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Abstract

Background: Multiple myeloma (MM) is a malignant plasma cell disorder with poor

long-term survival and high recurrence rates. Despite evidence of graft-versus-

myeloma (GvM) effects, the use of allogeneic hematopoietic stem cell

transplantation (allo-SCT) remains controversial in MM. In the current study, we

investigated the anti-myeloma effects of allo-SCT from B10.D2 mice into MHC-

matched myeloma-bearing Balb/cJ mice, with concomitant development of chronic

graft-versus-host disease (GvHD).

Methods and results: Balb/cJ mice were injected intravenously with luciferase-

transfected MOPC315.BM cells, and received an allogeneic (B10.D2 donor) or

autologous (Balb/cJ donor) transplant 30 days later. We observed a GvM effect in

94% of the allogeneic transplanted mice, as the luciferase signal completely

disappeared after transplantation, whereas all the autologous transplanted mice

showed myeloma progression. Lower serum paraprotein levels and lower myeloma

infiltration in bone marrow and spleen in the allogeneic setting confirmed the

observed GvM effect. In addition, the treated mice also displayed chronic GvHD

symptoms. In vivo and in vitro data suggested the involvement of effector memory

CD4 and CD8 Tcells associated with the GvM response. The essential role of CD8

T cells was demonstrated in vivo where CD8 T-cell depletion of the graft resulted in

reduced GvM effects. Finally, TCR Vb spectratyping analysis identified Vb families

within CD4 and CD8 T cells, which were associated with both GvM effects and
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GvHD, whereas other Vb families within CD4 T cells were associated exclusively

with either GvM or GvHD responses.

Conclusions: We successfully established an immunocompetent murine model of

graft-versus-myeloma. This is the first murine GvM model using immunocompetent

mice that develop MM which closely resembles human MM disease and that are

treated after disease establishment with an allo-SCT. Importantly, using TCR Vb

spectratyping, we also demonstrated the presence of GvM unique responses

potentially associated with the curative capacity of this immunotherapeutic

approach.

Introduction

Multiple myeloma (MM) is a malignant plasma cell disorder that accounts for

approximately 10% of all hematological cancers [1]. Despite recent advances,

long-term survival is rare after autologous stem cell transplantation and/or

treatment with recently introduced anti-myeloma agents, and disease recurs in

virtually all patients. Therefore, other therapeutic approaches need to be

developed to complement the current strategies. Several immune alterations have

been described in MM patients. These alterations are caused in part by the

replacement of normal bone marrow with malignant plasma cells, suppressing

normal hematopoiesis. Moreover, the immune response is directly suppressed by

MM cells and through their interactions with the microenvironment [2]. As the

immune response impairment contributes to MM progression, cellular immu-

notherapy appears to be a promising therapeutic approach.

Allogeneic stem cell transplantation (allo-SCT) is a form of cellular

immunotherapy that is widely used to treat hematological malignancies [3]. Much

of the curative potential of allografts is attributed to the ‘‘graft-versus-tumor’’

(GvT) effect [4]. In MM, evidence for a graft-versus-myeloma (GvM) effect was

provided by the ability of donor lymphocyte infusions to induce complete

responses in patients who initially relapsed after allo-SCT [5], and by the

association between chronic graft-versus-host disease (GvHD) and a decreased

incidence of relapse after transplantation [6, 7]. However, despite evidence of

GvM effects, allo-SCT has remained a controversial treatment modality in MM

[8, 9]. Given the high relapse rate of MM after allo-SCT [7], some of the current

clinical trials focus on combining non-myeloablative allo-SCT with new drugs

given for post-transplantation maintenance therapy [10]. However, the intro-

duction of immunomodulating agents that could improve GvT effects may

inadvertently induce GvHD. This is well illustrated in a recent study by the

HOVON group, where lenalidomide maintenance after non-myeloablative allo-

SCT increased acute GvHD, and strongly suggests that new therapies aimed at

modulating GvM effects should ideally be tested first in animal models [11].
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Mouse models have contributed to the understanding of MM biology and to the

introduction of novel agents [12], and are of great interest in the preclinical

evaluation of cellular immunotherapy [2]. Currently, only two immunocompetent

murine models have been described in which allo-SCT is associated with a GvM

effect [13, 14], but these models do not resemble human MM disease [13] or do not

use allo-SCT as a curative treatment for established disease [14]. So far, an

immunocompetent murine GvM model in which allo-SCT is used for the treatment

of established MM that resembles human disease, marked by bone marrow tropism

and osteolytic lesions, has not been described.

In the current study, we investigated the anti-myeloma effects of allo-SCT from

B10.D2 mice into myeloma-bearing Balb/cJ mice (H-2d MHC-identical, but

differing at minor histocompatibility loci) which results in sclerodermatous

chronic GvHD [15, 16]. Myeloma-bearing Balb/cJ mice were inoculated with the

myeloma cell line MOPC315.BM, originating from Balb/c mice [17], that presents

bone marrow tropism [18].

Materials and Methods

Ethical statement

All experimental procedures and protocols used in this investigation were

reviewed and approved by the Institutional Animal Care and Use Ethics

Committee of the University of Liège (Belgium), reference 1016. The ‘‘Guide for

the Care and Use of Laboratory Animals’’ [19], prepared by the Institute of

Laboratory Animal Resources, National Research Council, and published by the

National Academy Press, was followed carefully as well as European and local

legislation. Animal welfare was assessed at least once per day, and all efforts were

made to strictly control animal suffering during the experiments (e.g.

development of a decisional system to follow the mice, application of humane

endpoints with precise response to specific symptoms including use of dietary

supplements, analgesic administration and sacrifice).

Animals

Balb/cJ (H-2d) and B10.D2 (H-2d) mice were purchased from Jackson Laboratory

(Bar Harbor, ME, USA). Strains were kept and bred at the animal facility of our

institute. Mice were used when they were between 10- to 14-wk-old.

Myeloma cell line and model

The selection of the MOPC315.BM cell line, which is derived from the mineral oil-

induced plasmacytoma cell line MOPC315 [17, 20], was previously described

[18, 21]. The parental MOPC315.BM cells and the firefly luciferase transfected cells

(MOPC315.BM.Luc) were provided by Prof. Bjarne Bogen [18]. Luciferase-

transfected MOPC315.BM cells were used for all experiments. Cells were maintained

in culture at 37 C̊ in 5% CO2 using a RPMI 1640 medium (Sigma-Aldrich, Bornem,
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Belgium) containing 10% fetal bovine serum (FBS) (Sigma-Aldrich) and 1%

Penicillin (100 U/ml)/Streptomycin (0.1 mg/ml) (Sigma-Aldrich).

Intravenous (i.v.) injection of MOPC315.BM cells results in tumor develop-

ment with a restricted localisation in the bone marrow and spleen and is

associated with osteolytic lesions, validating the model as a multiple myeloma

model. In advanced disease stages, bone marrow infiltration can cause paraplegia

in mice through spinal cord compression [18]. Mice injected with MOPC315.BM

cells were monitored daily for general condition and locomotion. They were

sacrificed when presenting locomotion trouble/paraplegia, deterioration of

general condition or apathy. Animals that were not immediately sacrificed when

presenting locomotion trouble/paraplegia, e.g. because they were receiving allo-

SCT treatment, received analgesic administration (buprenorphine 0.05 mg/kg

twice per day) and were very closely monitored for general condition and activity.

Graft cell suspension

Spleens and bone marrows (femurs and tibias) from donor mice were harvested

and homogenized in RPMI 1640 medium containing 10% FBS and 1% Penicillin/

Streptomycin (5complete medium). Red blood cells were lysed using sterile

filtered RBC lysis buffer (eBioscience, San Diego, USA) and cells were washed,

resuspended in phosphate buffered saline (PBS) containing 3% FBS, and filtered

through a 70 mM nylon membrane. For CD8 T-cell depletion, the ‘‘Mouse CD8a
positive selection kit’’ (Stem Cell, Grenoble, France) was used according to the

manufacturer’s EASYSEP depletion protocol. Finally, cells were suspended in

200 ml PBS for i.v. injection.

Bioluminescence measurement

Beetle luciferin (Promega, Leiden, Netherlands) solubilized in PBS was injected

intra-peritoneally into mice (3 mg/mouse in 100 ml). Bioluminescence was

measured within 10 to 20 minutes using VIVOVISION IVIS 200 (Xenogen,

Alameda, USA). Results were analysed and quantified using Living Image software

(Xenogen).

In vivo experimental design

Balb/cJ recipient mice were injected intravenously with 2.56105

MOPC315.BM.Luc cells. MM development was allowed to proceed for 30 days,

and monitored by bioluminescence studies. At day 30 post-inoculation, mice were

irradiated with 6 Gy (Total Body Irradiation) from a 137Cs source (GammaCell 40,

Nordion, Ontario, Canada). After 6 hours, mice were transplanted by i.v.

injection of 16107 bone marrow cells and 76107 splenocytes from donor mice

[allogeneic: B10.D2 donor; autologous: Balb/cJ donor]. Myeloma-bearing mice

that received allogeneic or autologous transplant are referred to as ‘‘Allo-MM’’ or

‘‘Auto-MM’’ mice, respectively. Mice were sacrificed after appearance of myeloma

symptoms (e.g. paraplegia), GvHD symptoms or apathy. Bioluminescence
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monitoring allowed tracing of luciferase-transfected myeloma cells and assessment

of tumor development. This transplantation protocol was adapted from Jaffee and

Claman who developed a murine model of chronic GvHD [15]. Experimental and

monitoring strategies are summarized in Figure 1 A.

Donor sensitization experiments

For GvHD studies, healthy Balb/cJ recipient mice were irradiated and transplanted

with B10.D2 grafts as described in ‘‘experimental design’’. Before transplantation

to Balb/cJ mice, B10.D2 donor mice were not sensitized (controls), or sensitized

by i.v. injection of 56105 myeloma cells (MOPC-sensitized) or Balb/cJ

splenocytes (Balb/c-sensitized) 21 days before sacrifice for graft harvesting. GvHD

symptoms were evaluated with a scoring system adapted from Sakoda et al [22].

The score is based on weight loss (,10%50; 10–20%51; .20%52), ‘‘hunched-

back’’ position (normal50; hunched-back while resting51; persistent52),

activity (normal50, reduced activity51, apathy52), alopecia (normal50,

,1 cm251, .1 cm252) and skin fibrosis (normal50, fibrosis51; scabs52) with

a maximum score of 10. The animals’ conditions were controlled daily, and the

GvHD score was calculated at least 3 times per week. Mice were sacrificed at the

latest at a score of 8/10 or when apathic.

In vitro co-cultures

Cell suspensions were obtained from spleens as described earlier. Effector cells

were obtained from spleens of Allo-MM mice, sacrificed 2 weeks after

transplantation. Target cells (MOPC315.BM cells or Balb/cJ splenocytes) were

irradiated with 50 Gy using a 137Cs source (GammaCell 40) and washed with

complete medium after irradiation. The effector:target ratio was 20:1 and cells

were co-cultured for 5 days in 6-well plates using complete medium, containing

0.1% of Heparin (LEO Pharma, Lier, Belgium). Effector cells were harvested and

analysed by flow cytometry at the end of the co-cultures.

Flow cytometry

Cell suspensions were obtained from spleen, lymph nodes, bone marrow and

blood. Red blood cells were lysed as described earlier. Extracellular staining was

performed in PBS containing 3% FBS. Intra-cytoplasmic or intra-nuclear staining

was performed using BD Cytofix/Cytoperm (BD Biosciences, San Diego, CA,

USA) or Foxp3 Staining Buffer Set (eBioscience), respectively. Antibodies were

incubated for 30 min at 4 C̊. The Streptavidin/PerCPCy5.5 complex and the

following antibodies were purchased from eBioscience: anti-CD4/eFluor450

(RM4-5); anti-CD8/PECy7 (53-6.7); anti-CD49b/Biotin (DX5); anti-CD69/APC

(H1.2F3); anti-B220/APCeFluor780 (RA3-6B2); anti-Foxp3/PE (FJK-16s); anti-

CD44/APC (IM7); anti-CD62L/APCeFluor780 (MEL-14). The following anti-

bodies were purchased from BD Biosciences: anti-CD229.1/FITC (30C7); anti-

CD3e/v500 (500A2) or from Invitrogen: anti-IgA/FITC. A specific antibody

A Murine Graft-versus-Myeloma Model
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directed against MOPC315.BM paraprotein (Ab2.1-4/Biotin) was kindly provided

by Bjarne Bogen. Quantitation of blood cells was determined using BD Trucount

tubes (BD Biosciences). Flow cytometric data were acquired using a BD

FACSCanto II flow cytometer (BD Biosciences) and the BD FACS DIVA software,

and analysed with the FlowJo software (Tree Star, Ashland, OR, USA).

Serum paraprotein quantitation

Serum paraprotein levels were measured using an ELISA for mouse IgA (Mabtech,

Sweden) according to the manufacturer’s instructions and analysed with a

Multiskan FC Plate reader (Thermo Scientific) with the SkanIt for Multiskan FC

3.1 software.

Figure 1. Graft-versus-myeloma effect. (A) Experimental design and monitoring. (B) Tumor burden. Representative examples of bioluminescence
evolution (dorsal side) for Allo-MM (top row) and Auto-MM (bottom row) mice 1 week before transplantation, and 2, 3 and 4 weeks after transplantation. The
mouse in the top row already displayed paraplegia before transplantation, and completely recovered after transplantation. (C) Bioluminescence quantitation.
Total flux (photons/sec) measured on the dorsal side just before sacrifice (mean¡SD), ***p,0.0001 (Mann-Whitney test). (D) Paraprotein level. Serum IgA
quantitation (mg/ml) by ELISA before transplantation, 1 week after and at sacrifice (mean¡SD),**p50.0005; ***p,0.0001 (Mann-Whitney test).

doi:10.1371/journal.pone.0113764.g001
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TCR Vb CDR3-size spectratype analysis

T cells were isolated from splenocytes of B10.D2 mice, i.e. ‘‘non-sensitized’’

(control mice), ‘‘MOPC-sensitized’’ or ‘‘Balb/cJ-sensitized’’ mice 21 days post-

sensitization. CD8 T cells were isolated using the ‘‘Mouse CD8a positive selection

kit’’. The CD8-negative fraction was further depleted to eliminate residual CD8

cells and constituted the ‘‘CD4 fraction’’ (.80% of T cells were CD4+). Cell

pellets were suspended in TriPure Isolation Reagent (Roche, Vilvoorde, Belgium).

RNA extraction was performed using chloroform and isopropanol following the

manufacturer’s instructions. Isopropanol phase containing RNA was transferred

on ‘‘RNeasy Mini kit‘‘ columns (Qiagen, Venlo, Netherlands) and RNA extraction

was finalized following the manufacturer’s instructions. Genomic DNA was

removed using recombinant RNase-free DNaseI (Roche, Vilvoorde, Belgium).

cDNA was synthesized from RNA (2 mg) using oligo(dT)18 primers with the

‘‘Transcriptor First Strand cDNA synthesis kit’’ (Roche). Seminested PCR was

performed using sense primers for a panel of murine Vb families and two Cb anti-

sense primers, the second being fluorescently labelled (IDT Technologies, Leuven,

Belgium), as previously described [23, 24]. All PCR reagents were purchased from

Applied Biosystems (Life Technologies, Gent, Belgium). The fluorescently labelled

PCR products were run together with GeneScan ROX 500 Size Standard (Applied

Biosystems) on a ‘‘DNA Analyzer 3730‘‘ (Applied Biosystems) capillary

electrophoresis system at the GIGA-Research Genomics facility of the University

of Liège. CDR3-size spectratype analysis was performed with GeneMapper version

4.0 Software (Applied Biosystems).

Experiments were repeated three times, and the mean area of the different

peaks, representing different CDR3-size lengths, was calculated for each Vb

family. A CDR3-size length was considered skewed when the mean area under the

peak was higher than the mean+3SD of the same peak in the control condition

(non-sensitized B10.D2 mice), as previously described [25].

Statistics

Statistical significance between groups was determined using Mann-Whitney tests.

Survival curves were compared using the Log-Rank test (Mantel-Cox). These

statistical tests were performed with the Prism Software (Graph Pad Software, San

Diego, CA).

Results

Graft-versus-myeloma effect

The experimental design is illustrated in Figure 1A. Briefly, Balb/cJ recipient mice

were injected intravenously with luciferase-transfected MOPC315.BM cells. After

MM development during the first 30 days, mice were irradiated and transplanted

by i.v. injection of bone marrow cells and splenocytes from donor mice

(allogeneic: B10.D2 donor; autologous: Balb/cJ donor). Myeloma-bearing mice

A Murine Graft-versus-Myeloma Model
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that received allogeneic or autologous transplantation are referred to as ‘‘Allo-

MM’’ or ‘‘Auto-MM’’ mice, respectively.

MHC-matched allo-SCT in the MOPC315.BM myeloma model resulted in

strong anti-myeloma effects. We observed complete bioluminescence disappear-

ance in 17 out of 18 Allo-MM mice from 4 independent experiments (94%),

whereas all 13 Auto-MM mice showed an initial decrease in bioluminescence

(probably due to the irradiation) followed by increasing bioluminescence signals

after transplantation and progressive myeloma disease (p,0.0001; Fig.1 B-C).

Strikingly, two mice in the Allo-MM group already displayed paraplegia before

transplantation and recovered completely. Serum paraprotein measurements

demonstrated a significant decrease of paraprotein levels in the Allo-MM mice

(p,0.0001). In contrast, paraprotein significantly increased in the Auto-MM

group. Moreover, the Allo-MM group showed significantly lower paraprotein

levels at sacrifice compared to the Auto-MM group (p,0.0001; Fig.1 D), as well

as lower myeloma cell infiltration in the bone marrow (mean¡SD: 0.03¡0.04 vs.

1.3¡1.3%; p,0.0001) and spleen (0.3¡0.3 vs. 3.5¡5.3%; p50.027). All

together, these data demonstrate a potent GvM effect of allogeneic transplantation

in this model. A similar anti-tumor effect was also observed when myeloma cells

were injected subcutaneously, resulting in formation of solid tumors. After allo-

SCT, solid tumors regressed into small residual tumors, whereas tumors in the

autologous group continued to grow after transplantation (N56/group).

Regarding GvHD, 16 out of 18 mice in the Allo-MM group showed symptoms

of chronic GvHD (alopecia, skin fibrosis, weight loss, ‘‘hunched-back’’ position,

diarrhea) after day 21 post-transplantation, which is the time point for symptom

appearance in the B10.D2RBalb/cJ GvHD model. The other 2 mice were

sacrificed before day 21, one mouse due to myeloma progression and the other

mouse due to a worsening of its general condition, probably due to transplant-

related complications.

Immune cell populations in the graft-versus-myeloma model

In order to determine which immune cells might be responsible for the observed

GvM effect, we performed flow cytometry analyses on blood samples at different

time points. At the time point of sacrifice also lymphoid organs (bone marrow,

spleen, lymph nodes) were analysed.

At sacrifice, we observed significantly higher percentages of total CD8 T cells in

the bone marrow and blood, and activated CD8 T cells in all investigated organs

of Allo-MM mice compared to Auto-MM mice or healthy Balb/cJ mice (Fig.2 A).

A large CD8 T-cell expansion (total and activated) was confirmed by absolute cell

counts in blood at sacrifice (Fig.2 B). For activated CD4 T cells, an increase in

percentages and absolute counts was also observed in Allo-MM mice at sacrifice,

but this increase was much smaller compared to that of CD8 T cells (fold-increase

in T-cell counts for Allo-MM vs. Auto-MM: CD8 T cells: 8.2x; activated CD8 T

cells: 12x. CD4 T cells: 2x; activated CD4 T cells: 3.5x). In addition, percentages of

regulatory T cells were significantly decreased in blood and bone marrow of Allo-

A Murine Graft-versus-Myeloma Model
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Figure 2. T-cell populations in graft-versus-myeloma model. Flow cytometry staining was performed for T cells on blood and lymphoid organs (spleen,
bone marrow, lymph nodes) at sacrifice. (A) On the left, percentages (mean¡SD) of CD4 T cells (within CD3+), activated CD4 T cells (CD69+ within CD4+)
and regulatory T cells (Foxp3+ within CD4+) and, on the right, percentages of CD8 T cells (within CD3+) or activated CD8 cells (CD69+ within CD8+) in the
Allo-MM or Auto-MM group, or in healthy Balb/cJ mice. *p,0.05; **p,0.01; ***p,0.001 (Mann-Whitney test). (B) T-cell quantitation in blood. Absolute cell
numbers (mean¡SD) per ml of blood at sacrifice are represented for CD4, activated CD4, regulatory CD4, CD8 and activated CD8 Tcells in the Allo-MM or
Auto-MM group, or in healthy Balb/cJ mice. *p,0.05; **p,0.01; ***p,0.001 (Mann-Whitney test). Naive vs. memory T-cell subsets in spleen (C), blood (D)
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MM mice compared to Auto-MM or healthy mice at sacrifice. Prior to sacrifice,

kinetics in blood samples already showed higher total and activated T-cell counts

(CD4 and CD8) 1 week after SCT in the Allo-MM compared to the Auto-MM

group. Three weeks after SCT, activated CD8 were still significantly increased and

total CD8 tended to be increased, whereas no increase in total or activated CD4 T-

cell counts was present at this moment (data not shown).

Furthermore, we observed significantly higher percentages of effector memory

subsets (CD44+CD62L2) within CD4 and CD8 T cells at sacrifice in the blood and

spleen of the Allo-MM group, and the same trend was noted in the bone marrow

(Fig.2 C-E). On the other hand, central memory (CD44+CD62L+) and naive

(CD442CD62L+) T-cell subsets were decreased in spleen and bone marrow of this

group compared to the Auto-MM group or healthy mice.

Percentages and cell counts of NK (DX5+ CD32) and NKT (DX5+ CD3+) cells

did not differ between the two groups, whereas percentages of B cells (B220+

CD32) in all lymphoid organs and blood were lower in Allo-MM mice compared

to Auto-MM mice (data not shown).

Involvement of CD8 T cells in the graft-versus-myeloma effect

Based on the previous results suggesting a possible in vivo implication of T cells in

the GvM effect, we evaluated T-cell reactivity against myeloma or allogeneic cells

in vitro. We performed a five-day co-culture of splenocytes from Allo-MM mice,

with irradiated target cells (MOPC315.BM or BALB/cJ splenocytes). The results

showed an expansion of CD8 T cells, in contrast to CD4 T cells, but the expansion

observed in co-cultures with MOPC315.BM cells was not different from co-

cultures with Balb/cJ splenocytes, suggesting a close relationship between epitopes

recognized in chronic GvHD and GvM processes. Furthermore, increased

percentages of activated CD4, and even more so activated CD8 T cells, confirmed

T-cell reactivity against myeloma cells and Balb/cJ cells among Allo-MM

splenocytes (Fig.3 A).

Our previous results suggested reactivity of CD8 T cells against MM. Moreover,

MOPC315.BM cells express MHC I, but do not express MHC II, possibly

implicating a direct activation of myeloma-reactive CD8 T cells, whereas CD4 T

cells need antigen-presenting cells to become reactive against myeloma cells, as

previously described [26]. Thus, we evaluated the contribution of CD8 T cells in

the GvM effect in vivo, by depleting CD8 T cells in the B10.D2 graft before

transplantation to myeloma-bearing Balb/cJ mice. CD8 T-cell and activated CD8

T-cell reconstitution was significantly slower in the depleted group 1 week after

transplantation, and a trend for lower CD8 T-cell numbers was still noted 3 weeks

after transplantation. In the CD8 T-cell-depleted group, 4 out of 6 mice (66.7%)

and bone marrow (E). Percentages (mean¡SD) of effector memory T cells (TEM, CD44+CD62L2), central
memory T cells (TCM, CD44+CD62L+) and naive T cells (CD442CD62L+) within CD4 or CD8 T cells at
sacrifice are represented. *p,0.05; **p,0.01; ***p,0.001 (Mann-Whitney test).

doi:10.1371/journal.pone.0113764.g002
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showed strong bioluminescence signals and myeloma symptoms after transplan-

tation, whereas in the standard Allo-MM group a bioluminescence signal was only

observed in one out of 18 mice after transplantation (5.6%, p,0.01). Higher

tumor burden and paraprotein levels in CD8 T-cell-depleted mice (Fig.3 B-C)

confirmed a reduced GvM effect compared to standard allogeneic transplantation,

underlining the in vivo importance of CD8 T cells in GvM effects.

Graft-versus-myeloma and graft-versus-host reactivity

The separation of GvT effects from unwanted GvHD remains an important

challenge in transplantation medicine. In order to determine whether epitopes

were shared between immune responses directed against MOPC315.BM myeloma

cells and GvH response in our model, we decided to perform sensitization of

B10.D2 donor mice by injecting them with myeloma cells prior to cell collection

for transplantation. In preliminary experiments (data not shown), Allo-MM

Figure 3. Involvement of CD8 T cells in the graft-versus-myeloma effect. (A) In vitro T-cell reactivity. Relative percentages (mean¡SD), normalized to
those of non-activated Balb/cJ splenocytes alone, are represented for 3 independent experiments of 5-day co-cultures of splenocytes (Balb/cJ alone; Balb/
cJ + irradiated MOPC315.BM cells; Allo2MM + irradiated MOPC315.BM cells; or Allo2MM + irradiated Balb/cJ splenocytes). Activated cells displayed a
CD69+ phenotype. In vivo implication of CD8 Tcells (CD8 T-cell-depletion of the graft). (B) Bioluminescence quantitation. Total flux (photons/sec) measured
on the dorsal side just before sacrifice (mean¡SD), *p,0.05. (C) Paraprotein level. Serum IgA quantitation (mg/ml) by ELISA before transplantation and at
sacrifice (mean¡SD), **p,0.005; ***p,0.0001 (Mann-Whitney Test).

doi:10.1371/journal.pone.0113764.g003
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recipient mice challenged with myeloma-sensitized donor cells presented with

exacerbated chronic GvHD symptoms, indicating possible overlap between

myeloma antigens and alloantigens in vivo. In order to confirm these results and

compare the effects of MM sensitization with allogeneic sensitization, we

performed chronic GvHD experiments on larger cohorts, in which B10.D2 donor

mice were sensitized with MOPC315.BM myeloma cells (MOPC-sensitized) or

Balb/c-splenocytes (Balb/c-sensitized) before transplantation to healthy Balb/c

recipient mice (chronic GvHD model). Recipient mice transplanted with grafts

from Balb/c-sensitized donors experienced worsened GvHD symptoms and had a

shorter survival compared to control animals (Fig.4 A), with a median survival of

31 vs 42 days, respectively (p50.038). Notably, flow cytometric results showed

reduced percentages of Treg cells and naive T cells (CD4 and CD8) in these mice

compared to control mice in spleen, blood and bone marrow at sacrifice (data not

shown). Likewise, recipient mice of MOPC-sensitized donor grafts also showed a

trend towards shorter survival (median survival 37 days), suggesting that

sensitization with myeloma cells could lead to increased alloreactivity in this

model.

In order to confirm the possible overlapping responses between GvHD and

GvM in our model, we used CDR3-size spectratype analyses to determine which

TCR Vb families were involved in the different B10.D2 T-cell responses

[23, 24, 27]. We analysed the TCR Vb spectratype within both CD4 and CD8 T

cells (isolated from MOPC-sensitized or Balb/c-sensitized B10.D2 mice), as our

previous results support a role of CD8 T cells in the GvM effect, whereas chronic

GvHD in the B10.D2RBalb/c model is mainly dependent on CD4 T cells [28, 29].

Skewed CDR3-size lengths for different Vb families are summarized in Table 1,

and indicate clonal or oligoclonal expansions. Within CD4 T cells, the results

revealed 6 myeloma-reactive Vb families (2, 3, 5.1, 5.2, 8.3, 11) and 5 alloreactive

Vb families (5.1, 5.2, 11, 15, 18). Reactivity of Vb families 2, 3 and 8.3 was unique

to the anti-myeloma response, whereas alloreactivity specifically involved Vb

families 15 (with five skewed CDR3-lenghts, Fig.4 B) and 18. Vb families 5.1., 5.2

and 11 showed expansion both in the anti-myeloma and allogeneic settings,

suggesting overlapping responses of these CD4 T-cell populations. Surprisingly,

within CD8 T-cell compartment there were no uniquely expanded Vb families.

We only observed three reactive Vb families (5.1, 11, 13) skewed in both groups at

exactly the same CDR3-size lengths, also suggesting potential overlap between

responses to MM and Balb/c antigens in the CD8 T-cell subset.

Although we did not observe overall aggravation of GvHD symptoms in the

larger cohort of mice transplanted with grafts from MOPC-sensitized donors

(data not shown), survival of these mice was shorter compared to control group

(Fig.4 A). This result suggests that sensitization with myeloma cells could lead to

increased alloreactivity in this model due to the presence of shared antigens

between both allogeneic Balb/cJ and MOPC315.BM cells, as demonstrated by the

presence of overlapping CDR-3 size skewed bands in both CD4 and CD8 T-cell

populations (Table 1).
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Discussion

In the current study, we describe a graft-versus-myeloma effect in the context of

MHC-matched allogeneic transplantation in myeloma-bearing mice. So far, only

two other immunocompetent mouse models of allogeneic transplantation in MM

have been described. In the first model, Balb/c mice were intra-peritoneally

injected with plasmacytoma-resembling HOPC-1F cells, which present few

characteristics of human MM disease, and transplanted with bone marrow and

spleen cells of DBA/2 origin [13]. No long-term disease-free survival could be

obtained with unmanipulated SCT alone – since idiotype vaccination of donor

mice was needed for the GvM effect - and the transplanted mice developed acute

GvHD, which has a distinct pathobiology from that of chronic GvHD.

Figure 4. Graft-versus-myeloma and graft-versus-host reactivity. B10.D2 donor mice were not sensitized (’’controls’’) or previously sensitized by
injection of MOPC315.BM myeloma cells or Balb/cJ splenocytes (‘‘MOPC-sensitized’’ or ‘‘Balb/c-sensitized’’, respectively). (A) Survival proportions of Balb/
cJ recipient mice (N513–14/group) that were irradiated and received a graft from non-sensitized, ‘‘MOPC-sensitized’’ or ‘‘Balb/c-sensitized’’ B10.D2 mice.
Recipient mice were sacrificed when severe GvHD symptoms (GvHD score > 8/10) or apathy were present. *p50.038 (Log-Rank Test). (B) Representative
Vb15 spectratype histograms for CD4 Tcells isolated from splenocytes of non-sensitized B10.D2 mice (5control), ‘‘MOPC-sensitized’’ or ‘‘Balb/c-sensitized’’
B10.D2 mice. Arrows indicate skewed peaks (i.e. mean peak area. mean+3SD of corresponding control peak).

doi:10.1371/journal.pone.0113764.g004
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In the other murine MM allo-SCT model [14], C57Bl/KaLwRij.Hsd (H-2b)

recipient mice first received allo-SCT from MHC-matched C3.SWH2b/SnJ

donors. After two months of immune reconstitution, recipients were inoculated

with the 5T33MM murine cell line and developed myeloma disease. Donor

lymphocyte infusions (DLI) prolonged the median survival of diseased mice.

Additional dendritic cell (DC) vaccination of the DLI-recipient mice, using

dendritic cells loaded with the H7 minor histocompatibility antigen that differs

between donor and recipient strains, further extended survival without inducing

GvHD by targeting the H7-presenting MM cells. Percentages of effector memory

CD8 T cells were increased in the bone marrow of transplanted MM mice,

irrespective of post-transplantation treatment. However, in this GvM model, the

observed anti-myeloma effect is entirely due to post-transplantation immu-

notherapy using DLI, as mice received allo-SCT before the establishment of MM

disease, which does not correspond to the clinical scenario.

In our study, we established a GvM model using the MOPC315.BM model,

which closely resembles human MM disease as tumor cells mainly grow in the

Table 1. Comparison of the skewed CDR3-size lengths of CD4 or CD8 T cells isolated from splenocytes of
B10.D2 mice sensitized with myeloma or Balb/cJ cells, compared to non-sensitized B10.D2 control mice
(skewed if mean peak area. mean+3SD of corresponding control peak).

CD4 T cells CD8 T cells

Vb MOPC-sensitized Balb/cJ-sensitized MOPC-sensitized Balb/cJ-sensitized

1 - - - -

2 147 - - -

3 160 - - -

4 - - - -

5.1 173; 176 173; 176 161 161

5.2 207 218 - -

6 - - - -

7 - - - -

8.1 - - - -

8.2 - - - -

8.3 152 - - -

9 - - - -

10 - - - -

11 144 163 165 165

12 - - - -

13 - - 176 176

14 - - - -

15 - 164; 173; 176; 179; 182 - -

16 - - - -

18 - 159 - -

20 - - - -

‘‘–’’: no skewing; numbers in table indicate a skewed size length (band) within a particular Vb family, numbers
in italic indicate bands skewed in both groups.

doi:10.1371/journal.pone.0113764.t001
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bone marrow milieu and induce osteolytic lesions [18]. A GvM effect was

obtained using allo-SCT in mice with established MM disease, as a curative

treatment, with concomitant chronic GvHD development. The allogeneic graft

was composed of bone marrow (source of hematopoietic stem cells) and

splenocytes (source of T cells), which is a widely used approach in murine SCT

models [30]. In clinical SCT, the most frequently used graft sources are

hematopoietic stem cells collected from peripheral blood after a mobilization

treatment [31]. These grafts contain 10 to 30-fold higher amounts of T cells and

other immune cells (B cells, monocytes, NK and NKT cells) than bone marrow

grafts [32]. Thus, murine SCT grafts that contain bone marrow enriched with

splenocytes (predominantly consisting in B and T cells, monocytes, NK and NKT

cells) display similarities in cellular composition with peripheral blood-derived

grafts used in clinics. Even though some dissimilarities may exist between murine

SCT protocols and clinical allo-SCT, such murine models are invaluable tools in

understanding the immunobiology of SCT [30].

Our data corroborate the role of T cells in the observed GvM effect. In general,

both CD4 and CD8 T-cell subsets contribute to graft-versus-leukemia (GvL)

reactions. However, the dominant mechanism seems to be strain-specific and

varies with the degree of donor-recipient histocompatibility [33]. Mice receiving

CD8-depleted donor marrow have a higher leukemic relapse incidence than those

receiving CD4-depleted marrow [34, 35]. In experimental mouse transplants, the

addition of purified CD8 T cells to the graft had an anti-tumor effect and

facilitated engraftment without inducing GvHD [36]. In our model, in vivo and in

vitro data suggest a role for CD8 T cells in the GvM effect, since CD8 T-cell-

depletion of the graft reduced GvM effects (Fig.3 B-C). We identified three TCR

Vb families within the CD8 T-cell subset, with overlapping reactivity to both

myeloma and alloantigens. CD8 T cells can recognize polymorphic peptides

derived from non-MHC proteins (i.e. minor histocompatiblity antigens) [37, 38].

Thus, we hypothesise that Balb/cJ minor histocompatibility antigens implicated in

GvHD pathogenesis are present on MOPC315.BM cells (originating from a Balb/

c-derived background). B10.D2 and Balb/cJ mice, both H-2d, differ at multiple

non-MHC loci (including H-1, H-7, H-8, H-9 and H-13) [39] potentially

implicated in alloreactivity and possibly expressed by MOPC315.BM cells, which

could explain that the same CDR3-size length was found skewed in both the anti-

tumor and the alloresponse (band 161 in Vb family 5.1, band 165 in Vb family 11

and band 176 in Vb family 13, Table 1).

CD4 T cells, which are essential for the development of chronic GvHD in the

B10.D2RBalb/c model [28, 29], also probably played a role in the GvM effect.

Indeed, we also identified potentially overlapping TCR Vb families within CD4 T

cells (i.e. Vb families 5.1, 5.2 and 11; Table 1), further confirming a link between

GvM and GvHD. Interestingly, we identified other Vb families within the CD4 T-

cell subset that are probably implicated specifically in either GvM or GvH effects,

suggesting that GvM or GvH reactivity could be separately modulated in this

model in future studies. Despite the lack of MHC II expression on MOPC315.BM

cells, primary CD4 T-cell responses (mediated by tumor-infiltrating antigen-
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presenting cells) can be induced, as demonstrated for the MHC II-negative

parental MOPC315 cells [26, 40]. CD4 cells probably play a role in the

orchestration of the CD8 T-cell response, and in the establishment of GvHD, as

previously described [28]. We did not observe complete disappearance of GvHD

after CD8 T-cell-depletion (in mice sacrificed after day 21), most likely because of

the presence of alloreactive T cells in the CD4 compartment (as suggested by the

presence of single and multiple skewed CDR3-size lengths in the CD4 anti-Balb/cJ

response of the Vb 5.1, 5.2, 11, 15 and 18 families, Table 1 & Fig.4 B) confirming

the essential role of CD4 T cells for GvHD development in this model. For future

studies using this model, it would be interesting to isolate and infuse T cells from

Vb families that are specifically involved in the GvM effect (Vb 2, 3 and 8.3) in

order to determine the effects on GvHD development and the capacity of these T

cells to maintain a GvM effect or, in contrast, to deplete from the graft Vb families

specifically involved in the GvH response (Vb 15 and 18) and determine the

persistence of GvM and GvH effects. Similar experiments have already been

described in the literature. The Vb13 family was shown to be highly skewed in the

B10.BR CD8 T-cell response against a myeloid leukemia cell line (MMC6), but

not in the alloresponse against CBA recipient mice. Transplantation of low doses

of CD8+Vb13+ T cells, isolated by magnetic cell separation, induced a slight GvT

response with no concomitant acute GvHD development [24]. In the B6RBalb.b

(MHC-matched) GvHD response, several Vb families have been found to be

skewed within CD4 T cells. Whereas transplantation of the positively selected

skewed Vb families induced lethal GvHD, mice that received skewed Vb-depleted

CD4 T cells all survived with minimal GvHD symptoms [41].

In conclusion, we describe the establishment of a reliable graft-versus-myeloma

model using allo-SCT in immunocompetent tumor-bearing mice. Effector

memory CD4 and CD8 T cells probably mediated the GvM effect in this model,

with CD8 T cells being essential for the observed GvM effect in vivo. Within CD4

and CD8 subsets, we identified overlapping Vb families in the responses against

myeloma cells (anti-tumor) and Balb/cJ cells (alloreactive), underlining the

relationship between anti-tumor responses and GvHD, whereas some Vb families

within CD4 T cells specifically respond to either myeloma or host alloantigens.

The current murine model of GvM should enable future studies of immuno-

modulatory drugs, acting on the balance between graft-versus-myeloma and graft-

versus-host effects.
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