max
M∈Rn×m

−F ∗(M)

subject to ‖M‖op ≤ λ,
(5.7)

where M is the dual variable and ‖ · ‖op is the operator norm of a matrix, i.e., ‖M‖op is the largest

singular value of M. It should be stated that the operator norm ‖ · ‖op is the dual norm of the trace norm

‖ · ‖∗. F ∗ : Rn×m → R is the Fenchel (convex) conjugate (Bach et al., 2011; Boyd and Vandenberghe,

2004) of F , defined as F ∗(M) = sup
X∈Rn×m

[
Trace(MTX)− F (X)

]
.

Proof. Without loss of generality we introduce a dummy variable Z ∈ Rn×m to rephrase the optimization

problem (5.1) as

min
X,Z∈Rn×m

F (X) + λ‖Z‖∗

subject to Z = X,

where λ > 0 is the regularization parameter. The Lagrangian of the problem with dual variable M ∈
Rn×m is L : (Rn×m,Rn×m,Rn×m)→ R : (X,Z,M) 7→ L(X,Z,M) = F (X)+λ‖Z‖∗+Trace(MT (Z−X)).

The Lagrangian dual function G : Rn×m → R of the Lagrangian L is, computed as (Bach et al., 2011;

Boyd and Vandenberghe, 2004)

G(M) = min
X,Z∈Rn×m

F (X)− Trace(MTX) + Trace(MTZ) + λ‖Z‖∗
⇒ G(M) = min

X∈Rn×m
{F (X)− Trace(MTX)}+ min

Z∈Rn×m
{Trace(MTZ) + λ‖Z‖∗}

Using the operator norm ‖ · ‖op as the dual of the nuclear norm ‖ · ‖∗ ,we have

min
Z∈Rn×m

Trace(MTZ) + λ‖Z‖∗ = 0 if ‖M‖op ≤ λ.

Similarly, using the concept of Fenchel conjugate of a function we have

min
X∈Rn×m

F (X)− Trace(MTX) = −F ∗(M)



76 Chapter 5. Solving large-scale convex problems with low-rank optimization

where F ∗ is the Fenchel conjugate of F , defined as F ∗(M) = supX∈Rn×m

[
Trace(MTX)− F (X)

]
(Bach

et al., 2011; Boyd and Vandenberghe, 2004). Equivalently, subject to ‖M‖op ≤ λ, the final expression

for the dual function is G(M) = −F ∗(M) (Bach et al., 2011) and the Lagrangian dual formulation is

max
M∈Rn×m

−F ∗(M) such that ‖M‖op ≤ λ.

This proves the proposition.

Given a primal candidate X ∈ Rn×m and a dual feasible candidate M ∈ Rn×m such that ‖M‖op ≤ λ,

the effective expression of duality gap is

F (X) + λ‖X‖∗ + F ∗(M). (5.8)

A good choice for the dual candidate M is S (= GradXF ) with appropriate scaling to satisfy the operator

norm constraint, i.e., M = min(1, λ
‖S‖op )S (Bach et al., 2011).

5.3 A Riemannian optimization approach for the fixed-rank

optimization problem (5.3)

In this section we propose an algorithm for the problem (5.3). In contrast to first-order optimization

algorithms proposed earlier by Keshavan et al. (2010); Meyer et al. (2011a,b), we develop a second-order

trust-region algorithm that has a provably quadratic rate of convergence (Absil et al., 2008, Chapter 7).

We rewrite (5.3) as

min
U∈St(p,n)
B∈S++(p)
V∈St(p,m)

f(U,B,V),
(5.9)

where f : St(p, n) × S++(p) × St(p,m) → R : (U,B,V) 7→ F (UBVT ) + λTrace(B) and is introduced

for notational convenience. An important observation for second-order algorithms (Absil et al., 2008) is

that the local minima of the problem (5.9) are not isolated in the search space

Mp := St(p, n)× S++(p)× St(p,m), (5.10)

where St(p, n) is the set of n× p matrices with orthonormal columns and S++(p) is the set of symmetric

positive definite matrices. This is because the cost function f in (5.9) is invariant under rotations, i.e.,

UBVT = (UO)(OTBO)(VO)T for any p × p rotation matrix O ∈ O(p) such that OOT = OTO = I.

To remove the symmetry of the cost function in (5.9), we identify all the points of the search space that

belong to the equivalence class defined by

[(U,B,V)] = {(UO,OTBO,VO) : O ∈ O(p)}. (5.11)

The set of all such equivalence classes is denoted byMp/O(p) that has the structure of a smooth quotient

manifold of Mp/O(p) by O(p) (Lee, 2003, Theorem 9.16). It should be emphasized that the set O(p)
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takes away all the symmetry of the total space Mp (5.10) and consequently, the dimension of Mp is

(n+m−p)p which is equal to the dimension of the set of rank-p matrices. The dimension of the quotient

manifoldMp/O(p) is obtained by subtracting the dimension of O(p) from the dimension of the product

space Mp (5.10).

Problem (5.9) is, therefore, conceptually an unconstrained optimization problem on the quotient manifold

Mp/O(p) where the minima are isolated. Computations are performed in the total space Mp, which is

the product space of well-studied manifolds.

5.3.1 The Riemannian submersion of Mp/O(p)

An element of the total space Mp (5.10) is represented by x and its equivalence class is represented by

[x]. The equivalence relationship (5.11) is represented the notation ∼. [x] := {y ∈ Mp : y ∼ x}. The

matrix characterizations are provided in Table 5.1.

Following the theory of Riemannian submersion (Absil et al., 2008, Chapter 4), the running theme of

the present thesis (presented earlier in Section 3.2.2), the quotient manifoldMp/O(p) has a Riemannian

submersion structure, provided we endow the total spaceMp with a Riemannian metric (a smooth inner

product on the tangent space TxMp). The flexibility of choosing a Riemannian metric has been exploited

earlier in Chapters 3 and 4. Here we are particularly motivated by the natural geometry of the Stiefel

manifold St(p, n) (Edelman et al., 1998) and the symmetric positive definite cone S++(r) (Bhatia, 2007)

which have a rich history of their own. To this end, we propose the metric gx : TxMp × TxMp → R at

x ∈Mp is

gx(ξx, ηx) = 〈ξU, ηU〉+ 〈ξBB−1,B−1ηB〉+ 〈ξV, ηV〉, (5.12)

where 〈·, ·〉 is the standard Euclidean inner product and ξx and ηx are any tangent vectors in TxMp with

matrix characterizations (ξU, ξB, ξV) and (ηU, ηB, ηV), respectively and are shown in Table 5.1. The

metric (5.12) is the summation of the normal metric of the Stiefel manifold (Edelman et al., 1998) and

the natural (bi-invariant) metric of the positive definite cone (Bhatia, 2007; Smith, 2005). The metric so

proposed also allows us to construct special curves on the set Mp/O(p) that have particular properties.

This is presented in Section 5.5.

A matrix representation of the tangent space T[x](Mp/O(p)) at [x] ∈ Mp/O(p) relies on the decompo-

sition of TxMp into complementary vertical and horizontal subspaces. Once the Riemannian metric is

proposed, the characterization of the horizontal space, that is the matrix representation of the abstract

tangent space of the quotient manifold T[x](Mp/O(p)) at [x] ∈Mp/O(p), follows through. We show the

final expressions in Table 5.1. It should be stated that tangent vectors on the quotient manifold call for

matrix representatives, called horizontal lifts, which are vectors in the horizontal space Hx. Finally, the

induced metric at [x] on the quotient manifold Mp/O(p) is

g[x](ξ[x], η[x]) := gx(ξx, ηx), (5.13)

where gx(·, ·) is the Riemannian metric proposed in (5.12) and ξ[x] and η[x] are tangent vectors in

T[x](Mp/O(p)) with horizontal lifts ξx and ηx in the horizontal space Hx at x.



78 Chapter 5. Solving large-scale convex problems with low-rank optimization

Characterization of the set of the factorization
X = UBVT (5.2)

Matrix
representation

x = (U,B,V)

Total space Mp St(p, n)× S++(p)× St(p,m)

Group action (UO,OTBO,VO),O ∈ O(p)

Equivalence
class [x]

[(U,B,V)] = {(UO,OTBO,VO) : O ∈ O(p)}

Quotient space Mp/ ∼ St(p, n)× S++(p)× St(p,m)/O(p)

Tangent vectors in
TxMp

{(ξU, ξB, ξV) ∈ Rn×r × Rr×r × Rm×r :
UT ξU + ξTUU = 0,
ξTB = ξB,
VT ξV + ξTVV = 0}

Metric gx(ξx, ηx)
for any ξx, ηx ∈ TxMp

〈ηU, ξU〉+ 〈ηBB−1,B−1ξB〉+ 〈ηV, ξV〉

Vertical tangent
vectors in Vx

{(UΩ,BΩ−ΩB,VΩ) : Ω ∈ Rr×r,ΩT = −Ω}

Horizontal tangent
vectors in Hx

{(ζU, ζB, ζV) ∈ TxMp :
(ζTUU + B−1ζB − ζBB−1 + ζTVV) is symmetric}

Ψ(·) projects an

ambient vector
(ZU,ZB,ZV) ∈
Rn×r × Rr×r × Rm×r
onto TxMp

Ψx(ZU,ZB,ZV)
= (ZU −USym(UTZU), Sym(ZB),

ZV −VSym(VTZV))

Π(·) projects a

tangent vector
ηx ∈ TxMp onto
Hx

Πx(ηx) = (ηU −UΩ, ηB − (BΩ−ΩB), ηV −VΩ),
where Ω is the unique solution
to the Lyapunov equation
ΩB2 + B2Ω = B(Skew(UT ηU)− 2Skew(B−1ηB)

+Skew(VT ηV))B

Retraction Rx(ξx) that
maps a search direction
ξx ∈ Hx onto Mp

(uf(U + ξU),B
1
2 expm(B−

1
2 ξBB−

1
2 )B

1
2 , uf(V + ξV))

Table 5.1: Matrix characterizations of various objects on the manifold Mp/O(p). uf(·) extracts the

orthogonal factor of the polar factorization of a full column-rank matrix, i.e., uf(A) = A(ATA)−1/2,

expm(·) is the matrix exponential operator, Skew(·) extracts the skew-symmetric of a square matrix,

i.e., Skew(∆) = (∆ −∆T )/2, and Sym(·) extracts the symmetric part of a matrix, i.e., Sym(∆) =

(∆ + ∆T )/2.

Table 5.1 summarizes the concrete matrix operations involved in computing horizontal vectors. Starting

from an arbitrary matrix (with appropriate dimensions), two linear projections are needed: the first
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projection with Ψx is onto the tangent space of the total space, while the second projection with Πx is

onto the horizontal subspace.

Finally, a retraction of interest that maps vectors from the horizontal space Hx ontoMp is (Absil et al.,

2008; Meyer, 2011);

Rx(ξx) = (uf(U + ξU),B
1
2 expm(B−

1
2 ξBB−

1
2 )B

1
2 ,uf(V + ξV)), (5.14)

where uf(·) extracts the orthogonal factor of the polar factorization of a full-column rank matrix, i.e.,

uf(A) = A(ATA)−1/2 and expm(·) is the matrix exponential operator. The retraction on the positive

definite cone is the natural exponential mapping for the metric (5.12) (Smith, 2005). The combination

of these well-known retractions on the individual manifolds is also a valid retraction on the quotient

manifold Mp/O(p) by virtue of Absil et al. (2008, Proposition 4.1.3).

5.3.2 Gradient and Hessian computations in Riemannian submersion

The choice of the metric (5.12), which is invariant along the equivalence class [x] := [U,B,V] (5.11)

turns the quotient manifold Mp into a Riemannian submersion of (Mp, g) (Lee, 2003, Theorem 9.16)

and (Absil et al., 2008, Section 3.6.2). As shown by Absil et al. (2008), this special construction allows

for a convenient matrix representation of the Riemannian gradient (Absil et al., 2008, Section 3.6.2) and

the Riemannian Hessian (Absil et al., 2008, Proposition 5.3.3) on the abstract manifold Mp/O(p) from

the computation of their counterparts in the total space Mp.

The Riemannian gradient grad[x]f of f : Mp → R : x 7→ f(x) = F (UBVT ) + λTrace(B) on the

quotient manifold Mp/O(p) is uniquely represented by its horizontal lift in Hx which has the matrix

representation

horizontal lift of grad[x]f = gradxf, (5.15)

where gradxf is the gradient of the function f on the total space Mp. It should be emphasized that

gradxf is in the the tangent space TxMp. However, due to invariance of the cost f along the equivalence

class [x], gradxf also belongs to the horizontal space Hx and hence, the equality in (5.15) (Absil et al.,

2008, Section 3.6.2). The matrix expression of gradxf in the total spaceMp at x = (U,B,V) is obtained

by solving the convex quadratic program

gradxf = arg min
ζx∈TxMp

f(x)− 〈fx(x), ζx〉+ 1
2gx(ζx, ζx)

= arg min
ζU∈Rn×r,
ζB∈Rr×r,
ζV∈Rm×r

−〈fU, ζU〉 − 〈fB, ζB〉 − 〈fV, ζV〉+ 1
2 (〈ζU, ζU〉+ 〈ζB, ζB〉+ 〈ζV, ζV〉)

subject to UT ζU + ζTUU = 0, ζTB = ζB,V
T ζV + ζTVV = 0,

(5.16)

where fx(x) is the first-order derivative of the function f in (5.9) with matrix representation (fU, fB, fV)

∈ Rn×p × Rp×p × Rm×p, 〈·, ·〉 is the standard Euclidean inner product, and gx(·, ·) is the Riemannian

metric (5.12). This solution of (5.16) admits the solution (after few standard computations)

gradxf = (fU −USym(UT fU),BSym(fB)B, fV −VSym(VT fV)), (5.17)
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where (U,B,V) is the matrix representation of x ∈ Mp, (fU, fB, fV) ∈ Rn×p × Rp×p × Rm×p is ma-

trix representation of fx(x) (the first-order derivative of the cost function f), and Sym(·) extracts the

symmetric part of a square matrix.

In addition to the Riemannian gradient, any optimization algorithm that makes use of second-order

information also requires the directional derivative of the Riemannian gradient along a search direction.

This involves the choice of an affine connection ∇ on the manifold Mp. The affine connection provides

a definition for the covariant derivative of a tangent vector ηx with respect to a tangent vector νx,

denoted by ∇νxηx. Imposing an additional compatibility condition with the Riemannian metric fixes

the so-called Riemannian connection which is always unique (Absil et al., 2008, Theorem 5.3.1 and

Section 5.2). The Riemannian connection ∇ν[x]η[x] on the quotient manifold Mp/O(p) for tangent

vectors ν[x], η[x] ∈ T[x](Mp/O(p)) is uniquely represented by its horizontal lift in the horizontal space Hx
which is (Absil et al., 2008, Proposition 5.3.3)

horizontal lift of ∇ν[x]η[x] = Πx(∇νxηx), (5.18)

where ν[x] and η[x] are tangent vectors on the quotient manifold Mp/O(p) and νx and ηx are their

horizontal lifts in Hx, respectively. Here Πx(·) : TxMp → Hx extracts the horizontal component of a

tangent vector in TxMp and is worked out in Table 5.1.

Once again, the Riemannian connection ∇νxηx on the total space Mp has well-known expression as a

result of the individual Riemannian connection characterizations on St(p, n) (Absil et al., 2008; Journée,

2009) and on S++(p) (Bhatia, 2007; Smith, 2005). The Riemannian connection on the Stiefel manifold

St(p, n) is derived by Journée (2009, Example 4.3.6) and on the positive definite cone S++(p) is derived

by Meyer (2011, Appendix B). Finally, the Riemannian connection on the total space is given by the

product structure

∇νxηx = Ψx(Dηx[νx])−Ψx(νUSym(UT ηU),Sym(νBB−1ηB), νVSym(VT ηV)), (5.19)

where νx and ηx are tangent vectors in TxMp with matrix representatives (νU, νB, νV) and (ηU, ηB, ηV),

Ψx(·) is the projection operator that projects an ambient vector on the tangent space TxMp (worked

out in Table 5.1), Sym(·) extracts the symmetric part of a square matrix, and Dηx[νx] is the standard

Euclidean directional derivative of ηx in the direction νx, i.e. Dηx[νx] = lim
t→0

(ηx+tνx − ηx)/t.

The Riemannian Hessian operation (along a tangent vector) Hess[x]f [ξ[x]] of the cost function f in

(5.9) is defined as the covariant derivative of the Riemannian gradient grad[x]f in the direction ξ[x] ∈
T[x](Mp/O(p)). The horizontal lift of the Riemannian Hessian, from (5.18), in Hx has the matrix

expression

horizontal lift of Hess[x]f [ξ[x]] = Πx(∇ξxgradxf), (5.20)

where Πx(·) is the projection operator that extracts the horizontal component (defined in Table 5.1),

∇ξxgradxf is the Riemannian connection on the total space Mp shown in (5.19), and ξx ∈ Hx is the

horizontal lift of ξ[x] ∈ T[x](Mp/O(p)).
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5.3.3 Riemannian trust-region algorithm on Mp/O(p)

The optimization method that we consider is the Riemannian trust-region method. Analogous to trust-

regions in the Euclidean space (Nocedal and Wright, 2006, Chapter 4), trust-region algorithms on a

Riemannian quotient manifold with (locally in the neighborhood of the minimum) quadratic rate con-

vergence have been proposed by Absil et al. (2008, Chapter 7). See Absil et al. (2008, Section 7.4.2) for

assumptions. It should be stated that these assumptions hold in our case.

Similar to the Euclidean case, at each iteration the trust-region algorithm involves a step to compute a

search direction and a subsequent retraction operation to compute the next iterate. For computing the

search direction, we solve the trust-region subproblem on the quotient manifoldMp/O(p). Conceptually,

the trust-region subproblem is formulated as the minimization of the locally-quadratic model of the cost

function f in (5.9) at [x] ∈Mp/O(p)

arg min
ξ[x]∈T[x](Mp/O(p))

g[x](ξ[x], grad[x]f) + 1
2g[x](ξ[x],Hess[x]f [ξ[x]])

subject to g[x](ξ[x], ξ[x]) ≤ ∆2,
(5.21)

where g[x](·, ·) is the Riemannian metric on the quotient manifoldMp/O(p), grad[x]f is the Riemannian

gradient of the cost function f in (5.9), and Hess[x]f [ξ[x]] is the Riemannian Hessian applied along the

tangent vector ξ[x] ∈ T[x](Mp/O(p)) on the quotient manifoldMp/O(p), and ∆ is the trust-region radius.

Computationally, however, we horizontally lift the abstract subproblem (5.21) to the horizontal space

Hx which boils down to the expression

arg min
ξx∈Hx

gx(ξx, gradxf) + 1
2gx(ξx,Πx(∇ξxgradxf))

subject to gx(ξx, ξx) ≤ ∆2,
(5.22)

where gx(·, ·) is the Riemannian metric on the total space Mp and ∆ is the trust-region radius. Here

gradxf is the Riemannian gradient of the cost function f on the total space Mp and is equal to the

horizontal lift of grad[x]f (5.15). Similarly, Πx(∇ξxgradxf) is the horizontal lift of Hess[x]f [ξ[x]] (5.18),

where ∇ξxgradxf is the covariant derivative of the Riemannian gradient gradxf (5.19) along the hori-

zontal vector ξx ∈ Hx and Πx(·) extracts the horizontal component of a tangent vector and is worked

out in Table 5.1.

Solving the above trust-region subproblem (5.22) leads to a direction ξx ∈ Hx that minimizes the

quadratic model. Depending on whether the decrease of the cost function is sufficient or not, the poten-

tial iterate is accepted or rejected. In particular, we implement the Riemannian trust-region algorithm of

Absil et al. (2008, Algorithm 10) using the generic solver GenRTR (Baker et al., 2007), where the trust-

region subproblem (5.22) is solved using the truncated conjugate-gradient method of Absil et al. (2008,

Algorithm 11) that does not require inverting the Hessian. The stopping criterion for the trust-region

subproblem is

‖rt+1‖ ≤ ‖r0‖min(‖r0‖θ, κ)

where rt is the residual of the subproblem at tth iteration of the truncated conjugate-gradient method

(Absil et al., 2008, (7.10)). The parameters θ and κ are set to 1 and 0.1 as suggested by Absil et al.
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(2008, Section 7.5). The parameter θ = 1 ensures that we seek a quadratic rate of convergence of the

trust-region algorithm in the neighborhood of a local minimum.

The convergence of the Riemannian trust-region algorithm to critical points follows from the analysis

by Absil et al. (2008, Section 7.4), where the algorithm is shown to be globally convergent implying

that the Riemannian trust-region algorithm converges to critical points from all initial conditions. It

should be note that, theoretically, the trust-region method guarantee convergence only to critical points.

Practically, however, convergence to local minima are observed.

5.3.4 Numerical complexity

The numerical complexity of manifold-based optimization methods depends on the computational cost of

the components listed in Table 5.1 and the matrix computations of the Riemannian gradient and Hessian

operations. In particular, the numerical complexity per iteration of the proposed trust-region algorithm

for (5.9) depends on the computational cost of the following ingredients.

1. Cost function f(x) in (5.9): The computational cost is problem dependent.

2. Metric gx (5.12):

The dominant computational cost comes from computing terms like ξTUηU which requires a nu-

merical cost of O(np2). Other matrix operations involve handling matrices of size p× p with total

computational cost of O(p3).

3. Projecting an ambient vector onto the tangent space TxMp with Ψx(·) (Table 5.1):

It involves multiplications between matrices of sizes n × p and p × p which costs O(np2). Other

operations involve handling matrices of size r × r.
4. Projecting a tangent vector onto the horizontal space Hx with Πx(·) (Table 5.1):

• Forming the Lyapunov equations: Dominant computational cost of O(np2 +mp2) with matrix

multiplications that cost O(p3).

• Solving the Lyapunov equation costs O(p3) (Bartels and Stewart, 1972). An efficient solution

approach is presented in Appendix A.

5. Retraction Rx(·) (5.14):

• Computing the retraction on the St(p, n) (the set of matrices of size n× p with orthonormal

columns) costs O(np2)

• Computing the retraction on the set of positive definite matrices S++(p) involves matrix

exponential operations which cost O(p3).

6. Riemannian gradient gradxf (5.17):

First, it involves computing the first-order derivative fx(x) of the cost function f which depends on

the cost function f . Second, extra modifications to these derivatives involve matrix multiplications

between matrices of sizes n× p and p× p which costs O(np2).

7. Riemannian connection ∇ξxgradxf in the direction ξx ∈ Hx on the total space (5.19):

The Riemannian connection on each of the two manifolds, St(p, n) and S++(p), consists of two

terms. The first term is the projection of the standard Euclidean directional derivative of the
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Riemannian gradient in the direction ξx, i.e., Dgradxf [ξx]. The second term is the correction term

corresponds to the manifold structure and the metric.

• Dgradxf [ξx̄]: The computational cost depends on the cost function f and its first-order deriva-

tive.

• Correction term: It involves matrix multiplications with total cost of O(np2 + p3).

It is clear that all the manifold related operations are of linear complexity in n and m, and cubic in p. For

the case of interest, p� min(n,m), these operations are computationally very efficient. The ingredients

that depend on the problem at hand are the evaluation of the cost function f and computation of

its first-order derivative and its directional derivative along a search direction. In Section 5.6, these

computations are worked out for two specific examples of low-rank matrix completion and multivariate

regression, where we exploit the least-squares nature of the cost function.

5.4 An optimization scheme for the trace norm regularized

convex problem (5.1)

Starting with a rank-1 problem, we alternate a second-order local optimization algorithm on fixed-rank

manifold with a first-order rank-one update in order to propose an algorithm for the convex problem

with trace norm penalty (5.1). The scheme is shown in Table 5.2. The rank-one update decreases the

cost with the updated iterate in Mp+1.

Proposition 5.4. Assume that the function F in (5.1) has Lipschitz continuous derivative with the

Lipschitz constant LF such that ‖GradXF − GradYF‖F ≤ LF ‖X −Y‖F for all X,Y ∈ Rn×m, where

GradXF is Euclidean gradient of the function F in Rn×m. If X = UBVT is a stationary point of (5.3)

with (U,B,V) ∈ St(p0, n)× S++(p0)× St(p0,m), then the rank-one update

X+ = X− βuvT (5.23)

ensures a decrease in the cost function F (X) + λ‖X‖∗, provided that β > 0 is sufficiently small and the

unit norm descent directions u ∈ Rn and v ∈ Rm are the dominant left and right singular vectors of the

dual variable S = GradXF .

Additionally, the maximum decrease in the cost function in (5.1) is obtained for β = (σ1 − λ)/LF where

σ1 is the dominant singular value of S .

Proof. This is in fact a descent step as shown by Cai et al. (2010); Ma et al. (2011); Mazumder et al.

(2010) but now projected onto the rank-one dominant subspace. The proof follows.

Since X = UBVT is a stationary point for the problem (5.3) and not the global optimum of (5.1),

by virtue of Proposition 5.2 we have ‖S‖op > λ (strict inequality). We assume that F is smooth

and hence, let the first derivative of F is Lipschitz continuous with the Lipschitz constant LF , i.e.,
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Algorithm to solve convex problem (5.1)

0. • Initialize p to p0, a rank guess.

• Initialize the threshold ε for convergence criterion, refer to Proposition 5.2.

• Initialize the iterates (U0,B0,V0) ∈ St(p0, n)× S++(p0)× St(p0,m).

1. Solve the fixed-rank problem (5.3) with rank p to obtain a critical point
(U,B,V).

2. Compute σ1 (the dominant singular value) of dual variable S = GradXF , where
X = UBVT .

• If σ1−λ ≤ ε (or duality gap≤ ε) due to Proposition 5.2, output X = UBVT

as the solution to problem (5.1) and stop.

• Else, compute the update as shown in Proposition 5.4 and compute the
new point (U+,B+,V+) as described in (5.23). Set p = p + 1 and repeat
step 1.

Table 5.2: Algorithm to solve the trace norm minimization problem (5.1).

‖GradXF −GradYF‖F ≤ LF ‖X−Y‖F for any X,Y ∈ Rn×m (Nesterov, 2003, Chapter 2). Therefore,

the update (5.23), X+ = X− βuvT , results in the inequalities

F (X+) ≤ F (X) + 〈GradXF,X+ −X〉+ LF
2 ‖X+ −X‖2F

= F (X)− βσ1 + LF
2 β2(from Lipschitz continuity).

Also

‖X+‖∗ ≤ ‖X‖∗ + β (from triangle inequality of matrix norm in (5.23))

⇒ F (X+) + λ‖X+‖∗ ≤ F (X) + λ‖X‖∗ − β(σ1 − λ− LF
2 β)

(5.24)

for β > 0 and σ1 is the largest singular value of S (= GradXF ). The maximum decrease in the cost

function is obtained by maximizing β(σ1 − λ− Lf
2 β) with respect to β which gives βmax = σ1−λ

LF
> 0. In

addition, βmax = 0 ⇔ σ1 − λ = 0 which characterizes global optimality as shown in Proposition (5.2).

This proves the proposition.

A representation of X+ = X−βuvT onMp+1 is obtained by computing the singular value decomposition

of X+. Since X+ is a rank-one update of X = UBVT , the singular value decomposition of X+ only

requires O(np2 +mp2 +p3) operations (Brand, 2006). Finally, we perform a backtracking linesearch along

the rank-one descent direction to compute a good value of β starting from the value σ1−λ
LF

, where LF is

the Lipschitz constant for the first-order derivative of F (Nesterov, 2003). The justification for this value

is given in Proposition 5.4. In many problem instances, it is easy to estimate LF by randomly selecting

two points, say X and Y ∈ Rn×m, and computing ‖GradXF −GradYF‖F /‖X−Y‖F (Nesterov, 2003).

There is no theoretical guarantee that the algorithm in Table 5.2 stops at p = p∗ (the optimal rank).

However, convergence to the global solution is guaranteed from the fact that the algorithm alternates

between fixed-rank optimization and rank updates (unconstrained projected rank-1 gradient step) and

both are descent iterates. Disregarding the fixed-rank step, the algorithm reduces to a gradient algorithm

for a convex problem with classical global convergence guarantees. This theoretical certificate however

does not capture the convergence properties of an algorithm that empirically always converges at a rank
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Computing the regularization path of solutions

0. Given {λi}i=1,...,N in decreasing order. Also given are the solutions X∗(λ1) and
X∗(λ2) at λ1 and λ2 respectively and their low-rank factorizations.

1. Predictor step:

• If X∗(λi−1) and X∗(λi) belong to the same fixed-rank manifold Mp, then
construct a curve approximating the solution path at λi and compute the
estimate X̂(λi+1) as shown in (5.26).

• Else X̂(λi+1) = X∗(λi).

2. Corrector step: Using the estimated solution of the λi+1−problem, initialize the
algorithm described in Table 5.2 to compute the exact solution X∗(λi+1).

3. Repeat steps 1 and 2 for all subsequent values of λ.

Table 5.3: A scheme for computing the regularization path of solutions {X∗(λi)} for i = {1, . . . , N}.
If N is the number of values of λ and r is the number of rank increments, then the scheme uses r

warm-restarts and N − r predictor steps to compute the full path.

p � min(m,n) and most often at the optimal rank. One advantage of the scheme, in contrast to trace

norm minimization algorithms proposed by Cai et al. (2010); Ma et al. (2011); Mazumder et al. (2010);

Toh and Yun (2010), is that it offers a tighter control over the rank at all intermediate iterates of the

scheme. It should be also be emphasized that the stopping criterion threshold of the fixed-rank problem

(5.3) and of the convex problem (5.1) are chosen separately. This means that rank-increments can be

made after a fixed number of iterations of the manifold optimization without waiting for the trust-region

algorithm to converge to a critical point. Though not discussed here, the rank-one updating scheme can

be extended to rank-k updating in a straightforward way.

5.5 Regularization path

In most applications the optimal value of λ is unknown (Mazumder et al., 2010) which means that

in fact problem (5.1) should be solved for a number of regularization parameters. In addition, even

if the optimal λ is known a priori, a path of solutions corresponding to different values of λ provides

interpretability to the intermediate iterates which are now global minima for different values of λ. This

motivates to compute the complete regularization path of (5.1) for a number of values λ, i.e., {X∗(λi)}
for i = {1, . . . , N}, where X∗(λi) = arg min

X∈Rn×m
F (X) + λi‖X‖∗. The problem arg min

X∈Rn×m
F (X) + λi‖X‖∗ is

referred to as the λi-problem in the subsequent sections.

A common approach to compute {X∗(λi)} for different regularization parameters is the warm-restart

approach where the algorithm (any algorithm) to solve the λi+1-problem is initialized from X∗(λi)

and so on (Mazumder et al., 2010). However, the warm-restart approach does not use the fact that a

regularization path is smooth. An argument towards this is given later in the paragraph.

In this section, we propose a predictor-corrector scheme to compute a regularization path of solutions

{X∗(λi)} efficiently for i = {1, . . . , N}. We first take a predictor (estimator) step to predict the solu-

tion and then rectify the prediction by a corrector step. This scheme has been widely used in many

regularization problems, e.g., regression problems (Park and Hastie, 2006).
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The prediction step exploits the available information about solutions. For example, if X∗(λi) is the is

the solution to the λi-problem, then the solution of the λi+1 optimization problem is estimated from the

solutions X∗(λi) and X∗(λi−1) of the λi−1- and λi-problems, respectively. In the present context, we

have the following two cases.

• X∗(λi) and X∗(λi−1) have same rank: We exploit the Riemannian geometry of fixed-rank matrices,

presented in Section 5.3, to construct interpolating curves that connect X∗(λi) and X∗(λi−1) and

use this information to compute an estimate X̂∗(λi+1) for the λi+1-problem on the fixed-rank

manifold.

• X∗(λi) and X∗(λi−1) have different ranks: In this scenario we resort to the standard warm-restart

approach by assuming X∗(λi) to be an estimate of the solution of the λi+1-problem, i.e., X̂∗(λi+1) =

X∗(λi).

The corrector step is subsequently carried out by initializing the algorithm in Table 5.2 from the predicted

solution. The complete scheme is shown in Table 5.3 and has the following advantages.

• With a few number of rank increments we traverse the entire path of solutions {X∗(λi)} for i =

{1, . . . , N}.
• Potentially every iterate of the optimization scheme in Table 5.3 is a global solution for a value of

the parameter λ.

• The predictor-corrector approach outperforms the warm-restart approach in maximizing prediction

accuracy with minimal extra computations.

We also assume that the optimization problem (5.1) has a unique solution for each value of the parameter

λ. A sufficient condition is that F is strictly convex, which can be enforced by regularizing F with square

Frobenius norm of X.

In order to characterize smoothness of a regularization path we observe that the global solution X∗(λ) =

UBVT , where (U,B,V) ∈Mp (the characterization of the fixed-rank factorization is presented in Table

5.1), is uniquely characterized by the nonlinear system of equations

SV = λU, UTSV = λI, and STU = λV

which is obtained from the optimality conditions (5.5) and Proposition 5.2. The smoothness of X∗(λ)

with respect to λ follows from the implicit function theorem (Krantz and Parks, 2002). A geometrical

reasoning is by inspection of the dual formulation of (5.1). It should be noted that we employ the

predictor-corrector step only when we are on the fixed-rank manifold which corresponds to a face of the

dual operator norm set. From Proposition 5.3, the dual optimal solution is obtained by projection onto

the dual set. Smoothness of the dual variable, say M∗(λ), with respect to λ follows from the smoothness

of the projection operator (Hiriart-Urruty and Lemaréchal, 1993). Consequently, smoothness of the

primal variable X∗(λ) follows from the smoothness assumption of F .
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xi−1 = X∗(λi−1)

xi = X∗(λi)

X∗(λi+1)

X̂(λi+1)

ξ̂xi

−ξ̂xi

Horizontal space Hxi

X̂(λi+1) = Rxi(−tξ̂xi)

Mp is the fixed-rank manifold

Figure 5.1: Tracing the path of solutions using a predictor-corrector approach on the fixed-rank
manifold. The blue line denotes the curve of globally optimal solutions for problem (5.1) with different
values for the parameter λ. The predicted solution X̂∗(λi+1) of the λi+1-problem is obtained by
following an interpolating-curve connecting X∗(λi−1) and X∗(λi). Finally, the solution X∗(λi+1) is
obtained from X̂∗(λi+1) with a corrector step that is the scheme in Table 5.2 with initialization from

X̂∗(λi+1).

Predictor step on the quotient manifold Mp/O(p) through interpolation

The basic idea of a predictor step for estimating the solutions for the λi+1-problem is to use information

from the solutions for the λi−1- and λi-problems, where the λi-problem refers to arg min
X∈Rn×m

F (X) +λi‖X‖∗
. We assume that both xi = (Ui,Bi,Vi) and xi−1 = (Ui−1,Bi−1,Vi−1) are inMp are the matrix repre-

sentatives of fixed-rank factorizations (the characterization is shown in Table 5.1) of solutions X∗(λi−1)

and X∗(λi) of the λi−1- and λi-problems, respectively. The standard approach in computing a predic-

tor step is to follow the geodesic (the curve of the shortest length) connecting X∗(λi−1) and X∗(λi) on

fixed-rank manifold which corresponds to the abstract geodesic curve on the quotient manifoldMp/O(p)

connecting the equivalence classes [xi−1] and [xi] corresponding to X∗(λi−1) and X∗(λi), respectively,

where [·] is the equivalence class shown in Table 5.1. Computationally, the geodesic curve has a matrix

representation in the total spaceMp. Equivalently, we identify a vector ξxi ∈ Hxi in the horizontal space

Hxi (the matrix characterization of the abstract tangent space at [xi]) at xi, defined as ξxi = Logxi(xi−1)

that maps the point xi−1 ∈ Mp to a vector in the horizontal space Hxi , where Logxi(·) :Mp → Hxi is

called the logarithmic mapping (inverse of the exponential map that constructs the geodesic curve) (Absil

et al., 2008; Lee, 2003). As we deal with a retraction mapping (shown in Table 5.1) instead of the expo-

nential mapping, the logarithmic mapping is relaxed to the inverse of the retraction mapping. However,

it is not trivial to compute such a mapping as, first, it may not even be well-defined (except in the local

neighborhood of xi), and second, it may not be computationally tractable. For the case of interest there

is no analytic expression for the logarithmic mapping. Instead, a numerically efficient way is to use an

approximate inverse retraction R̂−1
xi (xi−1) (locally around xi), where R̂−1

xi :Mp → Rn×p ×Rp×p ×Rm×p

to obtain a direction in the ambient space Rn×p ×Rp×p ×Rm×p. The direction so obtained is addition-

ally projected onto the horizontal space Hxi (using projection operators presented in Table 5.1). The
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approximate inverse retraction R̂−1
xi (xi−1) and an estimate on ξxi := Logxi(xi−1) that we propose are

R̂−1
xi (xi−1) = (Ui−1 −Ui, B

1
2
i logm(B

− 1
2

i Bi−1B
− 1

2
i )B

1
2
i , Vi−1 −Vi)

and

ξ̂xi = Πxi(Ψxi(R̂
−1
xi (xi−1))),

(5.25)

where the projection operators Ψxi(·) and Πxi(·) are the projection operators defined in Table 5.1, (Ui,Bi,Vi)

and (Ui−1,Bi−1,Vi−1) are the matrix representations of xi and xi−1, respectively, and logm(·) is the

matrix logarithm operator. The computations of the estimate search direction ξ̂xi cost O(np2 +mp2 +p3).

We do not comment about the goodness of the estimate ξ̂xi with respect to the Logxi(xi−1) except to

point out that the error between the two converges to zero as xi−1 tends to xi.

Subsequently, the predicted solution for the λi+1-problem, i.e., arg min
X∈Rn×m

F (X) + λi+1‖X‖∗, is obtained

by taking a step t > 0 and performing a backtracking linesearch along the direction −ξ̂xi , i.e.,

X̂(λi+1) = Rxi(−tξ̂xi), (5.26)

where ξ̂xi is the horizontal vector computed in (5.25) and Rxi(·) is the retraction operator (to compute

an iterate on the manifold Mp) is presented in Table 5.1. It should be emphasized that we move along

the negative of the search direction ξ̂xi obtained in (5.25). A good choice of the initial step-size t is

(λi+1 − λi)/(λi − λi−1). The motivation for this choice comes the observation that it is optimal when

the solution path is a straight line in the Euclidean space. The numerical complexity to perform the

prediction step in the manifold Mp is O(np2 +mp2 + p3).

5.6 Numerical Experiments

The overall optimization scheme with descent-restart and trust-region algorithm for the fixed-rank op-

timization problem is denoted as “Descent-restart + TR” (TR). We test the proposed optimization

framework on the problems of low-rank matrix completion and multivariate linear regression where trace

norm penalization has shown efficient recovery. Full regularization paths are constructed with optimal-

ity certificates. All simulations in this section have been performed in MATLAB on a 2.53 GHz Intel

Core i5 machine with 4 GB of RAM. Our matrix completion implementation may be downloaded from

http://www.montefiore.ulg.ac.be/~mishra/codes/traceNorm.html.

5.6.1 Diagonal versus matrix scaling

Before entering a detailed numerical experiment we illustrate here the empirical evidence that constrain-

ing B in the factorization (5.2) to be diagonal (as is the case with SVD) is detrimental to optimization.

To this end, we consider the simplest implementation of a gradient descent algorithm for matrix com-

pletion problem (see below). The plots shown Figure 5.2 compare the behavior of the same algorithm

in the search space St(p, n)× S++(p)× St(p,m) and St(p, n)×Diag++(p)× St(p,m) (SVD). Diag++(p)

is the set of diagonal matrices with positive entries. The empirical observation that convergence suffers

http://www.montefiore.ulg.ac.be/~mishra/codes/traceNorm.html
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Figure 5.2: Convergence of a gradient descent algorithm is affected by making B in the factorization
(5.2) diagonal.

from imposing diagonal structure on B is a generic observation that does not depend on the particular

problem at hand. The problem here involves completing a 200 × 200 of rank 5 from 40% of observed

entries. λ is fixed at 10−10.

5.6.2 Low-rank matrix completion

The problem of matrix completion involves completing an n×m matrix when only a few entries of the

matrix entries are known. Given an incomplete low-rank (but unknown rank) n ×m real matrix X̃, a

convex relaxation of the matrix completion problem is

min
X∈Rn×m

‖W � (X̃−X)‖2F + λ‖X‖∗ (5.27)

for X ∈ Rn×m and a regularization parameter λ ∈ R+. Here ‖ · ‖F denotes the Frobenius norm, matrix

W is an n×m weight matrix with binary entries and the operator � denotes element-wise multiplication.

If W is the set of known entries in X̃ then, Wij = 1 if (i, j) ∈ W and Wij = 0 otherwise. The problem

of matrix completion is known to be combinatorially hard. However, by solving the convex relaxation

(5.27) a low-rank reconstruction is possible with a very high probability under Gaussian distribution

of the observed entries (Candès and Plan, 2009; Keshavan et al., 2010). For an exact reconstruction,

the lower bound on the number of known entries |W| is typically of the order O(nr + mr) where r is

the optimal rank, |W| > max(n,m) � r. Consequently, it leads to a very sparse weight matrix W,

which plays a very crucial role (along with the least-squares of the cost function) for efficient algorithmic

implementations including the computation of the duality gap expression. For our case, we assume that

the lower bound on the number of entries is met and we seek a solution to the optimization problem

(5.27). Customizing the terminology for the present problem, the convex function F : Rn×m → R is

F (X) = ‖W � (X̃ − X)‖2F . Using the factorization X = UBVT of (5.2), the rank-p cost function
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f : Mp → R is f(U,B,V) = ‖W � (X̃ −UBVT )‖2F + λTrace(B), where (U,B,V) ∈ Mp. The dual

variable for the problem (5.27) is S = 2(W � (UBVT − X̃)).

For the fixed-rank problem, the Riemannian gradient and the Riemannian Hessian (applied along a

search direction) are computed directly using formulas (5.17) and (5.20). Specifically, we require matrix

representation of the first-order derivative fx(x) of f in Rn×p × Rp×p × Rm×p which is

fx(x) = (fU, fB, fV) = (SVB,UTSV + λI,STUB),

where S = 2(W � (UBVT − X̃)) and (U,B,V) is the matrix representation of x ∈ Mp. Apart from

the matrix representation of fx(x), we also require a matrix representation of the Euclidean directional

derivative of fx(x) along (ZU,ZB,ZV) ∈ Rn×p×Rp×p×Rm×p, that is, Dfx(x)[(ZU,ZB,ZV)] = (SVZB+

SZVB + S∗VB,ZTUSV + USZV + UTS∗V,S
TUZB + STZUB + ST∗UB), where the auxiliary variable

S∗ = DS[(ZU,ZB,ZV)] = 2(W � (ZUBVT + UZBVT + UBZTV)) is the directional derivative of the

dual variable S along (ZU,ZB,ZV) ∈ Rn×p × Rp×p × Rm×p.

It should be noted that as W is sparse, the matrices S and S∗ are sparse too.Consequently, the compu-

tational complexity per iteration for the trust-region algorithm is of order O(|W|p + np2 + mp2 + p3),

where |W| is the number of known entries. In addition, computation of the dominant singular value and

vectors of S for the rank-one updating step (5.23) for the algorithm in Table 5.2 is done is using few

iterations of the power iteration algorithm (Golub and Van Loan, 1996, Chapter 8) with a cost O(|W|)
(Larsen, 2004), thereby potentially allowing to handle large datasets.

5.6.2.1 Fenchel dual and duality gap computation for matrix completion

From Proposition 5.3, the Fenchel conjugate F ∗ of F admits the expression F ∗(M) = Trace(MTM)/4

+ Trace(MT (W � X̃)), where the domain of F ∗ is the non-zero support of W. The Fenchel conjugate

computation exploits the least-squares nature of the function F . The duality gap expression for a dual

candidate M = min(1, λσ1
)S is

F (X) + λ‖X‖∗ + Trace(MTM)/4 + Trace(MT (W � X̃)), (5.28)

where σ1 is the dominant singular value of S = 2(W � (UBVT − X̃)) and X admits the factorization

UBVT (5.27). It should be stressed that, thanks to the fixed-rank matrix factorization, the duality gap

computation (5.28) can be accomplished efficiently.

5.6.2.2 Simulations

Next we provide some benchmark simulations for the low-rank matrix completion problem. For each

example, an n×m random matrix of rank p is generated as proposed by Cai et al. (2010). Two matrices

A ∈ Rn×p and B ∈ Rm×p are generated according to a Gaussian distribution with zero mean and unit

standard deviation. The matrix product ABT gives a random matrix of rank p. A fraction of the entries

are randomly removed with uniform probability. The dimension of rank-p matrices of size n × m is

(n + m − p)p and the over-sampling (OS) ratio determines the number of entries that are known as a
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multiple of the dimension. A OS = 6 implies that 6(n + m − p)p number of randomly and uniformly

selected entries are known a priori out of nm entries.

Example 1: for fixed λ

A 100×100 random matrix of rank 10 is generated as mentioned above. 20% (OS = 4.2) of the entries are

randomly removed with uniform probability. To reconstruct the original matrix we run the optimization

scheme proposed in the Table 5.2 along with the trust-region algorithm to solve the fixed-rank problem.

For illustration purposes λ is fixed at 10−5. We also assume that we do not have any a priori knowledge

of the optimal rank and, thus, start from rank 1. The trust-region algorithm stops when the relative

or absolute variation of the cost function is below 10−10. The rank-incrementing strategy stops when

relative duality gap is less than 10−5, i.e., F (X)+λ‖X‖∗+F∗(M)
|F∗(M)| ≤ 10−5. Convergence plots of the scheme

are shown in Figure 5.3. A good way to characterize matrix reconstruction at X is to look at the relative
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Figure 5.3: Matrix completion by trace norm minimization algorithm with λ = 10−5. Upper left:
rank incremental strategy with descent directions. Upper right: optimality certificate of the solution
with duality gap. Lower left: convergence to the global solution according to Proposition 5.2 . Lower

right: recovery of the original low-rank matrix.

error of reconstruction, defined as,

relative error of reconstruction = ‖X̃−X‖F /‖X̃‖F .

Next, to understand low-rank matrix reconstruction by trace norm minimization we repeat the exper-

iment for a number of values of λ all initialized from the same starting point and report the relative
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λ 10 10−2 10−5 10−8

Rel. reconstruction error 6.33× 10−2 7.42× 10−5 7.11× 10−8 6.89× 10−11

Recovered rank 10 10 10 10

Iterations 113 120 119 123

Time in seconds 2.7 2.8 2.9 2.9

Table 5.4: Efficacy of trace norm penalization to reconstruct low-rank matrices by solving (5.27).

reconstruction error in Table 5.4 averaged over five runs. This, indeed, confirms that matrix reconstruc-

tion is possible by solving the trace norm minimization problem (5.27).

Example 2: regularization path for matrix completion

In order to compute a regularization path of solutions corresponding to different values of λ, we employ

the predictor-corrector approach described in Table 5.3 to find solutions for a grid of λ values. For the

purpose of illustration, a geometric sequence of λ values is created with the maximum value fixed at

λ1 = 103, the minimum value is set at λN = 10−3 and a reduction factor γ = 0.95 such that λi+1 = γλi.

We consider the example that has been proposed previously. The algorithm for a λi ∈ {λ1, . . . , λN}
stops when the relative duality gap is less than 10−5. Various plots are shown in Figure 5.4. Figure 5.4

also demonstrates the advantage of the scheme in Table 5.3 with respect to a warm-restart approach.

We compare both approaches on the basis of

Inaccuracy in prediction = f(X̂(λi))− f(X∗(λi)) (5.29)

where X∗(λi) is the global minimum at λi and X̂(λi) is the prediction. A lower inaccuracy means better

prediction. It should be emphasized that in Figure 5.3 most of the points on the curve of the cost function

have no other utility than being intermediate iterates towards the global solution of the algorithm. In

contrast all points of the curve of optimal cost values in Figure 5.4 are now global minima for different

values of λ.

Example 3: competing methods for matrix completion

In this section, we analyze the following state-of-the-art algorithms for trace norm regularized low-rank

matrix completion, namely,

1. SVT algorithm by Cai et al. (2010),

2. FPCA algorithm by Ma et al. (2011),

3. SOFT-IMPUTE (Soft-I) algorithm by Mazumder et al. (2010), and

4. APG and APGL algorithms by Toh and Yun (2010).

For our simulation studies we use the MATLAB codes supplied on the authors’ webpages for SVT,

FPCA, and APGL. Due to simplicity of the SOFT-IMPUTE algorithm we use our own MATLAB

implementation. The numerically expensive step in all these algorithms is the computation of the singular

value thresholding operation that forms the core of these algorithms. To reduce the computational burden
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Predictor−corrector

# λ values 270

# iterations 766

Time 38.60 seconds

Figure 5.4: Computation of a regularization path using Descent-restart + TR with a predictor-
corrector approach. Upper left: recovery of solutions of all ranks. Upper right: optimality certificate
for each solution on the regularization path. Lower left: path traced by the algorithm. Lower right:
better prediction by the algorithm in Table 5.3 than a pure warm-restart approach. Table: number of

iterations per value of λ is < 3.

FPCA uses a linear time approximate singular value decomposition (SVD). Likewise, implementations

of SVT, SOFT-IMPUTE and APGL exploit the low-rank + sparse structure of the iterates to optimize

the thresholding operation (Larsen, 2004).

The basic algorithm FPCA by Ma et al. (2011) is a fixed-point algorithm with a proven bound on

the iterations for convergence to the ε-accuracy ball, i.e., the error with respect to the actual solution

is bounded by ε. To accelerate the convergence they use the technique of continuation that involves

approximately solving a decreasing sequence of values of λ leading to the target value of λ. The singular

value thresholding burden step is carried out by a linear time approximate singular value decomposition

that has shown superior performance.

The basic algorithm APG of Toh and Yun (2010) is a proximal method (Nesterov, 2003) and gives a much

stronger bound, precisely O(1/
√
ε), on the number of iterations to converge with ε-accuracy. To accelerate

the scheme, the authors propose three additional heuristics: continuation, truncation (hard-thresholding

of ranks by projecting onto the set of fixed-rank matrices), and linesearch technique for estimating the
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Lipschitz constant (of the first-order derivative of the function F ). The accelerated version is called

APGL.

The basic algorithm SOFT-IMPUTE of Mazumder et al. (2010) iteratively replaces the missing elements

with those given by an approximate SVD thresholding (of a sparse + low-rank matrix) at each iteration.

Accelerated versions involve post processing like continuation and truncation of singular values to obtain

a low-rank solution. It should be emphasized that the performance of SOFT-IMPUTE greatly varies

with the singular values computation at each iteration. For our simulations we compute 20 dominant

singular values at each iteration of SOFT-IMPUTE.

While FPCA, SOFT-IMPUTE, and APGL solve the problem formulation (5.27), the iterates of the SVT

algorithm converge towards a solution of the optimization problem that minimizes τ‖X‖∗ + ‖X‖2F /2
subject to the constraint that the entries of X belonging to the set agree with the known entries of the

incomplete matrix X̃, i.e., W �X = W � X̃, τ > 0 is the regularization parameter for SVT.

Convergence behavior of different algorithms with varying λ. In the current section we analyze

the algorithms FPCA, SOFT-IMPUTE, APG, and Descent-restart + TR regarding their ability to solve

(5.27) for a fixed value of λ. For this simulation, we use FPCA, SOFT-IMPUTE, and APG without any

acceleration techniques like continuation and truncation. SVT is not used for this test since it deals with

a different cost function. We plot the cost function F (X) +λ‖X‖∗ against the number of iterations for a

number of values of the parameter λ. A 100× 100 random matrix of rank 5 is generated under standard

assumptions with over-sampling ratio OS = 4 (61% of entries are removed uniformly). The algorithms

Descent-restart + TR, FPCA, SOFT-IMPUTE, and APG are initialized similarly. The algorithms are

stopped when either the absolute variation or relative variation of the cost function F (X) + λ‖X‖∗ is

less than 10−10. The maximum number of iterations is set at 500. The rank-one updating procedure of

our algorithm is stopped when the relative duality gap is less than 10−5.

The plots in Figure 5.5 show convergence behavior of the considered algorithm for four different values

of λ. The convergence behavior of FPCA is greatly affected by the value of the parameter λ. It has

slower convergence for a smaller λ. For a larger value of λ, FPCA shows a fluctuating behavior. SOFT-

IMPUTE shows a better convergence in all the cases. However, its convergence suffers when a higher

accuracy is sought. The performance of APG is robust to the change in values of λ. For a moderate

accuracy, it outperforms all other algorithms. However, when a higher accuracy is sought it requires a

significantly higher number of iterations. Descent-restart + TR, on the other hand, outperforms others

in all the cases here with minimal number of iterations.

Convergence of data fitting error for different algorithms. To understand the convergence

behavior of different algorithms involving different optimization problems, we look at the evolution of

the error in data fitting or training error (Cai et al., 2010; Mazumder et al., 2010) defined as

training error = ‖W � (X̃−X)‖2F (5.30)

with iterations. Here X̃ is the incomplete matrix that we seek to complete, W the binary weight matrix

of zeros and ones, and � denotes element-wise multiplication of matrices. We generate a 150 × 300

random matrix of rank 10 under standard assumptions with OS = 5. The algorithms Descent-restart +

TR, FPCA, SOFT-IMPUTE (Soft-I), and APG are initialized similarly. λ is fixed to 10−5 as it results
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Figure 5.5: Convergence behavior of different algorithms for different values of λ. The algorithms
compared here do not use any acceleration heuristics.

in a good reconstruction of the incomplete matrix. For SVT we use the default values of τ and step-size

as suggested by Cai et al. (2010). The algorithms are stopped when the variation or relative variation of

training error (5.30) is less than 10−10. The maximum number of iterations is set at 500. The rank-one

updating procedure of our algorithm is stopped when the relative duality gap is below 10−5.

In Figure 5.6 APG has a fast convergence but the performance slows down later. Consequently, it exceeds

the maximum limit of iterations. Similarly, SOFT-IMPUTE converges to a different solution but has

a faster convergence in the initial phase (for iterations less than 60). FPCA and Descent-restart +

TR converge faster at a later stage of their iterations. Descent-restart + TR initially sweeps through

ranks until arriving at the optimal rank where the convergence is accelerated owing to the trust-region

algorithm.

Scaling test. To analyze the scalability of these algorithms to larger problems we perform a test

where we vary the problem size n from 200 to 2200. The reason for choosing a moderate value of n is

that large-scale implementations of SVT, FPCA, and Soft-Impute are unavailable from their respective

authors’ webpages. For each n, we generate a random matrix of size n × n of rank 10 under standard

assumptions with different over-sampling ratios (OS). The initializations are chosen as in the earlier

example i.e., λ = 10−5. We note the time and number of iterations taken by the algorithms until the

stopping criterion is satisfied or when the number of iterations exceed 500. The stopping criterion is

same as the one used before for comparison, when the absolute variation or relative variation of training

error (5.30) is less than 10−10. Results averaged over five runs are shown in Figure 5.7. We have not
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Figure 5.6: Convergence behavior of different algorithms for minimizing the training error (5.30).

0 500 1000 1500 2000 2500
50

100

150

200

250

300

350

400

450

 Problem size 

It
e
ra

ti
o
n
s

 

 

Descent−restart + TR

FPCA

SVT

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

140

160

180

 Problem size 

T
im

e
 i
n
 s

e
c
o
n
d
s

 

 

Descent−restart + TR

FPCA

SVT

n 200 600 1000 1400 1800 2200

|W| 18409 66676 120000 176184 234380 294134

F 0.46 0.19 0.12 0.09 0.07 0.06

OS 4.7 5.6 6.0 6.3 6.5 6.7

Figure 5.7: Analysis of the algorithms on randomly generated datasets of rank 10 with varying
fractions of missing entries. SVT, FPCA and Descent-restart + TR have similar performances but

Descent-restart + TR usually outperforms others.

shown the plots for SOFT-IMPUTE and APG as in all the cases either they did not converge in 500

iterations or took much more time than the nearest competitor.

Below we have shown two more case studies where we intend to show numerical scalability of our algorithm

to large-scale instances. The first one involves comparisons with fixed-rank optimization algorithms. The

second case is a large-scale comparison with APGL (the accelerated version of APG). We consider the

problem of completing a 50000×50000 matrix X̃ of rank 5. The over-sampling ratio OS is 8 implying that

0.16% (3.99× 106) of entries are randomly and uniformly revealed. The maximum number of iterations

is fixed at 500.

Fixed-rank comparison. Because our algorithm uses a fixed-rank approach, it is meaningful to com-

pare its performance with other fixed-rank optimization algorithms. However, a rigorous comparison with

other algorithms is beyond the scope of the present chapter. Here we compare with two set-of-the-art
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Figure 5.8: Rank 5 completion of 50000×50000 matrix with OS = 8. All the algorithms are initialized
by taking 5 dominant SVD of sparse X̃ as proposed by Keshavan et al. (2010). Algorithms are stopped

when the cost function below a threshold, ‖W�(X̃−X)‖2F ≤ 10−10. The proposed trust-region scheme
is competitive with LMaFit for large-scale problems. Although LMaFit has a smaller time complexity
per iteration but its convergence seems to suffer for large-scale problems. With respect to LRGeom,

the performance is poorer although both have a similar asymptotic rate of convergence.

algorithms that are LMaFit (Wen et al., 2012) and LRGeom (trust-region implementation) (Vanderey-

cken, 2013). LMaFit is an alternating minimization scheme with a different factorization for a fixed-rank

matrix. We use the fixed-rank implementation of LMaFit. It is a tuned-version of the Gauss-Seidel

non-linear scheme and has a smaller time complexity per iteration. LRGeom is based on the embedded

geometry of fixed-rank matrices. This viewpoint allows to simplify notions of moving on the search

space. We use their trust-region implementation. The geometry leads to efficient guess of the optimal

step-size in a search direction. Figure 5.8 shows a competitive performance of our trust-region scheme

with respect to LMaFit. Asymptotically, both our trust-region scheme and LRGeom perform similarly

with LRGeom performing better in the initial phase.

Comparison with APGL. APG has a better iteration complexity than other optimization algorithms.

However, scalability of APG by itself to larger dimensional problems is an issue. The principal bottleneck

is that the ranks of the intermediate iterates seem to be uncontrolled and only asymptotically, a low-

rank solution is expected. To circumvent this issue, an accelerated version of APG called APGL is also

proposed (Toh and Yun, 2010). APGL is APG with three additional heuristics: continuation (a sequence

of parameters leading to the target λ), truncation (hard-thresholding of ranks by projecting onto fixed-

rank matrices) and linesearch technique for estimating the Lipschitz constant LF for the first derivative

of the cost function. We compare our algorithm with APGL. The algorithms are stopped when either

absolute variation or relative variation of the cost function is less than 10−10. For our algorithm, the

trust-region algorithm is also terminated with the same criterion. In addition, the rank-one updating is

stopped when the relative duality gap is below 10−5.

For a fixed λ = λ, APGL proceeds through a sequence of values for λ such that λk = max{0.7λk−1, λ}
where k is the iteration count of the algorithm. Initial λ0 is set to 2‖W� X̃‖op. We also follow a similar

approach and create a sequence of values. A decreasing sequence is generated leading to λ is by using

the recursive rule, λi = λi−1/2 when λi−1 > 1 and λi = λi−1/100 otherwise until λi−1 < λ. Initial λ0 is

set to ‖W� X̃‖op. For λi 6= λ we also relax the stopping criterion for the trust-region algorithm (for the
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Figure 5.9: A large-scale instance of rank 5 completion of 50000 × 50000 matrix with OS = 8.
λ = 2‖W � X̃‖op/105 as suggested by Toh and Yun (2010). The proposed framework is competent
for very low-ranks and when a high accuracy is sought. However, we spend a considerable time in just

traversing through ranks before arriving at the optimal rank.

fixed-rank subproblem) to 10−5 as well as stopping the rank-one increment when relative duality gap is

below 1 as we are only interested for an accurate solution for λ = λ.

In Figure 5.9 we compete favorably with APGL in large-scale problems for very low-ranks and when a

higher accuracy is required. However, as the rank increases, APGL performs better. This is not surprising

as our algorithm traverses all ranks, one by one before arriving at the optimal rank. In the process we

spend a considerable effort in traversing ranks. This approach is most effective only when computing in

the entire regularization path. Also for moderate accuracy, APGL performs extremely well. However,

the better performance of APGL significantly relies on heuristics like continuation and truncation. The

truncation heuristic allows the APGL algorithm to approximate an iterate by low and fixed-rank iterate.

On the other hand, we strictly move in the low-rank space. Exploiting this leads to an efficient way for

computing the entire regularization path using a predictor-corrector strategy of Section 5.5.

Comments on competing matrix completion algorithms. We summarize our observations in the

following points.

• The convergence rate of SOFT-IMPUTE is greatly dependent on the computation of singular values.

For large-scale problems this is a bottleneck and the performance is greatly affected. However, in

our experiments, it performs quite well within a reasonable accuracy as seen in Figure 5.5 and

Figure 5.6.

• SVT, in general, performs well on random examples. However, the choice of step-size and regu-

larization parameter τ affect the convergence speed of the algorithm (Ma et al., 2011; Mazumder

et al., 2010).

• FPCA has a superior numerical complexity per iteration owing to an approximate singular value

decomposition (Ma et al., 2011). But the performance suffers as the regularization parameter λ is

increased as shown in Figure 5.5.

• APG has a better iteration complexity than the others and is well-suited when a moderate accuracy

is required (Figure 5.5 and Figure 5.6). As the ranks of the intermediate iterates are not necessarily

low, scalability to large dimensions is an issue. Its accelerated version APGL does not suffer from

this problem and performs very well for large dimensions.
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• In all our simulation studies on random examples, Descent-restart+TR has shown a favorable

performance on different benchmarks. In particular our framework is well suited when the optimal

solution is low-rank and when one needs to compute the entire regularization path. The Riemannian

geometry of the set of fixed-rank matrices allows us to make a local prediction of the regularization

path, thereby employing an efficient predictor-corrector strategy.

5.6.3 Multivariate linear regression

Given matrices Y ∈ Rn×k (response space) and X ∈ Rn×q (input data space), we seek to find a weight/-

coefficient matrix W ∈ Rq×k that minimizes the loss between Y and XW (Yuan et al., 2007). Here

n is the number of observations, q is the number of predictors and k is the number of responses. One

popular approach to multivariate linear regression problem is by minimizing a quadratic loss function.

It should be noted that in various applications, responses are related and may therefore, be represented

with much fewer coefficients. Consequently, this corresponds to finding a low-rank coefficient matrix W

that best fits the data. The papers by Amit et al. (2007); Yuan et al. (2007) motivate the use of the

trace norm regularization in the optimization problem formulation

min
W∈Rq×k

‖Y −XW‖2F + λ‖W‖∗,

where λ > 0 is the regularization parameter and the optimization variable is W ∈ Rq×k. Although the

focus here is on the quadratic loss function, our proposed optimization scheme, that alternates between

fixed-rank optimization and rank-one updates, can be directly applied to other smooth loss functions.

Customizing the terminology for the present problem, the convex function F : Rq×k → R : W 7→ F (W) is

F (W) = ‖Y−XW‖2F . Using the factorization W = UBVT of (5.2), the rank-p cost function f :Mp →
R : (U,B,V) 7→ f(U,B,V) is f(U,B,V) = ‖Y −XUBVT ‖2F + λTrace(B), where (U,B,V) ∈ Mp.

Other than the difference in the dual variable S, computation of the Riemannian gradient and the

Riemannian Hessian for the fixed-rank problem follows directly from the developments in Table 5.1 and

in Section 5.6.2. The matrix representations of the dual variable S

S = 2(XTXW −XTY),

where the rank of W is p and it admits the matrix factorization W = UBVT (5.2). Building upon this,

computation of the Riemannian Hessian applied along a search direction is straightforward to derive. A

careful study of numerical cost of matrix operations shows that computations cost O(q2p+qkp) assuming

dense matrix operations. However, additional structures of X and Y can be exploited to decrease the

cost. It should be noted that the numerical complexity per iteration is linear in n.

5.6.3.1 Fenchel dual and duality gap computation

As an extension for some functions F of type F (W) = ψ(A(W)) whereA is a linear operator (appropriate

domains of functions are assumed), computing the Fenchel conjugate of the function ψ may be easier

than that of F . When ‖A∗(M)‖op ≤ λ the duality gap, using similar calculations as in Proposition 5.3,
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Figure 5.10: Regularization path for multivariate linear regression with various SNR values. Results
are averaged over 5 random 70/30 splits.

is F (W) + λ‖W‖∗ + ψ∗(M), where A∗ is the adjoint operator of A and ψ∗ is the Fenchel conjugate of

the transformed function ψ. A good choice of M is again min{1, λ
σψ
}GradXSψ where σψ is the dominant

singular value of A∗(GradXWψ) (Bach et al., 2011).

For the multivariate linear regression problem we have A(W) = XW which suggests the choice F (W) =

ψ(XW). Note that the domains of F and ψ are different. Finally, the duality gap is F (W) + λ‖W‖∗ +

ψ∗(M), where the dual candidate M = 2 min(1, λ
σψ

)(XW−Y) and σψ is the dominant singular value of

A∗(GradXWψ) = XTGradXWψ = 2XT (XW −Y). The Fenchel dual function ψ∗ : Rn×k → R admits

the expression ψ∗(M) = Trace(MTM)/4 + Trace(MTY). Exploiting the fixed-rank factorization of W,

i.e., W = UBVT the numerical complexity of finding the duality gap is dominated by the numerical

cost of computing ψ∗(M) which is also of the order of the cost of computing f(U,B,V). Numerical

complexity of computing M is O(nqp+ nkp+ kp2) and of ψ∗(M) is O(nk).

5.6.3.2 Regularization path for multivariate linear regression

An input data matrix X of size 5000× 120 is randomly generated according to a Gaussian distribution

with zero mean and unit standard deviation. The response matrix Y is computed as XW∗ where W∗

is a randomly generated coefficient matrix of rank 5 matrix and size 120 × 100. We randomly split

the observations as well as responses into training and testing datasets in the ratio 70/30 resulting in
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Ytrain/Ytest and Xtrain/Xtest. A Gaussian white noise of zero mean and variance σ2
noise is added to

the training response matrix Ytrain resulting in Ynoise. We seek to find the coefficient matrix W by

minimizing the cost function

min
W∈Rq×k

1

nk
‖Ynoise −XtrainW‖2F + λ‖W‖∗,

where λ is the trace norm regularization parameter. We validate the learning by computing the root

mean square error (RMSE) defined as

Test RMSE =

√
1

ntestk
‖Ytest −XtestW‖2F ,

where ntest is the number of test observations. Similarly, the signal to noise ratio (SNR) is defined as√
‖Ytrain‖2F
σ2
noise

.

We compute the entire regularization path for four different SNR values. The maximum value of λ is

fixed at 10 and the minimum value is set at 10−5 with the reduction factor γ = 0.95 (270 values of λ in

total). Apart from this we also put the restriction that we only fit ranks less than 30. The solution to

an optimization problem for a value of λ is claimed to have been obtained when either the duality gap

is less than 10−2 or the relative duality gap is below 10−2 or σ1 − λ is less than 10−2. Similarly, the

trust-region algorithm stops when relative or absolute variation of the cost function is less than 10−10.

The results are summarized in Figure 5.10.

5.7 Chapter summary

Three main ideas have been presented in this chapter. First, we have given a framework to solve the

general trace norm minimization problem (5.1) with a sequence of increasing but fixed-rank problems

(5.3). We have analyzed the convergence criterion and the duality gap expression which are used to

monitor convergence to the solution of the original problem. The duality gap expression was shown

numerically tractable even for large problems thanks to the specific choice of the low-rank parameteri-

zation. We have also presented a way of updating the rank while simultaneously ensuring a decrease of

the cost function. This may be termed as a descent-restart approach. The second contribution of the

chapter is to present a second-order trust-region algorithm for a general rank-p optimization problem on

the search space St(p, n) × S++(p) × St(p,m)/O(p) that is equipped with the natural metric g (5.12).

The search space with the proposed metric has the structure of a Riemannian submersion. We have used

manifold-optimization techniques, as advocated by Absil et al. (2008), to derive the matrix expressions

for proposing a trust-region algorithm. The third contribution of the chapter is to develop a predictor-

corrector algorithm on the fixed-rank manifold to compute a grid of solutions, called a regularization

path, corresponding to different values of the parameter λ. The resulting performance is superior to the

conventional warm-restart approach. These ideas have been applied to the problems of low-rank matrix

completion and multivariate linear regression leading to encouraging numerical results.

The results of the chapter have been published in the SIAM Journal on Optimization, 2013 (Mishra

et al., 2013).
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Chapter 6

Conclusion and research perspectives

In this thesis, we have proposed novel algorithms that exploit the particular geometry of optimization

problems that combine least-squares cost and constraints with symmetries. Our main emphasis has

been on developing computationally efficient algorithms that are scalable to large-scale problems. Many

current applications call for such developments, among which the low-rank matrix completion problem

was a primary benchmark throughout the thesis. The main challenge is to exploit the geometry of

constraint while extending the computational setup to large-scale data, which often comes with ill-

conditioning issues. The thesis addresses these challenges and the novel contributions are summarized

below.

Two optimization problems that combine least-squares and constraints with symmetries, rank and or-

thogonality constraints, were presented in the first part of Chapter 2. The second part of Chapter 2 dealt

with the geometry of constraints with symmetries. In particular, the relevant constraints were identified

as quotient manifolds resulting from structured group actions on matrix manifolds. Furthermore, the

symmetries result from the interplay of few well-studied manifolds shown in Figure 2.2. We further

motivate the Riemannian optimization framework that deals with symmetries in search space effectively.

The Riemannian optimization framework on quotient manifolds forms the core foundation on which this

thesis rests. Our original contributions are listed in Chapters 3, 4, and 5, where we propose efficient

Riemannian algorithms for least-squares problems with rank and orthogonality constraints.

The connection between the Riemannian optimization framework and sequential quadratic program-

ming (SQP) in manifold-constrained optimization has been explored in Chapter 3. Building upon their

equivalence for submanifolds (manifolds embedded in a vector space), we have explored the relationship

for quotient manifolds. We have shown that this connection allows us to construct Riemannian met-

rics (smooth inner products) on manifolds that are tailored to least-squares costs. Such metrics can be

thought of as an effective way to perform preconditioning on Riemannian manifolds, particularly cru-

cial when dealing with ill-conditioned data. The notion of metric tuning was linked to the ability of

capturing relevant second-order information of the problem at hand. Two particular case studies were

considered: the generalized eigenvalue problem, a least-squares problem with orthogonality constraints,

and the matrix Lyapunov equations, a least-squares problem with rank constraints. We have established
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novel connections with power, inverse, and Rayleigh quotient iterations for the generalized eigenvalue

problem, all described as steepest-descent algorithms with specific choices of metrics. For the matrix

Lyapunov equations, we have proposed novel metrics that show good performance as compared to more

conventional metric choices.

Chapter 4 specifically focused on the low-rank matrix completion problem by fixing the rank a priori. The

concept of metric tuning of Chapter 3 provided a basis to construct computationally efficient metrics on

the Riemannian manifold of fixed-rank matrices for the low-rank matrix completion problem. Two novel

conjugate-gradient algorithms were proposed and tested in significant problems against state-of-the-art

algorithms. All the resulting matrix formulas have been summarized in tables. The novel algorithms

suggest superior performance on various benchmarks.

Finally in Chapter 5, we have dealt with large-scale convex programs where the expected solution is

low-rank. Here the low-rank constraint is enforced “softly” via a trace norm regularization term in the

cost function. The trace norm regularization term is convex but non-smooth. Conventional convex

optimization algorithms tackle this non-smoothness by a soft-thresholding operation on singular values

of iterates. The basic approach taken in this thesis was to use a particular fixed-rank factorization

that made the trace norm differentiable on the fixed-rank manifold. This allowed us to exploit the

Riemannian geometry of fixed-rank matrices. Our approach alternates between fixed-rank optimization

and rank-one updates and ensures a monotonic decrease of the cost function. Such an approach provides

a tighter control over the rank of iterates and provides a trade-off between computational efficiency and

minimizing data-fitting error. This scheme was used to propose an efficient predictor-corrector scheme

to compute regularization path of solutions by tuning the regularization parameter. Two examples of

low-rank matrix completion and multivariate regression were solved with the proposed setup.

Research perspectives

Many rank constrained optimization problems in engineering have additional structure beyond what

was considered in the present thesis. In particular, coupling low-rank constraint to affine constraints

seems particularly challenging. The survey paper by Markovsky (2008) provides a rich insight into such

problems and their numerous applications. Even identifying a feasible critical point of the optimization

problem might be difficult in such applications. However, the recent progress, notably by Ishteva et al.

(2013); Markovsky (2014); Markovsky and Usevich (2013); Schost and Spaenlehauer (2013), has shown

promising directions. As a future research direction, it would be interesting to explore the role of

Riemannian optimization in these problems. More generally, we would like to explore optimization

problems where the constraints have an affine + manifold structure.

The large-scale problems considered in this thesis have been tackled by exploiting the low-rank and/or

sparse structures. This is, for example, the case in the matrix completion problem. However, such

structures are of little help when considering the class of even bigger dimensional problems that are

motivated by the ever increasing size of internet based applications. In order to circumvent the scaling

issue, the coordinate-descent approach has become a popular choice in many unconstrained and separable-

constrained (constraints which can be decoupled) optimization problems. The coordinate-descent method

in its basic form partitions the variables into a large number of blocks of smaller number of variables
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(Nocedal and Wright, 2006, Chapter 3). The optimization method proceeds by updating these blocks

of variables alternatively, e.g., either randomly or sequentially. The recent article by Nesterov (2012)

presents a concrete overview of the random coordinate-descent method (where partitions of the variable

are updated randomly) with a detailed analysis. This motivates a notion of a coordinate-descent-type

approach on manifolds for dealing with huge-scale problems. The recent paper by Shalit and Chechik

(2014) proposes such an approach on the set of orthogonal matrices with state-of-the-art performance

in many applications. It would be interesting to pursue this research direction and look at possible

generalizations and applications.

Finally, many cost functions are a summation of smooth functions which are revealed at different time

instances. Conventional optimization approaches are of little use since the full cost function is not known

at any time instance. In such problems (that most notably arise in machine learning applications), the

stochastic gradient descent method exploits the summation structure to converge to a minimum of the

expectation of the cost (Bottou, 1998). At each step, that is at each time instance, the variables are

updated along the gradient descent direction computed with respect to the currently revealed smooth

function. Recently, the stochastic gradient descent method has been extended to Riemannian manifolds

with a convergence analysis by Bonnabel (2013). As a third research perspective, we would like to explore

the research direction further.
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Appendix A

Solution to smaller dimensional

Lyapunov equations

We present the numerical approach that we adopt in this thesis to solve the two specific forms of the

Lyapunov equations of smaller dimension. These appear in Table 4.3 (Chapter 4) and Table 5.1 (Chapter

5).

Standard form

We are interested in computing the solution Ω ∈ Rr×r to the Lyapunov equation of the form

DΩ + ΩD = C, (A.1)

where D is a symmetric positive definite matrix of size r × r and C is a square matrix of size r × r. For

the case in Table 4.3, D = RTR, where R ∈ GL(r) is a non-singular (non-zero determinant) matrix of

size r × r. For the case Table 5.1, D = B, where B is a symmetric positive definite matrix of size r × r.

We compute the eigenvalue decomposition D = QΛQT , where Λ is a diagonal matrix with positive entries

and Q ∈ O(r) (the set of orthogonal matrices) is the orthogonal matrix such that QTQ = QQT = I.

We follow the approach shown below to solve (A.1), where we replace D by QΛQT .

QΛ2QTΩ + ΩQΛ2QT = C

⇒ Λ2︸︷︷︸
Λ̃

QTΩQ + QTΩQ︸ ︷︷ ︸
Ω̃

Λ2 = QTCQ︸ ︷︷ ︸
C̃

⇒ Λ̃Ω̃ + Ω̃Λ̃ = C̃

⇒ (σ̃eT )� Ω̃ + Ω̃� (eσ̃T ) = C̃

⇒ (σ̃eT + eσ̃T )� Ω̃ = C̃

⇒ Ω̃ = C̃� (σ̃eT + eσ̃T ),

(A.2)
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where σ̃ is a column vector of length r that contains all the diagonal entries of Λ̃ and e is the column

vector of all ones, of length r. Here � and � denote element-wise multiplication and division of matrices,

respectively. Finally, we compute the sought solution Ω by using the equality QTΩQ = Ω̃, i.e.,

Ω = Q(C̃� (σ̃eT + eσ̃T ))QT , (A.3)

where C̃ = QTCQ. The operations in (A.2) and (A.3) cost O(r3).

Coupled form

We are interested in computing the solutions Ω1,Ω2 ∈ Rr×r that satisfy the coupled Lyapunov equations

of the form
RΩ2R

T −RRTΩ1 −Ω1RRT = C1

RTΩ1R−RTRΩ2 −Ω2R
TR = C2,

(A.4)

where C1 and C2 be are square matrices of size r × r and R ∈ GL(r) is a non-singular matrix of size

r × r. This equation shows up in Table 4.3.

We first compute the singular value decomposition R = PΛQT , where Λ is a diagonal matrix with

positive entries and P,Q ∈ O(r) (the set of orthogonal matrices of size r × r). We invoke similarity

transformations on the variables Ω1 and Ω2 to define new variables Ω̃1 = PTΩ1P and Ω̃2 = QTΩ2Q.

Similarly, define C̃1 = PTC1P, C̃2 = QTC2Q, and Λ̃ = Λ2. The equations in (A.4) are equivalently

written in the new defined variables as

⇒ ΛΩ̃2Λ− Λ̃Ω̃1 − Ω̃1Λ̃ = C̃1

ΛΩ̃1Λ− Λ̃Ω̃2 − Ω̃2Λ̃ = C̃2,

⇒ (σeT )� (eσT )� Ω̃2 − (σ̃eT + eσ̃T )� Ω̃1 = C̃1

(σeT )� (eσT )� Ω̃1 − (σ̃eT + eσ̃T )� Ω̃2 = C̃2,

(A.5)

where σ̃ is a column vector of length r that contains all the diagonal entries of Λ̃, σ is a column vector

containing all the diagonal entries of Λ, and e is the column vector of length r containing ones. (A.5) can

now be solved efficiently for Ω̃1 and Ω̃2. Subsequently, Ω1 and Ω2 are obtained by the inverse similarity

transforms PΩ̃1P
T and QΩ̃2Q

T . Here � denotes element-wise multiplication between matrices of same

size. The operations in (A.5) cost O(r3).
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Journée M, Bach F, Absil PA, Sepulchre R (2010) Low-rank optimization on the cone of positive semidef-

inite matrices. SIAM Journal on Optimization 20(5):2327–2351
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