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Abstract 

In silico, defined in analogy to in vitro and in vivo as those studies that are performed on a computer, is 

an essential step in problem solving and product development in classical engineering fields.  The use of 

in silico models is now slowly easing its way into medicine.  In silico models are already used in 

orthopaedics for the planning of complicated surgeries, personalised implant design and the analysis of 

gait measurements.  However, these in silico models often lack the simulation of the response of the 

biological system over time.  In silico models focusing on the response of the biological systems are in full 

development.  This review starts with an introduction into in silico models of orthopaedic processes.  

Special attention is paid to the classification of models according to their spatiotemporal scale 

(gene/protein to population) and the information they were built on (data vs hypotheses). Subsequently, 

the review focusses on the in silico models used in regenerative orthopaedics research.  Contributions of 

in silico models to an enhanced understanding and optimisation of four key elements - cells, carriers, 

culture and clinics – are illustrated.  Finally, a number of challenges are identified, related to the 

computational aspects but also to the integration of in silico tools in clinical practice. 

 

 

1. Introduction 

In silico is defined, in analogy to in vitro and in vivo, as those studies that are performed on a computer 

or via computer simulation.  The in silico dimension has since long obtained a solid place in traditional 

engineering sectors such as chemical engineering, automobile engineering and aviation engineering.  A 

very illustrative example of the latter is the Boeing 777 which has become famous for being the first 

jetliner to be 100 percent digitally designed. Throughout the design process, the airplane was 

"preassembled" on the computer, eliminating the need for a costly, full-scale mock-up. Furthermore, 

digital mechanical engineers were programmed to simulate all maintenance operations thereby allowing 
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to check bottle necks that would normally only have appeared after the airplane would have been taken 

in service [1].  This new design process allowed to construct an airplane that met the demands of various 

end users (not only aviation companies but also pilots, maintenance engineers etc), significantly reduced 

the problems (and associated cost) during the assembly phase [2], and led to faster  approval by 

competent authorities resulting in a fast customer uptake.  Patients are not airplanes, nor cars, nor 

chemical plants.  But the idea behind in silico medicine is similar as for any engineering sector.  To use all 

available information, assemble a computer model and design strategies to optimize the processes 

under scrutiny.   

In silico medicine is not new, in fact, it is already used in orthopaedics in various ways.  Surgical planning 

software for example, taking into account the patient’s anatomy through the use of medical images, 

allows to carefully plan a surgery beforehand, to make sure that the identified strategy is executable (in 

terms of access to the sites, mechanical properties of available bone grafts etc)  [3] and to develop 

patient-specific surgical guides [4,5]. Another example is the design of custom made implants for 

patients in which standard procedures cannot be used [6].  A final example are the models used in the 

gait analysis laboratory that are more and more incorporated in diagnosis and revalidation [7].  What all 

the above examples of in silico orthopaedics have in common however is their static nature. They allow 

to assess the situation at the moment of imaging and model building but they do not provide a 

prediction of the evolution of the pathology or the treatment.   

A wide variety of in silico models of dynamic orthopaedic processes has been and is being developed but 

their uptake in clinical practice is only in its infancy.  This review focusses on the in silico models 

capturing the (spatio)temporal dynamics of orthopaedic processes (which will henceforth be 

denominated simply as ‘in silico models’ or ‘models’).  This review is by no means an exhaustive listing of 

all available in silico models in (regenerative) orthopaedics, it merely aims to provide an introduction to 

the vocabulary and potential applications of this rapidly evolving and promising field of  research.  

 

2. Classification of in silico models by length scales and information content 

When discussing the wide variety of in silico models of biomedical processes, models are classified based 

on a specific aspect.  Typical model classifications are based on length (and time) scale of the processes 

described in the model (from the gene/protein up to the population level) or on the information that has 

been used to build the model (from data-driven to hypothesis-driven).  As an introduction to in silico 

orthopaedics in general, in this section, we will discuss both classifications and give examples.  In the 

next section we will then use the terms introduced in this section when describing in silico models for 

regenerative orthopaedics.  Throughout this review, a number of terms specific for in silico modelling will 

be used regularly.  Table 1 provides the definition of  some commonly used terms. 

Term Definition 

Model  A model is an abstract representation of objects or processes that explains 

features of these objects or processes 

Variable Variables are quantities with a changeable value for which the model establishes 
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relations 

Parameter Parameters are quantities that have a given value 

Implementation  Translation of the mathematical model into computer code 

Mechanistic Mechanistic refers to the mechanisms that underlie a specific behaviour 

Phenomenological Phenomenological refers to the observation that was made, without looking into 

the underlying mechanisms 

Multiscale Multiscale models describe processes at different length or time scales within a 

single model 

Multiphysics Multiphysics models describe processes that are influenced by a combination of 

physical phenomena (e.g. elasticity and fluid flow) 

Table 1: Definition of commonly used modeling terms. 

The most widely used classification for in silico models is based on the length (and time) scale of the 

processes described in the model.  Figure 1 shows a classical overview of various model systems working 

at different spatiotemporal scales.  At the smallest time scales, the models looking at genes, proteins and 

the regulatory networks can be found.  The models at this level aim to investigate amongst others the 

activation under various experimental conditions [8, 9], the complex interplay between the different 

biological pathways, the attractor basins of a given network or the robustness of the network (as 

reviewed by [10] for developmental biology). One scale higher, at the cell level, the developed models 

focus on a single cell or a cluster of cells in terms of its mechanical or biological behaviour (or both).  

Krinner et al [11] use a single cell based modelling framework (in which a single cell is represented as a 

spherical object with certain mechanical characteristics) to investigate growth dynamics during cell 

culture.  By giving the cells certain biological variables, phenomena such as cell differentiation and the 

influence of ageing on stemness can be studied in silico [12].  Models situated at the tissue level tend to 

represent cells, extracellular matrix and growth factors by concentrations or densities (in weight of 

growth factors per volume or amount of cells per volume).  A large body of literature exists describing 

the use of tissue level in silico models for simulation of bone biology and regeneration as reviewed in 

[13-15]. Typically, these models focus on a specific aspect of the fracture healing process such as 

mechanical loading, soluble growth factors or angiogenesis.  Models focusing on angiogenesis during 

fracture healing often combine the cell level with the tissue level in so-called hybrid models [16,17].  This 

allows for each biological variable to be represented in a manner that is most closely corresponding to 

the physical reality, being densities for ECM and individual blood vessels for the angiogenesis aspects.  

Another level higher is the organ level.  Here we look at the whole bone, for instance, how it behaves 

under mechanical loading or how damage is influencing its behaviour and remodelling process [18,19].  

Fracture risk for osteoporosis patients is calculated using organ level models [20].  Expanding this view to 

include the whole skeleton and musculature is done in patient level models.  Gait analysis models serve 

as an input for the prediction of bone remodelling [21] and pathology development such as 

osteoarthritis [22].  The models developed for one patient can subsequently be used to simulate the 

behaviour of an entire patient population.  Applying targeted variations to the parameter sets allows to 

test a wide range of ‘virtual patients’ [23].  In silico clinical trials can then be carried out prior (or during) 

in vivo clinical trials [24-26], allowing for a better stratification of patients and a reduction in resources 

and time needed. 
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As touched upon already, some models cut across these length/time scales and combine processes at 

multiple levels.  These models are called multiscale models.  Though they can be very powerful in 

capturing emergent behaviour (behaviour at a specific length scale caused by phenomena taking place at 

another length scale), they also require even more parameters (in addition to the parameters for each 

level, there are the parameters related to the linking of the different scales) and carefully designed 

implementation  techniques in order to ascertain correct results from the computational point of view. 

 

Figure 1: Classification of in silico models by length scale.  Gene/protein: gene regulatory network for 

chondrogenic differentiation [27]. Cell: cell expansion influenced by the mechanical properties of the 

microbead (color scale indicates mechanical state of cell) [28]. Tissue: blood vessel (red) and bone tissue 

(black) formation in a murine fracture [16]. Organ: bone remodelling in proximal femur [19]. Patient: 

assessment of musculoskeletal system during crouching [29]. 

Another classification often used is based on the information content of the models (table 1).  Empirical 

models work only with the experimental data.  No mechanistic assumptions are made on how the 

observed phenomena came about (hence the name ‘phenomenological’ models).  Empirical modelling is 

well suited to discover biomarkers in large data sets [30,31] linking e.g. in vitro observations to desired in 

vivo behaviour [32]. in order to capture the effects of interacting pathways on the behaviour of cells, 

simple network models can be used.  An example of such a simple network model is a Boolean model, 

representing variables as either ‘on’ (active, 1) or ‘off’ (inactive, 0), allowing to add a dynamical 

component to the models without increasing the number of parameters. Boolean network models can 

be used to investigate the robustness and attractor basins of the networks, and to identify missing links 

(additional variables that need to be added to the network in order to reproduce experimentally 

observed behaviour) [27,33]. What is missing in these simple network models are the complex 

biochemical mechanisms that are underlying the activation or inhibition as well as true spatiotemporal 

and quantitative information.  This kind of information is present in mechanistic, hypothesis-driven 

models.  These models start from the hypotheses that have been formulated to explain specific 

observations (whether from chemical, physical or biological origin).  By translating these hypotheses into 

mathematical models and comparing the simulation results with the experimental results, the 

correctness and completeness of the hypotheses can be verified [34].  As these models often have a 

large set of parameters for which experimental values cannot always be determined, they are mainly 
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used in a conceptual way.  Performing in silico experiments that would be too consuming in terms of 

resources or time or that would ethically be unfeasible is one of the major usages for this type of models.   
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Table 2: Classification of in silico models by the type of information they were built with. 

 

3. Application to regenerative orthopaedics 

In regenerative medicine in general, and regenerative orthopaedics in particular, the diamond concept 

has been introduced identifying four key elements for a successful therapy [35,36]: cells, carriers, growth 

factor and appropriate mechanical conditions.  Recently the diamond concept was extended to the 

pentaconcept [37] stating that sufficient blood supply  is also essential for a positive therapeutic result. 

For each  of these key elements, a large body of (experimental) work can be found in the literature.  For 

each of these elements, in silico models can increase the understanding of the biomedical processes at 

hand and can subsequently be used to design strategies to optimize that particular element in order to 

obtain the desired in vitro or in vivo outcome.  For the purpose of this review we have grouped the key 

elements into four essential building blocks in a TE strategy, namely cells (with or without growth 

factors), carriers, culture (with or without growth factors or mechanics) and clinics (combining mechanics 

and vascularisation) (Figure 2).  The models vary in length scale and information content (cfr previous 

section), depending on the particular research/clinical question at hand.   
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Figure 2: Classification of in silico models by their contribution to the basic building blocks of  

regenerative medicine. Cell: a gene regulatory network for chondrogenic differentiation is shown, along 

with a comparison between experimental (pale pink) and simulation (black) results for the hypertrophic 

phenotype [27]. Carrier: prediction of calcium dissolution from calcium phosphate based carrier (bottom, 

unpublished results, courtesy of V. Manhas) and prediction of optimal cell-carrier combinations for 

various initial cell densities (cm0) [38]. Culture: neotissue (green) growth in a porous titanium scaffold 

(grey/black) [39], clinics: simulation of blood vessel formation in a large defect in mice [17].  

For the cell compartment, the main goal in regenerative orthopaedics is to obtain robust cell sources 

with a reproducible and predictable in vitro and in vivo behaviour.  Empirical models based on extensive 

data sets such as the ones developed by [31,40], allow for the identification of the biological state of a 

cell  and  the distillation of a  limited number of functional regulators indicative of the biological process 

in vitro and in vivo [30,32,41].  Mechanistic models using knowledge of specific relevant pathways allow 

to investigate the dynamics of the cell state when specific growth factors are used during cell culture 

[42,43].  Yet other models investigate the regulatory networks and the basins of attraction of specific cell 

states, providing insight in precise culture conditions that push or keep cells in the desired state [27,44].  

An example of the latter is the work by Kerkhofs et al [27] who created a large scale literature-based 

Boolean model of the osteochondral regulatory network (figure 2, bottom right).  Using this model the 

authors investigated the influence of activating or suppressing several genes in this network on the cell’s 

capacity to progress through the endochondral ossification process.   This activation or suppression can 

subsequently be translated into composition of culture media for in vitro cell culture. 
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Models focusing on the carriers focus on the mechanical [28,45-47], chemical [48-51] and/or 

morphological aspects [52-55] of the carrier with the aim of understanding its influence on the behaviour 

of the seeded cells and subsequently optimizing its design. Smeets et al [28] use an individual cell based 

model to investigate the influence of the stiffness of microcarriers on the proliferation of the cells 

seeded onto it (figure 1, cell level).  Another example is the work of Carlier et al [38] who use a 

mechanistic model of bone formation in calcium phosphate containing biomaterials.  Based on a 

combination of experimental data and hypotheses put forward by experimental collaborators, the model 

is able to capture the different aspects of the calcium phosphate-driven bone formation process.  The 

model is subsequently used to design combinations of cell seeding densities (or other cell properties 

such as growth rate) and calcium release rates yielding optimal bone formation (figure 2, bottom left). 

As reported on several occasions, bioreactor culture can be an important step in the TE product 

development cycle, allowing a reduction of the product variability [56-58]. A plethora of  bioreactor set-

ups are available on the market, from complete industrially developed closed systems to modular 

research variants. More and more the in silico models discussed above are combined with a description 

of the physical environment that the bioreactor presents to the TE product during the in vitro culture 

process (in terms of e.g. fluid flow, mechanical stimulation and mass transport). Optimization of initial 

cell seeding and initial cellular differentiation is predicted through the adaptation of the bioreactor 

protocol and scaffold morphology [44,59,60], see also [61] and references within.  Additionally, 

neotissue growth during extended culture of the TE products can be captured by multiphysics models 

combining a description of the physical bioreactor environment with a (mechanistic) description of 

cellular behaviour and matrix production [62-64].  Guyot and co-authors used a description of curvature-

based cell growth in combination with a detailed model of a perfusion bioreactor system.  The combined 

multiphysics modelling platform has been used to optimize the location of the TE construct inside the 

bioreactor increasing product homogeneity and quality [56] and to screen various scaffold designs for 

optimal neotissue growth [39].  Once validated, these multi-physics models can become an inherent part 

of the bioreactor control loop providing an insight view in the TE product in culture by allowing to liaise 

the bioreactor sensor read-outs (e.g. pressure drop) with the biological interpretation in terms of local 

neotissue growth in the TE product.  

Finally, the host environment (denoted clinic in figure 2) is a crucial component of the TE design strategy 

and the ability to predict the interaction between the host and the TE product is pivotal for many of the 

biological processes in regenerative orthopaedics.  In silico models allow to combine knowledge on basic 

biology and TE product behaviour to study the effect of e.g. in vivo scaffold dissolution on local in vivo 

cell biology [38,54] and blood vessel formation [60,65].  Patients presenting with structurally and/or 

genetically challenged healing environments pose additional challenges to the TE strategy but it is most 

often in those patients that normal healing is impaired and thus TE solutions are required.  In silico 

models are applied both to study the aetiology of impaired healing [17,34] and to design novel 

therapeutic strategies that are able to overcome the additional patient-specific hurdles [34].  These 

models provide an additional level of (mechanistic) understanding to the data-driven empirical models 

which use multi-parametric techniques to link in vitro characteristics (biomarkers) to observed in vivo 

behaviour (such as in classical genomics studies). 
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5. Future perspectives 

Today, the use of these dynamical models in clinical practice is still limited, however their usage as a 

research tool in academia and industry is growing steadily [66].  In fields such as cancer and cardiac 

disease computational models are directly responsible for the development of novel treatment 

strategies which are currently being tested in phase I and II clinical trials [42,67]. In diabetes, FDA has 

approved the use of computational models as valid preclinical evidence for the dossier of implantable 

insulin pumps [68].  Furthermore, in silico modelling is explicitly mentioned as an important tool to tackle 

many of the FDA’s ‘priorities for regulatory science for medical products’ [69].  Additionally, the 

increasing scrutiny on the ethical aspects of biomedical research involving laboratory animals provides 

strong incentives for in silico research.  The realisation of the 3R’s (reduction, refinement, replacement) 

is a natural consequence of the use of in silico models as an inherent part of the research pipeline.  

Furthermore, in silico models can assist in the translation of research findings obtained in animals to 

clinical opportunities in humans. 

The scientific community in the field of in silico medicine is benefiting from large scale initiatives such as 

the Physiome [70] and the virtual physiological human [71]. The aim of these initiatives is not to develop 

one integrated model of a complete human being but rather to develop a framework in which models 

focusing on different organ systems and on different length/time scales can interact with each other.  In 

order for this to happen, scientists active in the field of in silico medicine should agree on a set of 

standards [72] that will allow this interplay between different in silico models but also between in vitro, 

in vivo and in silico models.  The trend towards personalised and precision medicine demands an ever 

increasing integration of all available information on the patients, ranging from life style over anatomy to 

genetics.  The integration and interpretation of all this information can be facilitated by the use of in 

silico models. The vision of the virtual physiological human can have different faces depending on the 

users: the digital patient for clinicians [73], the digital guinea pig for researchers, personal health 

forecasting for patients and in silico clinical trials for industry.   

As stated in the introduction, in silico medicine is already practiced in orthopaedics, however, it is mainly 

restricted to the mechanical aspects of the locomotor system. The simulation of biological processes, 

especially in regenerative orthopaedics, is in full development. In silico medicine can only reach its full 

potential when its development is taken in hand not only by engineers and mathematicians but also by 

biomedical scientists and clinicians in an interactive and integrative way.  As was the case for the Boeing 

777, by involving all potential users from the start of the model development, the model’s clinical 

validation and uptake will be strongly facilitated.  The ever increasing available computational power 

[74] will allow for the calculation of increasingly complex computational models in real-time nurturing 

the further exploitation of in silico models as a valuable tool in regenerative orthopaedics.   
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