
Vorosweep: a fast generalized crystal growing Voronoi
diagram generation algorithm.

T. Moutona,, E. Bécheta

aUniversité de Liège, Aerospace and Mechanical Engineering Department, Chemin des
Chevreuils, 1, 4000 Liège, Belgium

1. Introduction

Voronoi Diagrams have a very wide range of applications in computer sci-
ences: e.g. in motion planning, computer vision, mesh generation, as well as
GIS, crystallography, chemistry, biology for fields outside of computer sciences.
The Voronoi diagrams of sets of point sites in the euclidean 2D and 3D spaces
is one of the most studied topic in computational geometry. Several algorithms
are available for generating such diagrams and can handle huge datasets very
efficiently. Nevertheless, and even in 2D, if we consider and other kinds of norms
and generators like curves or areas, things have been less explored and in most of
the cases, there are no fast and efficient algorithms available for their generation
or if they exist, no implementation are known. We can even tell that no practi-
cally efficient algorithms are known for constructing a usable representation of
generalized Voronoi diagrams, because of their intrinsic complexity. A solution
is thus to approximate such diagrams and several attempts have been made
in this direction. The Voronoi diagrams within a polygonal metric could be
seen as good challengers but have been studied very little whereas their field of
application could be large. Excepted for constant polygonal convex functions,
including the L∞-metric and the L1-metric Voronoi diagrams, no algorithms
can be found to generate such diagrams.

Many applications need generalized Voronoi diagrams and one of the most
popular method used for generating this diagram is the raster-based methods
which consists in computing the closest points for each pixel of a matrix of
points. This obviously very simple implementation presents the drawback to be
very time consuming and to have a very bad accuracy.

In this paper, we propose a new algorithm for generating quickly approxi-
mate generalized Voronoi diagrams of point sites associated to arbitrary convex
distance metric. This algorithm produces connected cells by emulating the
growth of crystals starting at the point sites, in order to reduce the complex-
ity of the diagram. In the sequel, different principles adopted to decrease the

Email addresses: thibaud.mouton@gmail.com (T. Mouton), eric.bechet@ulg.ac.be
(E. Béchet)

Preprint submitted to Elsevier September 22, 2014

complexity of such diagrams will be described. Then the general algorithm and
its implementation will be detailed. Finally, benchmarks will be given in order
to demonstrate the efficiency of the algorithm as well as several examples that
show its versatility.

2. 2D Voronoi diagrams

2.1. Definitions in the 2D euclidean metric

The Voronoi diagram for a set of points S in the 2D euclidean space E
is one of the fundamental data structures of computational geometry and its
properties have been studied extensively. We first give a few definitions. Let
S ∈ E a finite set of points:
To each point p ∈ S, the Voronoi diagram of S associates a region V R(p)
such that

V R(p) = {x ∈ E | d(x, p) ≤ d(x, q),∀q ∈ S} (1)

It is a subdivision of the space where each point from S is associated with a
region of the space closest to it. It is also called Dirichlet tessellation or Thiessen
diagram.
A site is a defining object for a Voronoi diagram. Also called generator or
source point.
A Voronoi cell is the set of points x ∈ E closer to a single site or more generally
to a set of sites. Voronoi region or face are equivalent names.
A bisector of 2 sites p, q ∈ E is the separator of their Voronoi cell:

B(p, q) = {x ∈ E |d(x, p) = d(x, q),∀q ∈ S} (2)

A Voronoi vertex is the common points of at least 3 Voronoi cells and bounds
3 bisectors. Consequently, it is:

• equidistant to at least 3 sites of S

• closer to these sites than to any other site of S

A geodesic is a shortest path between 2 points p and q and is noted SP (p, q).
It has the property to be locally collinear to the gradient vector of the distance
function from the considered point.

2.2. Generalizing the Voronoi diagrams

In the previous definition, Voronoi diagrams are defined by a single distance
function d. This obviously restricts the variety of Voronoi diagrams that may
be generated. As recalled by Emiris et al. [12], there are at least two ways to
generalize the Voronoi diagrams. The first one consists in allowing non punctual
sites, i.e. lines, circles, NURBS, polygons, etc under the Euclidean L2-metric.
The second one considers non constant distance functions, i.e. a domain on
which a Riemannian metric field is defined. Because this generalization leads to
very complicated diagrams, it can be relaxed by only considering the metric at

2

the point sites, i.e. the function that defines the distance between one site and
the other points of the space. It is the simplified definition followed by Labelle
and Shewchuk [22]. In this case, a region V R(p) is defined by:

V R(p) = {x ∈ E | dp(p, x) ≤ dq(q, x)∀q ∈ S} (3)

Nevertheless, with such a definition, it is worth noting that in general dp(p, q) 6=
dq(q, p). This means that one site q will be seen by the site p at a different dis-
tance than site p from site q. Thus, the definition does not corresponds anymore
to a metric per se, which must be symmetrical. The subdivisions into cells will
however ensure that the global distance function remains symmetrical.

A third generalization can be envisaged which consists in constraining the
diagram inside an arbitrary domain, i.e. by breaking the assumption that dia-
grams are generated on an infinite plane.

2.3. Classification of various Voronoi diagrams

We give here a classification of the most well known Voronoi diagrams result-
ing from different distance functions dq(q,x) with q = (qx, qy) and x = (x, y):

• VD of points under Lp-metric with p even: dq(q,x) = (x − q)p = (x −
qx)p+(y−qy)p. It is also possible to combine it with an arbitrary rotation.

• Power (or Laguerre) diagrams of points with weight ω: dq(q,x) = (x −
q)2 − ω2

q . This diagram is very similar in appearance to the euclidean
Voronoi diagram except that the bisector can be move along the line [qx].

• Apollonius (or Additively weighted) diagrams of points with weight ω:
dq(q,x) = (x− q)− ωq.

• Multiplicatively weighted diagrams of points with speed υ: dq(q,x) =
υq ∗ (x− q).

• Möbius diagrams of points with speed υ and weight ω: dq(q,x) = υq ∗
(x − q)2 − ω2

q . They generalize power diagrams (when all υi are equals)
and multiplicatively weighted diagrams (when all ωi = 0).

• Anisotropic diagrams of points with metricM (a symmetric positive defi-
nite matrix): dq(q,x) = (x−q)tMq(x−q) using the definition of Labelle
and Shewchuk [22].

An alternative definition of the anisotropic diagrams of points as V R(p) =
{x ∈ E | dx(p, x) ≤ dx(q, x)∀q ∈ S} with distance dx(q,x) =

√
(x− q)tMx(x− q)

is given in Du and Wang [10].
The list could be completed by any convex monotone function defined on the

whole domain whose minimum is located at q. A huge inventory of distances
already encountered are listed in Deza and Deza [9].

For non symmetric distance functions diagrams, we can cite the skew Voronoi
diagrams for which the underlying geometry is not flat introduced by Aichholzer
et al. [1].

3

Gorke [15] mentioned a combination of distances like the city Voronoi dia-
grams where the metric is induced by quickest paths according to the Manhattan
metric and an accelerating transportation network consisting in non-intersecting
axis-parallel line segments. Of course such a diagram could be extended to any
kind of metric and using arbitrary transportation network.

2.4. Existing algorithms

Concerning algorithms, we have to distinguish between affine diagrams whose
bisectors are planes and diagrams with curved bisectors. First ones include clas-
sical Voronoi diagrams and Laguerre diagrams and can be computed efficiently
by the well known incremental method by Bowyer [6], the sweepline by Fortune
[14] or the divide and conquer algorithm by Shamos and Hoey [25]. Other affine
diagrams are special cases of Voronoi diagrams with an Lp-metric, when p = 1
or p = ∞. Their bisectors are in these case polylines constituted by at most
3 straight segments, making the computation rather simple and the previous
algorithms still helpful with few modifications as mentioned by Shute et al. [27].
Then comes algorithms dealing with diagrams with algebraic bisectors (Möbius
and anisotropic diagrams) and semi-algebraic bisectors (Apollonius diagrams).
A good survey of these diagrams and proposed algorithms has been done by
Boissonnat et al. [4]. Let us mention the work of Emiris and Karavelas [11],
Boissonnat and Delage [3] and Karavelas and Yvinec [20] for the study and
implementation of the Apollonius diagrams. A detailed implementation of the
Möbius diagram is given by Delage [8].

Algorithms for anisotropic diagrams have been first proposed by Labelle
and Shewchuk [22]. Their algorithm computes a subset of the lower envelope
of the arrangement in E3 of the paraboloids z(x) = (x − q)tMq(x − q). By
projecting the faces of the lower envelope down to E2, the minimization diagram
of the paraboloids is built, what they called an anisotropic Voronoi diagram.
This approach has been then revisited by Boissonnat et al. [5] improving the
computation complexity but no implementation is available to our knowledge.

For more complex diagrams like the ones mixing several types of distance,
no exact and fast computational algorithm exists so far. Recently, Emiris et al.
[12] proposed an algorithm for generating Voronoi diagrams of algebraic distance
fields. They use a subdivision of a given domain into boxes. In each box, at
most 3 distance fields are contributing to the Voronoi diagram and their method
consists in filtering the appropriate fields. Their algorithm is able to handle
polynomial or implicit distance fields.

Finally people in need of generalized Voronoi diagram frequently fall to dis-
crete approaches like the raster-based method introduced by Hoff III et al. [17],
where the diagram is computed using a polygonal mesh approximation of the
distance functions and the Z-buffer of the GPU of the computer. In spite of
being less accurate than vector-based method, it is very popular in many fields,
considering the number of article citing this approach, which convinced us to
create a non raster implementation of a generalized Voronoi diagram algorithm.

4

2.5. Constrained Voronoi diagrams

A further generalization of Voronoi diagrams appears if we do not consider
an infinite planar domain but rather a finite and closed domain. Given a simple
polygon in the plane and a set of k sites in its interior, a constrained Voronoi
diagram of sites use the internal ”geodesic” distance inside the polygon as the
metric. This problem has been first settled by Aronov [2]. More generally, most
of the previous generalization of Voronoi diagrams are only considering that
distance is measured along geodesics that do not cross boundaries.

3. Designing a generalized Voronoi diagram algorithm

Most of the previous approaches used to solve this problem suffer from being
exact methods that are not flexible. Many practical applications require to gen-
erate complex diagrams including several constraints and non algebraic distance
functions. That is a good reason for designing a new algorithm able to generate
an approximated Voronoi diagram using one or several kind of distance functions
and able to generate at the same time a diagram whose cells are connected. The
processing speed is also a mandatory requirement in order to be used. The goal
of our study is to fill the gap between exact Voronoi diagrams computation and
practical but less precise applications like the raster-based methods introduced
by Hoff III et al. [17].

The new algorithm is based on the following principles:

• the crystal growth approach,

• the polygonal approximation of the wavefront,

and make use of the following tricks:

• add a dimension to the problem,

• build the so called ”motorcycle graph” of rays emanating from the sites.

3.1. The crystal growth approach

In crystallography, the Voronoi diagram is used to model crystal growth
when all the crystals start growing at the same time and have the same constant
growth rate. If all the crystals have the same constant growth rate, but start
growing at different times, the additively weighted Voronoi diagram models the
growth. In the additively weighted Voronoi diagram, each site p has a weight
w(p). The separator of two sites in the additively weighted Voronoi diagram
is a part of a hyperbola. For many physical systems, crystals having all the
same constant growth rate may not be a valid assumption. If each crystal
has a different growth rate, a multiplicatively weighted Voronoi diagram will
model it accurately. Unfortunately, a strict multiplicatively weighted Voronoi
diagram produces regions that are not connected, making its computation rather

5

expensive. Moreover, this sort of diagram cannot model the physical settings,
for which the domain are always connected.

In order to solve this problem, Schaudt and Drysdale [23] proposed to create
the voronoi regions by imitating the physic of crystal and producing a diagram
without nonconnected cells. The distance from a site to a point in its region is
not anymore measured along a straight line but using the shortest path lying
entirely within the region. This ensures to generate a diagram whose cells are
connected and contain their generator site.

In order to precise this idea, we sum up the analytic study of Kobayashi and
Sugihara [21] and we refer to Fig. 1. More precision can be found in Appendix
A.

Let P1 and P2 be two crystal generators with weights (i.e., the growth
speeds) v1 and v2, respectively. Let us assume that v1 < v2 and define k = v2/v1
as well as the coordinates of the generators be P1 = (0, 0) and P2 = (a, 0).

P1
P2

y

Q1

Q2

E

CApollonius

P

x

Figure 1: Multiplicatively weighted Voronoi cells.

First, we consider the portion of the boundary still visible from both of the
crystals. Any point P = (x, y) on this portion of the boundary satisfies:

‖P1 − P‖
v1

=
‖P2 − P‖

v2

This leads to Å
x+

a

k2 − 1

ã2

+ y2 =
a2k2

(k2 − 1)2

which is the equation of the Apollonius circle whose center is CApollonius =Ä
− a
k2−1 , 0

ä
.

Nevertheless, for t > t2 the distance from P2 is measured in a straight line,
crossing the cell of P1. If we want to avoid this and consider a path only
traveling through the P2 cell, we have to cut the path into a straight part and
a curved one, hidden from P2. The part hidden from P2 starts at a tangent
point Q1 and is under the line P2Q1, in the area x < 0. If now we focus on
the boundary between the cell P1 and P2, i.e. their bisector, the equation of

6

the boundary is not a circle anymore. This portion can be written as a polar
equation r(θ) = (r(θ). cos(θ), r(θ). sin(θ)) with r(θ) = |r(θ)|. r(θ) is the distance
from the origin to the boundary point in the direction that forms an angle of θ,
π/2 < θ < π, with respect to the positive x-axis, so r(θ) = ‖P1 − P‖.

It can be shown that the equation of the boundary for x < 0 is:

r(θ) =
a√

k2 − 1
e
θ−π/2√
k2−1 ,

π

2
≤ θ ≤ π (4)

This is the equation of a logarithmic spiral centered at P1. This example is a
good illustration of the crystal growth strategy. Nevertheless, this produces even
for simple problems quite complicated bisector equations. The equation would
be much more complex for anisotropic diagrams and in any case, it is practically
impossible to compute every analytic solution of generalized bisectors, so that
our goal is not to explicitly define bisectors but rather to approximate their
geometry.

It should be noted that we are looking for the geometry of the bisector when
one crystal totally encloses the second. Otherwise the equation is known and
corresponds to a conic. The kind of bisector that is obtained is given in Fig. 2.
It is also a piecewiese spiral path. The method used to obtain such a result is
given in Appendix B.

-1 0 1 2

spiral top
spiral bottom
d(P1) = d(P2)

d(P1) = 1

d(P2) = 1

Figure 2: Anisotropic Voronoi cells.

3.2. The wavefront expansion and the polygonal approximation

Since our goal is to deal with arbitrary geodesics, it is obvious that the most
natural and even only way to solve such a problem consists in using a wavefront
approach, which is also known as the continuous Dijkstra paradigm.

Definition 1. A wavefront starting at a point pi is the set of points fulfilling
the equation di(pi, q) = t at time t ≥ 0 where di(pi, q) is the distance function
associated to pi. It is also commonly called a levelset.

7

It worth noting that each point of the wavefront at time t is reached by the
quickest possible path starting from P . Nevertheless, depending on the metric
of the different sites and the configuration of the domain, wavefronts can be
very complicated to handle. This complexity implies a very high computational
cost that would make any exact method unusable.

In order to tackle this problem, the solution we are proposing is to use a
polygonal approximation of the wavefronts. A wavefront at its early stage, i.e.
before it encounters any other wavefront, is a closed curve. A polygonal ap-
proximation of a curve allows to drastically simplify any of the computations at
the cost of losing accuracy. However, it can still be a good compromise between
speed and precision if the discretization is made judiciously, by defining the
size of the sides of the polygon accordingly to the local curvature of the wave-
front. Furthermore, a given precision can be reached by considering a smaller
discretization, but with an increased computational cost.

Definition 2. A polygonal wavefront is a polygon whose shape is defined by
the metric of the site it comes from. More precisely, the polygonal wavefront of
a site pi at time t is a polygon whose vertices qj fulfill the equation di(pi, qj) = t.

These polygonal wavefronts can be now seen as sets of vertices and edges
expanding in the plane. The respective traces that they leave behind are by
consequence lines and triangles. It is obvious that a vertex of a wavefront
stops when it meets another vertex or edge. Knowing all the meeting points is
basically what we want to compute and this problem looks very similar to the
so called motorcycle graphs.

3.3. The motorcycle graph

The motorcycle graphs has been defined as follows by Eppstein and Erickson
[13]: A motorcycle is a point moving with constant speed on a straight line. Let
us consider n motorcycles (m1, ...,mn), where each motorcycle mi has its own
constant velocity vector vi ∈ R2 and a start point pi ∈ R2, with 1 ≤ i ≤ n.
The trajectory {pi + t× vi, t ≥ 0} is called the track of mi. While a motorcycle
moves it leaves a trace behind. When a motorcycle reaches the trace of another
motorcycle then it stops driving – it crashes –, but its trace remains. It is
also possible that motorcycles never crash. Following this terminology such
motorcycles are said to have escaped. Fig. 3 illustrates a motorcycle graph
with six motorcycles where only one manages to escape.

A naive way to generate such a diagram is to compute all intersection and
then filter the ones that are not necessary. It is easy to see that there can be up
to n2 intersections among the motorcycle tracks. This algorithm has an obvious
O(n2) complexity which is impractical for large datasets.
However, observing that no two motorcycle traces can be intersected by a third
one in both interiors, we can deduce that this leads to at most n intersections
among the traces (O(n) theorical complexity). It is thus only necessary to

8

Figure 3: A motorcycle graph

compute these specific intersections. Several studies propose to decrease the
complexity of the naive approach. The first of them (Eppstein and Erickson
[13]) decreased the complexity to O(n17/11+ε). Then Cheng and Vigneron [7]
proposed to generate a 1/

√
n-cutting and exploiting the arrangements to bring

a O(n
√
n log n) algorithm. Finally Huber and Held [18] gave a practical imple-

mentation of a O(n log n) in average algorithm. This last algorithm considers a
geometrical hashing to achieve this average complexity assuming that the data
are uniformly distributed. Recently Vigneron and Yan [29] proposed a new and
faster algorithm for this problem but the implementation is far more tedious
because of the use of a ray shooting datastructure as well as another one for
halving ray shooting queries.

3.4. Adding a dimension

The different Voronoi diagrams of R2 given in the list of section 2.3 have a
nice geometrical interpretation. They can be seen as the projection on the R2

plane of the lower envelope of geometrical entities of R3. For diagrams whose
distance is not squared, these tridimensional entities are cones (see Fig. 4). In
the case of squared distance, they are paraboloids (e.g. Laguerre diagrams), or
more generally elliptic paraboloids (e.g. Anisotropic diagrams) since paraboloids
are special cases of a symmetric anisotropic metric. In the following, we assume
that the metric is non squared.

Figure 4: Lower envelopes of non squared and squared distances

9

This geometrical interpretation can be of great help for implementing the
wavefront expansion by adding a third dimension to it. This 3-dimensional
component represents the time that passed since the start of the wavefront
in the xy-plane. Consequently wavefront edges are now tracing out planar
polygons. Similarly, a vertex trace is the intersection line of the two adjacent
planar polygons. The final Voronoi diagram is obtained by the projection of
these polygons on the xy-plane, i.e. by removing the third dimension. Similarly,
all the obstacles in the domain can be represented as vertically unbounded
surfaces.

Figure 5: Adding dimension to the polygonal wavefront

3.5. Put it all together

What we need is clearly not a motorcycle graph but rather an algorithm
able to catch intersections between advancing vertices and advancing lines. Ad-
vancing vertices are like motorcycles leaving a track behind them. Advancing
lines can be seen as a straight rope that two motorcycles are handling between
them, on which other motorcycles can crash as well. Nevertheless the analogy
with motorcycles would stop there because complicated operations like splitting
and merging will occurs at the same time. Based on these considerations, it is
clear that we need a variant of the exact motorcycle graph.

fc

fb

fa

mi

mj

mk

Figure 6: Motorcycle split.

To go further, let us recall that the geometrical
interpretation of the Voronoi diagram of points whose
distance is not squared is the lower envelope of cones.
Since our wavefront is a polygonal approximation of
an implicit curve, the cones will indeed be discrete
cones, with pieces of planes on their sides. Starting
from their apex, we want to compute the intersection
of these cones. More precisely, we want to detect the
intersection between planes and a lines that separate
2 planes.

This can be efficiently achieved by using the same
kind of geometrical hashing used in Huber and Held [18]. The difference is that
not only lines are stored in the hashing structure by also facets of the cones.

We now will diverge from the original motorcycle graphs because in our case,
when a crash occurs, the motorcycle not only stops but 2 new motorcycles start

10

from the crash point. Fig. 6 illustrates such a situation. Let a line mi crashing
into a facet fc. mi is separating facets fa and fb. When a crash occurs, mi stops
and create 2 new lines mj and mk which are now separating respectively facets
fa and fc, and fb and fc. These new lines are then inserted into the hashing
structure. The front of facet fc is now split in two.

4. Implementation

The Vorosweep algorithm we are proposing and have implemented is driven
by events and consists mainly into simple geometric objects expanding in the
space and triggering the events. In the following, both topological data structure
and events will be described.

4.1. Topological structure

The algorithm simulates the expansion of wavefronts in the plane. As we
explained, these wavefronts can be very complex geometrical objects and a first
step is to use a simplified description by discretizing them into piecewiese linear
curves. Then by adding the time dimension, we got the cones stated in section
3.4, made of pieces of plane and lines separating the polygon.

In the following, we will detail the most notable geometrical objects of the
algorithm which are the convex generators, sweepedges and sweepfacets,
fronts and frontline.

A convex generators cg is composed of the apex A of the future cone and
a collection of planar sweepfacets. Intersections of sweepfacets generate the
two initial linear sweepedges that bound each of the sweepfacets.

This two initial sweepedges SEiniti and SEiniti+1 define the angular sector out-
side which the sweepfacet SFi is not defined. A sweepfacet SFi contains a
frontline FLi(t) which represents the locus of points of SFi at time t. A front-
line contains itself one or several fronts FRij since the advancing frontline can
be split into several parts (see Fig. 7(a) and Fig. 7(b)). A front has at all
time a link to the two sweepedges that bound it and reciprocally a sweepedge
always knows which front it belongs to. This is the topological structure of the
algorithm allowing to generate the discrete Voronoi diagram.

Let us mention the borders objects that are used to circumscribe the domain
on which the Voronoi diagram is defined. They are non expending vertical static
planes bounded by vertical rays. Each border is adjacent to two other borders.

The whole data structure and the main relationships are detailed in the
diagram of Fig. 8. It can be seen that sweepedges, bordersweepedges and
sweepfacets are specialized sweepobjects types that derive from a main sweep-
object class. Dotted arrows show the links between each entity. All these cross
references ensure a quick and efficient traversal of the structure and a fast check
of the topological consistency.

11

SEinit
i+1

FLi(t1)

A

SFi

SEinit
i

(a) Sweepobjects at t1

A

SEinit
i+1

FRj+1

FRj

SEi,j+1

SEi,j

SFi

FLi(t2)

SEinit
i

(b) Sweepobjects at t2

Figure 7: Sweepobjects before and after a split of the frontline

GENERATOR

POINT apex

REAL starttime

REAL angle

REAL norm

REAL speed[2]

INT] faces

LIST<SWEEPFACET> sf

LIST<SWEEPEDGE> se

SWEEPOBJECT

POINT start

REAL starttime

REAL currenttime

VECTOR dir

QUEUE<EVENT>
eventqueue

SWEEPFACET

SWEEPEDGE iedges[2]

FRONTLINE fl

PLANE pl

GENERATOR cv;

SWEEPEDGE

SWEEPFACET ifaces[2]

FRONT fr[2]

FRONTLINE

SWEEPFACET owner

LIST<FRONT> frlist

FRONT

FRONTLINE owner

FRONT parent

FRONT child[2]

SWEEPEDGE se[2]

POLYGON poly

Figure 8: Sweeping datastructure

4.2. Underlying grid

In order to speedup the overall algorithm, a geometrical hashing structure,
namely a bucket grid, is used. It is in fact a slightly modified version of datas-
tructure used in the motorgraph algorithm described in Huber and Held [18].
The main difference consists in that in each bucket of the grid are not only
registering the edges, but also the facets and the borders that are crossing the
bucket. The main effect is that when entering in a bucket, the number of el-
ement to test for intersection is limited. By consequence, the total number of
intersections to be computed for a sweepobject before it stops will be much
lower than the whole set of entities.

12

The size of such a grid is very important because it forces the number of
elements per bucket. This influences the number of elements to search among
when looking for collisions. If the size is too small, most of the time is spent in
switching from one bucket to another. This size is thus computed from the initial
number n of sweeping objects. By following the similarity with the motorcycle
graphs, we set the size of the grid as

√
n.

A similar but unidimensional grid structure is used for the borders, but
registering only bordersweepedges. This allows to efficiently handle collisions
between bordersweepedges. Its size is derived from the number of bucket crossed
in the 2D grid.

A major drawback of such a method is that it requires the data to be well
distributed over the domain so that each bucket will contain approximately the
same number of elements. Nevertheless, we believe that this assumption can be
acceptable most of the time.

4.3. Generator definition

A generator is defined by the planes described by a sweeping of the angle
around its main axis. Each plane generated is the support of one sweepfacet.
Sweepedges are then defined by intersecting each neighboring sweepfacet.

In order to be as general as possible, cones are based on superellipses also
known a Lamé curves which are generalization of ellipses. A superellipse is a
closed curve defined by the following implicit equation:(x

a

)n
+
(y
b

)n
= 1 (5)

where a and b are the size (positive real number) of the major and minor axes
and n is a rational number (see Jaklic et al. [19] for further precision).

n = 2, a = 1, b = 1
n = 2, a = 1, b = 2
n = 4, a = 1, b = 2
n = 4, a = 1, b = 3
n = 10, a = 1, b = 3

Figure 9: Superellipses with rotation = π/3

It comes that the parametric equation is:

f(t) =

{
x = a cos2/n(t)

y = b sin2/n(t)
, 0 ≤ t ≤ 2π (6)

13

The related cone resulting from this general shape has the following equation:(x
a

)n
+
(y
b

)n
− zn = 0 (7)

leading to the general parameterization:

g(t, s) =

x = s a cos2/n(t)

y = s b sin2/n(t)

z = s

,
0 ≤ t ≤ 2π

0 ≤ s ≤ ∞ (8)

It should be noted that cos and sin exponentiations are a signed power
function such that cosn(t) = sign(cos(t))|cos(t)|n.

Tangential vectors are defined by

gt(t, s) =
∂g

∂t
=

 −a cos
2
p
−1

(t) sin(t)
p

b cos(t) sin
2
p
−1

(t)
p

0

 (9)

gs(t, s) =
∂g

∂s
=

 a cos2/n(t)

b sin2/n(t)
1

 (10)

It follows that the normal vector of such cones is defined by

n(t, s) = gt ⊗ gs (11)

Rotation of angle θ is finally achieved by multiplying n(t, s) with R(θ) so
that

nθ(t, s) =

Å
cos θ − sin θ
sin θ cos θ

ã
n(t, s) (12)

Sweepfacets are finally generated from the set
{
nθ(

2kπ
n , s), k = 0, 1, ..., n

}
and the sweepedges result from the intersection of each of 2 successive sweep-
facets.

4.4. Event structure

The algorithm consists in processing a suite of events. An event consists in
a sweepobject at a given position with an occurring time. This occurring time
is used to sort and trigger each event. These events fill an event queue sorted
from the earliest to the oldest. The event queue is implemented as binary search
tree which is the classical implementation of the set container of the standard
C++ library. Each kind of event has a corresponding handler that contains
appropriate methods to process it. It is important to describe each event to
understand the propagation of the wavefronts:

14

1. A NEWFACETSWITCH event corresponds to the insertion of a newly
created facet in the diagram. Insertion consists in finding the underlying
bucket Bij on which the apex A of the facet is located and registering the
facet in this bucket. Then, next events are produced. The next events are
generated by computing the crossings of the frontline with the corners of
the bucket Bij and then by checking the potential collisions with another
entity registered into Bij . All events are inserted into the local priority
queue of the facet and at the end, the earliest event is inserted into the
global priority queue.

2. A NEWEDGESWITCH event is the insertion of an edge into the event
structure. It is worth noting that the z direction of the edge has be equal
or greater than 0 otherwise it would mean that the edge is ”coming back in
the past”. Like the NEWFACETSWITCH, the edge is registered into the
bucket and next events are generated. The first next event is the location
and the time at which the edge will leave the bucket into which it started.
Other events are potential collisions with facets registered in the bucket
and collisions with other edges that are attached to the 2 fronts of the
edge. Like for facets, all events are inserted into the edge and only the
earliest is inserted into the global priority queue.

3. A NEWGENERATOR event create a new convex generator at its apex
position (x, y, t0). If t0 > 0.0, it first checks if no other face has already
covered the position (x, y). If the position has been already covered, the
generator is not created, otherwise it generates the n different sweepfacets
and their respective sweepedges. Once faces and edges are created, the
corresponding NEWEDGESWITCH and NEWFACETSWITCH events
are emitted.

4. An EDGEEDGECRASH event is a collision between two sweepedges.
In other words, it corresponds to a front closing and to a Voronoi vertex
creation. This event can lead to several different situations:

(a) a peak is created if no new edges are created (see Fig. 10(a)).

(b) a new edge is created from the merge (see Fig. 10(b)).

(c) several new edges and facets are created by ”rotating” around the
Voronoi vertex (see Fig. 10(c)).

(d) two fronts merge into an only one creating an ”island” (see Fig.
10(d)).

Fig. 10 illustrates these different situations.

5. An EDGEFACETCRASH event is a collision between a sweepedge and
a sweepfacet. This event splits the front of the facet into two different
fronts. Two new sweepedges are by consequence created and the corre-
sponding NEWEDGESWITCH events are emitted (see Fig. 11).

15

V

(a) Merge type 1.

V

(b) Merge type 2.

V

(c) Merge type 3.

V

(d) Merge type 4.

Figure 10: The different edge merging scenarios.

V

Figure 11: The edge to facet crash event.

6. An EDGESWITCH event occurs when an edge leaves a bucket and en-
ters into another one. When entering into a new bucket, the sweepedge is
registered into the bucket and collisions with facets and borders contained
into the bucket are computed. If valid collisions are found, corresponding
events are emitted and push into of the event queue of the sweepedge and
the sweepfacet. Finally, the earliest event of the sweepedge is pushed into
the general event queue. FACETSWITCH events for both facets attached
to the sweepedge are generated.

16

7. A FACETSWITCH event occurs when a facet enters into a new bucket.
As for an EDGESWITCH event, collisions with sweepedges registered into
the bucket are computed and corresponding events are emitted.

Fig. 12 illustrates 3 SWITCH events. Events 1 and 2 corresponds to
EDGESWITCH events of edges SEi and SEi+1 respectively. They will
insert edges SEi and SEi+1 into buckets Bj,k+1 and Bj+1,k respectively.
They will emit a FACETSWITCH event when being processed so that
they are called indirect events. Event 3 is only a FACETSWITCH event
that will insert SFi into bucket Bj+1,k+1, it is a direct event because it
has been emitted when SFi from vertex A has been inserted.

cj+1,kcj,k

SEi+1

Bj,k

cj,k+1

SFi

SEi

FL
i

A

Event 2

Event 1

Event 3

cj+1,k+1

Figure 12: The facetswitch event.

8. A NEWBORDEREDGESWITCH event is similar to the NEWEDGESWITCH
except that the concerned sweepedge is specialized into following a border.

9. A BORDEREDGESWITCH event is the counterpart of the EDGESWITCH
event for borderbuckets, since borders contain a 1D grid.

10. An EDGEBORDERCRASH event corresponds to the collision of a
sweepedge and a border. In this case, the sweepedge is stopped and two
sweepborderedges are created.

11. A FACETBORDERCRASH event occurs when a facet hits the vertex
of a border. In this case, the front on which the bounding edge crashes is
split into 2 other fronts and 2 sweepborderedges are created following the
2 edges of the border adjacent to the hit vertex.

4.5. Crystal growing strategy

It is important to understand that we did not mention the crystal growth be-
havior because it is actually naturally handled by our algorithm. We recall that

17

the crystal growth comes out by walking around obstacles encountered. In the
algorithm, this behavior is initiated by an EDGEEDGECRASH event. Such an
event merges 2 sweepedges into an other one if needed. This new edge is com-
puted by the cross product of normals of both external faces. Nevertheless, the

newly created edge has to be contained into the angular wedge ¤�b0(SF1)b1(SF0).
In Fig. 13(a), we can see that the new edge result of SF1 ∧ SF0 is outside this
angular wedge. In this case, as many as necessary new facets and new edges are
created in order to fulfill the angular requirement. The result is illustrated in
Fig. 10(c). The induced rotation can be seen on a real example in Fig. 13(b)
making the spiral path whose analytic solution has been given in section 3.1 to
appear clearly.

V

SF0
SF1

b1(SF0)
b0(SF1)

SF1 ∧ SF0

(a) New edge outside angular wedge.

P1
P2

(b) Rotations occurring along the spiral
path.

Figure 13: Crystal growth strategy results.

4.6. Main routine

For each of these events corresponds one handling function. It comes that
the algorithm can be summarized by Algorithm 1. Init stage consists only in
populating the main event queue with NEWGENERATOR events and then the
Run routine is called. New events will be automatically generated by handlers,
populating the event queue. The main routine ends when the main event queue
is empty.

4.7. Output

The Vorosweep outputs a topological datastructure composed of the adja-
cency between cells, polylines representing the bisectors as well as a triangu-
lation of the diagram making the diagram generated easy to use for any path
planning, closest neighbor or any other application.

18

Algorithm 1 Main routine

1: procedure Run(QUEUE<Event> Ev)
2: while Ev 6= empty do
3: e ← earliest(Ev)
4: so ← get sweepobject(e)
5: remove earliest event(so)
6: if is active(so) then
7: if type(e) == NEWGENERATOR then
8: handle newgenerator(e)
9: else if type(e) == NEWEDGESWITCH then

10: handle newegdgeswitch(e)
11: ...
12: end if
13: end if
14: end while
15: end procedure

5. Results

5.1. Accuracy

Since we do not have the possibility to compute the analytic solution of
most of the bisectors, we compared the results with the only analytic solution
we have, i.e. the crystal growing multiplicatively weighted Voronoi diagram.
Example presented in Fig. 14 is the solution we obtained with our algorithm
for generators with different number of faces. The corresponding layout is the
one of Fig. 1 with parameters a = 0.5, k = 3.

P1

(a) Fitting with 6 faces.

P1

(b) Fitting with 10 faces.

P1

(c) Fitting with 15 faces.

P1

(d) Fitting with 20 faces.

P1

(e) Fitting with 40 faces.

P1

(f) Fitting with 60 faces.

Figure 14: Error between analytic solution (in red) and our discrete solution (in black).

19

As we can see, precision is already quite good with 20 faces and it quickly
converges to the analytic solution so that no differences can be seen with more
than 40 facets per generator.

5.2. Statistics on academic test cases

Our code is a C++ code making highly use of standard library and its
datastrutures. It has been developed and tested on x86 64 Linux operating sys-
tem and compiled using gcc compiler version 4.6 using standard optimization 02
flags. The performance benchmarks have been obtained on an Intel Xeon X5690
CPU running at 3.47GHz using 24GB of RAM. While this CPU is a multicore
one, the Vorosweep algorithm does not take advantage of this.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 15: Random dataset.

Datasets have been automatically generated with
n generators by randomly choosing the starting points
uniformly in the unit square [0, 1]×[0, 1] (see Fig. 15).
All other parameters are also randomly generated, in-
cluding the direction angle of the axis of the ellipses in
[0, π/2], as well as their lengths. Fig. 17 gives running
times of datasets for generators with 40 faces and 60
faces. As expected, using 60 faces takes roughly 50
% more time than with 40 faces. It is interesting to
note the linear dependency of the running time with
the number of generators, exhibiting the n log n aver-
age behavior of the algorithm. We know that a very
bad distribution of the points over the domain would
lead to a very bad worst case complexity. But is this likely to happen in real life ?

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 16: Circle dataset.

In order to give an idea of the running time for
badly distributed generators, we ran the algorithm
on non uniform datasets. The datasets are generated
from two circles with center and radius randomly cho-
sen in [0, 1] × [0, 1] and [0, 1] (see Fig. 16). Then all
points are generated on this circles in order to cre-
ate very badly distributed points. Results are given
in Fig. 18. What can be seen is that in some rare
situation, the runtime can reach 4× the average run-
time for the same number of generators. To precise
the overhead cost, histograms of 4 intervals have been
produced, showing the runtime divided by n log n. It
looks obvious that the majority of the time, the run-
time will be less than 1.2×10−3 n log n seconds. Given that the average uniform
time is about 0.9×10−3 n log n seconds, around 10% of the cases will take more
than 2 times the average runtime.

Let us mention that an example with 10000 generators made of 60 facets
consists in 10000 × (60 facets + 60 edges) = 1.2× 106 objects and is expected

20

0.1

1

10

100

1000

100 1000 10000 100000

ti
m

e
(s

)

] generators

40 facets 60 facets

Figure 17: Runtime (y-axis) for n generators (x-axis). Datasets are randomly generated on a
unit square with generators made of 40 and 60 facets.

0.1

1

10

100

1000

100 1000 10000 100000

ti
m

e
(s

)

] generators

Figure 18: Runtime for datasets which are randomly generated on 2 circles with generators
made of 60 facets.

0

5

10

15

20

25

0 0.0006 0.0012 0.0018 0.0024 0.003

%
ge

ne
ra

to
rs

time (s)

(a) 0 <] ≤ 5000

0

5

10

15

20

25

30

0 0.0006 0.0012 0.0018 0.0024 0.003

%
ge

ne
ra

to
rs

time (s)

(b) 5000 <] ≤
10000

0

5

10

15

20

25

30

0 0.0006 0.0012 0.0018 0.0024 0.003

%
ge

ne
ra

to
rs

time (s)

(c) 10000 <] ≤
15000

0

5

10

15

20

25

30

35

0 0.0006 0.0012 0.0018 0.0024 0.003

%
ge

ne
ra

to
rs

time (s)

(d) 15000 <] ≤
20000

Figure 19: Running time distribution for the non uniform datasets with generators made of
60 facets.

to run within 35 seconds if data are randomly enough distributed, processing
around 15× 106 events.

The only algorithm to be known being comparable of ours is the one of
Emiris et al. [12] which computes an exact solution. It gives 19.4 seconds for
800 sites in the L8 metric. Nevertheless, it is more limited in the range of

21

possibility it offers. In comparison, our algorithm takes around 3 seconds for
generating the diagram of 1000 sites with a reasonably good precision.

5.3. Graphical examples

In this section we give several examples of diagrams of various settings that
can be obtained with Vorosweep. All examples are generated from random sets
of parameters. Since they contain less than 500 generators, they are processed
under one second.
We start by showing examples of polygonal metric in Fig. 20. These are gen-
erators with only 3 and 4 faces. The last example can be seen as a diagram in
the oriented L∞ metric and an additional anisotropy factor.

(a) With generators made of 3 faces. (b) With generators made of 4 faces
generators. Also known as L∞ metric
with an additional orientation angle.

Figure 20: Polygonal metric examples.

The following examples show approximate anisotropic diagrams. Fig. 21(a)
shows a simple example of what produces the algorithm. Fig. 21(b) is generated
by setting the speed of one of the generators 20× greater than the second fastest
generator. It is interesting to see how the isovalues are increasing over the
domain, enclosing all other cells. All the generators are made of 60 facets in
order to ensure a good precision.

Fig. 22(a) is used to demonstrate the versatility of our approach. In this
example, the generators are associated to an anisotropic metric under an arbi-
trary Lp norm, as explained in section 4.3. They also feature a randomly chosen
starting time which affects the shape of the cells.

Finally, Fig. 22(b) shows a diagram built inside an arbitrary non convex
polygonal domain. Isolines demonstrate that the diagram follows the underlying
metric induced by the boundaries of the domain.

22

(a) Anisotropic 60 facets simple exam-
ple.

(b) Anisotropic 60 facets example with
high velocity difference.

Figure 21: Anisotropic examples.

(a) Lp with 2 ≤ p ≤ 10 oriented metric
60 facets example with random starting
time.

(b) Lp with 2 ≤ p ≤ 10 oriented met-
ric 60 facets example constrained in a
domain.

Figure 22: Advanced examples of diagrams using Lp metric.

5.4. Robustness issues

It is obvious that like for any computational geometry algorithm, robustness
is one of the hardest problem to address. Vorosweep does not escape to the
statement and it is still an issue to make the implementation a robust one. If
general position inputs can be efficiently handled, degenerated ones are quite
complicated to handle. Fig. 23 shows a completely degenerated input which is
challenging to handle for the algorithm. The reason can be explained by the fact
that all events occur exactly at the same time and it is still an open problem for
us to produce a scheduling algorithm efficient enough not to raise the processing

23

time to an impractical level.
The solution we adopted temporarly is to add a small perturbation to the

angle of the generator, so that all events are not scheduled at the same time,
allowing the algorithm to run in a coherent way. This makes the algorithm
not deterministic but few perturbations do not lead to dramatic changes in the
Voronoi diagram structure anyway.

Figure 23: Degenerated input : all points are positioned on a grid with the same angle.

6. Conclusion and future work

6.1. Robustness

A future extension of this work would consist in an improvement of the ro-
bustness of our proof of concept Vorosweep. Indeed, robustness has not been our
first priority. It is clear that a good implementation should follow the so-called
topology oriented implementation proposed in Sugihara et al. [28] and, to some
extent, the current implementation already take this approach into account. But
an important work remains to be done in order to analyze weaknesses of our
algorithm and fix them. Our code makes also heavy use of orientation tests and
since few of them are crucial in the run of the algorithm, these predicates should
be replaced by more robust versions like for instance the ones from Shewchuk
[26].

6.2. Performance improvements

In order to make the runtime performance of our algorithm less dependent
to irregularly distributed generators, we have planned to replace the rectangular
regular grid by quad trees, allowing a geometric hashing of the plane following
clusters of points.

Since the algorithm is processing on a grid, a multithreaded implementation
would also be possible. This assume that an independent processing can be done
on each bucket of the grid. Since this condition is only fulfilled at the beginning

24

of the processing, such an implementation would potentially only speedup the
beginning of the algorithm and thus may not be as interesting as expected.

6.3. Higher order metric

Our framework only handle linear metric, i.e. not squared distances, like
power diagrams or even logarithmic metric and so on. Implementing them
would raise the complexity of the implementation. Indeed, it would involve
parabolic or logarithmic cylinders and their intersections instead of planes and
straight lines.

6.4. Generator types

It is obvious that this approach is not restricted to point sites, and more
complex sites are can be considered, like segments (See Fig. 24), arbitrary
curves or even free forms, by still using our discretization method. All of these
kind of diagrams can be easily implemented thanks to the generality of our
approach. It is also easy to include features like ”wind field” by modifying the
angle of the axis of the generators between the xy plane.

Figure 24: Point and segment sites with random speeds.

6.5. Accuracy improvements

Accuracy improvements should also be done, especially for points which are
far from their generator. If the relative error remains the same, the absolute
error increases. In Fig. 25 we show the kind of pattern that we are planning
to bring into our framework. Given that faces are not intended to go for long
distances, this increase in the number of sweepobjects should be limited in
average. Experiments are still to be done in this direction.

25

(a) Actual lack of accuracy. (b) Refinement strategy that should be
adopted.

Figure 25: Refinement strategy keeping the approximation of the wavefront.

6.6. Extension to 3D

It looks like the extension to 3D is possible, and a step in this direction
has already been made by Held [16]. A significant work is nevertheless to be
done in order to obtain results in 3D, since it raises the complexity of the whole
algorithm to a much higher level.

To conclude, we want to ensure that the reader understands that this method
is very different from others that could look very close like the one by Hoff III
et al. [17] and by Emiris et al. [12]. If they are the only ones to give a practical
framework able to generate generalized Voronoi diagrams, they do not propose a
method that produces orphan free diagrams, which is the major strength of ours.

We believe that this implementation is very promising since it is closely
related to different problems, from the shortest path in a domain with polygonal
obstacles to the fast marching method of Sethian [24]. The Vorosweep package
can be found at http://www.cadxfem.org/vorosweep and is distributed under
the GPL license for non commercial use.

Acknowledgements

This research project was funded in part by the Walloon Region under WIST
3 grant 1017074 DOMHEX (Dominant Hexahedral Mesh Generation).

References

[1] Oswin Aichholzer, Franz Aurenhammer, Danny Z. Chen, D. T. Lee, and
Evanthia Papadopoulou. Skew voronoi diagrams. International Journal of
Computational Geometry & Applications, 9(03):235247, 1999. URL http:

//www.worldscientific.com/doi/abs/10.1142/S0218195999000169.

[2] Boris Aronov. On the geodesic voronoi diagram of point sites in a sim-
ple polygon. Algorithmica, 4(1-4):109–140, June 1989. ISSN 0178-4617,
1432-0541. doi: 10.1007/BF01553882. URL http://link.springer.com/

article/10.1007/BF01553882.

26

http://www.worldscientific.com/doi/abs/10.1142/S0218195999000169
http://www.worldscientific.com/doi/abs/10.1142/S0218195999000169
http://link.springer.com/article/10.1007/BF01553882
http://link.springer.com/article/10.1007/BF01553882

[3] Jean-Daniel Boissonnat and Christophe Delage. Convex hull and voronoi
diagram of additively weighted points. In Gerth Stlting Brodal and Stefano
Leonardi, editors, Algorithms ESA 2005, number 3669 in Lecture Notes
in Computer Science, pages 367–378. Springer Berlin Heidelberg, January
2005. ISBN 978-3-540-29118-3, 978-3-540-31951-1. URL http://link.

springer.com/chapter/10.1007/11561071_34.

[4] Jean-Daniel Boissonnat, Camille Wormser, and Mariette Yvinec. Curved
voronoi diagrams. In Jean-Daniel Boissonnat and Monique Teillaud, edi-
tors, Effective Computational Geometry for Curves and Surfaces, pages 67–
116. Springer Berlin Heidelberg, January 2006. ISBN 978-3-540-33258-9,
978-3-540-33259-6. URL http://link.springer.com/chapter/10.1007/

978-3-540-33259-6_2.

[5] Jean-Daniel Boissonnat, Camille Wormser, and Mariette Yvinec.
Anisotropic diagrams: Labelle shewchuk approach revisited. Theoretical
Computer Science, 408(23):163–173, November 2008. ISSN 0304-3975.
doi: 10.1016/j.tcs.2008.08.006. URL http://www.sciencedirect.com/

science/article/pii/S0304397508005598.

[6] A. Bowyer. Computing dirichlet tessellations. The Computer Journal, 24
(2):162–166, January 1981. ISSN 0010-4620, 1460-2067. doi: 10.1093/
comjnl/24.2.162. URL http://comjnl.oxfordjournals.org/content/

24/2/162.

[7] Siu-Wing Cheng and Antoine Vigneron. Motorcycle graphs and straight
skeletons. Algorithmica, 47(2):159–182, February 2007. ISSN 0178-
4617, 1432-0541. doi: 10.1007/s00453-006-1229-7. URL http://link.

springer.com/article/10.1007/s00453-006-1229-7.

[8] Chistophe Delage. CGAL-based First Prototype Implementation of Moebius
Diagram in 2D. 2003.

[9] Elena Deza and Michel-Marie Deza. Chapter 20 - voronoi diagram dis-
tances. In Elena Deza and Michel-Marie Deza, editors, Dictionary of
Distances, pages 253–261. Elsevier, Amsterdam, 2006. ISBN 978-0-444-
52087-6. URL http://www.sciencedirect.com/science/article/pii/

B9780444520876500202.

[10] Qiang Du and Desheng Wang. Anisotropic centroidal voronoi tessella-
tions and their applications. SIAM Journal on Scientific Computing,
26(3):737761, 2005. URL http://epubs.siam.org/doi/abs/10.1137/

S1064827503428527.

[11] Ioannis Z. Emiris and Menelaos I. Karavelas. The predicates of the
apollonius diagram: Algorithmic analysis and implementation. Compu-
tational Geometry, 33(1-2):18–57, January 2006. ISSN 09257721. doi:
10.1016/j.comgeo.2004.02.006. URL http://linkinghub.elsevier.com/

retrieve/pii/S0925772105000623.

27

http://link.springer.com/chapter/10.1007/11561071_34
http://link.springer.com/chapter/10.1007/11561071_34
http://link.springer.com/chapter/10.1007/978-3-540-33259-6_2
http://link.springer.com/chapter/10.1007/978-3-540-33259-6_2
http://www.sciencedirect.com/science/article/pii/S0304397508005598
http://www.sciencedirect.com/science/article/pii/S0304397508005598
http://comjnl.oxfordjournals.org/content/24/2/162
http://comjnl.oxfordjournals.org/content/24/2/162
http://link.springer.com/article/10.1007/s00453-006-1229-7
http://link.springer.com/article/10.1007/s00453-006-1229-7
http://www.sciencedirect.com/science/article/pii/B9780444520876500202
http://www.sciencedirect.com/science/article/pii/B9780444520876500202
http://epubs.siam.org/doi/abs/10.1137/S1064827503428527
http://epubs.siam.org/doi/abs/10.1137/S1064827503428527
http://linkinghub.elsevier.com/retrieve/pii/S0925772105000623
http://linkinghub.elsevier.com/retrieve/pii/S0925772105000623

[12] Ioannis Z. Emiris, Angelos Mantzaflaris, and Bernard Mourrain. Voronoi
diagrams of algebraic distance fields. Computer-Aided Design, 45(2):511–
516, February 2013. ISSN 00104485. doi: 10.1016/j.cad.2012.10.043. URL
http://linkinghub.elsevier.com/retrieve/pii/S0010448512002485.

[13] David Eppstein and Jeff Erickson. Raising roofs, crashing cycles, and
playing pool: Applications of a data structure for finding pairwise inter-
actions. Discrete & Computational Geometry, 22(4):569592, 1999. URL
http://link.springer.com/article/10.1007/PL00009479.

[14] Steven Fortune. A sweepline algorithm for voronoi diagrams. Algorith-
mica, 2(1-4):153174, 1987. URL http://link.springer.com/article/

10.1007/BF01840357.

[15] Robert Gorke. Constructing the city voronoi diagram faster. In in Proc.
2nd Int. Symp. on Voronoi Diagrams in Science and Engineering (VD05,
page 162172, 2005.

[16] Martin Held. On computing voronoi diagrams of convex polyhedra by
means of wavefront propagation. In CCCG, page 128133, 1994. URL
ftp://129.49.108.37/geometry/cccg94.ps.gz.

[17] Kenneth E. Hoff III, John Keyser, Ming Lin, Dinesh Manocha, and Tim
Culver. Fast computation of generalized voronoi diagrams using graph-
ics hardware. In Proceedings of the 26th annual conference on Computer
graphics and interactive techniques, page 277286. ACM Press/Addison-
Wesley Publishing Co., 1999. URL http://dl.acm.org/citation.cfm?

id=311567.

[18] Stefan Huber and Martin Held. Motorcycle graphs: Stochastic prop-
erties motivate an efficient yet simple implementation. Journal of Ex-
perimental Algorithmics, 16:1.1, May 2011. ISSN 10846654. doi: 10.
1145/1963190.2019578. URL http://dl.acm.org/citation.cfm?doid=

1963190.2019578.

[19] Ales Jaklic, Ales Leonardis, and Franc Solina. Segmentation and Recovery
of Superquadrics. Springer, September 2000. ISBN 9780792366010.

[20] Menelaos Karavelas and Mariette Yvinec. 2d apollonius graphs (delaunay
graphs of disks). In CGAL User and Reference Manual. CGAL Edito-
rial Board, 4.3 edition, 2013. URL http://doc.cgal.org/4.3/Manual/

packages.html#PkgApolloniusGraph2Summary.

[21] Kei Kobayashi and Kokichi Sugihara. Crystal voronoi diagram and its
applications. Future Generation Computer Systems, 18(5):681–692, April
2002. ISSN 0167-739X. doi: 10.1016/S0167-739X(02)00033-X. URL http:

//www.sciencedirect.com/science/article/pii/S0167739X0200033X.

28

http://linkinghub.elsevier.com/retrieve/pii/S0010448512002485
http://link.springer.com/article/10.1007/PL00009479
http://link.springer.com/article/10.1007/BF01840357
http://link.springer.com/article/10.1007/BF01840357
ftp://129.49.108.37/geometry/cccg94.ps.gz
http://dl.acm.org/citation.cfm?id=311567
http://dl.acm.org/citation.cfm?id=311567
http://dl.acm.org/citation.cfm?doid=1963190.2019578
http://dl.acm.org/citation.cfm?doid=1963190.2019578
http://doc.cgal.org/4.3/Manual/packages.html#PkgApolloniusGraph2Summary
http://doc.cgal.org/4.3/Manual/packages.html#PkgApolloniusGraph2Summary
http://www.sciencedirect.com/science/article/pii/S0167739X0200033X
http://www.sciencedirect.com/science/article/pii/S0167739X0200033X

[22] Francois Labelle and Jonathan Richard Shewchuk. Anisotropic voronoi
diagrams and guaranteed-quality anisotropic mesh generation. In Proceed-
ings of the nineteenth annual symposium on Computational geometry, page
191200, 2003. URL http://dl.acm.org/citation.cfm?id=777822.

[23] Barry F. Schaudt and R. L. Drysdale. Multiplicatively weighted crystal
growth voronoi diagrams. In Proceedings of the seventh annual symposium
on Computational geometry, page 214223, 1991. URL http://dl.acm.

org/citation.cfm?id=109672.

[24] James A. Sethian. Fast marching methods. SIAM review, 41
(2):199235, 1999. URL http://epubs.siam.org/doi/abs/10.1137/

S0036144598347059.

[25] Michael Ian Shamos and Dan Hoey. Closest-point problems. In Foun-
dations of Computer Science, 1975., 16th Annual Symposium on, page
151162. IEEE, 1975. URL http://ieeexplore.ieee.org/xpls/abs_all.

jsp?arnumber=4567872.

[26] Jonathan Richard Shewchuk. Adaptive precision floating-point arithmetic
and fast robust geometric predicates. Discrete & Computational Geome-
try, 18(3):305363, 1997. URL http://link.springer.com/article/10.

1007/PL00009321.

[27] Gary M. Shute, Linda L. Deneen, and Clark D. Thomborson. AnO (n logn)
plane-sweep algorithm forL 1 andL delaunay triangulations. Algorithmica, 6
(1-6):207221, 1991. URL http://link.springer.com/article/10.1007/

BF01759042.

[28] K. Sugihara, M. Iri, H. Inagaki, and T. Imai. Topology-oriented implemen-
tationan approach to robust geometric algorithms. Algorithmica, 27(1):
5–20, May 2000. ISSN 0178-4617, 1432-0541. doi: 10.1007/s004530010002.
URL http://link.springer.com/article/10.1007/s004530010002.

[29] Antoine Vigneron and Lie Yan. A faster algorithm for computing motor-
cycle graphs. In Proceedings of the 29th annual symposium on Symposuim
on computational geometry, page 1726, 2013. URL http://dl.acm.org/

citation.cfm?id=2462396.

Appendix A. Multiplicatively weighted Voronoi diagrams.

The Apollonius circle equation is obtained by the identity:

‖P1 − P‖
v1

=
‖P2 − P‖

v2

This can be written as

x2 + y2

v21
=

(x− a)2 + y2

v22

29

http://dl.acm.org/citation.cfm?id=777822
http://dl.acm.org/citation.cfm?id=109672
http://dl.acm.org/citation.cfm?id=109672
http://epubs.siam.org/doi/abs/10.1137/S0036144598347059
http://epubs.siam.org/doi/abs/10.1137/S0036144598347059
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4567872
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4567872
http://link.springer.com/article/10.1007/PL00009321
http://link.springer.com/article/10.1007/PL00009321
http://link.springer.com/article/10.1007/BF01759042
http://link.springer.com/article/10.1007/BF01759042
http://link.springer.com/article/10.1007/s004530010002
http://dl.acm.org/citation.cfm?id=2462396
http://dl.acm.org/citation.cfm?id=2462396

k2(x2 + y2) = (x− a)2 + y2

x2 + y2 +
2ax

k2 − 1
=

a2

k2 − 1

x2 +
2ax

k2 − 1
+

a2

(k2 − 1)2
+ y2 =

a2

k2 − 1
+

a2

(k2 − 1)2Å
x+

a

k2 − 1

ã2

+ y2 =
a2k2

(k2 − 1)2

This is the equation of a circle (x− x0)2 + (y − y0)2 = R2 with
x0 = − a

k2 − 1

y0 = 0

R =
ak

(k2 − 1)

(A.1)

also called the Apollonius circle.
Fig. A.26 shows the different step of the growth.

P2
P1

y

x

(a) Cells at t1

P2
P1

y

x

Q1

(b) Cells at t2

P2
P1

y

x

Q1

(c) Cells at t3

P2
P1

y

x

Q1

(d) Cells at t4

Figure A.26: Steps of multiplicatively weighted Voronoi cells growth. In this case, the distance
is measured along a straight line thus creating the Apollonius circle.

30

We will now detail the computation of the curved portion of the boundary.
At point Q1, x = 0, so we can write:

‖P1 − P‖
v1

=
‖P2 − P‖

v2

y2 =
a2k2

(k2 − 1)2
− a2

(k2 − 1)2
=

a2

k2 − 1

y =
a√

k2 − 1

By consequence, ‖P1 − P‖ = a√
k2−1 at point Q1, and ‖P2 − P‖ = k‖P1 −

P‖= ak√
k2−1

dθ

dr

r

P1

P

P ′

rdθ

Figure A.27: Evolution of a point at boundary at an infinitesimal level.

Let have a look at Fig. A.27 which represents the polar frame of a point at
the boundary. By carefully noting that dr and [PP ′] are related to the speed of
P1 and P2, we can write that dr = v1δt and [PP ′] = v2δt for a small increment
δt. Since rdθ2 + dr2 = [PP ′]2:

rdθ =
»

[PP ′]2 − dr2

=
»

(v2δt)2 − (v1δt)2

= v1δt
√
k2 − 1

(A.2)

We can finally write that

dr

rdθ
=

1√
k2 − 1

= Cte

This is a constant coefficient first order equation of the kind

dr

dθ
+Br = 0

31

whose non trivial analytic solution is r(θ) = Ce−Bθ.
Since the curved section starts at Q1, θ = π/2, and from the Apollonius circle
equation we got r(θ) = a√

k2−1 , the final equation of the boundary for x < 0 is:

r(θ) =
a√

k2 − 1
e
θ−π/2√
k2−1 ,

π

2
≤ θ ≤ π (A.3)

After point Q1, ‖P2 − P‖ = ‖P2Q1‖ + Q̄1P . Since the arc length of any

differentiable curve s is defined by
∫ b
a

ds. In the polar form ds =
»
r2 +

(
dr
dθ

)2
dθ,

it finally comes that the path from P2 can be computed by

‖P2 − P‖ =

∫ θ

π
2

r(φ)2 +

Å
dr

dθ
(φ)

ã2

dφ+
ak√
k2 − 1

Since
dr

dθ
=

r√
k2 − 1

we can write

‖P2 − P‖ =
1√

k2 − 1

∫ θ

π
2

»
(k2 − 1)r(φ)2 + (r(φ))

2
dφ+

ak√
k2 − 1

‖P2 − P‖ =
k√

k2 − 1

∫ θ

π
2

r(φ) dφ+
ak√
k2 − 1

‖P2 − P‖ =
ak√
k2 − 1

ï
e
θ−π/2√
k2−1

òθ
π
2

+
ak√
k2 − 1

‖P2 − P‖ =
ak√
k2 − 1

e
θ−π/2√
k2−1

Appendix B. Extension to anisotropic diagrams.

The discrete drawing is obtained in following the path for which |P1Q| =
|P2Q| by small increment since we know at each hidden point that the increment
is along the tangent of the path. At point Q, we are at a distance dn from P1

and from P2. We assume that speed from P2 is always greater than from P1

otherwise the path is not a spiral and P1 is not enclosed by P2.
We use a constant distance increment dx to follow the bisector of P1 and P2.
We assume that P1 and P2 are associated with metricM1 andM2 respectively.
Fig. B.28 illustrates one step of this method.

1. the unit length in the direction of vn is l2 =
√

vtM2v

32

2. the corresponding distance increment is dl = dx
un

3. the temporary point Q′ = Qn + vndl is built by following the tangent
vector.

4. the radial vector is generated from P1: rn+1 =
−−−→
P1Q

′. rn+1 is normalized
in the euclidean space.

5. we can set dn+1 = dn + dx.

6. the unit length in the direction of rn+1 is l1 =
√

rtM1r.

7. the final point is obtained by Qn+1 = P1 + rn+1 dn+1

l1
.

8. finally, the tangent vector is updated by setting vn+1 =
−−−−−−→
QnQn+1

‖
−−−−−−→
QnQn+1‖

.

QnQn+1

Q′
vn

vn+1

P1P1

rn+1

rn

Figure B.28: Anisotropic scheme.

33

	Introduction
	2D Voronoi diagrams
	Definitions in the 2D euclidean metric
	Generalizing the Voronoi diagrams
	Classification of various Voronoi diagrams
	Existing algorithms
	Constrained Voronoi diagrams

	Designing a generalized Voronoi diagram algorithm
	The crystal growth approach
	The wavefront expansion and the polygonal approximation
	The motorcycle graph
	Adding a dimension
	Put it all together

	Implementation
	Topological structure
	Underlying grid
	Generator definition
	Event structure
	Crystal growing strategy
	Main routine
	Output

	Results
	Accuracy
	Statistics on academic test cases
	Graphical examples
	Robustness issues

	Conclusion and future work
	Robustness
	Performance improvements
	Higher order metric
	Generator types
	Accuracy improvements
	Extension to 3D

	Multiplicatively weighted Voronoi diagrams.
	Extension to anisotropic diagrams.

