

IS THERE A ROLE FOR INTRA-ARTERIAL THERAPY OR ISOLATED LIVER PERFUSION?

Pr Olivier Detry

Department of Abdominal Surgery & Transplantation

CHU Liège, Université de Liège

IS THERE A ROLE FOR INTRA-ARTERIAL THERAPY OR ISOLATED LIVER PERFUSION? YES!

Pr Olivier Detry

Department of Abdominal Surgery & Transplantation

CHU Liège, Université de Liège

Disclosure statement

• No financial relationships to disclose !

CRC Liver Mets

- 25% of patients with CRC have synchronous liver Mets at time of diagnosis
- 50% of patients will develop metachronous Mets
- R0 resection remains the standard of treatment and the only hope for cure and long-term survival
- Survival after resection: 25 to 50% at 5 years
- 50% of recurrences within 2 years
- 25 to 50% of recurrences are intrahepatic only

CRC Liver Mets

Université de Liège

CRC Liver Mets and intraarterial therapy

- Intra arterial chemotherapy
- Radioembolisation Yttrium

• Isolated liver perfusion

Intra-arterial chemotherapy

- Adjuvant IA chemotherapy
- Irresectable MTST
 - palliative (1st or 2nd line)
- Better compared to old style chemotherapy
- Discussed compared to modern iv therapy

Intérêt d'une chimiothérapie intra-artérielle adjuvante chez les patients à risque élevé de récidive hépatique

C. Honoré, D. Goéré, L. Benhaïm, S. Bonnet, JH. Lefèvre, F. Dumont, D. Malka, V. Boige, F. Maire, T. de Baere, D. Elias, M. Ducreux

Goere, Ann Surg 2013; 257:114-120.

Résultats Chimiothérapie intra-artérielle

- Nombre de cures
 - 29 (61%) ≥ 6 cures
 - 18 (38%) < 6 cures

Moyenne 8 ± 1,7 Moyenne 3,2 ± 1,5

Causes arrêt CIAH avant 6 cures

- Toxicité systémique : 6 (13%)
- Dysfonction KT : 6 (13%)
- Récidive précoce : 5 (10%) (2 hépatique, 3 extra-hépatique)
- Demande du patient : 1 (2%)

Résultats Survie globale

Institut de cancérologie GUSTAVE ROUSSY

Résultats Survie sans récidive

Résultats Survie sans récidive hépatique

Palliative IA chemotherapy

ORIGINAL ARTICLES

Prolonged Survival of Initially Unresectable Hepatic Colorectal Cancer Patients Treated With Hepatic Arterial Infusion of Oxaliplatin Followed by Radical Surgery of Metastases

Diane Goéré, MD,* Isabelle Deshaies, MD,* Thierry de Baere, MD, PhD,† Valérie Boige, MD,‡ David Malka, MD, PhD,‡ Frédéric Dumont, MD,* Clarisse Dromain, MD,† Michel Ducreux, MD, PhD,‡ and Dominique Elias, MD, PhD*

Annals of Surgery • Volume 251, Number 4, April 2010

FIGURE 1. Overall survival of nonoperated (n = 64) and operated (n = 23) patients calculated from the date of diagnosis of liver metastases.

Intra-arterial chemotherapy

- ideal for multiple CRC MTST isolated to the liver
 - irresectable
 - after resection > 4 lesions
- Technically challenging
 - thrombosis
 - infection
- Placement: surgical or radiological

Surgical placement

Intra-arterial chemotherapy

 Need for better prospective studies comparing modern IV and IA chemotherapy both in palliative and postoperative conditions

Yttrium-90 radioembolization

- TheraSpheres (20-30 microns)
- SIRSpheres (20-60 microns)

- First line therapy
- Second or third line chemotherapy
- Salvage for chemorefractory patients

First-Line Gray ¹	74	SIR-Spheres [†] + FUDR HAC	LO	$\frac{44\%^{W}}{18\%^{W}}\Big _{P=0.01}$	8.3% 38.2%	15.9 months ^{ΔL} 9.7 months ^{ΔL} $P = 0.001$	39% at 2 yr 29% at 2 yr
van Hazel ^{2,3}	21	SIR-Spheres ⁺ + 5FU/LV vs. 5FU/LV	LD LD	90.1%* 0% P<0.00	9.9% 1 60.0%	18.6 months [△] P < 0.0005	29.4 months HR: 0.33 12.8 months P = 0.025
Sharma⁴	20	SIR-Spheres ⁺ + FOLFOX4	LD LO	90%	10%	9.3 months [‡] 14.2 months [‡]	nr
Kosmider ⁵	19 [§]	SIR-Spheres ⁺ + FOLFOX4 or 5FU/LV	LD LO	84%	5%	10.4 months [‡] 10.7 months [‡]	29.4 months 37.8 months
Tie ⁶	31 ⁶	SIR-Spheres ⁺ + FOLFOX4 or 5FU/LV	LO LO	9 1%	9%	13.2 months [‡] 16.4 months ^{‡L}	30.7 months
phase II/III stu	udies	FOLFOX47-10		32-59	1%	7.6–9.0 months [‡]	16.2-19.5 months
Consolidation Sangro ¹¹	of Firs 23 [§]	t-Line SIR-Spheres ⁺	LD	nr	nr	6.3 ^{Tx} /11.2 ^{Cx} months [‡]	16.8 ^{Tx} /23.6 ^{Cx} months [‡]
Second- or Thi	rd-Lin	e SIR-Spheres [†] (+ 5FU) ^{70%}	LD	33%	27%	5.3 months ⁴	pr
	50				2170	5.5 1101113	
van Hazel ¹³	25	SIR-Spheres ⁺ + irinotecan	LD	48%	39%	6.0 months [‡] 9.2 months ^{‡L}	12.2 months

Salvage Thera	py of 1	Treatment-Refractory Disease	10	100/	760/ 1	C.C. example All 1	10.0
Hendlisz	44	vs. 5FU (> SIR-Spheres ⁺ at PD)	LO	0%	35% P = 0.001	2.1 months ΔL HR: 0.38 $P = 0.003$	7.3 months
Seidensticker ²⁸	29 29	SIR-Spheres [†] vs. BSC matched pairs	LD LD	41.4% nr	17.2% nr	5.5 months [‡] 2.1 months [‡]	8.3 months HR: 0.26 3.5 months P < 0.001
Bester ²⁹	224 29	SIR-Spheres [†] vs. conventional therapy or BSC	LD LD	nr nr	nr nr	nr nr	11.9 months HR: 0.50 6.6 months P < 0.001
Cosimelli ³⁰	50	SIR-Spheres ⁺	LD	24%	24%	4 months [‡]	12.6 months
Sofocleous ³¹	19	SIR-Spheres [†]	LD		70.6%DCR	6 months [‡]	16.0 months
Kennedy ³²	606 [§]	SIR-Spheres [†]	LD	nr	nr	nr	9.6 months
Sofocleous ³³	18 [§]	SIR-Spheres ⁺	LD		40.0%DCR	5.1 months [‡]	7.4 months
Leoni ³⁴	51 [§]	SIR-Spheres [†]	LD	24% ^c		nr	8.0 months
Nace ³⁵	51 [§]	SIR-Spheres ⁺ (+ FUDR HAC) ^{33%}	LD LO	12.9%	64.5%		10.2 months 17.0 months
Cianni ³⁶	41 [§]	SIR-Spheres ⁺	LD	46%	36%	9.3 months [‡]	11.8 months
Jakobs ³⁷	41 [§]	SIR-Spheres ⁺	LD	17%	61%	5.9 months ^{∆L}	10.5 months
Kennedy ³⁸	2085	SIR-Spheres ⁺ responders non-responders & historical controls	LD	35.5% ^w	55%	nr	10.5 months 4.5 months P = 0.0001

Selective treatmetn of the right liver MTST

Isolated liver perfusion

- High concentration of chemotherapy
- High temperature

- melphalan + TNF- α
- oxaliplatin

*Measured pressure in circuit, actual delivered pressur into hepatic artery is lower.

- Ocular melanoma MTST
- Neuro-endocrine MTST
- CRC MTST

Figure 4. Actuarial overall survival in 120 patients with diffuse colorectal cancer liver metastases who underwent isolated hepatic perfusion (IHP) based on baseline carcinoembryonic antigen (CEA) level (top panel) or with or without hepatic artery infusion (HAI) therapy (bottom panel) following IHP. Tx, treatment.

Figure 6. Diagram of the Delcath Catheter System. Melphalan is administered directly into the hepatic artery through an infusion catheter placed percutaneously via the femoral artery. Hepatic venous outflow is isolated via a double balloon catheter in the retrohepatic inferior vena cava [IVC] (shown top right). Blood is drawn out of the retrohepatic IVC through multiple fenestrations located along the length of the catheter between the cranial and caudal balloons. The blood is then pumped through a pair of activated charcoal filters prior to return to the systemic circulation via an internal jugular vein catheter. Fluoroscopic image of the isolated, retrohepatic IVC segment obtained by retrograde injection of contrast through the intraballoon fenestrations to confirm the absence of systemic leak is shown in the middle right.

Annals of Surgical Oncology 15(5):1367–1374 DOI: 10.1245/s10434-007-9714-z

@ OpenAccess

Isolated Hypoxic Hepatic Perfusion with Retrograde Outflow in Patients with Irresectable Liver Metastases; A New Simplified Technique in Isolated Hepatic Perfusion

Cornelis Verhoef, MD,¹ Johannes H. W. deWilt, MD, PhD,¹ Flavia Brunstein, MD, PhD,¹ Andreas W. K. S. Marinelli, MD, PhD,¹ Boudewijn vanEtten, MD, PhD,¹ Maarten Vermaas, MD,¹ Gunther Guetens, PhD,² Gert de Boeck, PhD,² Ernst A. de Bruijn, PhD,² and Alexander M. M. Eggermont, MD, PhD¹

¹Department of Surgical Oncology, Erasmus University Medical Centre—Daniel den Hoed Cancer Centre, PO Box 5201, 3008 AE, Rotterdam, The Netherlands ²Laboratory of Experimental Oncology, University of Leuven—UZ Gasthuisberg, CDG building, Herestraat 49, B-3000, Leuven, Belgium

Isolated liver perfusion

Annals of

ORIGINAL ARTICLE – HEPATOBILIARY AND PANCREATIC TUMORS

A Phase I Study of Hyperthermic Isolated Hepatic Perfusion with Oxaliplatin in the Treatment of Unresectable Liver Metastases from Colorectal Cancer

Herbert J. Zeh III, MD¹, Charles K. Brown, MD, PhD¹, Matthew P. Holtzman, MD¹, Merrill J. Egorin, MD^{2,3}, Julianne L. Holleran, BS², Douglas M. Potter, PhD⁴, and David L. Bartlett, MD¹

¹Division of Surgical Oncology, Department of Surgery, University of Pittsburgh School of Medicine, Suite 417 UPMC Cancer Pavilion, 5150 Center Ave., Pittsburgh, PA 15232, USA; ²Molecular Therapeutics/Drug Discovery Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA; ³Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA; ⁴Biostatistics Department, Graduate School of Public Health and Biostatistics Facility, University of Pittsburgh Cancer Institute, University of Pittsburgh, PA 15213, USA

Dose level	Oxaliplatin dose (mg/m ²)	Planned number of patients	Actual number of patients enrolled
1	5	1	1
2	10	1	1
3	20	1	1
4	40^{a}	3–6	6
5	60	3–6	1 ^b
6	90	3–6	0
7	120	3–6	0
8	150	3–6	0

TABLE 1 Oxaliplatin dose escalation scheme

^a MTD

^b DLT of grade V VOD and fulminant hepatic failure

IS THERE A ROLE FOR INTRA-ARTERIAL THERAPY OR ISOLATED LIVER PERFUSION? YES!

Pr Olivier Detry

Department of Abdominal Surgery & Transplantation

CHU Liège, Université de Liège

Royal Belgian Society for Surgery

Thanks!

