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ABSTRACT 

 

The scope of this paper is to present two applications using 

Near Infrared Hyperspectral Imaging (NIR-HSI) combined 

with chemometrics to sort constituents of soil and assess 

their qualitative parameters. In the first application, the 

feasibility of using NIR-HSI to sort crop residues such as 

roots and straws in soil has been demonstrated. In the 

second application the potential of such instrumentation and 

method to assess the level of collagen preservation in fossil 

bones has been proved. 

 

Index Terms— NIR Hyperspectral Imaging, Soil, Crop 

residues, bones, PLS-DA 

 

1. INTRODUCTION 

 

Soil is a complex matrix containing a wide variety of 

constituents of interest for disciplines like agronomy or 

archaeology; it could either be crop residues like roots and 

straws or bones and ceramics. Current challenges are the 

detection of these constituents as well as the assessment of 

their qualitative parameters. 

In most cases the traditional methods used for the 

detection of such constituents requires a manual sorting of 

the samples or a sieving. In addition, when the qualitative 

parameters are assessed, it often implies the destruction of 

the samples or the use of chemical products. For these 

reasons there is an increasing demand in the development of 

fast and non-destructive analytical methods able to detect 

constituents of interest in complex matrix and to assess their 

qualitative parameters. Near Infrared Hyperspectral Imaging 

(NIR-HSI) has the potential to meet these needs due to its 

ability to be applied on-line, allowing the acquisition of 

large datasets in a short time regardless of sample size and 

providing information on the distribution of chemical 

compounds in the sample. 

In the last decade, visible and NIR-HSI have become 

powerful analytical approaches in a number of areas to 

address environmental, agricultural issues as well as safety 

evaluation and quality control of agro-food products, e.g.: to 

detect meat and bone meal in animal feed to help prevent 

Bovine Spongiform Encephalopathy (BSE) [1] or other 

contaminants like ergot bodies in cereals [2]. 

In the field of soil analyses, hyperspectral imaging has 

been applied to analyse soil organic matter and phosphorus 

[3-7], to determine maize and pasture root density [8-9], or 

to classify archaeological soils [10]. 

 

2. INSTRUMENTATION 

 

In these studies, a NIR hyperspectral line scan (also called 

push-broom imaging or NIR-HSI) system combined with a 

conveyor belt (BurgerMetrics SIA, Riga, Latvia) was used 

(see Figure 1). The instrument is a SWIR XEVA CL 2.5 320 

TE4 camera (Specim Ltd, Oulu, Finland); using an 

ImSpector N25E spectrograph that includes a cooled, 

temperature-stabilized Mercury-Cadmium-Telluride (MCT) 

detector (Xenics nv, Leuven, Belgium). The system projects 

a beam of light onto a two-dimensional Focal Plane Array 

(FPA) and each image consists of 320-pixel lines acquired 

in the range 1100-2400 nm with an interval of 6,3 nm. 32 

scans per image have been averaged and each pixel provides 

a reflectance spectrum of a point of the scene [11]. 

Acquisition is done using HyperPro software 

(BurgerMetrics SIA, Riga, Latvia). 

 

 
Figure 1: NIR Hyperspectral Imaging system. 

 

Prior to analysis, the spectral NIR-HSI system is 

calibrated with a dark image (by shutting off the lens 

entrance) and a white image (background) collected from a 

standard white reference board (empty teflon plate). The 

spectra are then automatically corrected. This procedure is 

performed to compensate for offset due to the light source 

temperature drift, and the lack of spatial lighting uniformity. 



 

3. DETECTION OF CROP RESIDUES IN SOIL 

SAMPLES 

 

Current challenges in agricultural research focus on the 

effect of tillage and the quantification of roots and straw 

residues in soil, which are key constituents for the 

monitoring of the development of the root systems and the 

decomposition of crop residues. In this context, a tentative 

study has been performed using NIR-HIS and chemometric 

tools to characterize soil sediments and to detect and 

quantify roots and straws. 

Chemometric methods like Partial Least Squares 

Discriminant Analysis (PLS-DA) allow the extraction of the 

maximum amount of information from the raw data [12]. In 

the present study a hierarchical classification tree based on 

four classes (background, soil, roots and straws) has been 

constructed [13]. The classification has been allowed by 

“successive exclusions” using binary PLS-DA models 

constructed on a spectral databank of each class. The first 

step of the tree classification used a model to remove spectra 

related to background (conveyor belt and sieve) (Figure 2); 

the second step separated soil from straws and roots and the 

last step discriminated ‘straws’ and ‘roots’ spectra. These 

models have been created with a set of 1000 spectra for each 

class selected using the duplex method [14] and a set 

containing 500 independent spectra by class has been used 

to validate them. All the spectra were pre-processed by 

applying an autoscale correction. After validation, the 

models have been applied to new images of complex 

mixtures of soil constituents (Figure 3). 

 

 
Figure 2: Example of PLS-DA model to discriminate background 

(conveyor belt and sieve) from the rest (soil, straws and roots). 

 

 

     

Figure 3: prediction by the PLS-DA models of a complex 

image containing all constituents used in models construction. 

 

The preliminary results obtained demonstrated the 

feasibility of a detection method, based on the spectra, for 

the presence of different constituents (roots and straws) in a 

soil sample. This is the first step for a possible 

quantification of each constituent. To achieve such 

quantification, further research has to be done by linking the 

prediction of individual pixels on the NIR images with the 

corresponding weight of the constituent in the sample. This 

study will be crucial for the monitoring of root development 

and organic matter decomposition in soil. 

 

4. EVALUATION OF COLLAGEN PRESERVATION 

IN FOSSIL BONES 

 

In archaeology many analyses require collagen like, the 

Zooarchaeology by Mass Spectrometry (ZooMS) technique 

for taxonomic identification, the radiocarbon (AMS) dating 

and stable isotopic analyses to reconstruct past human and 

animal diets. 

For these analyses, the challenge is to obtain bone 

samples with sufficient collagen content to get positive 

results. To date, there has been no protocol or analytic 

method capable of rapidly and non-destructively screen 

bones to detect and quantify collagen. In this context, the 

advantages of NIR-HSI represent a high potential for the 

development of a new analytical method [15]. 

The success or failure of C14 dating of bones and their 

geological context were used as criteria to define two 

classes of bones with sufficient collagen (successful dating, 

non-alluvial layers) and with little or no collagen (failed 

dating, alluvial layers i.e. removal of collagen by water 

leaching). 

A sample set of 16 bones (8 for each aforementioned 

class) was used to create a spectral library of 400 spectra for 

each class. The spectral libraries have been randomly 

collected by achieving a representative subsampling of 50 

spectra for each bone on both sides of the bone (25 spectra 

per side). The mean spectra of each class are illustrated in 



Figure 4. This figure also presents the mean spectrum of a 

bone from a medieval cow (standard sample) for which 

chemical analyses indicated a high level of collagen. The 

comparison of this reference spectrum with the mean 

spectrum of bone with collagen (COL+) shows some 

similarities in the range 2000-2300 nm (vertical lines in 

figure 4). In addition spectral differences are observed 

between bones with and without collagen (respectively 

COL+ and COL- in figure 4). 

In a first step, a PLS-DA model has been built to 

discriminate the bones on the basis of their collagen content. 

The sample set of 16 bones previously mentioned was used 

to calibrate the model and 4 new samples from another set 

(2 of each class) were predicted to validate the model. 

 

 
Figure 4: mean spectra of samples with sufficient (COL+), 

insufficient collagen (COL-) and reference bone (ref UK). 

 

 
Figure 5: calibration and validation of the PLS-DA model. 

 

The results presented in Figure 5 show that all of the 

new samples were correctly sorted by the model. This 

demonstrates the ability of the model to detect the presence 

or absence of collagen in the bones. 

In a second step, the model has been applied to two 

independent sets of samples from two different strata in 

order to compare the collagen preservation status of the 

bones within each stratum. 

Figure 6 and Figure 7 present the mean prediction 

scores of each sample plotted with their respective standard 

deviation. The dashed line drawn on these figures represents 

the threshold used by the model to sort a sample as 

containing collagen. A sample sorted above this threshold 

indicates that collagen have been detected within it. 

In Figure 6 almost all the samples have been sorted 

below the dashed line which means that no or only small 

amounts of collagen have been detected. These results are 

consistent with the geological information recorded for this 

stratum, which indicated that it has been subjected to 

recurrent water flooding and therefore could lead to the 

removal of the collagen from the bones. 

 

 
Figure 6: PLS-DA predictions for samples from an alluvial layer 

 

 
Figure 7: PLS-DA predictions for samples from a non-alluvial 

layer 

 

In Figure 7 almost all the samples have been sorted 

above the dashed line indicating that collagen has been 

detected. Again this result is supported by the geological 

information since this stratum has not been subjected to 

recurrent water flooding and it could be assumed that the 

collagen of these bones is preserved. 

 

5. CONCLUSION 
 

In the present work, two cases studies have been 

presented. The first one concerns a feasibility study where 

NIR-HSI combined with chemometrics has been proved to 

be a good alternative as classical methods for sorting the 

different constituents of soils like crop residues (roots and 

straws). In the second case study, the potential of the 

technique to assess the level of collagen preservation in 

COL+ 

COL - 

COL+ 

COL - 



fossil bones has been proved. In both cases, only qualitative 

results have been obtained. The future challenge will be the 

possible quantification of the constituents. In the case of the 

crop residues it will be to quantify the respective weights of 

each constituent (roots and straws) and in the case of the 

collagen in fossil bones, it will be the assessment of the 

amount of collagen present. 
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